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For systems that are neither fully integrable nor fully chaotic, bifurcations of periodic orbits give
rise to semiclassically emergent singularities in the fluctuating part Nfl of the energy-level counting
function. The bifurcations dominate the spectral moments Mm(h̄) =

〈
(Nfl)

2m
〉
in the limit h̄ → 0.

We show that Mm(h̄) ∼ constant/h̄νm , and calculate the twinkling exponents νm as the result of a
competition between bifurcations with different codimensions and repetition numbers.

I. INTRODUCTION

Our aim here is to characterize energy-level fluctua-
tions in quantum systems whose classical counterparts
are mixed, that is, neither completely integrable nor com-
pletely chaotic. Previous work [1] indicates that the
short-range fluctuations can be usefully approximated by
a superposition of the Poisson and random-matrix spec-
tral statistics that respectively describe integrable and
chaotic systems [2–5]. Here we will argue that there is a
complementary description, more fundamentally associ-
ated with the mixed regime.
The new description is associated with bifurcations,

where combinations of stable and unstable orbits collide
and transform into others, or annihilate, as a param-
eter (for example energy) varies—it is the ubiquity of
bifurcations, after all, that characterizes mixed systems.
The main result will be the prediction that the spectral
moments—describing the fluctuations in the distribution
of energy levels as explained below—are dominated by a
competition among the different sorts of bifurcation.
Bifurcations are singularities of the dynamics, and the

statistics to be calculated here are a new example of the
wider class of ‘singularity-dominated strong fluctuations’.
This old but still-unfamiliar idea is that some variables
exhibit wild (non-gaussian) fluctuations, with very large
values described by scaling laws and associated with par-
ticular geometric singularities. For a review, see [6] (but
note that some of the exponents in section 4 of this pub-
lication are wrong, and superseded by the present pa-
per). The fluctuations most closely analogous to those
we consider here are the intensity variations of twinkling
starlight, where the short-wave singularities are caustics,
and the intensity moments depend on a competition [7]
among catastrophes (universality classes of caustic). Al-
though the formal analogy between spectral fluctuations
and light caustics is close, orbit bifurcations are classi-
fied differently, and in their technical aspects, and their
results, the two theories diverge.
Like all statistics related to chaology, those described

here emerge semiclassically, that is in the limit of van-
ishing Planck’s constant h̄. Consider a set of levels
{E1(h̄), E2(h̄), . . . , Ej(h̄), . . .}. This spectrum can be
characterized by the counting function, or spectral stair-
case:

N (E, h̄) =
∞∑

j=1

Θ(E − Ej(h̄)) , (1)

where Θ denotes the unit step. As usual, we separate N
into its smooth and fluctuating parts:

N (E, h̄) = Nsm(E, h̄) +Nfl(E, h̄) . (2)

Nsm is given by the Weyl rule plus h̄-corrections [8].
We will concentrate on the semiclassical size of the

spectral fluctuations Nfl, as embodied in the spectral mo-
ments

Mm(h̄) =
〈
[Nfl(E, h̄)]

2m
〉
. (3)

Here 〈· · ·〉 denotes a local energy average for an indi-
vidual hamiltonian. However, central to our calculation
will be the replacement of the energy average by averages
over parameters for families of hamiltonians including the
given one. This implied ergodicity is implicit in many
semiclassical arguments (for example, it leads directly to
the short-range level repulsion for different classes of sys-
tems [2]). The main result will be that

Mm(h̄) ∼ constant
h̄νm

(up to logarithms) as h̄→ 0 , (4)

where νm are the ‘twinkling exponents’: universal num-
bers that we will determine by studying the hierarchy of
bifurcations. Each exponent can be determined as the
slope on a log-log plot, that is

lim
h̄→0

∂ log{Mm(h̄)}
∂ log{1/h̄} = νm . (5)

Our calculation will be for systems with two freedoms.
For these, a strict upper bound νm ≤ 4m follows from
the Weyl rule N ∼ Nsm ∼ constant/h̄2, implying

h̄2Nfl → 0 as h̄→ 0 . (6)
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II. SEMICLASSICAL THEORY

To see the importance of bifurcations, we first recall the
trace formulas, in which Nfl(E) can be represented semi-
classically as a sum over periodic orbits. In the generic
case, where orbits are isolated, the sum is over primitive
periodic orbits p with energy E, and their repetitions r
[9,10]:

Nfl(E, h̄) ≈ 1
π

∑
p

∞∑
r=1

sin{Sp,r(E)/h̄− µp,r}
r
√| det ([Mp(E)]r − 1)|

. (7)

Here Sp,r is the action of the orbit, Mp is the mon-
odromy matrix describing the linearised return map on
the Poincaré section, and µp,r is the Maslov index (which
will play no further part in our reasoning).
In the integrable case, for two freedoms, with hamil-

tonian H(I) involving action variables I = {I1, I2}, the
sum is over resonant tori characterized by their winding
numbers W = {W1,W2}, and the trace formula is [11]

Nfl(E, h̄) ≈ 1

πh̄1/2

∑
W

sin{2πW · IW(E)/h̄− µW}
|W|3/2

√
K(IW(E))

. (8)

Here IW(E) are the actions of the resonant tori, where
the frequencies ω are commensurate, and K is the cur-
vature of the energy contour H(I) = E in I space.
When these formulas apply, there are no strong fluc-

tuations and the estimation of Nfl is fairly simple.
For the chaotic case (7), the prefactor is of order h̄0;
the sum diverges, but can be regularized by trunca-
tion at orbits with period equal to the Heisenberg time
h̄/(mean level spacing), which, together with the expo-
nential proliferation of orbits with increasing period,
leads to

|Nfl| ∼ constant×
√
log(1/h̄) , (9)

and moments (5) with all twinkling exponents νm = 0.
For the two-dimensional integrable case (8), where the
sum converges,

|Nfl| ∼ constant× h̄−1/2 , (10)

and (3) and (5) give νm = m.
Here we are interested in cases when the trace for-

mulas fail. This happens at bifurcations of periodic or-
bits. In (7), bifurcations of isolated orbits correspond
to a unit eigenvalue of the monodromy matrix, so that
det (M − 1) vanishes, and the terms representing those
orbits diverge. In (8) bifurcations of tori correspond to
coalescence of parallel normals to the energy surface, so
that K vanishes and the terms representing those orbits
diverge. The formulas fail, but it is clear that bifurca-
tions lead to large values of Nfl. How large? This has
been studied by several authors [12–18], who have found
corrected versions of the trace formula that incorporate
the bifurcations properly, with the result that Nfl does

not diverge but rises to values that increase as h̄→ 0. We
will extend these results to estimate the momentsMm(h̄)
and hence the twinkling exponents νm.
Near bifurcations, the trace formulas (7) and (8) must

be replaced by the ‘diffraction integrals’ for which they
are the stationary-phase approximations. Before writing
these, we note that, for two freedoms, periodic orbits are
fixed points of the map determined by successive inter-
sections with the Poincaré section with coordinates q, p.
In terms of the generating function φ, the map can be
specified as(
q
p

)
→
(
q′
p′

)
, with q = ∂pφ(q′, p) , p′ = ∂q′φ(q′, p) .

(11)

Thus, periodic orbits are critical points of the reduced
generating function (henceforth called generator)

Φ(q′, p) = φ(q′, p)− q′p ,
{∂qΦ(q, p) = ∂pΦ(q, p) = 0} ↔ {q′ = q , p′ = p} . (12)

To write the diffraction integral describing semiclassical
spectral fluctuations, we need the generator Φr of the
r-times-iterated Poincaré map. (Φr(q, p;E) can be re-
garded as an effective hamiltonian describing the motion
between r intersections of orbits with the Poincaré sec-
tion.)
Up to irrelevant factors, the fluctuations are [12,15]

Nfl(E) ≈
∞∑

r=1

Nfl,r(E) ,

Nfl,r(E) = Im
1
h̄

∫ ∫
dq dp exp

{
i

h̄
Φr(q, p;E)

}
. (13)

Provided the sum over r converges, this semiclassical the-
ory implies the bound νm ≤ 2m, sharper than the strict
bound νm ≤ 4m obtained at the end of section I.
Periodic orbits correspond to stationary values of the

phases in these integrals. If the stationary points are
isolated, the stationary-phase approximation reproduces
(7). If the system is integrable, Φ depends not on q and p
separately but on a combination (action variable) such as
q2 + p2, and is stationary on lines, corresponding to res-
onant tori; then stationary-phase reproduces (8). At bi-
furcations, where isolated periodic orbits or resonant tori
coalesce, these approximations fail. For different sorts of
bifurcation, the patterns of coalescence are different, and
Nfl can be described locally [12] by replacing Φ by an
appropriate normal form (the validity of the description
can be extended by approximating the integrals (13) by
the technique of uniform approximations [15,16,18], but
that is not required for our purposes).

III. NORMAL FORMS AND SCALING

We envisage that for each bifurcation the local genera-
tor for each repetition number r depends on parameters
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x = {xn} (1 ≤ n ≤ K) in addition to q and p; one of these
parameters is the energy E, and K is the codimension of
the singularity. The parameters describe the unfolding of
the bifurcation, that is, the ways in which the degenerate
periodic orbits can split into combinations of nondegen-
erate orbits. Reflecting this, we denote the normal forms
for the bifurcations by

Φr = Φr,K(q, p;x) , (14)

and define the associated canonical integrals

Nfl,r,K(x, h̄) ≡ Im
1
h̄

∫ ∫
dq dp exp

{
i

h̄
Φr,K(q, p;x)

}
.

(15)

The strategy now is to simplify the h̄ dependence of
these integrals in a way that enables the averages in the
moments (3) to be estimated as integrals over the param-
eters x. This will be achieved by a two-stage process:
rescaling the integration variables q and p to remove the
1/h̄ factor from the dominant term (germ) of the gen-
erator in the exponent of (15), and then applying com-
pensating rescaling of the parameters x. This will lead
to

Nfl,r,K(x, h̄) =
1

h̄βr,K
Nfl,r,K ({xn/h̄

σn,r,K} , 1) . (16)

The exponent β describes the semiclassical strength of
the spectral fluctuations at the bifurcation. The expo-
nents σ describe the scale of the interference fringes as-
sociated with nondegenerate periodic orbits that appear
in the different unfolding directions xn. We will also need
the associated exponent

γr,K =
K∑

n=1

σn,r,K , (17)

describing the scaling of the K-dimensional x space hy-
pervolume associated with interference near the bifurca-
tion.
Armed with the scaling law (16), we can estimate the

contribution of the bifurcation r, K to the ensemble av-
erage for the mth moment (3). This is

Mm,r,K ≡ B
∫
dKxNfl,r,K(x, h̄)2m

=
B

h̄(2mβr,K−γr,K)

∫
dKy [Nfl,r,K(y, 1)]2m , (18)

where B is a normalization constant.
With the h̄ dependence thus extracted, these contri-

butions can now be compared for the different bifurca-
tions. The dominant contribution(s) will come from the
bifurcation(s) with the strongest h̄ dependence, leading
to the fluctuation moment scaling law (4) and (5) as the
result of a competition among bifurcations, resulting in
the twinkling exponents

νm = max
(r,K)

(2mβr,K − γr,K) . (19)

Here we will consider only the fully generic situation
where the dynamics is such that all bifurcations occur
in the neighbourhood of the system under considera-
tion. Then the competition in (19) is unrestricted. If for
some reason (e.g. symmetry) some classes of bifurcation
are forbidden, the competition must be appropriately re-
stricted, and the resulting exponents will be different.
Analogous restricted competitions have been explored in
the optical context [19] in the analysis of an experiment
to measure twinkling exponents.
To carry out this program, we need the normal forms

of the bifurcations labelled r, K. For r = 1, these are
the elementary catastrophe polynomials representing the
different ways that critical points of smooth functions
can coalesce [20–23], and the exponents in the scaling
law (16) and (17) have already been calculated [7]. This
is analogous to the optical case, where the appropriate
diffraction integral is the first term r = 1 of the sum (13).
For the cuspoid catastrophes, where one variable (p, say)
is quadratic—in the language of catastrophe theory, these
are catastrophes of corank 1—the normal forms are

Φ1,K = p2 + qK+2 +
K∑

n=1

xnq
n (20)

(any term of order qK+1 can be eliminated by shifting
the origin) and the exponents are

βcuspoids
1,K =

K

2(K + 2)
, σcuspoids

1,K = 1− n

K + 2
,

γcuspoids
1,K =

K(K + 3)
2(K + 2)

. (21)

We do not give the more complicated expressions corre-
sponding to catastrophes of corank 2, where the genera-
tors involve both q and p nontrivially.
When r ≥ 1, however, the normal forms are not the

elementary catastrophes, because the period-r generator
must have the special property of possessing an rth root,
namely the generator for the primitive map. Some infor-
mation is available for bifurcations of period-r orbits with
K = 1 [24–27] and K = 2 [17], but this is not sufficient
for our purposes.
To get the results we need, we start by transforming

to polar coordinates in phase space, that is

q =
√
I/2 cosφ , p =

√
I/2 sinφ , (22)

and noting that the generators for period-r bifurcations
must have φ dependence with period 2π/r, so the φ-
dependent terms of lowest degree in I must involve
cos(rφ) and sin(rφ). Moreover, the generators must be
smooth functions of q and p at the origin, which excludes
terms Is cos(rφ) with s < r/2. This leads to the sur-
prising conclusion that if r ≥ 2K + 2 the φ-dependent
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terms are all of higher order than the unfolding terms
containing the parameters x. Thus we can write

Φr,K(q, p;x) = IK+1 +
K∑

n=1

xnI
n (r ≥ 2K + 2) . (23)

(The resemblance to the cuspoid generators (20) is mis-
leading: it is not legitimate to eliminate the highest un-
folding term xkI

K by shifting the origin of I, since this
would violate the condition that I must be nonnegative—
alternatively stated, the origin of I is privileged, unlike
the origin of q in (20).)
Reverting to q and p, and scaling the integrals (15), we

get, for the exponents in (16) and (17),

βr,K =
K

K + 1
, σn,r,K = 1− n

K + 1
,

γr,K =
1
2
K (r ≥ 2K + 2) . (24)

Note that these exponents do not involve r.
In (23) we are neglecting the φ-dependent terms, but

we are not asserting their absence—of course these terms
must be present, to describe the ‘island necklaces’ of sta-
ble and unstable orbits into which the degenerate orbits
bifurcate. But because the neglected terms are of higher
order (reflecting the fact that the islands are very thin
close to the bifurcation) the parameters that would mul-
tiply them acquire negative exponents σ under scaling,
and so disappear semiclassically from the diffraction in-
tegrals. Alternatively stated in the language of critical
phenomena, these parameters are irrelevant variables. As
a simple illustrative example, consider K = 1, r = 5 (i.e.
r ≥ 2K + 2). Then the generator, including the leading
φ-dependent term, is

Φ5,1(q, p;x) = I2 + x1I + x5I
5/2 cos(5φ) (25)

= 4(p2 + q2)2 + 2x1(p2 + q2) + 25/2x5 Re (q + ip)5 .

Scaling h̄ from the exponent in (15) gives β = 1/2, and
incorporating this into the parameter x1 gives σ1 = 1/2.
However, applying the same scaling to the ‘necklace’ pa-
rameter x5 gives σ5 = −1/4, which is negative and there-
fore irrelevant. (If r = 2K + 2, the leading necklace pa-
rameter gives the marginal exponent σ = 0, which does
not affect any of our subsequent arguments.)
We have not determined the generators for 1 < r <

2K+2, but will soon argue that these bifurcations cannot
contribute to the twinkling exponents.

m 2 3 4 5 6 7 8 9 10 11 12

νm
5
3

3 9
2

6 38
5

46
5

65
6

25
2

85
6

111
7

123
7

dominating K 2 2,3 3 3,4 4 4 5 5 5 6 6

TABLE I. Twinkling exponents νm, and the codimen-
sion(s) K of the dominating bifurcations(s), for generic
two-freedom systems.

IV. BATTLE OF BIFURCATIONS

Suppose for the moment that all relevant bifurcations
have r ≥ 2K+2, so that (23) applies. Then the twinkling
exponents are determined by the competition (19), where
the entrants are the β and γ values in (24), that is

νm = max
K

(
2mK
K + 1

− 1
2
K

)
. (26)

The results are given in table I.
Now we will argue that these results are unaffected

by allowing the bifurcations with r < 2K + 1 to enter
the competition. This requires the twinkling exponents
associated with this class of singularities to be smaller
than those in table I. The generators for r < 2K+2 will
contain φ-dependent unfolding terms, and can be written
in the form

Φr,K(q, p;x) = I l(K)+1 +
l(K)∑
n=1

xnI
n

+
K∑

n=l(K)+1

(terms involving φ) , (27)

where l(K) < K and all the terms involving φ are of lower
degree than I l(K)+1. For each such generator, there is a
partner in the class with r ≥ 2K + 2, of the form (23),
with K ′ = l(K). This partner has the term germ I l(K)+1

as (27), and therefore the same exponent β, but its γ
exponent is smaller, because of the additional terms in
(27). Therefore the partner with r ≥ 2K + 2 has the
larger twinkling exponent 2mβ − γ, and so dominates
the competition.
This general argument can be verified directly for the

special case of bifurcations with r = 1, namely the ele-
mentary catastrophes. For the cuspoids (corank 1), with
exponents (21), it is easy to calculate the results of the
competition (19); this has already been done in the opti-
cal context [7], and all exponents are indeed smaller than
those in table I. The same is true for the corank 2 catas-
trophes, even though the exponents are all larger than for
corank 1 (for corank 2 the classification is incomplete,
but the conclusion holds for all classes of singularities
that have been examined).
Thus the entries in table I are confirmed as the uni-

versal twinkling exponents associated with bifurcations
of generic systems with 2 freedoms.

V. DISCUSSION

We have argued that to leading order in 1/h̄, the
spectral fluctuation moments Mm diverge according to
power-laws, with exponents—those winning the compe-
tition (19)—given in table I. This goes far beyond the al-
ready established fact that bifurcations contribute to the
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spectral statistics when regular and chaotic orbits coexist
[28], because these new semiclassical fluctuation phenom-
ena involve many competing bifurcations, not just one.
Two observations may assist the eventual observation

of the universal fluctuations we are predicting. The first
relates to our concentration on the average effect of large
spectral fluctuations associated with individual bifurca-
tions of periodic orbits with finite length, while ignoring
possible collective effects of long orbits. But this collec-
tive effect seems small (equation 9 and the remark fol-
lowing it), so we expect the associated fluctuations to
contribute only a weak background that will not mask
the bifurcation fluctuations we are interested in.
The second observation is that although all the twin-

kling exponents in table I satisfy the inequality νm ≤ 2m,
all the exponents with m > 3 exceed the value νm = m
for integrable systems, rendering unnecessary the prob-
lematic subtraction of possible contributions to the fluc-
tuations from the (nonresonant) KAM tori that persist
in the systems we have been studying here.
Nevertheless, it is difficult to make quantitative pre-

dictions of the circumstances in which the twinkling ex-
ponents might be seen in computer or laboratory exper-
iments. To illustrate this, suppose that the dominating
bifurcation, with exponent νm, has an associated coef-
ficient Am, and the runner-up in the competition has
exponent ν1m < νm and coefficient A1m. Then the two
leading terms in the moment asymptotics will be

Mm(h̄) ∼ Am

h̄νm
+
A1m

h̄ν1m
. (28)

If it should happen that Am � A1m, and νm exceeds
ν1m only slightly, experiments will indicate the wrong
exponents ν1m unless h̄ is less than the crossover value

h̄ =
(
Am

A1m

)1/(νm−ν1m)

, (29)

which in the circumstances indicated is very small.
Our reasoning hints at fabulous complexity in the full

semiclassical asymptotics of the moments: many differ-
ent bifurcations contribute according to (18), and these
terms are merely the leading orders in (almost certainly
divergent) h̄ expansions, because the normal forms of the
generators give only local approximations to the diffrac-
tions integrals (13), which themselves are lowest-order
semiclassical approximations. These observations lead
to the expectation that

Mm(h̄) =
∑
r,K

Am,r,k

h̄(2mβr,k−γr,k)

(
1 +

∞∑
s=1

αs,m,r,K h̄
s

)
(30)

(where the A and α coefficients might involve logarithms
of 1/h̄).
We know nothing about the leading-order bifurcation

coefficients Am,r,K or the corrections αs,r,m,K . These co-
efficients are not universal, so calculating them would re-
quire detailed knowledge of the individual bifurcations in

the particular dynamical system being considered. Even
for the less complicated case of optical twinkling, the A
coefficients have been calculated only for the simplest sit-
uation: cuspoids in diffraction from a corrugated phase-
changing screen [29,30].
HS was supported by NWO/FOM (The Netherlands).
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