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Introduction1

W-pair production at LEP21.1
In order to test the Standard Model (SM) of electroweak interactions, millions of Z 
bosons have been produced and studied at LEP1 [2]. High-precision measurements

The Standard Model of interactions between elementary particles is believed to de­
scribe accurately all present-day collider experiments. The elementary particles in 
the model are fermions, specifically quarks and leptons, which carry spin 1/2, and 
bosons. The bosons have spin 0, the Higgs boson, or have spin 1, the gauge bosons: 
gluons, photon, W* and Z bosons. The Standard Model consists of the strong inter­
actions described by Sf7(3) gauge theory, and the unified Glashow-Salam-Weinberg 
Model of electroweak interactions [1] described by an SC7(2) x [7(1) gauge theory. In 
terms of particles, the strong interactions are mediated by massless gluons, whereas 
the electroweak interactions are carried by the massless photon and the massive 
and Z gauge bosons. The theory predicts detailed properties of the particles and the 
interactions, which should be verified by experiment. The massive gauge bosons are 
a crucial part of the theory.

So far all experimental results agree within the experimental accuracy with the 
predictions of the Standard Model. Although it looks like a success story, the check 
is not complete. There are effects predicted by the Standard Model (for example 
the Higgs boson), which have not yet been observed. Besides that, theoretical argu­
ments exist, which point out that the Standard Model cannot be a consistent theory 
at higher energies. All this serves as a motivation for further studies and tests of 
the Standard Model. Therefore, at future accelerator experiments the limits will be 
pushed to even higher energies and accuracies. The results of these experiments have 
to be confronted with the predictions of the Standard Model, which should match 
the quality and accuracy of the experimental data.

The predictions of the theory can be written as a series in terms of a small 
parameter a, the fine structure constant. In first instance, the experimental results 
will be confronted with the lowest order prediction of the theory. With increasing 
experimental accuracy the next term of the perturbative expansion in a, and possibly 
even higher order terms, should be taken into account. The lowest order prediction 
is improved by these O(a), (9(q2),... corrections. They are usually called radiative 
corrections. The complexity of high precision calculations within the Standard Model 
poses a clear challenge to the theory. In this thesis the focus will be on precision 
calculations for pair production of unstable particles. In particular the case of W- 
pair production will be studied in detail.
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Figure 1-1. The diagrams corresponding to the process (1.1.3).

of the Z-boson parameters have been performed by measuring

■-)

(1.1.2)

e+e —> W+W —1 4 fermions. (1.1.3)

e+

The lowest order (Born) prediction for the cross-section of reaction (1.1.3) is based on 
the three diagrams of Fig. 1-1, representing respectively neutrino, photon and Z-boson 
exchange. In the latter two diagrams the interaction between gauge bosons, charac­
teristic for Yang-Mills gauge theories, manifests itself in the vertices with yW+W~ 
and ZW+W~ couplings. Reaction (1.1.3) therefore offers the possibility of perform­
ing direct tests of the Yang-Mills form of the triple gauge-boson couplings (TGC). 
Deviations from the SM couplings can be searched for most effectively by a detailed 
investigation of angular distributions [4].

and comparing the results with the theoretical predictions. This require.i lltcon ■.il 
precision calculations for the reaction

involving all lowest-order diagrams and the radiative corrections (RC) to them [3].
The logical next step is the study of the IT boson, which can be produced in pairs 

in electron-positron collisions at higher energies. For this purpose the energy of the 
LEP machine has been roughly doubled: the LEP2 collider. Measuring the parameters 
of the IV boson provides further tests of the SM. In particular, the accuracy of 
the measurement of the IV-boson mass (MVv) has to be improved, since it can give 
indirect information on the Higgs sector and on physics beyond the SM. By this 
we mean that with an accurate Mw and with other already precisely known SM 
parameters the range of possible mass values, Mu, for the Higgs boson can be limited 
and therefore Mlt can be roughly predicted. It is however conceivable that Mw and 
other accurately known parameters might lead to inconsistencies, i.e. no Mn value 
would give the correct SM quantities. In that case it would become apparent that the 
SM is incomplete and has to be enlarged beyond the present theory.

At LEP2, IV bosons can be studied in the IV-pair production reaction

IV

IV

W
Z $
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W

Figure 1-2. Examples of background diagrams contributing to the process (1.1.4).

Just like in the case of the Z boson, the precise determination of the W-boson 
parameters requires both accurate experiments and accurate theoretical predictions. 
Since the statistics at LEP2 is much smaller than at LEP1, the theoretical calculations 
do not have to be as precise as those for LEP1. However, just the Born prediction 
for process (1.1.3), involving only three diagrams, is not sufficient [5]. Therefore, one 
would like to have an idea how the cross-sections for the four-fermion process

e+e~ —> 4 fermions (1-1-4) 

are affected by the inclusion of the remaining lowest-order diagrams (so-called back­
ground diagrams) and the RC to the complete set of lowest-order diagrams. As an 
exampe we give a few of the many diagrams contributing to the e+i/ee-Pc final state 
in Fig. 1-2. The first and second diagram contain a single resonant W boson and the 
third none at all. Note that the second diagram contains a photon, which can become 
almost real.

The question of the complete lowest-order calculation of process (1.1.4) has been 
studied in the literature [5, 6]. Roughly speaking, those diagrams that contain a 
single W boson are a factor of O(Tw/Mw) smaller than those for the W-pair pro­
duction process (1.1.3). Diagrams that do not contain a W boson at all are down by 

Note, however, that some diagrams that do not contain two W bosons 
can nevertheless be large, e.g. as a result of the exchange of almost real photons. 
Besides such special cases, the lowest-order background diagrams in (1.1.4), i.e. the 
non-W-pair diagrams, will give at most a correction of O(Tw/Mw) to the Born 
cross-section of process (1.1.3).

The RC to process (1.1.3) are a priori of i.e. they are generically of the 
same order as the lowest-order background diagrams, which are of O(Tw/Mw)- In 
analogy to the lowest-order case, the RC to the background diagrams are at most of 
O(aVw/Mw)-

In view of the above estimates, the most relevant corrections to the Born cross­
section of process (1.1.3) are divided into two classes:

1. O(a) RC to the W-pair process (1.1.3).

2. O(Vw/Mw) lowest-order background contributions from the full four-fermion 
process (1.1.4).

Z

W< Z.

z\ w y\w^e~

Ve



4 Introduction

At present the first class of corrections has not been fully studied in the literature. 
What has been discussed quantitatively and qualitatively is merely a subset of Ola) 
effects:

the
- ire

1.2. In the vicinity of the W-pair threshold the Coulomb interac 
unstable IV bosons has been studied in great detail [8]. T! 
relatively large.

1.3. The effects 1.1 and 1.2 are all of QED origin. Complete electro 
cess (1.1.3) have not been applied yet, but some attempts hr.', 
take into account the dominant effects. An overall effect of ele: s

Chapter 1:

The purpose of this thesis is twofold. In the first place we will present a complete 
quantitative evaluation of O(a) electroweak RC to W-pair-mediated four-fermion 
production. To this end we calculate all O(a) factorizable corrections in Chapter 2 
and add them to our results on non-factorizable corrections of Chapter 4. The distinc­
tion between factorizable and non-factorizable corrections is based on the distinction 
between diagrams that explicitly have two overall resonating W-boson propagators 
and diagrams that at first sight do not seem to have this. In Chapter 2 we discuss the 
separation between the factorizable and non-factorizable corrections in more detail. 
In this way the gap in tire above list of corrections 1.1-1.3 will be filled, and the 
exact size of all O(a) corrections to reaction (1.1.3) will be known. In the light of the 
physics motivation given above, this practical result is clearly wanted.

Secondly, this thesis discusses in detail the so-called pole scheme. This scheme of­
fers a way to avoid theoretical problems associated with the gauge-invariant treatment 
of reactions that involve the production and subsequent decay of unstable particles. 
The study of the W-pair case serves as a relevant example of this method and can be 
used as a guideline for other cases. Since there are more unstable-particle production 
processes to be studied at future accelerators, the relevance of the presented study 
goes beyond the W-pair case.

; ro- 
to 

ink <■/.. ec­
tions has been considered by using the Fermi constant GM as coupling . ..n ' .int 
instead of a. From other calculations it is known that a Gp parametrization of 
the lowest-order term reduces the size of the one-loop non-photonic RC con­
siderably. In addition to this overall effect, the full electroweak RC to stable 
W-pair production [9]—[11] and on-shell W decay [12] are already known for 
quite some time.

1.1. Initial-state radiation (ISR). Since ISR corrections are enhanced by collinear­
photon effects, they are large and even higher-order contributions should be 
taken into account [5]-[7],
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1.2

Lowest order1.2.1

Gauge-invariant treatment 
of unstable gauge bosons

The above-described processes, with or without RC, all involve fermions in the initial 
and final state and unstable gauge bosons as intermediate particles. Sometimes a 
photon is also present in the final state. If complete sets of graphs contributing to a 
given process are taken into account, the associated matrix elements are in principle 
gauge-invariant, i.e. they are independent of gauge fixing and respect Ward identities. 
This is, however, not guaranteed for incomplete sets of graphs like the ones corre­
sponding to the off-shell W-pair production process (1.1.3). Indeed this process was 
found to violate the St7(2) Ward identities [7].

In addition, the unstable gauge bosons that appear as intermediate particles can 
give rise to poles l/(p2 — M2) in physical observables if they are treated as stable 
particles. This can be cured by introducing the finite decay widths (T) for these 
gauge bosons. In field theory, such widths arise naturally from the imaginary parts 
of higher-order diagrams describing the gauge-boson self-energies, resummed to all 
orders. However, in doing a Dyson summation of self-energy graphs, we are singling 
out only a very limited subset of all possible higher-order diagrams. It is therefore not 
surprising that one often ends up with a result that violates Ward identities and/or 
retains some gauge dependence resulting from incomplete higher-order contributions.

Since the latter gauge breaking is caused by the finite decay width and is, as such, 
in principle suppressed by powers of T/M, one might think that it is of academic 
nature. For LEP1 observables we indeed know that gauge breaking can be negligible 
for all practical purposes. However, the presence of small scales can amplify the gauge­
breaking terms. This is for instance the case for almost real space-like photons [13, 14] 
or longitudinal gauge bosons (VL) at high energies [15], involving scales of O(p2B/E2) 
for B = 7, V^. The former plays an important role in TGC studies in the reaction 
e+e~ —> e~veud, where the electron may emit a virtual photon with an invariant mass 
p2 as small as m2e. The latter determines the high-energy behaviour of the generic 
reaction e+e“ —> 4 fermions. In these situations the external current coupled to the 
photon or to the longitudinal gauge boson becomes approximately proportional to pB. 
Sensible theoretical predictions, with a proper dependence on p2 and a proper high- 
energy behaviour, are only possible if the amplitudes with external currents replaced 
by the corresponding gauge-boson momenta fulfil appropriate Ward identities.

So, how should one go about including the finite decay widths? The simplest ap­
proach is the so-called “fixed-width scheme”, involving the systematic replacement 
l/(py — My) l/(Py — My + iMyTy), where Py denotes the physical width of 
the gauge boson V with mass My and momentum py. Since in perturbation theory 
the propagator for space-like momenta does not develop an imaginary part, the in­
troduction of a finite width also for py < 0 has no physical motivation and in fact 
violates unitarity, i.e. the cutting equations. This can be cured by using a running
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Radiative corrections1.2.2

The next question that should be addressed involves the interplay between RC and 
gauge invariance. After all, the RC are indispensable for coming up with reliable 
theoretical predictions for the LEP2 process e+e~ —> 4 fermions.

As far as real-photon corrections are concerned, not much changes as compared 
to the lowest-order case. Still both the pole scheme and fermion-loop scheme yield 
gauge-invariant results. However, in the fermion-loop-scheme treatment of the process 
e+e~ —> 4/7 the full set of fermionic corrections to the quartic gauge-boson vert ex

.-si-, iy

width iMyTy(py) instead of the constant one iMyTy (“running-width scheme”). 
However, as in general the resonant diagrams [like the ones corresponding to (1.1.3)] 
are not gauge-invariant by themselves, the introduction of a constant or running 
width destroys gauge invariance.

A truly gauge-invariant scheme evidently has to be a bit more soph is'J -ed .1 
this. It should be stressed, however, that any such scheme is arbitrary 
or lesser extent: since the Dyson summation must necessarily be taken ■ 
of perturbation theory, and we are not able to compute the complete s 
man diagrams to all orders, the various schemes differ even if they le 
gauge-invariant results. Bearing this in mind, we need besides gauge >'• 
physical motivation for choosing a particular scheme. In this context tw 
be mentioned. The first option is the so-called “pole scheme” [16]. In th 
decomposes the complete amplitude by expanding around the poles. As 
observable residues of the poles are gauge-invariant, gauge invariance is v ■ •. if 
the finite width is taken into account in the pole terms oc l/(py — My). chat t he 
leading terms in such an expansion play a special role in view of their close relation to 
on-shell production and decay of the unstable particles. This point will be explained 
in more detail in Sect. 2.1 of Chapter 2.

The second option is based on the philosophy of trying to determine and include 
the minimal set of Feynman diagrams that is necessary for compensating the gauge 
violation caused by the self-energy graphs. This is obviously the theoretically most 
satisfying solution, but it may cause an increase in the complexity of the matrix 
elements and consequently a slowing down of the numerical calculations. For the 
gauge bosons we are guided by the observation that the lowest-order decay widths 
are exclusively given by the imaginary parts of the fermion loops in the one-loop self­
energies. It is therefore natural to perform a Dyson summation of these fermionic one- 
loop self-energies and to include the other possible one-particle-irreducible fermionic 
one-loop corrections (“fermion-loop scheme”) [14, 15]. For the LEP2 process e+e" —> 
4 fermions this amounts to adding the fermionic corrections to the triple gauge-boson 
vertex. The complete set of fermionic contributions forms a gauge-independent subset 
and obeys all Ward identities exactly, even with resummed propagators [15].

The above arguments, although general, apply in particular to tree diagrams. 
Therefore an additional discussion for RC is required.
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This thesis1.3

emerges. This evidently is too much complexity for a tree-level calculation. The pole­
scheme, with its close relation to on-shell subprocesses, remains relatively simple. As 
we shall see later on, some subtleties arise when photons are radiated from a virtual 
IV boson, because this W boson may give rise to two poles.

The implementation of the one-loop RC adds an additional level of complexity by 
the sheer number of contributions (103 -104) that have to be evaluated. By employing 
a gauge-invariant lowest-order finite-width scheme it is possible to cover the most 
important electroweak effects, like running couplings and leading QED corrections 
(see previous section), which are controlled by factorization theorems. However, there 
is still the question about the remaining corrections, which can be large, especially 
at high energies [5, 7, 17].

In order to include these corrections one might attempt to extend the fermion-loop 
scheme. At present this solution is not yet workable in view of the fact that a gauge­
invariant inclusion of the one-loop corrections to the decay width in turn requires 
the inclusion of (the imaginary parts of) some two-loop corrections. Moreover, the 
number of one-loop contributions that have to be evaluated remains large.

As a more appealing and economic strategy we discuss in Sect. 2.2 of Chapter 2 
how the RC can be calculated in the framework of the pole-scheme expansion.

Let us summarize the above and give an outline of the various issues to be discussed 
in this thesis. The purpose of the thesis is twofold. On one hand, we discuss the one- 
loop O(a) radiative corrections to the four-fermion production process (1.1.4) in the 
context of the pole-scheme expansion around the W-boson poles. It should be realized 
that the error of the method is roughly (9(a2, aPw/Mw)- The main contribution 
comes from four-fermion production mediated by pair production of W bosons, which 
is of phenomenological interest for the current LEP2 experiments. On the other hand, 
we believe that the pole-scheme is a proper and rather efficient method for dealing 
with processes involving unstable particles in general. This makes our study relevant 
for many other forthcoming experiments, where unstable particles will be produced.

In Chapter 2 we discuss the method of pole expansions and the split-up of the ra­
diative corrections into a sum of factorizable and non-factorizable corrections, which 
is essential for the method. The problems of gauge invariance associated with this 
procedure are dealt with in detail. We calculate the factorizable corrections and com­
bine them with the non-factorizable ones, calculated in detail in Chapter 4. At the 
end of Chapter 2 extensive numerical results are presented. These results cover for the 
first time the complete O(a) radiatively corrected cross-sections for pair production 
of off-shell W bosons.

In Chapter 3 the issue of the final state radiation is discussed, which is prompted 
by a remarkable numerical result of Chapter 2. This result is that final state radia­
tion can give a large contribution to the invariant mass distribution of the unstable 
particle, which is a priori quite unexpected and even surprising. In order to convince
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in

the reader that this effect is not an artefact of our treatment in Chapter 2 we con­
sider a toy model in which the calculation can be performed exactly, without the 
pole expansion. The same effect in the context of the pole expansion is also discussed 
there.

In Chapter 4 we present a calculation of the non-factorizable corn-. ; 'ir We 
develop two calculational techniques. One of them is applicable to more 1 <1
processes with more unstable particles participating.

As another application of the methods developed in Chapter 4 w 
Chapter 5 one-loop QCD interconnection effects in pair production of
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Factorizable corrections2

The pole scheme in double-pole approximation2.1

, (2.1.1)

M2 - Ml + Sv(M2) = 0, (2-1.2)

In this chapter we discuss the method of the pole expansion, which offers a convenient 
framework for gauge invariant calculations for processes involving unstable particles. 
We apply this method to pair production of W bosons. In particular we discuss in 
detail the split-up between the so-called factorizable and non-factorizable corrections, 
and calculate the former. At the end of the chapter extensive numerical results for 
the complete O(a) corrected cross-sections are given. The material of this chapter 
has been published in the literature, [1].

W(p2v,u)
P2v - Ml + Sv(p2v)

W(j?v,u>) W(M2,u) 1
,p2v - Ml + Sv(p2v) Pv ~

-Sv(p^)\" 
Pv - Ml)

♦I
where Ey(py) *s the unrenormalized self-energy of the unstable particle V with mo­
mentum py and unrenormalized mass My. The renormalized quantity M2 is the pole 
in the complex p2v plane, whereas Z(M2) denotes the wave-function factor:

Z(M2) = 1 + E'V(M2).

As mentioned in Sect. 1.2.1, the pole scheme consists in decomposing the complete 
amplitude by expanding around the poles of the unstable particles. The residues 
in this expansion are physically observable and therefore gauge-invariant. The pole­
scheme expansion can be viewed as a gauge-invariant prescription for performing an 
expansion in powers of Ty/My. The calculation of the residues involves a mapping of 
off-shell matrix elements with off-shell kinematics on on-resonance matrix elements 
with restricted kinematics. This mapping, however, is not unambiguously fixed. After 
all, it involves more than just the invariant masses of the unstable particles and one 
thus has to specify the variables that have to be kept fixed in the mapping. The 
resulting implementation dependence manifests itself in differences of subleading na­
ture, e.g. <9(Fy/A/y) suppressed deviations in the leading pole-scheme residue. In 
special regions of phase space, where the matrix elements vary rapidly, the imple­
mentation dependence can take noticeable proportions. This happens in particular 
near phase-space boundaries, like thresholds.

In order to make these statements a bit more transparent, we sketch the pole­
scheme method for a single unstable particle. In this case the Dyson resummed lowest- 
order matrix element is given by

= lV(p2v,a-) /
Pv ~ Mv n=0 V
IV(M2,w) 1 
p2v - M2 Z(M2)
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, Uy

M'l - Ml + ReSv(AfJ) 0,

2os(Mj) = l + Re£'v(Mj), (2.1.3)m y r v

(p?, - Al2) Z(A/2)

ImSv(Af2)
Zos(Mj) '

Both schemes can be related according to (see e.g. Ref. [2]):

1 + 2J/M2, whereas in the latter mapping tpo|e = —A/2(l — cos0)/2. It m. 
particular mapping leads to an unphysical point in the ‘on-shell’ phase s 
present example <poie will always be physical when cos# is kept fixed in 
However, since | cos £?poie| > 1 for t < —ReM2, it is clear that mappir 
Mandelstam variables harbour the potential risk of producing such unpi 
space points.1 This can have repercussions on the convergence of the 
expansion. Therefore we choose in our calculations only implementati 
free of unphysical on-shell phase-space points.

It should be noted that the mass and width of the W and Z bosons 
defined in the so-called on-shell scheme:

(pl - Ml + ip2v [Zos(M2) + O(a2)]. (2.1.4)

The first term in the last expression of Eq. (2.1.1) represents the single-pole residue, 
which is closely related to on-shell production and decay of the unstable particle. The 
second term between the square brackets has no pole and can be expanded in powers 
of pl — M2. The argument u denotes the dependence on the other variables. After all, 
the unstable particle is always accompanied by other particles in the production and 
decay stages. For instance, consider the LEP1 reaction e+e~ —> ff. In the mapping 
p2z —1 A/2 one can either keep t = (pe- — p/)2 = — pz(l — cosS)/'2 fixed or cosS. 
In the former mapping cos0po)c is obtained from the on-shell relation 6/p,.... = 

be t: -t a 
i,he 
ig. 
..id

ne 
re

As we are aiming for O(a) precision in our study, the differences between both 
schemes can be ignored. For the same reason iplVv/Mv can be replaced by iMyVv, 
since the difference only induces O(a2) corrections to the cross-sections.

The at present only workable approach for evaluating the RC to resonance-pair- 
production processes, like IV-pair production, involves the so-called double-pole ap­
proximation (DPA). This approximation restricts the complete pole-scheme expan­
sion to the term with the highest degree of resonance. In the case of IT-pair produc­
tion only the double-pole residues are hence considered. The intrinsic error associated 
with this procedure is aPiv/(7rAlip) < 0.1%, except far off resonance, where the pole­
scheme expansion cannot be viewed as an effective expansion in powers of Vy/Mv, 
and close to phase-space boundaries, where the DPA cannot be trusted to produce

*In the resonance region, |p^ — Af2| |A-/2|, the unphysical *on-shell’ phase-space points occur 
near the edge of the off-shell phase space, since t < —ReM2 requires cos0 as -1.
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the dominant contributions. In the latter situations the implementation dependence 
of the double-pole residues can lead to enhanced errors. Close to the nominal (on- 
shell) I4z-pair threshold, for instance, the intrinsic error is effectively enhanced by a 
factor Mw/(y/s — 2Mw)- In view of this it is wise to apply the DPA only if the energy 
is several F^ above the threshold.

In the DPA one can identify two types of contributions. One type comprises all 
diagrams that are strictly reducible at both unstable W-boson lines (see Fig. 2-1). 
These corrections are therefore called factorizable and can be attributed unambigu­
ously either to the production of the IV-boson pair or to one of the subsequent decays. 
The second type consists of all diagrams in which the production and/or decay sub­
processes are not independent and which therefore do not seem to have two overall 
W propagators as factors (see Fig. 2-2). We refer to these effects as non-factorizable

Figure 2-2. Examples for virtual (top) and real (bottom) non-factorizable corrections to W-pair 
production. The black circles denote the lowest-order Green functions for the production of the 
virtual IT-boson pair.

“V 7

gure 2-1. The generic structure of the factorizable W-pair contributions. The shaded circles 
ndicate the Breit-Wigner resonances, whereas the open circles denote the Green functions for 

■ ie production and decay subprocesses up to O(a) precision.

W

w
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— ^dpaU + ^dpa), (2.1.5)

(2.1.6)

be viewed
the :op-
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d^DPA

da — d<7pPA(l 4- <5dpa) + (d<7$v\v

where da^PA is the lowest-order differential cross-section in DPA. The hard-photon 
effects in DPA are added separately, in view of their dependence on the phase-space 
of the hard photons. Their contribution strongly depends on the distribution that is 
studied, i.e. on the integrations that have to be performed. More details will be given 
in Sect. 2.2. Since one also knows the exact Born cross-sections for off-shell W-pair 
production [d(T°vw] and for the background diagrams contained in the four-fermion 
process (1.1.4) [rf<r®kg], one can also add those to the above expression. The final 
gauge-invariant result up to O(a) or, equivalently, □(PMz/Afiv) precision reads

~ <^dpa) + d<Tbkg-

The purpose of this chapter is to give a detailed discussion of <5dpa> i e. the O(a) 
corrections to dooPA. In order to make contact with experimental cross-sections the 
other terms, da^n — danPA and dcr°kg, are also relevant. The full gauge-invariant 
Born term, including all diagrams, has been discussed in the literature [4]. It has also 
been compared with the non-gauge-invariant cross-section calculated in the
unitary gauge. In many cases da^n gives numerically a good approximation to the 
complete Born cross-section, at least for energies below 1 TeV. Moreover, in practice 
it is often extracted from the data in the experimental analyses. Therefore it is useful 
to present, a numerical comparison between da^w and dooPA- This will be done in 
Sect. 2.1.2.

corrections.2 In the DPA the non-factorizable corrections arise exclusively from the 
exchange or emission of photons with Ey < O(Tw) [3]. Hard photons as well as 
massive-particle exchanges do not lead to double-resonant contributions. The phys­
ical picture behind all of this is that in the DPA the IV-pair process can 
as consisting of several subprocesses: the production of the IV-boson p- : 
agation of the IV bosons, and the subsequent decay of the unstable IV 
production and decay are “hard” subprocesses, which occur on a relath 
interval, 0(1They are in general distinguishable as they are 
by a relatively big propagation interval, Ofl/Tw). Consequently, the 
amplitudes have certain factorization properties. The same holds for . 
subprocesses. The only way the various stages can be interconnected 
diation of soft photons with energy of O(I\v). These photons induce . ■ 
range interactions and thereby allow the various subprocesses to cornu 
each other.

Within the DPA the generic form of the virtual and soft-photonic (9(a) 1<C to 
off-shell IV-pair production can now be cast in the following gauge-invariant form:

2It should be noted that the exact split-up between factorizable and non-factorizable radia­
tive corrections requires a precise (gauge-invariant) definition. We will come back to this point in 
Sect. 2.2.
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2.1.1

e+Me~M -> VK+(P1) W(p2) -> /,(*,)/,'(*:',) (2-1.7)

(2.1.8)

M? = (*:,- + k')2. (2.1.9)Di

. (2.1.10)

(2.1.11)7’[A,A2][A'1A';)(W1, A/2) =

Conventions and an example
As is clear from the above-given discussion of the DPA, a specific prescription has 
to be given for the calculation of the DPA residues. Or, in other words, we have 
to fix the implementation of the mapping of the full off-shell phase space on the 
kinematically restricted (on-resonance) one. We have opted to always extract pure 
double-pole residues. This means in particular that after the integration over decay 
kinematics and invariant masses has been performed the on-shell cross-section should 
be recovered.

In the rest of this subsection we will explain our method in more detail by applying 
it to the lowest-order reaction

H 'P|A,A2|[A-lAi)(A<fi, M2) 
Al ,A2 ,Aj >^2

In Eq. (2.1.10) the production part is given by a 9 x 9 density matrix

e± helicities

involving only those diagrams that contain as factors the Breit-Wigner propagators 
for the H/+ and W~ bosons. Here f\ and f[ are the decay products of the Hz+ boson, 
and f2 and fy those of the W~ boson. It should be noted that a large part of the 
RC in DPA to this reaction can be treated in a way similar to the lowest-order case, 
which is therefore a good starting point. The amplitude for process (2.1.7) takes the 
form

Al,*2 ^2

where any dependence on the helicities of the initial- and final-state fermions has 
been suppressed, and

M2 - M%, +

The quantities A^(Mi) and A^”’(M2) are the off-shell W-decay amplitudes for 
specific spin-polarization states Ai (for the IV+) and A2 (for the W-), with A» = 
(—1,0,4-1). The off-shell W-pair production amplitude Ha1a2(^/A, M2) depends on 
the invariant fermion-pair masses Mi and on the polarizations A» of the virtual W 
bosons. In the limit Mi —> Mw the amplitudes H and go over into the on-shell 
production and decay amplitudes.

The choice of the polarization states labelled by A, is in principle free. The ampli­
tude M is obtained by summing over the polarizations and is therefore independent 
of such a specific choice. As it turns out, it will be convenient to use different choices 
in different parts of the RC calculation (see Apps. A and B).

In the cross-section the above factorization leads to

T^XiX\(Mi) T>x2x!2(M2)

IAI2 |Ad2£ l-M2
ferrnion helicities
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(2.1.12)A*,(M() A\,(A/f),

;i2.

.13)

U.i.14)

(2.1.15)

(2.1.16)

da = x

(2.1.17)x X

ina-
ion

x 7->a2a'2(^2) dTdcc

Similarly the decay part is governed by 3 x 3 density matrices

E
fermion helicities

where the summation is performed over the helicities of the final-state
It is clear that Eq. (2.1.11) is closely related to the absolute squ« 

trix element for stable unpolarized W-pair production. In that case f: 
contains the trace of the above density matrix

Tr Mw) = y? ^>[AiA2][AiA2](-A/Av, Mw) =
Ai ,A2

rfrpr

E ^(A.AjHA^W, A72) dTpr
’ A^.A'.Ai

1 dM'f 1 dMj
2tr ID)|2 X 2?r |jD2|2’

As mentioned before, the definition of the DPA residues is not unique. To define 
them we first organize the four-fermion kinematics in a special way. In the laboratory

The decay of an unpolarized on-shell IV boson is determined by

TrP(A/,v) = E^A.Aj(W) = E |Aa,(Mh,)|2.
Ai all polarizations

Note, however, that also the off-diagonal elements of P(Mw, Mw) and 2>(AAv) are 
required for determining Eq. (2.1.10) in the limit M, —> Mw-

As a next step it is useful to describe the kinematics of process (2.1.7) in a fac­
torized way, i.e. using the invariant masses AA, and A'/2 of the fermion pairs. The 
differential cross-section takes the form

d° = E l-MI2 drv = ± EIW■ diX • dr;cc •

where indicates the complete four-fermion phase-space factor and s = (<7i + <?2)2 
the centre-of-mass energy squared. The phase-space factors for the production and 
decay subprocesses, dTpr and dTdcc, read

(^5(91 + 92“P,“P2)2^ W

1 r, . ,,, dkt dk\
(27r)2<5(P1 1 1)2fc102VIO’

1 x/ . I.'\ dk2 dk'2
(27r)2<S(P2 2 2k20 2^„'

When the factorized form for J2 |M. |2 is inserted one obtains

2s

E inA,...
all polarizations
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(2.1.18)
with

u =

(2.1.21)

(2.1.22)

qi = E(l, sin 0, 0, cos#), 
p, = £1(l,0,0,|-),

1 M2 d»3
8% (Ei —pcosB})2 4?r

and a similar expression for dFj^.. Here dfl3 denotes the solid decay angle between 
the W+ boson and fi.

Our choice of the DPA residues amounts to a two-step procedure for fixing the 
invariant masses Mi and M2, appearing in the four-fermion kinematics and the am­
plitudes n(Mi, iW2)> A<+)(Afi), and A(->(M2). The first step is the replacement

A/2 -t M?v - iMwVw, (2.1.23)

<?2 = £(1, — sin 6,0, — cost?),
£-), P2 = b2(i,o,o,-^-),

k\ = £3 (1, sin 03 cos <fo, sin 03 sin 03, cos #3), 
k2 = 2?4(1, sin 04 cos 04, sin 04 sin04, — cos 04),

(LAB) frame we write the four-fermion phase space in terms of a solid production 
angle for the W+ boson and solid decay angles for two of the final-state fermions, one 
originating from the W+ boson and one from the W~ boson. These angles will be kept 
fixed at any time during the process of defining the DPA residues. For later use we 
explicitly write down our conventions for the momenta, invariants, and phase-space 
factors. The momenta read

E = ^y/i, P = A= A1/2(x/s,AA, M2),
2^/s

Bi,2 = ^(s + Ml2 - Mh), £33 = j F ,
s 2 -Cqt2 ~P COS 6/3,4

A(v/5, Mi, M2) = [s - (Mi + M2)2][s - (Mi - M2)2]. (2.1.19)

The momenta of the other final-state particles follow from = p, — k,. The masses 
of the fermions are neglected whenever possible. This, hence, excludes situations in 
which the fermion masses are needed to regularize singularities from the radiation of 
collinear photons. The Mandelstam invariants are defined as

s = (qi+qi)2, t- (Pi-?i)2, u = (p2-qi)2 = M2 + Ml - s - t. (2.1.20)

From all this it should be clear that the invariant masses Mi only appear explicitly 
in the energies and velocities of the W bosons and their decay products.

In this notation the production phase-space factor reads

,r - 1
pr Sir E 4ir’

with dQ denoting the solid angle between the W+ boson and the positron. The decay 
phase-space factors are given by
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( .24)Mi = Mw.

(2.1.25)
2tt

inst
'o a

f dMf
—oo

So far we have explained how to calculate the canonical multidifferential cross­
section da / (dDdDjdD^dM^dM^) in the DPA. In case one needs a multidifferential 
cross-section in other variables one should relate that cross-section to the canonical 
one by means of a Jacobian. In order to obtain this Jacobian the off-shell kinematical 
relations (2.1.18) and (2.1.19) should be used.

he 
tes. 
nd

1 
2A/jy r vy

i.e. the residue is taken at the Breit-Wigner poles [see discussion below Eq. (2.1.4)]. 
Note that this replacement, of course, does not apply to the Breit-Wigner resonances 
themselves. The phase-space conventions displayed above fix our choice for the im­
plementation. The solid angles are kept fixed, whereas the energies and velocities 
become complex [as can be seen from Eq. (2.1.19)]. Note that the so-ol -tncd et of 
momenta preserves momentum conservation. This protects the DPA re- 
effectively crossing the four-fermion phase-space boundaries, which n? 
reduced quality of the DPA.

For practical purposes, however, it is messy to evaluate the 
amplitudes 11(71/], M2), A^+\7l/]), and A(_)(A/2) at the complex Breit 
This would require the analytic continuation of the one-loop expression 
Riemann sheet. As such we approximate the DPA residues by using

-2 1

The error introduced by the on-shell approximation (2.1.24) is of order C\T\y/Mw). 
When this error comes on top of the (9(a) RC it can be neglected, since terms 
of O(aT'w /Mw) are neglected anyhow in the DPA approach. By having fixed the 
solid angles in the mapping, the on-shell phase-space points defined with Eq. (2.1.24) 
remain physical. From this point of view it is a sound implementation procedure. 
A procedure that fixes Mandelstam variables in the mapping involves phase-space 
regions where it may be regarded as being unsound, as has been indicated in the 
example below Eq. (2.1.2). In such cases it is preferable to set the cross-section to 
zero rather than evaluating it for unphysical values.

The thus-obtained amplitudes become (gauge-invariant) on-shell ones, whereas 
the four-fermion phase space is reduced to the phase space of two fermion pairs with 
invariant masses Mw- Since the DPA forces us to only consider collider energies that 
are several Pjy above the on-shell W-pair threshold, the IV-boson velocities stay well 
defined in our approximation. The only place where the. invariant masses Mi still 
show up is in the Breit-Wigner resonances Di, which can be pulled out as overall 
factors. The integration over the Breit-Wigner resonances need not be restricted to 
the physical region Mi > 0, Mi + M2 < \/s. Since the DPA is anyhow not valid far 
off resonance, we can just as well integrate over the full range of the distributions, 
(—oo, -Foo), which guarantees that the on-shell results are recovered when the decay 
kinematics and invariant masses are integrated out. This means that the following 
integral will be used:



Section 2.1: The pole scheme in double-pole approximation 19

2.1.2

G,,= (2.1.26)

GeV-2,

mr = 1.7771 GeV,

(2.1.27)

and choose
as(Mj) = 0 123 (2.1.28)

mi

d<7 = da°(l+5‘-loop)

Mn = 300 GeV,

The solution of Eq. (2.1.26), using a calculation of Ar that contains all the known 
higher-order effects, gives the value for the top-quark mass [5]

165.26 GeV.

mc = 0.51099906 MeV,

(2.1.29)

As was already mentioned in Sect. 1.1, the use of G„ instead of a in the lowest- 
order cross-sections very often reduces the size of the one-loop non-photonic RC 
considerably. This so-called GM-parametrization consists in the replacement

da° (1 + J'('°°2~"^r"O°P) = da0(l + al-1°op), (2.1.30)

3The masses of the light quarks are adjusted in such a way that the experimentally measured 
hadronic vacuum polarization is reproduced.

’The so-obtained top-quark mass will become as- and M//-dependent. It can be confronted with 
the direct measurements at Fermilab and the indirect ones from LEP in order to obtain indirect 
information on My.

= 1.16639 x 10
Mw = 80.26 GeV,

ma = 47 MeV, 
mc = 1.55 GeV,

Numerical comparision of Born cross-sections
In order to have an idea of the differences between the exact Born cross-section d<7^zw, 
corresponding to process (1.1.3), and its DPA limit doopA, we now present a brief 
numerical comparison.

First we discuss the set of parameters used to produce the plots throughout this 
chapter. To facilitate cross-checks with the results presented in the literature, we 
adopt the LEP2 input-parameter scheme advocated in Ref. [5]. In this scheme the 
Fermi constant the fine-structure constant a, and the masses of the light fermions3 
and W, Z bosons are the independent input parameters. The mass of the top quark, 
mt, follows from the Standard Model prediction for muon decay

OtTT 1

x/2M?,,(l - 1 - Ar’

The quantity Ar denotes the loop corrections to muon decay. It is zero at tree level, 
but when loop corrections are included it depends on the input parameters as well 
as on mt, the Higgs-boson mass Mu, and the strong coupling as-4

In analogy to Ref. [5] we use in our numerical evaluations the following set of 
(slightly outdated) input parameters:

a = 1/137.0359895,
Mz = 91.1884 GeV,

m„ = 105.658389 MeV,

m„ = 47 MeV, 
m, = 150 MeV, 
mi, = 4.7 GeV,
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where d<7° oc a" and according to Eq. (2.1.26) da0 oc G™. The results presented in 
this chapter are all calculated in this parametrization.

Another important parameter featuring in our calculations is the width of the 
Hz boson. As explained below Eq. (2.1.4), we will use the calculated on-shell width. 
Since we want the Breit-Wigner resonances to be as close to reality as possible, 
we will always use the 0(a)- and C9(as)-corrected width Fjv, regard ■ fact
that we sometimes consider lowest-order distributions. Using the abo 
parameters we find in the Gp-parametrization

For future use we note that the lowest-order W-boson width in this . 
reads r®v = 2.03540 GeV. It is also relevant to stress that the <9(a) 
the leptonic partial widths Fiv^, are small and negative (~ —0.3/ 
corrections to the hadronic partial widths are positive, leading to the zerall
correction to the total W-boson width.

Having fixed the input, we now compare and da^pA for the total cross­
section £7tot (in Fig. 2-3) and the differential cross-section da/d cos 0 (in Fig. 2-4), 
where 6 is the polar angle between the W+ boson and the positron in the LAB frame 
[see Eq. (2.1.18)]. The latter distribution is given for 2E = 184 GeV, whereas crlol is 
presented for a range of LEP2 energies. We select one particular purely leptonic final 
state, p.+u^T~yr. In view of the massless treatment of the final-state fermions and 
the universal lowest-order interaction between the fermions and the W bosons, the 
results for the various final states can be obtained by multiplying the purely leptonic 
result by a factor Nq |2 N& |V/'/2|2- Here Vf.j. is the mixing matrix and N& the 
colour factor. For leptons only VVlt = 1 is non-vanishing and Nq = 1.

We consider the following four cases:

i) The calculation for stable W bosons, multiplied by the branching 
ratio (rj^^^/rj^)2.

ii) The DPA calculation, where in Eq. (2.1.17) the on-shell approximation is ap­
plied to both the matrix elements and the four-fermion phase space. The M2 
integrations over the Breit-Wigner resonances are extended to the full range 
(—oo,4-oo), i.e. Eq. (2.1.25) is used.

iii) The calculation where the matrix element (2.1.8) is on-shell, but the four- 
fermion phase space in Eq. (2.1.17) is not. The A/2 integrations are performed 
in the physical region.

iv) The off-shell calculation according to Eq. (2.1.17), with the Af2 integrations 
performed in the physical region. This corresponds to dcrSvw

In cases ii), iii), and iv) the W-boson propagators contain the width Fw, as given in 
Eq. (2.1.31). The matrix element in case iv) is not gauge-invariant, it is calculated in 
the unitary gauge.
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Figure 2-4. The same curves as in the previous plot, this time for the lowest-order production­
angle distribution da/dcos 6 at 2E = 184 GeV.
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Figure 2-3. Comparison of different Born approximations for the total cross-section <7tot as a 
function of the accelerator energy. The four curves correspond to the cases i) — iv) introduced 
in the text.
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In this section we discuss the complete <9(a) RC to process (2.1.7) in the context of 
the DPA. As mentioned in Sect. 2.1, the most economic way of calculating the RC 
up to O(a) precision involves the DPA. In this approximation all virtual corrections 
can be classified into two groups: factorizable and non-factorizable corrections. The 
factorizable corrections are directly linked to the electroweak one-loop RC to the on- 
shell production and on-shell decay of the W bosons. The remaining non-factorizable 
virtual corrections can be viewed as describing interactions between different stages 
of the off-shell process. They will only originate from certain photonic loop diagrams, 
as stated in Sect. 2.1. The real-photon corrections can also be classified in factorizable 
and non-factorizable corrections, although the various regimes for the photon energy 
require some special attention.

In the following we will describe the calculation of all these corrections in more 
detail and comment on the accuracy and applicability of the results. For the non- 
factorizable corrections many technical details will be postponed until Chapter 4. 
Sometimes we anticipate on results of that chapter. At this point we remind the 
reader that throughout the calculations of the RC in the DPA two additional approx­
imations are used. First, whenever possible we consider the initial- and final-state 
fermions to be massless, i.e. excluding the cases in which the fermion masses are 
needed to regularize singularities from the radiation of collinear photons. The error 
of this approximation is at most O[amr/Mw) or O(a |Vct,| mj/Miy), which is beyond 
the accuracy of our calculation. Second, we assume that the accelerator energy is suf­
ficiently far (read: several Fiv) above the threshold for on-shell W-pair production. 
Close to threshold the DPA cannot be trusted to produce the dominant contributions

For the total cross-section (see Fig. 2-3) cases i) and ii) differ by a fixed overall 
factor, as was to be expected from the Breit-Wigner integrals. The overall factor is 
determined by (Tiv/r?v)2 = 1.04605 and is found to be 1.04609. The agreement with 
this overall factor is a check on the numerical integration over the decay angles. For 
the production-angle distribution (see Fig. 2-4) the same overall factor s observed.

One of the ingredients of Eq. (2.1.6) is the difference do^vw — da^PA. '■: eo. .aring 
cases ii) and iv) in Fig. 2-3 one observes that this difference varies 18%
and 5%, when going from 165 GeV to 200 GeV. This is in good agi ?' 
expected O(V\v / £±E) precision of the DPA limit, where AE is define:1 
in energy to the W-pair threshold, AE = y/s — 2Mw- Larger differ-• 
the comparison between and aJPA is carried out at much high 
reason is that is not SU(2) gauge-invariant and does not fall off 
By properly combining cr°vvv and the background contributions crgks - 
invariance can be restored and <$PA again turns out to be a good ap; 
the total (four-fermion) cross-section.
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Virtual corrections2.2.1

1 (2-2.1)

and therefore our approach breaks down. The accuracy of this “far-from-threshold” 
approximation is O(ot Fpy/AE), where AE is the distance in energy to the W-pair 
threshold, AE = y/s — 2Mw-

_______1____________
[p2 — M2][p2 + 2pk - M2 4- io]

_______ 1_______  
p2 + 2pk — M2 + io
1

1 / 1
2pk + io \p2 — M2
1_______________

2pk + io \D D + 2pk + io)

As a first step we discuss how to separate the virtual corrections into a sum of factor­
izable and non-factorizable virtual corrections. The diagrammatic split-up according 
to reducible and irreducible IV-boson lines is an illustrative way of understanding the 
different nature of the two classes of corrections, but since the double-resonant dia­
grams are not gauge-invariant by themselves the precise split-up needs to be defined 
properly.

We can make use of the fact that there are effectively two scales in the problem: 
Mw and rMz. Let us now consider virtual corrections coming from photons with 
different energies:

• soft photons, E7 <C FW,

• semi-soft photons, E7 = C?(Fw),

• hard photons, Tw E7 =
Only soft and semi-soft photons contribute to both factorizable and non-factorizable 
corrections. The latter being defined to describe interactions between different stages 
of the off-shell process. The reason for this is that only these photons can induce rel­
atively long-range interactions and thereby allow the various subprocesses, which are 
separated by a propagation interval of O(1/Fh'), to communicate with each other. 
Virtual corrections involving the exchange of hard photons or massive particles con­
tribute exclusively to the factorizable corrections. In view of the short range of the 
interactions induced by these particles, their contribution to the non-factorizable cor­
rections are suppressed by at least O(VW/MW).

As hard photons contribute to the factorizable corrections only, we only need 
to define a split-up for soft and semi-soft photons. It is impossible to do this in a 
consistent gauge-invariant way on the basis of diagrams. As we will see, it might 
happen that Only part of some particular diagram should be attributed to the non- 
factorizable corrections, the rest being of factorizable nature.

The matrix element for soft and semi-soft photons can be written as a product 
of the lowest-order matrix element in DPA (A4qPA) and conserved (semi)soft-photon 
currents. These currents can be decomposed into production and decay currents with 
the help of a partial-fraction decomposition for virtual-photon emission from a IV- 
boson line [7]:
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(a) (b)

d non-both

1 -

(2.2.2)

(2.2.3)Mb

1 -

Figure 2-5. Examples of one-loop diagrams that contribute to 
factorizable corrections.

■ p + k 
inn of 
iceded

. of two 
er. This

Dx
Dx + 2fcp] + io

■Ma

__ £>__ 1
Dx 4- 2kpx 4- io J

Here M2 = — iMwVw, k is the loop momentum of the excha •
is the momentum of the W boson inside the integral, and p is 
the W boson outside the integral. The infinitesimal imaginary p 
to ensure a proper incorporation of causality. In this way one obr 
resonant I4z-boson propagators multiplied by an ordinary on-shell eir . :i 1..- 
decomposition allows a gauge-invariant split-up of the matrix elemcn; in Ler cs of one 
contribution where the photon is effectively emitted from the production part, and 
two others where the photon is effectively emitted from one of the two decay parts. 
The squares of the three contributions can be identified as factorizable corrections, 
whereas the interference terms are of non-factorizable nature.

In order to illustrate our method, we explicitly apply it to two special one-loop 
contributions (see Fig. 2-5). The first one [diagram (a)] is the so-called Coulomb 
graph, involving photon exchange between the two W bosons. The corresponding 
semi-soft matrix element reads

= ie2M0 [ ________________ ________________
DPA J (2tt)4[A:2 + io] [Di + 2fcp, + io][D2 — 2kp2 + io]

= ie2M» [ d"k____________ 4P1P2
DPA J (27r)4 [A:2 + io] [2kpt + io][—2fcp2 + io]

Z?2 Z?1Z?2 i
D2 — 2fcp2 + io + [£>i + 2kp\ + io][Z>2 — 2kp2 + io] J

The first term in the last expression gives rise to a factorizable (on-shell) contribution 
to the production stage, whereas the other three terms are counted as non-factorizable 
contributions. These three terms are classified as (prod x dec+), (prod x dec-), and 
(dec+ X dec-), respectively. In other words, the Coulomb graph contributes both to 
the usual Coulomb effect in on-shell IV-pair production and to a non-factorizable 
part. For the photonic interaction between the Wz+ boson and its p+ decay product 
[diagram (b)] we obtain

= — ie2M° f ___________ ___________•™dpa J (2rr)4[fc2 + io] [2kkt + ioHD, + 2kPl + io]
= -ie2A10 [ d*k_______________________

DPA J (2?r)4 [A:2 4- io] [2A:pi 4- io] [2fc/ci 4- io]

IV

, >7

IV

w
\v^v
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.]• (2.2.4)

The currents are given by

+

(2.2.5)

Di+ <2 a - <2/;

(2.2.6)+ Qh— e

it 
—kqi + io

Again the first term is a factorizable contribution, belonging to the IV+ decay stage, 
whereas the second term is a non-factorizable contribution of the type (prod x dec+). 
Some other examples of the split-up can be found in Ref. [8]. As is clear from these 
examples, the non-factorizable contributions always involve the Breit-Wigner ratios 
Di/(Di ± 2kpi), which effectively remove the overall W propagator 1/Di. The more 
energetic the exchanged photon is, the more suppressed such a ratio will be in the 
vicinity of the M/ resonance. In fact, for > A the non-factorizable contributions 
are suppressed by O(MwTiv/[l?A]) (see App. C).

Every one-loop diagram with a semi-soft photon can be treated in this way. By col­
lecting all terms that contain the ratios Di/[Di±2kpi] the formula for non-factorizable 
corrections is obtained. As one can see explicitly below, this expression is gauge­
invariant. Since the expression contains those diagrams where irreducible W-boson 
lines are present, it can be viewed as a gauge-invariant extension of the set of W- 
irreducible diagrams.

The so-defined non-factorizable corrections read

k'f_________
kk\ + io] + 2fcpt ’

D2

kt
kk\ 4- io

__ k^_
—kk2 4- io

pt 1 
-kp2 + io J ’

<lt
—kq2 4- io

Pt 
kp\ 4- io

-kp2 + io

kpi 4- io

4

for photon emission from the decay stages of the process. Here Qf stands for the 
charge of fermion / in units of e. After having defined the gauge-invariant currents, 
the +io terms can be dropped from Dt + 2kpt and D2 — 2kp2, since Im Di > 0. Note 
the difference in the sign of the io parts appearing in the currents and J®. These 
signs actually determine which interference terms give rise to a non-vanishing non- 
factorizable contribution after virtual and real-photon corrections have been added. 
As can be seen from Eq. (2.2.3), in the upper hemisphere of the complex fco plane there 
is only one pole: the so-called ‘photon pole’, originating from the photon propagator 
l/[/c2 + io]. When virtual and real-photon corrections are combined, such a non- 
factorizable contribution will vanish [3]. For the Coulomb graph, Eq. (2.2.2), this is not 
the case, as also poles from the other propagators are present in both hemispheres. As

-M^rl

rf 1
kq\ 4- io kq2 4- io J ’

for photon emission from the production stage of the process, and

J+ = -e

r d4k
J (2tf)4[A:2 4-io]

o
— kk2 4- ioj Z?2 — 2kp2
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(2.2.7)

2.2.2

(2.2.8)

I

a^W) a^;>(m2)
Z?i d2

Real-photon radiation

In this subsection we discuss the aspects of real-photon radiation in the DPA. To this 
end we consider the process

e+(?i)e’(?2) -> VF+(P1) IV-(p2) (7(fc)] -> /1(A:1)/;(V1)/2(fc2)^(^)7(A:),
where in the intermediate state there may or may not be a photon. We will show how 
to extract the gauge-invariant double-pole residues in different situations. The exact 
cross-section for process (2.2.8) can be written in the following form

da = ^|A47|2dT4/7 = (2.2.9)

8Note that the complete density matrix is required in this case, in contrast to the pure on-shell 
calculation which involves the trace of the density matrix only.

Ai.Aa

Here two of the amplitudes are taken at lowest order, whereas the remaining one 
contains all possible one-loop contributions, including the W wave-function factors 
that appear in Eq. (2.1.1). In this way the well-known on-shell RC to the produc­
tion and decay of pairs of W bosons [9]—[12] appear as basic building blocks of the 
factorizable corrections.5 In the semi-soft limit the virtual factorizable corrections 
to the production stage, contained in II, will cancel against the corresponding real- 
photon corrections. Non-vanishing contributions from II occur as soon as the k2 terms 
in the propagators cannot be neglected anymore. An example of this is the factor­
izable correction from the Coulomb graph, given in Eq. (2.2.2). For the on-shell 
(factorizable) part of the Coulomb effect photons with momenta k0 = and
|£| = O(^MW^E) are important [13], i.e. k2 cannot be neglected in the propa­
gators of the unstable particles. Since we stay well away from the W-pair threshold 
(A£? Tw), this situation occurs outside the realm of the semi-soft photons. This fits 
nicely into the picture of the production stage being a “hard” subprocess, governed 
by relatively short time scales as compared with the much longer time scales required 
for the non-factorizable corrections, which interconnect the different subprocesses.

a result of such considerations only a very limited subset of ‘final-state’ interferences 
survives [6, 8]: the virtual corrections corresponding to Figs. 2-2 and 2-5(a) as well 
as the associated real-photon corrections. In Chapter 4 more details on the non- 
factorizable corrections can be found.

The virtual factorizable corrections consist of all hard contributions and the above­
indicated part of the semi-soft ones. The so-defined factorizable corrections have the 
nice feature that they can be expressed in terms of corrections to on k :! ubpro- 
cesses, i.e. the production of two on-shell W bosons and their subs.' . on-shell 
decays. The corresponding matrix element can be expressed in the as de­
scribed in Sect. 2.1:
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A40 = n7(M!,M2) (2.2.10)

M+ = n(Mi7, M2) (2.2.11)

M- = (2.2.12)

Diy = Dt + 2kk, + 2kk'i, = M? + 2kkt + 2kk't, M? = (*,■ + A[)2. (2.2.13)

A<+)(M1) A<~)(M2)
£>i D2

2s
^2Re (jVtoAi; + + A4+A<) + |A40|2 + |A4+|2 + |M_|2j

where dr.,/7 indicates the complete five-particle phase-space factor, and the matrix 
elements A40 and M± correspond to the diagrams where the photon is attached to 
the production or decay stage of the three IV-pair diagrams, respectively. This split- 
up can be achieved with the help of the real-photon version of the partial-fraction 
decomposition (2.2.1). Each contribution to the cross-section can be written in terms 
of polarization density matrices, which originate from the amplitudes

The matrix elements fl7 and A^i describe the production and decay of the IV bosons 
accompanied by the radiation of a photon. The matrix elements without subscript 7 
have been introduced in Eq. (2.1.8).

In the calculation of the Born matrix element and virtual corrections only two 
poles could be identified in the amplitudes, originating from the Breit-Wigner prop­
agators 1/D,. The pole-scheme expansion was performed around these two poles. 
In contrast, the bremsstrahlung matrix element has four in general different poles, 
originating from the four Breit-Wigner propagators 1/Di and l/A-,. As mentioned 
above, the matrix element can be rewritten as a sum of three matrix elements 
(Ado, A4+, A4_), each of which only contain two Breit-Wigner propagators. For these 
three individual matrix elements the pole-scheme expansion is fixed, as before, to 
an expansion around the corresponding two poles. However, when calculating cross­
sections [see Eq. (2.2.9)] the mapping of the five-particle phase space introduces a 
new type of ambiguity. The interference terms in Eq. (2.2.9) involve two different 
double-pole expansions simultaneously. As such there is no natural choice for the 
phase-space mapping in those cases. The resulting ambiguity (implementation de­
pendence) might have important repercussions on the quality of the DPA calculation 
and therefore deserves some special attention. In this context the three earlier-defined 
regimes for the photon energy play a role:

• for hard photons [F7 3> Tw] the Breit-Wigner poles of the W-boson resonances 
before and after photon radiation are well separated in phase space (see A/,2

AW(Af,7) A<->(A/2) 
Di-, D2

AW(M,) a^-)(m27) 
Di D27

where all polarization indices for the W bosons and the photon have been suppressed, 
and
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(2.2.14)da 4Jt

(2.2.15)= drj = dr;, ■ dr+c ■ drd-ec •
with

dkdpi (2.2.16)

(2.2.17)

• for semi-soft photons [£, = O(fiv)] the Breit Wigner poles are ' close
together in phase space, resulting in a substantial overlap of the lin< .. . is. The 
assignment of the photon is now subject to larger errors. Moreover, since the in­
terference terms in Eq. (2.2.9) cannot be neglected, the issue of the phase-space 
mapping has to be addressed. In the following we give a proper prescription for 
calculating the DPA residues anti discuss their quality.

dMl
2?r ’

dMf
2?r

= dr; = drpr • dr£ ■ drd~K • —-

= ^[|A40|2 + |A4+|2 + |A1_|2]dr.

dr4/7

dr^/7

dM?7 dM%
2?r 2tt

Hard photons

Let us first consider the hard-photon regime in more detail. Due to the fact that the 
poles are well separated in the hard-photon regime, it is clear that the interference 
terms are suppressed and can be neglected:

<*Tpr = (^j2 l5(<71 + ~ P‘ ~ P2 ~

The two others are

and A/f defined above). As a result, the interference terms in Eq. (2.2.9) can be 
neglected. This leads to three distinct regions of on-shell contributions, where 
the photon can be assigned unambiguously to the W-pair-production subpro­
cess or to one of the two decays. This assignment is determined by the pair of 
invariant masses (out of A/,2 and A/t2) that is in the M^v region. Therefore, the 
double-pole residue can be expressed as the sum of the three on-si tell contribu­
tions without increasing the intrinsic error of the DPA. Note th.-. same 
way it is also possible to experimentally assign the photon to < ' e sub­
processes, since misassignment errors are suppressed, assuming fc. nience 
that all final-state momenta can ideally be measured.

Note that each of the three terms has two poles, originating from two resonant prop­
agators. However, these poles are different for different terms. The phase-space factor 
can be rewritten in three equivalent ways. The first is

• for soft photons [E^ Tw] the Breit Wigner poles are on top of each other, 
resulting in a pole-scheme expansion that is identical to the one without the 
photon.

____ dp2 ________  
2?io 2p2o (2tf)32A:o
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with

(2.2.18)

(2.2.19)

(2.2.20)

1

Semi-soft and soft photons

We complete our survey of the different photon-energy regimes by considering semi- 
soft and soft photons. The split-up of factorizable and non-factorizable real-photon 
corrections proceeds in the same way as described in the previous subsection for

d<7 = i[|Ato|2drs + |A4+|2dn + |A<_|2drl]
In order to extract gauge-invariant quantities, the DPA limit should be taken. This 
amounts to taking the limit p2 2 —> A/2V, using a prescription that resembles the 
one presented in Sect. 2.1. Note however that pit2 can be different according to the 
^-functions in the decay parts of the different phase-space factors. To be specific, 
the production term |A4o|2 has poles at p2 = M? = M?v, |-A4+|2 has poles at p2 = 
A/27 = and p2 = M2 = M2V, and |-A4_|2 has poles at p2 = = A/2V- and
p2 = = Again we fix solid angles in the mapping, including the solid angle
of the photon. Since the energy range of the photon in the on-shell kinematics of the 
IV’ bosons is different from the off-shell case, it may happen that the energy of the 
photon in an off-shell four-fermion-one-photon event with certain solid angles lies 
outside the on-shell phase space with the same solid angles. A possible procedure is 
to assign a zero cross-section to those events. Since the events are anyhow rare, being 
close to the edge of the off-shell phase space, this procedure constitutes an acceptable 
and simple solution. An alternative way to avoid unphysical on-shell phase-space 
points would be to write the photon energy as a fraction of the maximum attainable 
photon energy for given invariant masses ^/p2 of the resonant IV bosons and given 
solid angles:

E-, = x-, y/^2, angles).

In this way the photon energy is projected on the interval [0,1]. The maximum photon 
energy E™" depends on the specific term in Eq. (2.2.19). Subsequently the fraction 
x., and the afore-mentioned solid angles are kept fixed during the mapping from off- 
to on-shell events. Then E-, for the on-shell case is found from Eq. (2.2.20), where p] 
arc replaced by

It should be stressed that in the on-shell phase space there is no ambiguity concern­
ing the treatment of the photon. One obtains in the DPA limit three gauge-invariant 
on-shell contributions to Eq. (2.2.19). The calculation of the corresponding matrix 
elements is presented in App. B.

dr^ = ^P' ~ k' ~ k' ~k}Sh^ (2^2fa?
and a similar expression for drl. The phase-space factors dFpr and dPj^. are just the 
lowest-order ones. The cross-section can then be written in the following equivalent 
form
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IS. -.2.22)+ e

PL 
kpi

Dx
Dx + 2kpx

Di
D2 + 2kp2

The gauge-invariant currents Tq and T± are given by

virtual corrections. The result reads in semi-soft approximation 

da = ^M^2dr4h 

dk 
(27r)32/c0

(2.2.21)

+ z!;r,J + |z?l + |z:-| + l^l]-

IS = e

IS = -e

~ — ^DPA

pL _ pL _ tf + $_] 
kpx kp2 kqi fc<72]’

kpx f‘ kkx f' kk\ 

PS o k? _ k2‘ 
kp2 ^hkk2 ^^kk'2

The first three interference terms in Eq. (2.2.21) correspond to the real non-factorizable 
corrections. The last three squared terms in Eq. (2.2.21) belong to the factorizable 
real-photon corrections. They constitute the semi-soft limit of Eq. (2.2.19). Note also 
that the currents are the same for both possible expressions for px, i.e. it does not 
matter whether px = kx + k't or pt = kx + fcj + k.

As mentioned before, the DPA residues have to be defined properly in the presence 
of overlapping Breit-Wigner resonances in the semi-soft regime. The above equation 
(2.2.21) specifies such a procedure: the Born cross-section for a four-particle phase 
space is factored out and does not depend on the photon momentum. The factor 
between the square brackets is the usual soft-photon factor, except that the rapid 
variation of the Breit-Wigner resonances has been kept, leading to the ratios DJ Dn 
which take into account the shift in the Breit-Wigner distributions due to the photon. 
In the vicinity of the M? resonance these ratios are negligible for hard photons, unity 
for soft photons, and of 0(1) for semi-soft photons.

This prescription is by no means unique. In principle one could have chosen any of 
the two Breit-Wigner resonances, 1/Dx or 1/Z?i7, to define the phase-space mapping 
for the interference terms. Or in other words, both on-shell phase-space limits, M? = 
MxV or Mf7 = constitute equally plausible DPA mappings. The differences 
between both phase-space mappings are of O(fc). Since the interference terms are 
only non-negligible in the semi-soft regime, it is conceivable that the implementation 
dependence associated with these different on-shell limits remains of OlTw/^w)- 
Let us, for instance, consider the distribution in the vicinity of the resonance. 
Any O(k) shift in the factor multiplying 1/D, would result in additional terms of 
O(k/Mw), i-e. at worst O(Vw/Mw) in the semi-soft limit. A similar shift in the 
factor belonging to 1/D,7 results in additional contributions to the DPA residues 
that are suppressed by O(VW/E) for all values of the photon energy, as is explained 
in App. C. Therefore one can conclude that overlapping Breit-Wigner resonances do 
not necessarily imply a reduced quality of the DPA.
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Based on this observation, we have the freedom to choose a suitable procedure 
for semi-soft photons. The fact whether hard-photon contributions are suppressed or 
not will serve as our guideline for fixing the choice. Whenever the hard-photon effects 
yield vanishing contributions to certain observables, we will use the seini-soft currents 
of Eqs. (2.2.21) and (2.2.22). As a consequence, the non-factorizable corrections are 
always calculated with the help of the semi-soft interference terms. In order to specify 
our approach, we indicate in the following how the above-defined matrix elements and 
.-iii-rents are used in the various distributions of experimental interest.

Real-photon contributions to various distributions

As in all RC, the role of the bremsstrahlung process is twofold. In the first place 
the off-shell W-pair process (1.1.3) has at lowest-order level all kinds of distributions 
to which one would like to calculate O(a) RC. These RC consist of virtual and 
real-photon contributions. An integration over all allowed photon energies should be 
carried out, i.e. the radiated photon should be treated inclusively.

The second application of the bremsstrahlung process involves the evaluation of 
exclusive photon distributions. Since the photon has to be detected it should be 
sufficiently hard. How hard depends on the experimental resolution. An example of 
such an exclusive photon distribution is the photon-energy spectrum da/dE^. This 
distribution receives contributions from the three hard-photon terms in Eq. (2.2.19) 
as well as from the semi-soft interference terms of Eq. (2.2.21). The latter terms of 
course only contribute for photon energies that are not too hard.

In the next section results will be given for various distributions. For exclusive 
photons we present the photon-energy spectrum do/dE^. For the inclusive photon 
distributions we discuss in the following how the bremsstrahlung part is treated. 
Depending on the distribution, different approximations can be made.

As indicated above, the calculation of RC to distributions of the off-shell Im­
pair process (1.1.3) involves an integration over the photon phase space that is left 
available when fixing other kinematic variables. This means that the photon phase 
space for hard, semi-soft, and soft photons will in general be integrated over. The 
soft-photon part is standard and should be combined with the virtual corrections. 
How the non-soft part should be treated depends on the distribution one likes to 
study. In general one considers distributions of the form dcr d pa/dX, where dX stands 
for dM^dMz and a product of solid angles for W-boson production and decay. For 
the following discussion it does not matter whether these solid angles are kept or 
integrated out. However, it does matter whether one wants a double distribution in 

and a single distribution in or no distribution in M? at all. In other 
words, the treatment differs depending on whether one integrates over Mj or not.

Let us first discuss the procedure for the real-photon corrections to the double 
Breit-Wigner distribution da/dM^dM^ in the vicinity of the peak, i.e. one is not 
interested in the tails of this peaked distribution. In Table 2-1 we specify which ex­
pressions are used in the different regimes for the photon energy. For this specification 
we use the positions of the Breit-Wigner poles as listed below Eq. (2.2.19).
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■ IMl.Table 2-1. Formulae for the bremsstrahlung matrix elements for the distribution

6The usual cancellation of final-state collinear singularities is achieved only if also M ? is integrated 
over.

hard 
semi-soft 

soft

W decay + 7
-►0 =

KI (2.2.21)
KU (2.2.21)

prod. + 7 
|A40|2 (2.2.19) 
|A40|2 (2.2.19) 
Kl (2-2.21)

contributions to da/dM^dM^ 
Mz+ decay + 7

-4-0 = 

Kl (2.2.21) 
KU (2.2.21)

The entries of Table 2-1 can be explained as follows. The real-photo, ions 
to the distribution da / dM2dMl come in the first place from the prod, part, 
where the hard-photon matrix element squared |A4o|2 contains the ove;;Ji Breit- 
Wigner line shapes in A/2 and M2. This term should be taken from Eq. (2.2.19) and 
should be integrated over the photon phase space. In the soft-photon limit the usual 
soft-photon factorization in terms of IK> I is obtained. This explains the second column 
in Table. 2-1, where the usual RC to stable I'F-pair production appear, except that 
one now calculates the full density matrices rather than merely the trace.

The second type of contribution involves the W-boson decays with additional 
photon. When the photon is hard these contributions tend to zero as r2v/ko (see 
App. C), since they do not contain a double Breit-Wigner distribution in both M2 and 
M2 according to the list below Eq. (2.2.19). For (semi)soft photons, however, one gets 
overlapping Breit-Wigner resonances and the |Z±| terms of Eq. (2.2.21) can be used. 
These (semi)soft-photon factors have to be integrated while keeping fixed, i.e. we 
keep the variables M2 fixed. The corresponding integrals can be found in App. C. 
The integration over the semi-soft photon momenta leads to contributions from M2^ 
values that are higher then A/?, resulting in a distortion of the original M2 Breit- 
Wigner distribution. This final-state-radiation effect turns out to be quite sizeable, 
as will be discussed in Chapter 3 (see also [14]). The reason why the distortion is so 
large lies in the fact that the final-state collinear singularities [or J Q2 ln(m2/M2v)] do 
not vanish, even not for fully inclusive photons. After all, a fixed value of M2 makes 
it impossible to sum over all degenerate final states by a mere integration over the 
photon momentum.6 On top of that the infrared (IR) poles <x 1/k induce a further 
enhancement of the collinear logarithms by a factor

So far we have included all factorizable corrections. To this one should add the 
non-factorizable corrections. Again effectively only the (semi)soft region is relevant. 
For more information on these non-factorizable corrections we refer to the detailed 
discussion in Chapter 4 and in the literature [6, 8, 15].

As the next relevant distribution we discuss the real-photon corrections to the 
single Breit-Wigner distribution da/dM2, obtained from the previous case by inte-

non-factorizable

---- I interf. (2.2.21) 
soft inter: (2.2.21) |
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:"able 2-2. Formulae for the bremsstrahlung matrix elements for the distribution da/dM^.

Numerical results2.3

One-dimensional distributions2.3.1

L_
hard 

; semi-soft 
soft

ring over To this end we make a similar table (Table 2-2) and discuss the 
necessary changes. Based on the discussion below Eq. (2.2.19), it is clear that a Breit- 
Wigner distribution in M? is present explicitly in |«A40|2 and |A4_|2, both for hard 
and semi-soft photons. These two terms should be taken from Eq. (2.2.19) and should 
be integrated over the photon phase space and A/2- The |A4+|2 term does not have a 
Breit -Wigner distribution in Af2 as long as the photon is hard. Therefore it effectively 
only contributes in the (semi)soft regime, like in the previous case. Therefore the |Z^| 
term in Eq. (2.2.21) is used and the photon integration is performed while keeping 
Mi fixed. The non-factorizable corrections contribute in the same way as described 
for the previous case.

We conclude by considering pure angular distributions. In this case the picture is 
simple. All contributions should be taken from Eq. (2.2.19) and should be integrated 
over the photon phase space and the invariant masses A/2. The non-factorizable 
corrections vanish in this situation, which is typical for these interference effects [3], 
as will be discussed in Chapter 4.

contributions to da/dM*
W~ decay 4- 7 

jjM-l2 (2.2.19) 
jjVt-j2 (2.2.19) 
KU (2.2.21)

All the corrections discussed in the previous sections were combined into a Fortran 
program. In this section we present some numerical results. In particular we study 
the implications of the RC on various distributions. For the numerical evaluations 
we use the G,.-parametrization (see Sect. 2.1.2) and the input parameters listed in 
Eqs. (2.1.27)—(2.1.31).

IIZ+ decay + 7 
-> 0

KI (2-2.21)
KU (2.2.21)

prod. 4- 7 
|A40|2 (2.2.19) 
|A40|2 (2.2.19) 
PSI (2-2.21)

We start off by considering various one-dimensional distributions. Where applicable 
both the lowest-order distribution (d<7gpA) and the corrected one (c/oopa) will be 
presented, followed by a separate plot for the relative correction factor 5dpa [see 
Eq. (2.1.5)].

non-factorizable
-> 0

interf. (2.2.21)
soft interf. (2.2.21)
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In Fig. 2-8 we compare the total cross-section with and without RC for the p.+
final state. The corresponding relative correction factor <5 is given in Fig. 2-9. As a 
check of our calculation we have verified that the corrected cross-section coincides 
within the integration errors with the corrected cross-section for stable W bosons 
multiplied by the corrected branching ratio (Fiv-t^/Fiv)2.

The observed RC are large and negative, especially close to the IV-pair threshold. 
This is mainly caused by real-photon ISR, which effectively lowers the available Im­
pair energy, combined with the fact that near the IV-pair threshold the cross-section 
is rapidly decreasing with decreasing energy.

Since real-photon bremsstrahlung contributes to the RC to various distributions, it is 
useful to evaluate the photon-energy spectrum da/dE1 separately as well. In DPA it 
gets contributions from the three terms in Eq. (2.2.19) and the semi-soft interference 
terms of Eq. (2.2.21). The photon spectrum originating from the production stage 
is the same for all final states, but the spectra from the decay stages depend on 
the specific final state. In Fig. 2-6 the DPA photon-energy distribution da/dE1 is 
shown for the p+p/Jr_PT7 final state at 2E — 184 GeV, together with the production 
and decay parts of the spectrum. In Fig. 2-7 we separately list the three possible 
leptonic radiative-decay contributions, originating from W —> 677 (f = e, p, r). 
The substantial differences are caused by the explicit fermion-mass dependence for 
collinear photon radiation (see App. B.4).

Figure 2-6. The photon-energy distribution da/dE-f for the p+i/Mr 177 final state at 2E 
184 GeV. In addition the separate production and decay contributions are given
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Figure 2-7. Decay contributions to the photon spectrum from different leptonic W decays.
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Figure 2-8. The energy dependence of the total cross-section crtot for the final state.

I

da 
dEy

f e-channel
-----------H-channel

I---------- x-channel

0 
0

0.00 •— 
160

0.25 ,

----  DPA Born
— + O(a)-correction |



36 Chapter 2: Factorizable corrections

o

6

[%]
-10

-20

2# [GeV]180 200 220 240

Figure 2-9. The relative correction factor corresponding to Fig. 2-8.

Production-angle distribution
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In Fig. 2-10 we plot the production-angle distribution da/d cos 0 for the 
final state at 2E = 184 GeV. The relative correction factor displayed in Fig. 2-11 
differs substantially from the —12.8% normalization effect that was observed for the 
total cross-section. In the forward direction it is slightly more negative, whereas in 
the backward direction it is substantially less negative. A proper understanding of 
this distortion is quite important, since non-standard triple gauge-boson couplings 
might lead to exactly this type of signature. The origin of the distortion can be 
traced back to hard-photon ISR. Such hard-photon emissions boost the centre-of- 
mass (CM) system of the W bosons, causing a migration of events to take place from 
regions with large cross-sections in the CM system (forward direction) to regions with 
small cross-sections in the LAB system (backward direction). The more peaked the 
distribution is, the stronger the boost effects will be.

In Fig. 2-12 we compare the Breit-Wigner line shape da/dM* with and without RC 
for the final state at 2E = 184 GeV. Since the corrected line shape receives
completely different contributions from the production and decay stages, these parts 
are displayed separately. The corresponding relative correction factors are presented 
in Fig. 2-13.

The correction to the production stage leads to a constant reduction of the Breit- 
Wigner line shape. The corrections to the decay stages comprise the factorizable 
decay corrections (columns 3 and 4 in Table 2-2) and the non-factorizable corrections 
(column 5 in Table 2-2). The latter are very small [6, 8]. We see that also the decay
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Figure 2-11. The relative correction factor corresponding to Fig. 2-10.
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Figure 2-10. The production-angle distribution da/dcos 0 for the p+i/Mr 
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corrections reduce the Breit-Wigner line shape. The amount of reduction depends on 
the particular final state, as can be seen from Figs. 2-14 and 2-15, where we consider 
different leptonic final states. The differences are caused by the explicit fermion-mass 
dependence for collinear photon radiation (see Apps. B.4 and C). For other final 
states, involving quarks, the reduction is determined by the masses and charges of 
the decay products of the H/+ boson (see App. C). Besides the reduction, the decay 
corrections also distort the resonance shape, as is clear from Fig. 2-13. This final­
state-dependent FSR distortion effect has recently been discussed in the literature 
[14]. It can be quantified in terms of the shift in the peak position of the Breit-Wigner 
line shape, which we find to be —20, —39, and —77 MeV for W+-boson decays into 
t+pt, and e+z/c, respectively. This is in agreement with the (leading) shifts 
predicted by the W-boson version of Eq. (3.3.6) in Chapter 3, taking into account 
the fact that the correction to the production stage reduces the line shape by 12.0%. 
The observed shifts differ by —5 MeV to —10 MeV from these predictions as a result 
of the non-leading terms that are present in our full DPA calculation.

It should be stressed that theoretically the large distortion is a genuine effect. 
It would also be as relevant in practice if the invariant mass of the fermions could 
be measured. For various reasons this is problematic. One reason is the almost un­
avoidable inclusion of a collinear photon in the measured invariant mass. Such an 
inclusion would effectively decrease the leading logarithm [ln(A/2v/7n2)] that domi­
nates the effect. What remains of the distortion in practice should be studied with 
an event generator, which simulates the actual measurement.

Figure 2-14. Distortion of the invariant-mass distribution dcr/dM^ at 2E — 184 GeV due to the 
decay corrections. Three leptonic final states are considered: (rr-decay),
(/ir-decay), and e+ueT~i)r (er-decay).
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Figure 2-15. The relative correction factors 6 corresponding to Fig. 2-14

Double invariant-mass distribution2.3.2

^DPA^Mi, Mi) — <5pr + <5dec(A'A) + <WM) + 5nf(-Ml, M2).

Decay-angle distribution

In Figs. 2-16 and 2-17 the results are shown for the decay-angle distribution da/dcosfla 
for the /z+i//<r-PT final state at “IE = 184 GeV. Here is the angle between the /r+ 
and the H/+ boson in the LAB frame [see Eq. (2.1.18)]. The correction is negative 
and becomes more negative for forward angles. The shape of the relative correction 
factor is again the result of hard-photon boost effects.

The correction from the production stage is constant as a function of the invariant 
masses, <5pr = —12.0%. The non-factorizable contribution 5„f(Mi, M2) is given in Ta­
ble 2-3 for three near-resonant values for the invariant masses Mi. We indicate these

--------xx-decay
---------yix-decay
---- ex-decay

-20 — 
78.0

Finally we consider the two-dimensional distribution daat IE = 184 GeV, 
evaluated using the contributions specified in Table 2-1. Instead of plotting the abso­
lute distributions, only the relative correction factors 5 are presented. We do this for 
two specific leptonic final states. In Fig. 2-18 the e+i/ee~i>e final state is considered. 
This final state has the largest correction. Keeping one M? fixed, the correction to the 
other distribution is qualitatively the same as the correction to the one-dimensional 
distribution in Fig. 2-15. For the e+i/cr~vr final state (Fig. 2-19) the correction is 
clearly not symmetric in the Mf. This was to be expected, since the decay correc­
tions for e+ve and t~vt differ appreciably.

In Tables 2-3 and 2-4 we present some explicit values for the relative correction 
factor, split up into the separate contributions according to
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Figure 2-18. Correction to the double invariant-mass distribution da/dMydM^ for the 
e+vce~ve final state at 2E = 184 GeV.

Figure 2-19. Correction to the double invariant-mass distribution do/dM^dM^ for the 
e+i/er-PT final state at 2E = 184 GeV.
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A, At

<5d+cc(AA) <5nf(A/i,2W2)

A,A,

e+i'er vT final statee+vce vc final state

-1/2 
0 

1/2

-1/2 
0 

1/2

-1/2 
0 

1/2

-1/2 
0 

1/2

-1/2 

-14.3 
-28.2 
-30.8

1/2 
-30.8 
-44.5 
-47.0

-1/2
-13.4
-27.3
-29.9

-1/2
+0.5
+0.2
-0.1

1/2
-18.1
-31.8
-34.3

-0.8
-7.8
-9.0

decay channel 
e+vc 
-1.4 
-15.0 
-17.3

T+Vr 

-0.5 
-4.0 
-4.6

A2 
0 

-28.2 
-42.0 
-44.5

A2 
—0 
-17.2 
-31.0 
-33.5

1/2 
-0.1 
-0.2 
-0.4

A2 
~0~ 

ToY 
+0.0 
-0.2

Table 2-3. Relative correction factors [in %] for the double invariant-mass distribution 
do/dM at 2E = 184 GeV. Left: the corrections from the W+-boson decay stage ^ec(M\) 
for different leptonic decay channels and three near-resonant invariant masses. Right: the non- 
factorizable corrections 6nf(M\, M2).

Table 2-4. Relative correction factors [in %] for the double invariant-mass distribution 
daat 2E = 184 GeV. Left: the e+L>ee~i>e final state. Right: the e+i/er~i/T final 
state.
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Discussion and conclusions2.4

i

In this chapter (9(a) radiative corrections (RC) to four-fermion produ 
collisions have been studied. The energy region chosen is that of LEP2, v. ’ 
fermion final state is predominantly formed through intermediate W-pa«

Since a complete O(a) RC calculation for a two-particle to four-pa: 
is beyond present possibilities, a sensible approximation scheme has to 
smallness of Fw/Mw offers the possibility to use

three values by A* = (M, — Mw)/F'w = -1/2, 0, 1/2. The non-factorizable correc­
tions do not depend on the particular leptonic final state. The corrections <5±ec(A/t) 
from the decay stages do depend on the particular leptonic final state as explained 
before. In Table 2-3 we present these corrections for the three leptonic decay modes 
and the three near-resonant values for the invariant mass.

■ e+e~ 
be four-

■ ction.
rocess

- : J The 
the double-pole apt, mation 

(DPA). In practice it means that we calculate (9(a) and (9(Fvy/Mvy) corrections but 
neglect O(aFw/Mw) corrections.

We have applied the method to IV'-pair-mediated four-fermion production for 
a number of reasons. There is the methodological aspect of dealing with unstable 
particles in DPA, involving issues like gauge invariance, interactions between different 
stages of the reaction, RC to density matrices, and the phase-space mappings. All 
of these issues play a role in the W-pair-mediated four-fermion production process. 
There is also the practical aspect of assessing how large (9(a) corrections can be for 
certain distributions. This is of importance for W-pair studies at LEP2.

On the methodological side, we have succeeded in finding a consistent prescription 
for applying the idea of the DPA. The kinematics for calculating the poles of the 
matrix elements is necessarily on-shell kinematics. Also the phase-space factor in the 
cross-section is treated in on-shell kinematics. The off-shell invariant masses occur 
only in the Breit-Wigner factors. All of this is well defined both for the radiative 
and non-radiative parts of the cross-section and therefore our calculation itself is 
unambiguous.

An unavoidable problem is the relation between off-shell four-fermion events and 
the on-shell calculated events. This question arises when one likes to connect ex­
perimental cross-sections to the calculated DPA cross-sections. Also here recipes are 
chosen both for the radiative and non-radiative phase-space points. For the latter the 
mapping is natural if one chooses the invariant masses and angles as variables. 
All off-shell points can be mapped onto on-shell points. For the radiative events in an 
off-shell phase space, the photon variables have to be added. A natural choice is the 
photon energy and angles. If the mapping is chosen such that the photon variables 
remain the same, one sometimes maps outside the on-shell phase space. Different 
remedies for this problem are possible. One can choose a procedure that assigns zero 
cross-sections to those points. On the other hand, the photon energy in the off-shell 
four-fermion - one-photon phase space may be rescaled in order to obtain a physical 
point in the on-shell phase space. In general, there will be a dependence on the chosen
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mapping between off-shell and on-shell phase spaces. However, the induced numeri­
cal differences remain within the accuracy of the calculation, i.e. OCaVw/Mw)- At 
high energies, say above 2TeV, when peaks in the cross-section become much more 
pronounced, a more sizeable implementation dependence may occur. The present cal- 
culation is primarily meant for LEP2 energies and slightly above, say up to 500 GeV.

On the practical side, the results give an insight in the size of RC for off-shell IV- 
production. Within the claimed accuracy it is a complete calculation. It should 
a.ted that imaginary parts of loop diagrams have been neglected in the expcc- 

m that they only induce small effects. Moreover, such terms are characterized 
-n explicit sin</>3 and/or sin04 dependence in the cross-section, since they select 

iitisymmetric parts of the P-matrices. Integration over these azimuthal angles 
oves the imaginary parts of loop diagrams from the cross-section. So they do not 
ribute to the distributions of Sect. 2.3. It should also be stated that some large 

< ; ections (ISR, FSR), which usually require the inclusion of higher-order terms, are 
considered purely in first order here. The corresponding higher-order terms can be 
determined in a straightforward way within our approach, using the usual exponen­
tiation /factorization techniques.

We have presented the results for leptonic final states. The reason is that those 
states are theoretically well defined. In exactly the same way also quark final states 
can be treated as long as one assumes certain masses for the quarks. It is this mass 
assignment which gives some arbitrariness in the actual numbers. The RC presented 
are corrections to ideal theoretical situations, which cannot be realized experimentally 
in the same way. For that purpose the calculation should be implemented in an event 
generator. In principle this is possible. Events can be generated in the on-shell phase 
space with a radiatively corrected weight. The outside Breit-Wigner distributions 
can then generate the invariant masses and consequently off-shell events could be 
constructed from the on-shell ones (with certain angles kept fixed). Event generators 
offer the possibility to include realistic experimental cuts and therefore to study effects 
like the line-shape deformation in practical cases. The actual numbers presented here 
should give the reader an indication of the size of RC in ideal cases, of which remnants 
survive in practical situations.

For some questions the present study could already be useful in its present form. 
An example of this would be the comparison of a DPA Born cross-section with CP- 
conserving anomalous triple gauge-boson couplings and a normal DPA cross-section 
with RC.

In conclusion, the DPA method for unstable-particle production has been shown to 
give reasonable results. It could also be applied to other unstable-particle production 
processes that undergo electroweak or QCD radiative corrections. An example is pair 
production of top-quarks, for which the non-factorizable corrections will be presented 
in Chapter 5.
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A.l

£ 1*,2 (Pl ,2, 11) —

£i*(Pi>±) = - 2

(A.l)

ef(Pi,±l) =

^(P2,±l) =

(A.2)

This polarization basis satisfies the usual identities

(A.3)piX/XPi, a.) = o, ^(Po A,)e’M(pi, Al) = - <5a,a; ■

I

Appendix A:
Helicity amplitudes for virtual corrections

using the conventions defined in Sect. 2.1 and e0123 = —1. The helicity states, defined 
in the LAB frame, can be expressed in terms of the energy E and velocity /3 = p/E = 
yjl — M2V/E2 of the IV bosons in the following way:

Virtual corrections to the production stage
The amplitude nA1*,(A/nz, Mw) for on-shell Il’-pair production depends on the spinors 
of the initial-state e* and on the polarization vectors ei*(p,, AJ of the II' bosons. In 
order to define the latter we first introduce

^(0,1, ±L0),

In this appendix we give the basic ingredients for the calculation of the virtual factor­
izable corrections. The one-loop RC to on-shell IV-pair production have been carried 
out in the literature in terms of helicity amplitudes with a particular choice for the 
decomposition into basic matrix elements and invariant functions [9] This calcu­
lation serves as our basis for obtaining the RC to the production de: site matrix 
^’[XiX2][*'1a;)(A'Av, A'Av), defined in Eq. (2.1.11). Therefore we will set up :t inven­
tions in close analog}’ to what has been used in the numerical routini ef. [9].
Once we have fixed the choice of polarization basis in the production si. same
choice should be applied to the decay stages as well, i.e to Da.a; (Viv) in ■ 1.12).

-^(0,-1, ±1,0),2=[ef(pi,||) ±t£}‘(p1,±)] = 
zp

e?(p,,0) = e?(p„L) = — (0,0,0,1),

^(P2,||)Tie$(P2,±)] = 
rp

eS(P2,0) = ^(Pz.i) = ^7—(X3,0,0,-1). 
Mw

•fttAMw + u) ~ ?2,i Mr + 0 + pY,z(t - u) 
\]ut — Mw \/s — 4Mw 

t^q^gypPir
y/s(ut - AfjV)

spj1 - 2M2,(q1 + <72)'‘

Mw/s(s-4MM
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(A.4)

with

Ad"(A],A2)

Ad?(A,,A2)

AdJ(Ai, A2)

XJ(Ai,A2)

Adg(A„A2)

Ad?(A!,A2)

Ad?(At,A2)

Ad?(A„A2)

(A.5)

= [®(<?i)yi^“(92)](Eie2),

= [w(9i)2>i^u(?2)](p1e2)(p2ei),

= ®(9i)pi(Pi£2) -6(P2Ei)p«u(?2),

= ®(91)/1(1A -

= ®(ffl) [/1(91E2) - 6feei)]w<rU(92),

= [®(<71)^lW<Tu(?2)](</1e2)(?2El),

= [®(gi)^itd<rtt(92)][(pie2)(g2ei) + (P2ei)(91E2)],

= j[®(9i)7"w<7u(92)]£^pre2ef (Pi - Pi)T,

= 2[®(9i)7'‘^u(<72)]e„p/>rP2pV[£l(Pi£2) -e2(P2d)]-jMg(Al,A2)

The helicity projectors

In its most general form, the amplitude Mw) can be written as a
sum of invariant functions CJ(a) multiplied by Lorentz-invariant basic matrix ele­
ments AdJ(A|, A2). The basic matrix elements are simple, purely kinematical objects 
and contain the complete dependence on the IF-boson polarizations. The invariant 
functions contain the dynamical information, i.e. details of the model, but are in­
dependent of the IK-boson polarizations. Both parts depend on the helicity of the 
electron, Xc- = cr/2 (<7 = ±1). In view of our massless treatment of the e±, the helicity 

■f t i.e positron is fixed to Ac+ = —Ae- in the virtual corrections. For a specific helicity
:e electron the decomposition of the helicity amplitudes reads

Mw) = y^C,(<7)A4<(Ai, A2),

j, (A.6)

right- and left-handed massless fermions. Note thatwith 75 = i7°7’7273, project on
our set of 18 basic matrix elements Adj is overcomplete. Because of the massless 
treatment of the fermions, CP invariance implies the relation7

AdJ(Al,A2) = Ad;(-A2,-A1), (A.7)
resulting in only 12 independent matrix elements. The last three pairs, have
been kept for convenience and can be expressed in terms of the others according to

Ad? =£oAd? + Ad? + Adj, Ad? = - | Ad?,
7 We have fixed the overall phase of the matrix elements such that this relation holds. The density 

matrix will of course not be affected by this choice.
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n°
where the coefficients Gi,j are defined as

Gj(s, <r) = ie~ + A.10)GW = -

Here Siv and Cm are the sine and cosine of the weak mixing angle eu :

(A.ll)civ

(A.12)3e(-l)

(A.13)

(A.14)

A4J(±1,O)

where Qc = — 1 is the charge of the electron.
For the virtual corrections to on-shell W-pair production we need the complete list 

of basic matrix elements A4". For the I-I'-boson helicity states (A.2) the non-vanishing 
matrix elements read:

A4J(±1,T1) = 2E2(cos0 T <r) sin0
A4"(±1,T1) = -2E2(cos0T<r)sin0
A4J(±1,T1) = S^sin’e

_A4,(±1,±1) = 2£'2/3sin0
A4J(±1,±1) = 2#2(cos0 - 0) sinS
A45(±l,±l) = — 2£2 cose sin®
A4J(±1,±1) = £"/?sin3e

ie2 1
2s2v t ’

(A 1, A2)], 

(A.9)

cos e)sin2 e

and gc(a) denotes the coupling between the Z boson and electrons:

1 + 2Qes2y 
2swCw

Cw 9e(°) \ 
siv s — M'z /

-^Av) — £i(0 A4J(Ai, A2) + 2 6^2(5, [AI3 (Ai, A2) —

sw = sinfliv = \/l — c?v,

fle(+l) = - — Qe, 
C\V

a AAv 
cosem =

A4J(±l,0) = A45(O,t1) = ^^2.E2/3(coseT<7)

= A4J(0, =F1) = E2 [20 - 2 cos e T <7(1 - /32)] (cos 0 a)

A4s(±l,0) = A4"(O,T1) = vr^£2(^ + 2cose±<7)(cose^<7)
Mw

■A4?(±l,0) = A4J(0,tf1) = -^^(/? +

<7At? = 2(At^ + A4J + A4?) -3A4?. (A.8)

For the lowest-order matrix element only a few of these basic matrix elements are 
relevant:
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A4?(±l,0)

(A.15).Vt?(±l,O)

A4J(0,0)

Ad? (0,0)

(A.16)

(A.17)

cos 0)2 sin 0

cos 9 T a)

A.2 Virtual corrections to the decay stages
Since we have chosen a specific polarization basis for the calculation of the production 
stage, both at lowest order and at virtual one-loop order, the same basis has to be used 
for describing the on-shell IV-boson decays. All results presented in this subsection 
are therefore given in the LAB frame, rather than the often used rest frame of the 
decaying W boson.

Like in the on-shell hV-pair-production case, we again write the decay matrix 
element as a sum of invariant functions fj*’ multiplied by Lorentz-invariant basic 
matrix elements AdjA’fAJ:

Akt’(Mw) = 4’’(^) =
J i

In the most general case of the decay of a W boson into massive quarks, there are four 
basic matrix elements [12]. For the decay of the W~ boson, ->
they are given by

Af?(0,Tl) = -^2£4/32sin20

A4J(±l,0) = Adg(O.Tl) = ±^2B2/32(1

A4J(O,T1) = T^^4£‘,,a2(cos0T<r) 
M\V

zp2 
AdftO.O) = —F2F2/3(1+Z32)sin0 

Mvv

A4?(0,0) = —y-SE^’sinfl

E2 
Ad? (0,0) = T7z- &e20 sin 6

E2— 2E2 [3/3 - /?3 - 2 cos 0] sin 9

E2—5- 4E2(/3 + cos 0) sin 0 Mw
E2 

Ad? (0,0) = M^2E<0(0 +

E2 
Ad?(0,0) = —5-8.E4/32(/3 + cos0)sinS. 

IWH,
From this list and the invariant functions of Ref. [9] one can obtain the density matrix 
P[a,a2)[a',a'2](A/1v, Mw) in a straightforward way.

Adp \Az) — u(^z) Kz tjJ- v(^z),

Appendix A: Helicity amplitudes for virtual corrections
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(A.18)

iA.19)(Ar),

(A.20)(A').

(±1,0) = ±-^.(l±/3)e^

(A.21)

I

E 
fermion helicities

Adj,*’

with -» <t>3, cos 04 —> cosSs, sinfti -> — sindj. (A.22)
These expressions can be combined with the invariant functions from Ref. [12) to 
obtain the decay density matrices including virtual RC. It can be seen from Eq. (A.21) 
that the matrices Ad^\Ai,A<) contain asymmetric imaginary parts proportional to 
sin <£3,4. These terms will be responsible for picking up imaginary loop effects present 
in the invariant functions, which do not depend on 03,4. The symmetric parts of 
Ad£'(A,,A') are real and depend on cos03,4. Upon integration over the azimuthal 
angles 03,4 the matrices AdgJ'fA,, A') become real and diagonal, and the same holds 
for the corresponding decay density matrices.

with similar expressions for the decay of the Hz+ boson. For massless particles in the 
final state only occurs. At lowest-order we then obtain

=
v^2siv

with Vpf the quark mixing matrix.
For the decay density matrix Ua,a;(A/w) it is useful to have the exp is for 

•Adoo^Aj, A') = Y. -Mo^Aj) Ado*1

-Adoo\±l, -Fl)

Adfc’(0,0) =

Ad(r>(A2) = u(k2)f2^+v(k!2),
Ad^’(A2) = [u(k2)u>_ v(k'2)](e2k2),
Ad3->(A2) = [u(*:2)w+v(fc2)](e;fc2),

For the decay of the W boson one finds

sin2
(1-0COS04)2’

(±.,±i) - (■ ± ±7^,
Mw t, . m ji* (1T COS 04) sin 0.1
J2E( Pl (l-/?cos04)2 ’

■ fl + fll 04) sin 04
" (1-0COS04)2 ’

_ A£w T2I<m sin2 04 
2E2 e (1 - 0 cos 04)2 ’

The expressions for the charge-conjugate process, describing the decay of the W+ 
boson, can be obtained through the simple relation

AdS)(A1,A'1) = Ad^)(-A1,-A'1),

(0,±l) = ± ^(1 ±/3)e^ 

Af,-V
2E2
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is

B.

94 = («>»)*• (B.l)9 a =

(B.2)= eAB

according to
(B.3)

(B.4)

u(q, -) = v(q,+) =

I11 =

— Qab

2qk - | (<?*:) |2, (B.5)= 9Ab = 9a9b

Appendix B:
Bremsstrahlung in Weyl-v.d. Waerden formalism
Like in the case of the virtual factorizable corrections, also for the real-photon factor- 
izable corrections our choice for the polarization basis and the calculational scheme 
is ied by existing calculations in the literature. As mentioned in Sect. 2.1, there 

objection against having different choices for the polarization basis in differ- 
ntributions to the RC, provided that the contribution to the density matrix 
ulated consistently within the chosen approach. We adopt the conventions of 
1] and calculate the real-photon RC in the Weyl-van der Waerden formalism.

0

<?*)* = QAkA = ~9‘

9a = f-ab qB■

cAB

WAb

Q^'ab 2QK = QAbKab,

„ - .AB= e

qA = qB<BA

The Weyl-v.d. Waerden formalism 
for massive gauge bosons

Before giving the results for the various matrix elements, we first give a few essential 
details of the Weyl-van der Waerden formalism for massive gauge bosons. We follow 
the conventions of Ref. [11] and define the two-dimensional Weyl spinor for a massless 
particle with light-like momentum q as 

y/qo - qs______
— (<7i + 192)/y/qo — qz

The indices can be raised and lowered by the spinor metric

0 1 
-1 0

The spinor products

{qk} = qAkA = - qAkA, (qk)' = qAkA = - qAkA 

are hence antisymmetric. In the Weyl representation for the 7-matrices we obtain the 
following set of translation rules into two-dimensional spinor language:

u(g, +) = v(q, -) = ( ,

0 
qA J’

0 ) ’
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a1 a2 a3 =0

<B(+1) = (B.7)

(B.8)Cl (2p3m3) = C2 (2p4m4) = A/2,..p?,2 = P3,4 + Cl ,2 m3‘,4,

^B(-l) = v^

eliB(0) — (p3 - Cim3)?1B,

e^B(-l) = 72

,Ab (B.9)^B(0) = —(p4-C2m4/B,

n’jAjAjCA/ir, Miv) — Gi(t) A], A2) + G?(s, a)Ads(cr, Ai, A2), ■(B.IO)

0 
i

nors u(<7, ±) 
= (<7°, S) 

= 1,2,3)

can be chosen freely. An orthogonal 
now given by

m3PB 
(P3m3)’’

To handle the massive Hz± bosons we first decompose their massive momenta pi,2 
into a sum of two light-like momenta:

(o -1)- (B6)

For a photon with momentum k we use the polarization vectors ■ ibing the 
two helicity eigenstates

^B(+l)

(kb) ’

with Q, K arbitrary Lorentz vectors and q, k light-like ones. The Dirac spin 
denote right-handed (+) and left-handed (-) states. The matrices a'lr'n 
consist of the 2x2 unit matrix a° and the standard Pauli matrices <r‘ (i

An example: lowest-order on-shell W-pair production

As an example we apply the above method to the lowest-order on-shell production 
stage. To this end we choose m3:i = p4-3 in Eqs. (B.8) and (B.9), and write c4 = c2 = 
A/jV/(2p3p4) - c.

The complete Born amplitude of the process is of the form

Note that the so-defined light-like vectors m34
basis for the three physical polarizations of the massive W* bosons is

Pim3 
<J>3m3) ’

1
A'Av 

£Ab(+1) = ^^Lj

52
with 1) = s|^fl(+l). It should be stressed that the so-obtained polarization 
basis does not correspond to the helicity eigenstates. However, the corresponding 
states transform like helicity eigenstates under a parity transformation, which is very 
useful for practical calculations.
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■

where the coefficients G|,j

(B.U)

where

The.

(B.13)

-M, (rr = +1, Ai, A2) — — —1, —Ai, —A2), (B.14)A4,(<7 — +1, Ai, A2) — 0,

(B.15)■A4a,((?i, -o', <72,o',pi, Ai,P2, A2)

_A4t(-l,+1,+1) =

A4((-i,+i,-i)

A4,(—1, —1, 4-1) =

[292P.1 - 2cq2P3 + Mj,],A4<(-1,4-1,0) =

A4((-l,-l,0) =

>]} (B.16)A4((-l,0,0)

for the t-channel matrix elements, and

(1-c),

[292P.1 - 2c?2P3 - AfjV],

+c)[?2P4 -CQ2P3

2 
(psPi)2

are defined in Eq. (A.10), and

'/Z‘(P1,£1,P2,£2) = 2eY(£-2Pi) — 2e2(^iP2) + (p? —P?)(£i£2)- (B-12)

matrix elements can be translated into two-dimensional representation, e.g. for 
one obtains

where the last identity is the result of parity conservation of the s-channel matrix 
element A4S, since all parity violation is contained in the coefficient G2(s, a). From 
CP invariance one obtains two more relations:

(?1P4)<?2P4)’[2?1P3 - Mj,],

_ <<?1P4)(1?2P4)<92P3)'2
P3P4

(<Z1P3)2(<71P4),(<?2P4)'
P3P4

vz2(qiP4)(q2P3)*
Mw(p3Pi)

Mw(P3P4)- 
= (<71P3)(?2P3)’{1 - C +

- •A'G.ite, -o, 91, o, P2, -A2,Pl, -Al),

so only 6 independent polarization states remain. The independent matrix elements 
read:

A4<(<7, Ai,A2) = u(?l)/l(rf2 - j/2)/2Ul-U(?2),

A!, A2) = v(?l)yZ(Pl,£l,P2,£2)w„u(<72),

Mt(<r — — 1, Ai, A2) — 9i'£i mi (72 ~ P2) ZZC£2 be

Ms(a = -1, A,, A2) = giAVB4(pi,£i,P2,£2)<72B-

For <7 = +1 we can make use of the relations

A4,(-l,+1,4-1) = -2<91p3)(<72P3>-§^
(P3P4)

A4S(—1,+1, —1) = Ms(-1, -1,4-1) = 0,
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(B.17)

B.2

(B.19)

/2 ? W-Ufe),

<u_u(g2),

A4]

(B.21)

stage

ilinear

t = (91 - Pi)2, 
t' = (?2 - P2)2,

^2~^2 

2pii

Ml = P(?1){/1M1

[2/2(e7p2) - 2/7(e2A:) + 2^(e7e2)

= p(9i)(/i^—r yz(Pi,ei,P2,£2) - yz(Pi,ei,P2,C2) ^-p/7l^u(92), 
[ zqiK zq2K, j

Ml = n(9i)|-2/7(eie2) + fb(Pi,ei,P2,^2) + yzb(P2,e2,Pi,£i)} w<,u(92),

Non-collinear photon radiation from the prod
Using the above example as guideline, we now address the process of 
real-photon radiation from the production stage:

e+(9i,<ri)e“(92,o'2) -> Mz+(Pi, Ai)IV_(p2, A2)7(/c, A). (B.18)

Since we are dealing with non-collinear radiation and massless initial-state electrons 
and positrons, we can ignore the possibility of helicity flip in the initial state. There- 

—a applies. As a first step we extend the list offore again the condition <Ti = —tr2 
kinematical invariants of Sect. 2.1:

S = (91+92)2, t = (91-Pl)2, « = (91-P2)2,
s' = (P1+P2)2, f = (qi~P2)2, u' = (92-Pi)2-

The complete matrix element can now be written in the form

n7(Mw,Mw) = - e[G1(t')A47 + G,(t)A4j + G2(s',<z)A4] + G2(s, <z)A4?], (B.20) 
where the functions Gi>2 are the same as the ones defined in Eq. (A.10). The basic 
matrix elements •A't} are invariant under gauge transformations of the radiated pho­
ton. This is due to the fact that the photon is attached to a combination of lines 
through which the charge flows. For instance, M] is obtained by photon emission 
from the e+ and W+ lines of the t-channel Born diagram. The matrix elements are 
given by

Ml =V^)[^^^(i2-^2 +
I Zyi A,

\/2 
A4,(-l,+l,0) = —— (9iPd(92P3)'(P3Pi)*(l - c2), 

Miv

■A4,(-l, -1,0) = (91P3)(P3P4)<92P.1)’(1 - c2),
Mw

A4s(-l,0,0) = <9iP3)(92P3)‘(| + 3-3c-c2^

for the s-channel matrix elements.

+ [-2^(e7Pi) + 2/7(e>fc) - 2#(e7ei)]

^q2^

+ *'~2^k
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The matrix elements for right-handed electrons are again completely determined:

(B.24)

(B.25)

I

[(35)-(13)-(15)],

•A4i(+1, — 1,4-1) — —

Wl(pi,X^p2, A2, k, X) = - A2,pi, A),
Ai,p2, A2,/c, A) = 4-A'tjfe, A2,pi, Ai, A;, A).

where the last identity is the result of parity conservation of the s-channel matrix 
elements A4J 4. Due to the symmetry (antisymmetry) property of the quartic (triple) 
gauge boson vertex under the exchange of the W+ and W~ bosons, one can derive 
two more relations:

•M?(Qi, -o-,g2,<7,pi, AHp2, A2, k, A) = A42*te, -<7,gi, a,P2, -A2,pi, -Aj,A:, -A), 
■^3.4(91, -^,92,<7,pi, Ai,p2, A2,A:, A) = -a, q{, a,p2, -A2,pj, -A1}A:,-A).

(B.23)

= - V"(p, + *,ei,P2,E2) + [pi(fiS7) +e^(eifc)](e2Pi + £2*)

+ £2[(ei£7)(*:pi + A:p2)-(£i*:)(e7P2)] +P2 [(£2£7)(£i*) + (£i£7)(e2Pi)]- (B.22)

. - rex function V can be taken from Eq. (B.12). Note that the term —
the square brackets of originally had the form (tfi - ^)(e7£i). The 

- ■ -•■ce (^1 4- ^)(£7£?i) cancels against similar terms in A4]. This cancellation is 
. ■■ <•equence of the lowest-order Ward identity of the W+ boson. In the same way 
also Lhe Ward identity of the boson has been used to simplify A42.

For the calculation in the Weyl - van der Waerden formalism we choose m3i4 = k in 
Eqs. (B.8) and (B.9). Furthermore we choose the free gauge parameter b in Eq. (B.7) 
to be equal to qx. Like in the case without photon radiation, we can exploit some 
symmetry relations. First of all CP invariance implies the relations

where we introduced the shorthand notation

A47(<7 = +1) = A42(<7 = +1) — 0,
-2^3,4— d-1, A], A2, A) = Adj.,(<7 = — 1, — A>, — A2, — A),

After all these preparations we now list the independent matrix elements for a = 
— 1. In order to keep the results as compact as possible we use the shorthand notations 
(nr,) = (v) and (r,r,) = (ij), with rf = («i, «2, Ps,P4, *) for i = (1,2,3,4,5). For the 
amplitude A47(Ai,A2, A) we find:

A47(+l,+l,+l) = -4^^^

^gl[(24)((13)(23)- + (15)(25)-)-C2(13)(45)<35)-],
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A1?(-l,+l,+l) = — 2\/2

A47(-l,-l,+l) =

A4?(-f-l,0,+l) =

JVf?(-l,O, +1) =

A4?(0,+1,4-1) = -4

-1, +1) -2

-M7(0,0,+l) =

[(24)(23)* — cj(45)(35)*],A4?(+l,-l,-l) =

[(15)-(35)] [(35)-(13)-(15)],A47(-l,+l,-l) =

A4?(-l,-l,-l) =

A47(+1,O,-1) =

A47(-1,O,-1) =

A4i(0,+1,—1) =

.447(0,-1,-1) =

■i

(15)]
(35)]’[-

l[-2c2^(45)(24)'(35>-
L \107

(13)2(24)*
(15)(45)

(13)2(24)(25)'2
(15)(45)-(35) ’

^_{[(13)(23)- + (15)<25)-][t' + 4(24)]

2c2(13)(45)(24)'(35)'j,

<13)2(25>‘ R +4(24)1
(15)(35)W I + 4(44jj,

4T(«X {-,l-> *11 - ^)[(35> - <i5>i
+ (1 -C1)<24><25)’],

\/2(13)
(35)A/?V

+ [f + 4(24)] (^|y(23f + (1 - C1)(25>’)],

m?(+i +i -i) = Al^+l.+l, 1) V2 <45>(15>.(35) .

(15)(13)«(25)-
(15)-(45)-(35)

8^2(24)’
(45)(15)‘(35)*2

4^2(24) (25)-2 r _ !
(35)"2(45)'(15)' ^35) (13) (15)J’

- <iS?SJ-2ai4s>(M>'i35>'+<23>'i‘'+i(24)i)'
<iS>-<Z«J,’t (,3>

+ 2((24)(23)' — c2(45)(35)‘)[(35) - (13) - (15)]},
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-M7(0,0,-1) =

Th

“1, +1, +1) ~

(+1,-1,+1) =

_MJ(-1,-1,+1) =

Al?(+l,0,+l) =

A4J(—l,0,+l)

A4J(O,O,+1) =

-MJ(+1,—1,+1) —

A4j(—1, —1,+1) =

72 
<25)Af£,

[-(12)+ (35)+ (45)],

(12)2^<(45)(14)(23)' + c2(12)(45)(25)'(35)‘

2(45)<14)]J,

pendent matrix elements -MjfA,, A2, A) read:

4v/2(15)(34)'
(25)(35)(45)

272
(25)(35)(45)'

- <35)-[<34)(<12><23>* + <15><35)’)

2x/2(12)2<34)<25>*2 
(15)(25)(35)'(45)' ’

W^{-C2(12)(45)(25)'(34)'

+ [<12)(23)' + (15)(35)’] [(34) + c,(45) - c2(35)]},

“ (IMmSm {~<:2<15><34)<45>‘ +
./Wiv I

+(13)[(34) + c1(45)-c2(35)]},

{“ 2 W <14><34>’ t(34) + C2(35) + C1 (45)1

(15)>(^M/,V {- 4c2<24)"<35)’<45)[(35) - (13) - (15)] 

+ [t' + 4(24)] (c,(15)(13)'(25)' + 2(23)'[(35) - (13) - (15)]) J.

(B.26)

+ (13)(35)’[2c?(35) - 4c?(45) + (2c2 - 4c,)(34) - (3ci - 2c2)M^

- (14)(45)'[2c?(45) - 4c?(35) + (2c, - 4c2)(34) - (3c2 - 2c,)Af,V]}.(B.27)

For AfJ(A|,A2, A) we obtain:

A4?(+l,+l,+l) = - 472 [(34) + (35) + (45)],

(35)^5)'{C1<15)<34)<25),<35r + <34> <23>*(35)

+ 2(14)(25)'[(34) + (45)]},

72 (12) (34)2(25)'2
2 (35)(45) ’
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Afl(+i,o, +1) =

MK-i,o,+i)

JMJ(O,O, +1) -2c1(l + c1)(45) + c2(l+c,'!

+ (c2 — 2cj)(34) +

(B.28)

^(W) (B.29)

Using again m3i4 = k in Eqs. (B.8) and (B.9), one ends up with

(-1) = 2

^P3){k1P3y - c^k^k^y) (B.30)(0) =

for the M/+ boson, and

(B.31)

for the W boson.

J

1 
Mw

2v/2(14)
MiU45)

(k'iP3)(kiky 
(Pzk)'

(k2p4){k'2k)’ 
(Ptk)'

x/2siv

{k2k){k'2P4y 
(Ptk)

(k'ik){ktp3y

4
Mlv(35)2

a4+)

A<+)

3
C2 - 2C1

{^fy<34><23)'[(34) + (35)(1 - c2) + (45)(1 + Cl)]

- <15)(25)-[(34)(1 + 2c2) + (35)(1 +c2) + (45)(l + c,) + Mj,]|,

= iW„2Sx35) {-^<44><35><34)<45)-
+ (13) (34) [(34) + (35)(1 - c2) + (45)(1 + c, + ■)] ].

2'/2(34)(15)(25)'
M?v(35)(45)

Lowest-order decay of the W bosons

Having fixed the polarization choice for the real-photon factorizable corrections to 
the production stage, we now calculate the lowest-order decay parts accordingly, 
since they are needed for obtaining the DPA limit of the full matrix element jM0 in 
Eq. (2.2.10). The matrix elements for the W-boson decays are given by

[<25>* + (24)’[(34) + (35)(1 + c2) + (45)(1 + c,)]

a4-)(°) = j^(<^P4)(i2P4>- - C2(fc2fc)(*:^)>)

A4^’(Ai).

^-’(-1) = \/2

a4+)(+1) =

.Mr’c+i) = V2
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B.3

(B.32)

4- Q/j (B.33)
'iv

with

v(fci) = A-'/eJ

■a>_v(ki') — k'{= u(k\)

(B.35)A4?

A4?(+)(+l,4-l) = 2

Non-collinear photon radiation from the decay stages
Next we address the process of non-collinear real-photon radiation from the decay 
stages. We start off with the decay of the W+ boson:

V2 
{kik)Mw

The corresponding expressions for Atj,3+\Ai,A) read:

<+) + A4j(+)],

t (fc, + k)6c 

2k,k 
(*; + it) 

2jt;A-

ot explicitly write the helicities of the final-state fermions. The final-state 
are treated as being massless, hence for non-collinear radiation their helicities 
by the left-handed interaction with the W bosons: Ay, = — A/j = 4-1. The 

•lenient for process (B.32) can be written as

A<+>(MW) = [- Qfl
v2snz L

(+)(0, +1) =

A4j(+>

be k\ .

.,a . <Ai t *)BC t
K1 e~fBA 2k'xk 'lDC

■.,AV(-Pi’£^k,ey)iAkB (B34j

# laJ_-------------
2k\k

= «(M) A fftf/ fiu-v(ki)
1 rV

2p,k “'-■'VM "1 2pik

Here the vertex function V can be taken from Eq. (B.12), but (jf+j/i) can be replaced 
by 2ft as a result of the lowest-order Ward identity of the W+ boson.

For the calculation in the Weyl-van der Waerden formalism we choose the same 
polarization basis as adopted for the on-shell W-pair example in Sect. B.l, i.e. m3A — 
p4i3- For the definition of the photon polarizations we choose the free gauge parameter 
b in Eq. (B.7) to be equal to kt. A straightforward calculation gives the following 
results for the amplitudes A4j'+\A1, A):

a<<+>(+i,+i) = -2^^.
(ktkjfpsPA)*

A47(+)(+l,-l) = Af7(+)(-l,-1) = A4?(+)(0,-l) = 0,

A^+>(-l,+1) = -2^. ,̂
(kik){p3P4)

[c(fc;p4)(p4*:)’ - (MPsXPsfc)']-
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M1W(-1,+1) = 2

A4j(+)(-l, -1) = 2

A4j(+)(0,+l)

. B.36)

and

2Plk A4j<+)(+l, +1)

2p,fcA4](+)(+l,-l) = 2c

2p\k A4j'+’(—1, +1)

2p1kA4?(+)(-l,-l) — 2

2p1fcA4](+)(0, +1) = -

(B.37)

+ A1J'-’],^’’(W) = (B.38)

where

jM;(-’(A21A) = [a4}'+)(-A2,-A)]‘,

The expressions for the charge-conjugate process, describing the decay of the W 
boson, can be obtained as follows:

with (*,, k\,p3,p4) -> (/c2, k'2,p4,p3).
(B.39)

When the above matrix elements for real-photon radiation from the decay stages 
are combined with the lowest-order matrix element for the production stage, presented 
in App. B.l, one obtains the DPA limit of the full matrix elements M± in Eqs. (2.2.11) 
and (2.2.12).

^^2 

y/2sw

(+)(+l,-l) = -2 c(P3P4)(fclP4)*2
<M),(W<P3P4>’’

(fclfc,1)(fc'1P4)(felP3)‘
(klk){k'lk)(p3p4) ’
<fclP3)‘2

(ktk)-{k\k)-'
M^k)(k'tk) -«<*'1P<><*1

A^+>(0,-l) =

(k^k)(p3pty [(fc‘fc,‘)Wk~>* - 2fcife(p.|fc)'}.

(fc'lfc)(p3P4)<fclP4)‘2
(A:iA:),(P3P4)'

^^[^{^■{k'.ky - 2ktk(p3ky],

(fc'^XfciPa)*2
(ktky ’

(klk^Mw (<fc'lP3)(fclP3)‘ - c(fc'iP4)(fclP4)’)

- 2kik({k'lp3){p3ky - c (k\p4)(j>4k)') j,

2p1JtJUj(+)(0,-l) =
Mw («!«/*
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B.4

i

(B.41)

(B.42)

Y. l^/lcoii,/2(*i,M>*2,M>*)|2 ~ e2Q2fl

/co°ii)('7i.cri>fc) = [:

>Pa(^1> M> ^-2/1/21 M)|2’

(B.43) 
where the summation is performed over all final-state helicities and y2 = Ef/^Ef + ko) 
is the ratio of the f2 energy after and before photon radiation. The other final-state 
collinear factors can be obtained in the same way.

1 + x2 ml 
2s 1 (<7ifc)2

Radiation of collinear photons

Up to now we have only discussed the case of non-collinear photon radiation, which 
allowed us to neglect the fermion masses and the possibility of spin-flip in the initial 
state. 1'he picture changes, however, if the radiated photons are sufficiently collinear 
with •■■■e of the external fermions. In such cases factorization takes place, i.e. the 

. . 1 dement squared including collinear radiation can be approximately written 
of the lowest-order matrix element squared and collinear factors.
: first consider collinear photon radiation in the direction of one of the light 
in the production stage of the process, e.g. the positron. In that case the 

element squared can be written in the following form [16]:

.. . Mcoii,e+(<71,<7|,<?2,CT2,A:, A)|2 ~ e2fc("u’(gi,<7i,A:) |A4dpA(®i?i> -^2,92, <r2)|2,

(B.40) 
where :z:t = (E — k0)/E is the ratio of the positron energy after and before photon 
radiation, <7ii2 are the helicities of the e±, and

1 + .s2 1
51(1 - Si) qik

(1 ~ Z1)2 m2
2ii (?ifc)2

The last term in this collinear factor gives rise to the so-called spin-flip, which allows 
the positron to have the same helicity as the electron. Note that we have only indi­
cated the momenta and helicities of the relevant particles (e±,7) and that the photon 
helicities are summed over, as the photon cannot be detected anyway. Collinear radia­
tion in the direction of the initial-state electron can be obtained in the same way, with 
the role of the e+ and e~ interchanged. If the initial-state particles are not polarized, 
as is the case at LEP2, the collinear factor takes on the well known form

When the photon angles are integrated out, the terms or l/q\k yield contributions 
of the large-logarithmic type [or ln(s/m2)], whereas the term or m2/(gifc)2 gives rise 
to additional 0(1) contributions, which would have been neglected in a massless 
treatment of the initial state.

In the case of collinear photon radiation in the direction of one of the final-state 
fermions, say the fermion f2 from the W~ decay, the factorization reads

[1 + 8/2 1 < 11^0
[l-y2k2k (M)2]1 D1
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IAI2 (C.l)

(C.2)In Re

(C.3)A = -

with z = Di/(2EK) and Li2 the usual dilogarithm

(C.4)Li2(z)

ln(z + 1-/3)h +

(C.5)

Appendix C:
Special integrals for semi-soft photon radiation
In this appendix we have a closer look at the inclusive treatment of the photon in 
shifted Breit-Wigner resonances l/[Di + 2kpi\ in the vicinity of the M? resonance (see 
Sect. 2.2). We start off with factorizable real-photon radiation, involveg the ratios

In order to study the phenomenon of hard-photon suppression we cons: i generic 
integrals

- Li2

l-Dil2
IA + 2fcp,|2

1
D* + 2kpi

IGir2 E/3M2,Y\

__ 1
Dt 4- 2kptJ 2iA/I\yT'\y

|£>d2 
AfmFm

Z + 1-/3 
2/3

IAI2
Aim I'm

-1-/3 
z

— Im 
w

z E C \ {l £ R,I > 1}.

4tt2 Im { [' + ’n ( 2EX,)

One can immediately read off that is suppressed by OfJ'w/E), irrespective of the 
precise value for A. For n = 2 the integral reads

0

dk M^~2 i 
(27r)32A-„ A-g D, + 2kp,

-^^ln(z + l+/3)]}
J )

This type of integral will lead to an 0(1) contribution. The dependence on the cut-off 
A, however, is suppressed by O(Fm/A2). So, the more energetic the photon is the 
more suppressed its contribution will be. Hence, as soon as A is taken to be much 
larger than I'm it can safely be replaced by infinity.

Based on the latter observation, we can now list the relevant integrals needed for 
the inclusive treatment of final-state radiation effects involving shifted Breit-Wigner

{ /
f X,<ko<A

for n = 1 or 2. The integration is performed over the photon angles and the photon­
energy range As < k0 < A, where A, is a soft-photon cut-off (A, <K Pw)- For n = 2 
this integral quantifies the influence of the shifted resonance on the A/2 distribution 
in the vicinity of the pole M2 = M2V. For n = 1 it quantifies the effect of O(k) shifts 
in the definition of the DPA residues. In the latter case we find

ReD.

1
4tt2
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In

[ln(

(C.6)

Kl — In

4- Li2 (1 —

(C.8)
Aj<fco<A

_L1

Here E'3 denotes the energy of i.e. E3 = E — E3. The correction factor correspond­
ing to the |12| term in Eq. (2.2.21) is obtained by replacing (Z>i, /i, /[, E3, £3) by 
(A,/2,/2, A, £4).

Finally we study the hard-photon suppression for the non-factorizable corrections. 
To this end we consider the integrals

!
■

/ 
ko>Xa

f 
k0>Xa

/'
J 

ka>Xa

f 
ko>Xa

1

-1 
ko>Xa

ln^-1] + Li2(l - + Li2 (1 —

+ Li2 (1 —

2AS Mw

2AsjV/iv 
—d?~

dk 1
(27t)32*0 (2AiP1)2[A + 2*P1]

iD‘

AfivFw

dk 1 1
(2tt)32A:0 (2A:fc1)2[Z?1 + 2fcP1] = IG^m^D, 

dk 1
(2tt)32A:o (2fc*,) (2*Pi)[Z?1 + 2fcP1]

1 
167r2A-/,2,.Z>i +1+^ln(ir|)]’

— — Re 
7F

From these integrals one can determine the correction factor corresponding to the 
12^.| term in Eq. (2.2.21):

resonances (see columns 3,4 of Table 2-1 and column 3 of Table 2-2). For the radiation 
from the W+-boson decay stage the following four integrals are required:

dk 1
(2tt)32A:o (2kkx)(2kk'i)[Dl + 2kpi] =

dk 1 fl 11
(2rr)32A0 (2fcPl)[£>i + 2fcP1] [2tt[ + 2U[J

A £3 \ 
a.msJ’

1

1-0 E
2 E3

1-0 E
2 £3

1-0 E
2 E'3

dk M^T2 Dj 
(2tt)32A:o A + 2kpi

[ln(¥j) 'n(^F)[ \ £>i £3 / \ mJ, )

1+0 E'
2 £3.

dk 
(2tt)32*:0 

r>2 J In 

Q4'n AA

1 +0 £\1
2 £3 a

(C.7)

-1
I mj, J

+ Li211 —

1
2^

1
2/3
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for n = 1 and 2. From the results for /1>2 one straightforwardly obtains

(C.9)Ji =

and

ln(z + 1 - /?) -

= 1, whereas for n

- 
■i

i
16tt2E0Mw

z + 1 — 0 
20j2 = iRe{1+ln(A) +

Re|o, |bi2(

z 4- 1 4- (3 ln(z 4- 1 4- /?) j- 

(C.10) 
Again a suppression of O(Tw/E) is observed for n = 1, whereas for n = 2 the 
dependence on the cut-off A is suppressed by □(MvvI\y/[.EA]). So. again A can be 
replaced by infinity if it is sufficiently large. For explicit expressions the non- 
factorizable corrections we refer to Chapter 4 and to the literature

^)]i
1

47F2
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Final-state radiation3

3.1 introduction

—> ZZ —> e+e Vt^t- (3.1.1)
The diagrams corresponding to this process are shown in Fig. 3-1 (A)-(D). Here QED 
corrections apply only to the decay Z —> e+e“ and not to the other Z decay or the 
initial state. When the Z line shape is obtained from measuring the invariant-mass 
distribution of the e+e“ pair, FSR will distort it in a way reminiscent of the usual 
ISR distortion in single Z production. The virtue of the example is threefold. In the 
first place, process (3.1.1) is free of the gauge-invariance problems that are inherent 
in the production of unstable particles. This holds in spite of the fact that we have 
left out all non-double-resonant mechanisms for producing the e+e~z/TPT final state. 
Secondly, the QED radiative corrections only lead to FSR. So, the effect of FSR on 
the line shape can be studied without the additional presence of ISR phenomena.

As is well known [2], the Z line shape as measured in e+e~ —> Z —> //is distorted due 
to initial-state radiation (ISR). Without ISR the total cross-section cr(s) as a function 
of the square of the centre-of-mass energy s gives the line shape. With ISR the centre- 
of-mass energy available to produce a Z boson changes and, as a consequence, so does 
the shape of the total cross-section <r(s). Experimentally the latter is measured. If 
one would measure the square of the modified centre-of-mass energy s', one would 
determine (j(s') and thereby the pure line-shape. It should be noted that final-state 
radiation (FSR) only marginally corrects the overall size of ct(s), but not its shape. 
Therefore FSR is less relevant for the usual Z line-shape measurement.

When one produces two resonances, or one resonance and a stable particle, the 
line shape of such a resonance will be measured from the invariant-mass distribution 
of its decay products. Examples are pair production of IV bosons, Z bosons, tt or 
HZ. Depending on how one measures the invariant-mass distribution of the decay 
products of the particular resonance, one finds the pure line shape or a distorted one. 
This time also FSR can cause the distortion.

It is the main purpose of this chapter to point out that such a FSR-induced 
distortion can arise. For exhibiting the effect we take an example for which we can 
perform both exact and approximate calculations. An ideal example is the double­
resonance process

In this chapter we will explain the mechanism of the large distortion of the IV line­
shape. ;;s found in the previous chapter. For this purpose we discuss a toy model 
in 1 '.c; Z-pair production, which can be analysed both exactly in q and by means 
of the ' )PA technique. Moreover, estimates of the effect for IV bosons are made. The 
ii'.: of this chapter has been published in the literature, [1].
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Z
e+

V-r

Z V-r

(A) (B)

Z z
e+ e+
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r-pZ ZVt "t

(C) (D)

The Z-pair example: exact calculation3.2

Thirdly, the effect can be calculated exactly. In more realistic examples, involving 
for instance e+e“ initial states, Z-pair production with both Z bosons decaying into 
charged particles, or W-pair production, additional classes of QED radiative correc­
tions emerge, like ISR [3, 4, 5] or non-factorizable interference corrections ([6] and 
Chapter 4). Moreover, in order to avoid gauge-invariance problems, the QED correc­
tions often have to be calculated in an approximation, which for instance restricts 
the calculation to the leading logarithmic corrections and/or the leading terms in a 
pole-scheme expansion around the resonances [3, 7], as has been done in Chapter 2. 
Nevertheless the FSR distortion of the line shape will still be one of the main features. 
In these more complicated cases Monte Carlo studies including radiative corrections 
would be needed. Here we focus exclusively on the line-shape deformation and its 
impact on the determination of the resonance mass.

Although we start with reaction (3.1.1), we shall also comment on the more real­
istic case of the W line shape at LEP2, for which numerical results were presented 
in Chapter 2.

For process (3.1.1) we first consider the Born approximation, to which two double- 
resonant diagrams contribute. After integration over the Z production angle and the

Figure 3-1. The diagrams corresponding to the lowest-order process (3.1.1) (A) and the asso­
ciated QED radiative corrections (B,C,D). In order to obtain the complete set of diagrams one 
has to add the diagrams with interchanged Z bosons.

Z
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Ml),n (Ml, Ml) (3.2.1)

lit ■. :

wi 1 Kallen function

A = s2 + Ml + Ml - 2(sA/2 + sMl + M2Mp, (3.2.3)

A,(M2) =

A2(M2) = (3.2.4)

(3.2.5)

, (3.2.6)
2

with
(3.2.7)L

(3.2.8)

which is in agreement with the literature [8]. The decay parts are given by

^^(g2Vt + 92At)-Ml = -MlV-^^-, 
Giry/2 tr 1 ir Mz

G»M2
67r\/2

whereas the resonance shapes are dominated by

1 + z2 1
1 — z Ml’

ln(

2gl-M2 = -Ml
TV TV

(g^ + g^^-M2 = x-m2-
TV TV

r Z-»l/rPr 

Mz ’

1 + — (L-l)ln£ + -f|£ + y-2' 
?r rr \Z 4 .

s - Mj - Ml + s/A\1 
s - Ml - Ml - v/A ) ] ’

(3.2.2)

fermion decay angles, one obtains

da0(M2,M2) _ 2 ^(M2) ^(Mp =
dMl dMl ’ 2’ \Dt(Ml)\2 \D2(MIW

where A/,’ and denote the invariant masses of the e+e~ and vTvT pairs, respec­
tively. The spin-averaged production cross-section takes the form

4tvs s

h.(4),
\m; J

Here we have defined the soft photons in the rest frame of the Z: E7 < eMi/2 
rz. Photon bremsstrahlung involving more energetic photons introduces an explicit 
dependence on the photon energy E7, resulting in a distribution in the invariant 
masses of both the e+e~ pair (A/f) and the e+e“7 system (A/f = virtuality of the Z 
boson):

rfgbrc/A-/,2, Ml, Ml)
dMl dMl dMl

Di,2(M22) = Ml_2 - M2z + iM2,2

Note that we have used the standard LEP1 representation in the above formulae, 
involving Gh and the effective couplings of the Z boson to leptons (gvt, 9ai) and 
neutrinos (</„).

Applying virtual and soft photonic corrections to (3.2.1) yields

davs(Ml, Ml) _ dapfMl, Mp f 
dMl dMl ~ dMl dMl I

' s2 + QW2 + M2)2 
(s - Ml - Ml)\/X

= daa(Mj, Ml) a , _ . 
dMl dMl ir '

jr2

3
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where

(3.2.9)L + In z.

(3.2.10)

(3.2.11)

with

(3.2.12)

li

l + c 
c2

2a
7F

1dM?dM$

dabnm(M^,M^) 
dMf dM%

rvs drcs

(L'-l) / dCF(CM?,M22)[-

where the function F is defined in (3.2.1) and £max = (\/s — Mi)2/Mi- Combin­
ing (3.2.6) and (3.2.10) gives the (9(a) correction to the line shape. Just like at LEP1 
it will be necessary to resum the soft corrections, as will become clear from the dis­
cussion in the following section. Based on LEP1 experience [2] a suitable expression 
for this resummation is given by

G(C) = /?(C-i/->(i + 5£)_£l±l

-g-l r-h(4)- Mf < \ m2 J
When correction (3.2.6) is combined with (3.2.8) and an integration over A/j2 is per­
formed, the correction to da^/(dM^ dM%) takes on the form of the usual FSR factor 
l+3a/(47r). This is in agreement with the KLN theorem, which implies that the large 
logarithmic contributions (oc L, L') vanish upon summation (integration) over all de­
generate final states. So, the resonance shape is not deformed when one m snn-s the 
M% distribution, i.e. the invariant-mass distribution of the e+e“7 system.

In our special example this choice of distribution is, of course, the n • one. 
However, in more realistic processes it is in general unclear whether th' ■ m is 
radiated from the initial state, the unstable particles, or the final state. intro­
duces the freedom to either choose Mf or Mf for the definition of the inv; • nass 
distribution of the unstable particle.

If one measures the Mf distribution one will find a distorted line shape. The r ason 
is that (3.2.8) now has to be integrated over M? values ranging from M'/ to (>/s — 
M2)2. This causes the Mf line shape to receive contributions from effectively higher 
Z-boson virtualities. This is to be compared with the single-Z-production case where 
the ISR-corrected line shape receives contributions from effectively lower Z-boson 
virtualities. Due to the fact that roughly speaking the resonance shape is symmetric 
around the resonance mass, one expects now a distortion of the resonance shape that 
is approximately the LEP1 distortion reflected with respect to the resonance mass.

The bremsstrahlung contribution to the line shape d(j/(dMldMl) arising from 
Eq. (3.2.8) reads
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1e-07

[pb/GeV4]

2e-08

Mi [GeV]91 92 9390

-0.50112.

The Z-pair example: approximations3.3

8e-08

6e-08

As mentioned before, in order to calculate QED corrections to more realistic pro­
cesses like IV-pair production one in general has to resort to approximations. First

bom
O(a) correctec 
resummed

4e-08

0e+00 
89

da 
dM^dMl

Figure 3-2. The FSR-induced distortion of the line shape da/(dM\ dM$) corresponding to 
process (3.1.1) for M2 = Mz- Centre-of-mass energy: y/s = 200GeV.

Mz = 91.1867 GeV, Fz = 2.4948 GeV,
G„ = 1.16639 x 10“5 GeV-2, mc = 0.51099906 MeV, 

137.0359895, = 0.50125, gvl = -0.03681, gAt

In Fig. 3-2 we display the FSR-induced distortion effects on the Z-boson line shape 
da/(dMf dM%) for a centre-of-mass energy of y/s = 200 GeV and a fixed invariant 
mass M2 = Mz- However, the actual distortion phenomena do not depend on the 
precise value of M2- The parameter input used in the numerical evaluation is:

The sizeable distortion effects are clearly visible, just as the importance of the soft- 
photon resummation. Compared with the Born line shape, the O(o-) (resummed) 
QED corrections induce a shift in the peak position of —199 MeV (—112 MeV) and a 
reduction of the peak height by 29% (26%). The size of these effects is a direct result of 
the non-cancellation of the leading logarithmic corrections, which can be understood 
from the observation that a fixed value for makes it impossible to sum over all 
degenerate final states. Another noteworthy observation is the close similarity of the 
curves in Fig. 3-2 to the ones for the Z line shape at LEP1 [2], As predicted, the two 
sets of curves are approximately related by reflection with respect to the Born peak 
position.
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(3.3.1)

with

da0(Mi, M%) 
dM? dMl

^1,2(^,2) = ^?,2 - Mz + iMzrz. (3.3.2)
As mentioned before, the QED radiative corrections introduce an ambiguity in 

defining the invariant-mass distributions of the unstable particles. The most trans­
parent way of illustrating this is by considering the case that the photon is radiated 
from such an unstable particle. For the description of the resonance before (after) 
radiation the natural choice of invariant mass involves the fermion pair with (with­
out) the photon. The pole expansion can now in principle be performed around either 
resonance. In practice one has to choose one particular invariant mass for the distri­
butions. For the purpose of studying FSR-induced distortion effects, we shall choose 
the e+e~ invariant mass M\ in the following, although the e+e“7 invariant mass M\ 
would have been more natural for our special example (3.1.1). The corresponding 
double-pole approximation forces us to replace Mf = by C>Mz, introducing an 
explicit dependence on the photon energy in the double-pole residues. This would 
even affect the (neutral) resonance-pair-production stage of the process. However, as 
can be verified explicitly, only semi-soft photons with energy Ey = O(Tz) Mz

A2(Mj)
|£»i(JW?)|2 \D2(M^'

aLr/(irM). In this chapter we denote quantities that are 
bar. Note that the approximation only makes sense near the resonance of 
particle and sufficiently far above the production threshold of the under 
production process. The latter is caused by the direct relation between 
pole residues and the on-shell production and decay processes. Second 
seen in the previous section, the leading logarithmic corrections (oc L1) co 
bulk of the FSR distortion effects. Moreover, these leading-log effects a. 
and gauge invariant, being directly related to the collinear limit of pb.< radia­
tion off light particles (like e*). In particular the universality property is ..pp-.-aling, 
since it implies that the description of the leading-log corrections does nor depend on 
the specific features of the unstable particles and their photonic interactions. There­
fore, it is worthwhile to further restrict the double-pole calculations to the leading 
logarithms. This additional approximation is referred to as the leading-log approx­
imation (LLA). Before making any comments on processes like W-pair production, 
we first concentrate on our Z-pair example and check the validity of the indicated 
approximations.

We start off with the definition of the double-pole approximation. At Born level 
it amounts to

of all, the fact that we are dealing with unstable (charged) particles introduces the 
problem of a gauge-invariant treatment of the finite-width effects [3]. An appropri­
ate way of handling this problem is by applying the pole scheme, i.e. by performing 
an expansion around the resonances, as has been discussed in Sect. 2.1. When it 
comes to O(a) corrections, it is sufficient to consider only the leading (double-pole) 
term in this expansion, leaving out terms that are formally suppressed by at least 

calculated in DPA by a 
mstable 

-shell 
,uble- 
have 

the 
.ersal
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I

(3.3.3)

In

=

I
!

_ da0(Ml, Ml)
~ dMl dMl

II

oo

/ rfc 
1+c

)']■
(3.3.5)

. Mzrz

0 |Q.(W 
C-l |P,«A??)p-

dares(M^ Ml) 
dMl dMl

da0(Ml, Ml) 
dMl dMl

da0(Ml, Ml) 
dMl dMl

DAMl)
Ml

dabrcm(Ml, Ml) 
dMl dMl

can be carried out explicitly in the double-pole LLA:

Having calculated the same quantities as in the previous section, we are now 
in the position to check the validity of the double-pole LLA. It turns out that the 
approximated results exhibit the same FSR distortions as the exact ones. Upon closer 
investigation, we observe for the O(a) (resummed) QED corrections a shift in the 
peak position of —193 MeV (—113 MeV) and a reduction of the peak height by 29%

In a way similar to the previous section the soft-photon corrections can be resummed, 
but this time the integral

Here (3 can 
boundary <max 
hard-photon effects 
The remaining integral 
and soft corrections, which 
double-pole LLA

|P.(M?)|2 
Pl (CM?) |’

iD'AMl) fDAMl)
Ml

)]}• (3-3.4)3-1 + - Re
4

(1+^)

oo
(1 + jp)/ rfC/3(C-l)^‘ 

1

7Tj0

sin(7r/J)

are suppressed by 
are therefore neglected in the double-pole approximation. The 

A llying this phenomenon is that hard photons move the Z-boson virtu- 
far off resonance for near-resonance Mf values, resulting in a suppressed 

to the Ml line shape. In fact, only the (soft) l/(£ — 1) term in (3.2.10) 
< the Ml line shape in the double-pole approximation. It should be noted 

■• y suppression of hard-photon effects serves as a posteriori justification 
oi photon resummation proposed in (3.2.11).

Wei : his observation in mind, the bremsstrahlung contribution (3.2.10) takes the 
following form in double-pole approximation:

contribute to the O(a) corrected double-pole residues (for details see a discussion in 
Sect. 2.2, in particular columns 3 and 4 of Table 2-1). As a result, < can be effectively 
replaced by unity whenever possible, re-establishing the usual form of the double-pole 
approximation in terms of off-shell Breit-Wigner distributions and on-shell produc- 
tion/dc:■ . processes. The effects from hard photons Tz) 
at least i , jMz and 
pici -Jr 
all:, , 
co -. ’ 

CO i . 

the t

be derived from (3 by setting Ml = A/|. Note that the upper integration 
has been extended to infinity, which is motivated by the fact that 

are sufficiently suppressed (again, see a discussion in Sect. 2.2). 
can be performed analytically. Combining with the virtual 

can be readily derived from (3.2.6), we obtain in the

M MzVz

da(Ml, Ml) _ da0(Ml, Ml) 
dMl dMl ~ dMl dMl
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-196 MeV,

(3.3.6)%

Kpe»k S3

Some comments on the W line shape at LEP23.4

A jWF’k

(26%). This is in excellent agreement with the distortion parameters of the exact 
calculation, proving the viability of the adopted approximations.1

Based on the results in the double-pole LLA, it is possible to derive simple and 
sufficiently accurate rules of thumb for the distortion parameters:

>eak and the correspond-
with respect to the Born line sh. ’ be

_ ir/3rz/8
Kpeak  3^3/2

This is in perfect agreement with the observed exact and double-pole distortion pa­
rameters. The analogy with the rules of thumb derived for the Z line shape at LEP1 
[9] confirms the relation between the FSR-induced distortion effects in double Z- 
resonance production and the ISR-induced distortion effects in single Z-resonance 
production at LEP1.

As has been shown in the previous section, the double-pole LLA constitutes a reliable 
framework for a gauge-invariant and universal description of FSR-induced distortion 
phenomena in double-resonance production. The essence of these phenomena is fully 
contained in the correction factor presented in (3.3.5), which applies to each individ­
ual distorted Breit- Wigner distribution. For two distorted distributions the effect is 
hence multiplicative. Consequently, the reduction factor for a double-invariant-mass 
distribution is given by the product of the reduction factors for the individual single­
invariant-mass distributions. However, the shift in the peak position does not change 
in the presence of more than one resonance; it only depends on the decay products of 
the unstable particle that is investigated. The only differences between process (3.1.1) 
and the more realistic process of IV-pair production at LEP2 are the resonance pa­
rameters (M\V = 80.22 GeV and rlv = 2.08 GeV) and the fact that 3 depends on

’For completeness we note that all curves in the double-pole LLA are displaced by a small amount 
with respect to the exact ones. This is caused by the fact that the Born results differ by subleading 
terms in the pole expansion.

Kpeak

A

3 s 7T2
+ -/?+— /32 = 0.70:

4 16

• resummed corrections: now the distortion parameters read

-^r2(l + f) = -111 MeV, 
o 2

(W(i+i3)(i+¥f?-S33) = o-74- (3-3-7)

• (9(q) corrections: the shift in the peak position A A/f* 
ing peak reduction factor Kpcak 
approximated by
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2In more realistic event-selection procedures also a minimum opening angle (0o) between the 
lepton and photon might be required for a proper identification of both particles. The effect of this 
can be represented by using ln(4/0g) instead of [ln(A/2v/m2) - 1] in the definition of 0.

the decay products of the decaying particle. For instance, the leptonic W decays in­
volve only one charged lepton instead of two. As a result, we should use (3.3.5) with

J [ln( — 1] for f. = e, /z, r, which is scaled down by at least a factor of
two compared with the Z-pair example. For IV bosons decaying into an electron or 
positron, the resummed FSR distortion effects amount to a shift in the peak position 
of 45 MeV and a peak reduction factor of 0.86 per distorted resonance (i.e. 0.74 for 
a double i r. a riant-mass distribution), as can also be read off from (3.3.7).2

hr previous discussions it should be clear that FSR-induced distortion 
effect >< sizeable and should be taken into account properly in the Monte Carlo 
pro.? are used for the IV-mass determination at LEP2.
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4 Non-factorizable corrections

4.1 Introduction

or

IV+(P1) + IV-(p2) -> J/,(*:'1)/’+(fc1) +e~(k2)Pe(k!l). (4.1.1)e+(?i)e (<72)

• the on-shell integral is taken in the soft-photon limit (equivalent to the usual 
cancellation of infrared divergences).

• all the “particle” poles are situated in the same half-plane of the complex kQ- 
plane (see e.g. the so-called initial final state interferences).

In this chapter we will discuss the non-factorizable corrections and their implications 
on H -pair production. We develop a calculational technique aimed specifically at the 
evaluation of this kind of corrections. We then perform an alternative calculation, 
which sei .. as a check. The material of this chapter has been published in the 
literature, [1].

These theorems will be discussed later in this chapter. By using these theorems one 
can rewrite the result based on the current interferences in an equivalent, but sim­
plified form, which can be described as follows. One starts with the manifestly non- 
factorizable corrections, i.e. those not having two resonant W-propagators as explicit 
overall factors. To this set a part of the Coulomb-like diagram will then be added, 
such that the total expression is gauge invariant. Thus one uses parts of Feynman 
diagrams as starting point, leading to the same results as the currents of Chapter 2. 
This is not surprising, since these currents were introduced by considering parts of 
Feynman diagrams. In order to show the explicit equivalence one has to invoke the 
above mentioned cancellation theorems.

In addition we will restrict ourselves in first instance to the simplest class of 
charged-current four-fermion processes, involving a purely leptonic final state:

As was pointed out in Chapter 2, only soft and semi-soft photons give large enough 
contributions to the non-factorizable corrections. In order to give a gauge-invariant 
definition of the non-factorizable QED corrections in the semi-soft limit, we intro­
duced in Sects. 2.2.1 and 2.2.2 semi-soft currents of which certain interference terms 
give rise to the non-factorizable corrections. For each virtual correction term there 
is a corresponding real bremsstrahlung term. Upon integration over the photon mo­
mentum, k11, many of these terms cancel pairwise. This is a consequence of two facts: 
the virtual correction cancels against the corresponding real one if
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e+

7

" k'2*2

£1

£2

£1

£’2

£*i

£2

£*0123

Whenever possible, all external fermions are taken to be massless. The relevant man­
ifestly non-factorizable contributions consist of the final-final and intermediate-final 
state photonic interactions displayed in Fig. 4-1. In principle also manifestly non- 
factorizable vertex corrections exist, which arise when the photon in Fig. 4-1 does 
not originate from a IV-boson line but from the yWW/ZWW vertex (hidden in the 
central blob). Those contributions can be shown to vanish in the double-pole approxi­
mation, using power-counting arguments [2]. As was already mentioned the manifestly 
non-factorizable initial-final state interference effects disappear in our approach. This 
happens upon adding virtual and real corrections, as will be briefly explained later.

The double-pole contribution of these virtual corrections to the differential cross­
section can be written in the form

= 32ttq Re [i(p2 • £'i)£*i£*oi23 + i(Pi • £2) £*2 £*0124^tTvirt

1 fc J Pa+fc J

4- z(£] ' ^2)^1 £*2£-01234 j <^DPA» 

(4-1.2) 
where D\^ — P\$ ~ + iMw?w are the inverse (Breit-Wigner) W-boson propaga­
tors. The functions £>0123, £*0124, and £’01234 are the scalar integrals corresponding to 
the diagrams shown in Fig. 4-1, with the integration measure defined as c/4A:/(27r)'1. 
The propagators occurring in these integrals are labelled according to: 0 = photon, 1 
= I4Z+, 2 = W“, 3 = £+, and 4 = £'-. Note that the factorization property exhibited 
in Eq. (4.1.2) is a direct consequence of the semi-soft photon approximation, which 
is inherent in our approach. As a result, the propagators hidden inside the central 
blobs of Fig. 4-1 are Born-like, i.e. unaffected by the presence of the non-factorizable 
photonic interactions.

In a similar way, only interferences of the real-photon diagrams can give contri­
butions to the manifestly non-factorizable corrections. The relevant interferences can 
be read off from Fig. 4-1 by taking the exchanged photon to be on-shell. The infrared 
divergences contained in the virtual corrections will cancel against those present in 
the corresponding bremsstrahlung interferences.

£-01234

Figure 4-1. Virtual diagrams contributing to the manifestly non-factorizable W-pair ions 
in the purely leptonic case. The scalar functions corresponding to these diagrams ■ denoted 
by £*0123. £*0121. and £-01234-

/ k
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k'\
e+ pi

W+

7k
pa+fc

W~
Pi

k'
I

(4.1.3)

ki

k2

J

The expression (4.1.2) contains some of the current interference terms of Chap­
ter 2, all others vanish except the contribution from the Coulomb-like diagram in 
Fig. 4-2, which gives

do-^rt(pi|p2) = 32?r«Re p(pi • paJCoiz]

The scalar three-point function C0i2 is defined according to the above-defined nota­
tion. The terminology “Coulomb” interaction should not lead to confusion. It is a 
contribution that is a part of the diagram in Fig. 4-2. In Sect. 4.3.3 we shall briefly 
indicate the distinction between the non-factorizable “Coulomb” contribution, valid 
outside the threshold region, and the usual one, which is primarily valid inside that 
region.

From the diagrams in Fig. 4-1 it is clear that we have to calculate four- and five- 
point scalar functions and related bremsstrahlung interference expressions, all in the 
semi-soft photon approximation. In the next two sections we focus on the analytical 
results as obtained with the modified standard technique (MST), consisting of various 
elements. In particular the decomposition of the virtual and real five-point functions 
into a sum of four-point functions is given some special attention in Sect. 4.2.1 As 
such, the basic building blocks of the MST are the four-point functions D and the 
related bremsstrahlung interference terms DR. A general relation between the two 
entities is discussed in Sect. 4.2.4. As a final step we derive in Sect. 4.3 the relevant 
scalar four-point functions D in the semi-soft photon approximation by applying the 
Feynman-parameter technique. The related DR functions are obtained by using a 
“particle-pole” expression and performing certain substitutions.

'For higher n-point functions (n > 5) this decomposition can be carried out in an analogous 
way. Thus in principle the methods outlined in Sects. 4.2.1 and 4.2.2 provide the basic tools for 
considering more involved non-factorizable corrections, e.g. for six-fermion final states.

C012

Figure- gauge-restoring "Coulomb" contribution. The corresponding scalar function
•s de; ^012- In Sect. 4.3.3 we shall briefly indicate the distinction between the non-
factcr..-..-Coulomb" contribution, valid outside the threshold region, and the usual one, 
which is also valid inside that region.
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Modified standard technique: basic ingredients4.2

4.2.1

(4.2.1)£<01234

In this section the basic ingredients are presented for the evaluation of non-factorizable 
corrections in the MST. As a first step we discuss the decomposition of virtual and real 
five-point functions into a sum of four-point functions. Subsequently we demonstrate 
how virtual and real contributions can be related in the semi-soft photon approxi­
mation. Having established the five-point decompositions and the relation between 
virtual and real contributions, the actual calculation in the MST boils down to the 
evaluation of scalar four-point integrals.

Decomposition of the virtual five-point function

In this subsection we derive the decomposition of the virtual scalar five-point function 
into a sum of scalar four-point functions. The derivation follows Ref. [6]. The reason 
for repeating this calculation lies in the fact that it will serve as guideline for the 
decomposition of the real five-point function, which has not been considered before.

Let us consider the following general five-point function:
 r d4k 1

” J (2tf)4 NqN^NzN^

In Sect. 4.4 we present the calculation along the lines of Ref. [3], which involves 
the method of direct momentum integration. This calculation will serve as a check of 
the MST results. Moreover, it will be required for explaining the observed differences 
with the results of Ref. [3]. Whereas the method of Sects. 4.2 and 4.3 seems to be 
quite general, the method of Sect. 4.4 is unlikely to be applied to n-point functions 
with n > 5. As we will see, it just becomes too complicated.

In Sect. 4.5 we present the main analytical features of our study and we indicate 
how the results for semileptonic and hadronic final states can be obtained from the 
purely leptonic case.

The numerical implications of the non-factorizable corrections are dic nss 1 in 
Sect. 4.6. Since the non-factorizable corrections vanish in the special case V i tial 
final state interference, they are independent from the IV production Our
calculations confirm that the non-factorizable corrections vanish in all .hen
the integrations over both invariant masses of the virtual IV bosons are p normed 
[4). The practical consequence of the latter is that pure angular distributions are 
unaffected by non-factorizable O(a) corrections. So, the studies of non-Abelian triple 
gauge-boson couplings at LEP2 [5] are not affected by these corrections. The non- 
factorizable (9(a) corrections, however, do affect the invariant-mass distributions (IV 
line-shapes). These distributions play a crucial role in extracting the VV-boson mass 
from the data through direct reconstruction of the Breit-Wigner resonances. The non- 
factorizable corrections to the line-shapes turn out to be similar for quark and lepton 
final states, provided the integrations over the decay angles have been performed. 
Finally, in Sect. 4.7 we draw some conclusions.
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where

first derive a useful identity. To this

CiP? + C2P2 +c3p%. (4.2.3)

i
(4.2.4)= 0,

(4.2.6)

s'

(4.2.8)

(4.2.9)

ak“ = (p,- ■ k).

Now we can substitute 

k2

where the following notation was used:
— g-MP2P3P4 _ £.PIPP3P4

ak2 = J2(fc • Vi)(* - pi).

No + X2 - io,
(.k -Pi) = | [M - No - rj, with ■ r,-= p2 — m2 + A2

5

t," = eP'Puw, uf = e’’1'’1'’3'',

a = ePIP2nPi=£”^. (4.2.7)
Note that from the quantity a one can construct the Gram-determinant of the system, 
A4 = a2. The next step in the derivation is to contract the Schouten identity with 
k„, yielding

No = k2 — A2 + io and N,■ = (k + p,)2 - m2 + io. (4-2.2)
Here io denotes an infinitesimal imaginary part. The plus sign accompanying this 
imaginary part is determined by causality. The mass parameter A is in principle 
arbitrary In our case, however, it will denote a non zero photon mass, needed for 
regularizing infrared divergences.

Befoi - ■ mig with the decomposition, we
end we Lorentz covariance and write

r d'k k“
J (2tt)4 N,NM

Thein: I he left-hand side is ultraviolet-finite and, when properly regularized,
also infrarcn . -ite. The quantities d on the right-hand side are therefore finite co­
efficients, dependent on masses and the invariants p, ■ Pj (i,j = 1,2,3). Contracting 
this expression with the antisymmetric Levi-Civita tensor, one obtains the identity

f d k tpipipzk 
J (27r)" N0NtN2N3

which will prove extremely useful in the following. Here we introduced the widely-used 
notation

Epvpp — EpppoP , Efwpq — Q , (4.2.5)

The Levi-Civita tensor is defined here according to e0123 = —£0123 = 1- Note that 
this convention is different from the one used in Chapter 2, but it is in accordance 
with Ref. [6).

The actual derivation of the decomposition formula starts with the Schouten iden­
tity
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to arrive at
(4.2.10)

..’.11)

(4.2.12)= 0.

(4.2.13)0,

with
■ (4.2.14)

The final formula for the decomposition reads

+ (W • U3) £>0124 + I™ ■ £>0123

(4.2.15)

(w2 — 4A2A4) E01234 = (w • t>i) £>0234 + (to • V2) £>0134

2a (7V0 + A2) = £(/c • vf)(M - TVq - rt).

+ ^2A4 — 52(w ■ vi)j ^1234>

4.2.2 Decomposition of the real five-point function
Using the derivation presented above as guideline, we can now try to derive a similar 
decomposition for the real five-point function. As can be read off from Fig. 4-1, by

The final step is to multiply this expression by a and to apply the Schouten 
identity and Eq. (4.2.9) to the last term in the numerator. This allows us to express 
the complete numerator in terms of the propagators appearing in the denominator:

4
• l>i) = £(*+Pd(P2-pi)(P3-Pl)(P4-pi) _ a

which can be verified by a direct check. After integration the first term fish. 
This can be most easily seen by making a change of integration variable, I'' pf, 
and subsequently applying Eq. (4.2.4). The complete expression now read

r aN0 + 2aX2 + £ • u.)
J (2^F N0NtN2N3N<

where £>o234> £>0134, etc., denote four-point scalar functions containing the propagators 
with labels (0,2,3,4), (0,1,3,4), etc.

The generalization of this decomposition to higher multipoint functions can be 
performed in a similar way [6]. In general, a scalar jV-point function can be expressed 
in terms of the N underlying (N — l)-point functions.

In order to make the link to the scalar five-point function, one should divide this 
expression by and perform the integration over d*k. As a result of
Eq. (4.2.4) the Nj terms vanish. The terms E(fc ■ vt) No can be transformed according 
to

r d'k 2A2A4 - iw2 + 7VOA4 - |IVO E(t>, ■ w) + | E ■ w)
J (27r)4 NoNiNiNsNf
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(4.2.16)

where

(4.2.18)and

(4.2.19)and

(4.2.20)

+ A<» + A<2>, (4.2.21)

N{N2N3N^

+ (w • v2) £>0R13., + (w ■ v3) £$2., 4- (w ■ v<) D*23 

Ea(k-Vi)N!

For the nullification of the second integral the validity of Eq. (4.2.4) is immaterial, 
since for the on-shell photon Nq = 0 anyway. The first integral, however, is no longer 
necessarily zero. The fact that the photon is on-shell implies that k2 = A2 and that 
the propagators TV, are linear in k. By simple power counting, one can conclude that 
this integral is formally ultraviolet-divergent. For this reason, the Lorentz-covariance 
argument used in Eq. (4.2.3) is not correct any more and Eq. (4.2.4) is invalidated.

Apart from the modification of Eq. (4.2.4) and the fact that No = 0, the derivation 
of the decomposition for the real five-point function is not changed, resulting in

(»2 - 4A2A4) ££234

r d3k ■ Vj) Nj 
J (2tt)32w N^N^Nl

r d3k E(A ■ Vi) N' 
J (27r)32o> N[N2N3N[

taking the exchanged photon to be on-shell, the real five-point function takes the 
form

E(fe ■ r dAk NQ [£(£- ■ «,) + a]
(2tt)< N0NtN3N3N3 J (2tt)4 NMM, |

In the case of real-photon radiation, this will correspond to

u> = \/k2 + A2 , 7V; 2 = M,2, and N^4 = yV3’4. (4.2.17)

now on-shell, so k2 = A2 and No = 0. Note that the momenta Pi, 
are time-like and have positive energy components. The area of 

an be extended up to infinity, because the contribution of the hard 
■ ssed, and thus the cutoff dependence is beyond the DPA.

r d3k
J (2tf)32u;

R = r d3k 1 
01234 J (2tt)3 2u>

— (w • Vi) Dq234

-2/’-^___________________
J (2tt)32w N[N2N3N4

The main difference with the virtual decomposition is the occurrence of the last 
term in Eq. (4.2.20). It turns out that the poles in this particular integral can be 
moved in such a way that N- -> TV) for all i. Indeed, the integral can be rewritten in 
the following way:

= [ d3k £<* • v<)Ni
J (2tt)32w NiN2N3N4

The photon 
hidden i 
the into:, 
photon:

One c eed in the same way as in the case of the decomposition of the virtual 
five-poim :on. The Schouten identity is still valid, but Eq. (4.2.4) in its old form 
does not .-■■■■ m the case of real-photon radiation, and should be modified. In the 
derivation of the virtual decomposition, Eq. (4.2.4) was used twice, leading to the 
nullification of

y dU-
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with

. (4.2.22)+

4.2.23)

(4.2.24)= C1P? +C2P2 +C3P3,

(4.2.25)

(4.2.26)= 0.

(2) _ r d3k (k ■ t>4) 2i Im AI3
4 “ J (2?r)3 2w NtN2 N3N3 '

This integral is ultraviolet-finite, even for an on-shell photon, and the. no regu­
larization is needed. Consequently, the Lorentz-covariance argument :

d3k fc"
2o> NtN2N3N3
are finite coefficients. Contracting the last expression with 

0. Using similar arguments one can prove that

(k ■ »i) A', + (k ■ v2) N2 
n,n2

f (fc • v3) r_l____ l_i
[ NtN2

/

where the quantities c, 
V4„ = one arrives at A<2)
A<» = A<2> = 0.

An important point in this line of reasoning was the use of Lorentz-invariance 
of the integration d3k/ui. Such an integration is indeed Lorentz-invariant, provided 
that the area of integration is Lorentz-invariant. In the context of the double-pole 
approximation, the photon is treated inclusively, with the integration performed over 
all possible values of k up to infinity. If one would, however, consider an exclusive 
process, involving the introduction of a cutoff Qm0I, then the area of integration 
might fail to be Lorentz-invariant, and the decomposition stops at Eq. (4.2.20). In 
order to successfully proceed beyond that point for exclusive processes, one should 
make sure that the cut-off prescription, which defines the area of integration, does not 
introduce new independent four-vectors in the integral. If this condition is satisfied, 
a generalization of the decomposition to exclusive bremsstrahlung processes should 
be feasible.

So, in our approach, the following identity has been established:

r d?k E(A: • N[ 
J (2tt)32o>

As was already noted, the integral

= f ■ *-■.) M
J (2tt)32w N}N2N3N4 '

on the right-hand side is formally divergent. Its 
virtual analogue, being formally finite, vanishes:

r d*k
J (2tr)‘ N0N3N2N3N4

Performing a contour integration in the lower half of the complex k0-plane, indicated 
by the integration contour Co in Fig. 4-3, one can use this identity to relate the 
photon-pole contribution to the particle-pole contributions:

d3k
(2tr)32w

AP) = [ d3k
J (27f)32uj

Both A^ and A<2^ are in fact zero. Let
contributing to A^ = A^ 4- Aj2\ e.g.

d3k
(2tf)3 2cj NxN2

A'1’ = J I—----- —1.LA^Vj AI3/V.,J’

(fc • tq) r 1____ l_i
N4N2 La£ AV

us consider, for example, ont- of the terms
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(*o)

particle

Co

Figure 4-3. Integration contour in the lower half of the complex t'o-plane leading to Eq. (4.2.27).

(4.2.27)

i
(4.2.28)

rearrangements one obtains

.(4.2.29)'Pole

(4.2.30)+ 7J,

with

(4.2.31)Pole
d*k 

(2ir)4N0

d4k 
(27r)"jV0

d4k 
(27t)‘/V0

r
The first integral on the right-hand side can be simplified with the help of Eqs. (4.2.11) 
and (4.2.4), yielding

photon

Er,- (k • Vi) + 2aX2 
NMNt

d'k 1
(2rr)4 NMK= af

—27ri J

'2nll

2ni J

22(* ■ N, = J2(fc • Vi) No + 2ak? + r< (k ’ "■) 
i=l i=l 1=1

* = /

on the right-hand side. After some

Here "Pole" denotes the complex particle poles that should be taken into account. 
Note that the left-hand side of Eq. (4.2.27) corresponds to the real-photon radiation 
integral that we are pursuing to evaluate. The integral on the right-hand side does 
not correspond to on-shell photons any more, since No 0. Now we can use the 
Schouten identity to substitute

d3k E(* ■ Vj)Ni r 
(2n)'2u NtN2N3N4 J

d3k E(<- • Vi) Ni 
(2tt)4 2cu NiN2N3N4

d3k £(ifc • Vi) Ni 
(2tt)42w NNiNoNi

r d4k • t'i) + 2a
J (ibrj4 NtNiNjNi +

f d*k Y.rj{k- Vi) + 2aX2
J (27t)4jVo e NiNiNoN.,

Pole*k^Ni
NiN2N3N.i
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(1.2.32)

4.2.3

with

— £PlP2pk2i
A4

scalar 
2.32) 
ative 
that 

coton 
radiation. In fact, it is a direct consequence of having ultraviolet-diver j. grals 
during the intermediate steps of the derivation.

This concludes the derivation of the decomposition of the five-point function cor­
responding to inclusive bremsstrahlung. As was noted before, generalization to the 
case of exclusive bremsstrahlung is possible, provided that the cut-off is introduced in 
such a way that no new independent four-vectors appear in the integrals. In analogy 
to what was remarked for the virtual decomposition, also the generalization to higher 
multipoint radiation functions is possible and rather straightforward. One should 
simply follow the approach of Ref. [6] for multipoint scalar functions.

>234 + (W • + (W ■ U3)Ooi2.l + (» ' <;l)£’oi23

■ d*k 1
(27r)4 NiN2N3N4'

Note that the last term on the right-hand side of Eq. (4.2.32) is exactly ;• 
four-point function with a coefficient 2zA4. In comparing Eq. (4.2.15) 
one observes certain similarities: the first four terms in Eq. (4.2.32) ar 
analogues of their virtual counterparts in Eq. (4.2.15). One may naiv 
the last term in (4.2.32) should not be there, since it does not correspo

— £PP2ktk2,
= + Zpipikifi,

V2(1 — + £pxpkik2i
= D1Vf + D2v^, = [ep,p2tllt!]2. (4.2.34)

Comparison with Eq. (4.2.15) reveals that the terms — £2(w • t>f) £>1234 have been ne­
glected .since they are formally of higher order in the expansion in powers oiVw/Mw- 
Note that the scalar four-point function £>1234 is purely a consequence of the decom­
position (4.2.33). It does not involve the exchange of a photon and is therefore not 
affected by the semi-soft photon approximation. Since the factor 2A4/w2 is already 
doubly resonant, £>1234 should be calculated for on-shell W bosons. The scalar four- 
point functions £>0134 and £>0234 are infrared-divergent and should be calculated in 
the semi-soft photon approximation.

In App. B it is shown that the 71 term in (4.2.30), which consists of a combination of 
particle-pole contributions, vanishes. After that the decomposition for the real five- 
point function can be written in a compact form, analogous to the decomposition of 
the virtual five-point function 

(lU2 — 4A A4) £.01234 ~ (w *

+ 2iA4 J

Application of the five-point decompositions
We can now apply the five-point decompositions to the non-factorizable W-pair cor­
rections. The virtual scalar five-point function, corresponding to the third diagram 
in Fig. 4-1, reads in the double-pole approximation

W 2 Eq 123 4 = 2A4Z?1234 + (w • Vi)Z?0234 + ' ^2)^0134 + (w ' V3)T\)124 + ' V4)Doi235
(4.2.33)
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4.2.4

^’(C)

This can be rewritten in the form

where kQ = co = |f|.
This has to be compared with the corresponding photon-pole part of the virtual 

correction. This contribution is evaluated in the.lower half of the complex A:o-plane> 
where the photon pole is situated at ko = = |£| — io:

corresponding to real-photon radiation isIn the same way, the five-point function 
given by

j0 of rf3/c 327ra (p2 • fci)£>i___________
dorDpA Re J (27r)32a; + 2(pi . + 2(p2 . • k) 4- io]'

(4.2.36)

2? .• Z?t234 + (w' • v{ ) DQ234 4- (w1 • V2) P0R134 + (w>' us) ^0124 + (w • V4) £^oi23- 
(4.2.35) 

The for. ' and v- are defined as before, but for real-photon emission. This
is equiv. following substitutions: pi —> —pi, ki —ki and D2 —> £>2. The
radiatio. < £>}^34 is an artefact of the decomposition (4.2.35) and does not
involve ge of a photon. It can be obtained from £>i234 by the substitutions
Pi ~~ -> — ki. In the double-pole approximation, i.e. for on-shell W bosons,
this im; elation = iImL>1234. This property ensures the cancellation

the v factorizable £>i234-dependent corrections against the corresponding
real-pho l ions, provided that the integration over the I4z-boson virtualities
(i.e. Dy ,s ormed. This phenomenon is a general consequence of the semi-soft 
photon appro..-mation [4].

Connection between virtual and real contributions
At this point we have reduced the calculation of the non-factorizable corrections to 
the evaluation of virtual and real four-point functions. We can, however, go one step 
further and establish a connection between the contribution from the photon-pole part 
of the virtual scalar functions, £>7, and the corresponding radiative interferences. To 
this end, we consider for example the contributions related to £>0123 ancl ^0123- The 
contribution of the radiative interference to the cross-section (see Fig. 4-1) is given 
by

r d3k 327TQ (p2 • kx) Di____________
d<7"f (£>0123) = 4<zdpa Rey (27r), 2w _ 2(pi . + 2(P2 • fc)][-2(fci • *) +2*°F

. vin/n7 x.o p f d3k_______________ 32ira(p2ki)D"l____________
(L>oi23) - <toDPA Key (27r)32w _ 2(pi . fc))[£>. + 2(p2 . fc)][-2(*1 ■ k) - to] ■

(4.2.38) 
Comparing Eqs. (4.2.36) and (4.2.38), one can readily see that da'/1 (Oom) can 
obtained from the photon-pole contribution to the virtual correction d<r^frt(OJi23)>

W ®O1234
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(4.2.39)x

£>:,
£>2,

-d\.

bear- 
^1,2- 

e ob-
com-

xRe J

- in the £>0123, £>0134 terms:
- in the £>0124, £>0234 terms:
- in the O1234 terms:
- in the C012 terms:

(Oi/) = — dt^DPA 

dAk 32iTta (q\ ■ A4) £>1
(27r)4 [£2 — A2 + io][Oi — 2(p! • A:)][—2(fci • k) + to][—2(q\ ■ k) + io]

Note that all particle poles are situated in the upper half of the complex /co-plane. By 
closing the integration contour in the lower half-plane, one finds that the complete 

2Note that is not affected by substitutions of the form D, —t -D~ (i = 1,2), since it only 
depends on |£>)Z>2| •

by adding an overall minus sign and substituting2 D, -> -D\. In a similar way 
can be obtained from the photon-pole contribution to the virtual cor­

rection d<7*frt(£>0124), by adding an overall minus sign and substituting £>2 —> — D2. 
The different substitution rule reflects the fact that we will determine £>012-1 and £>0124 
from £>0123 and £>0123 by substituting (pi,fci) o (p2,£2). Note that this is equivalent 
to evaluating £>0124 in the upper half of the complex A:0-plane.

Also the “Coulomb” and five-point contributions can be treated in V 
ing in mind that the coefficients of the five-point decomposition also d■> 
In conclusion, the following relation emerges. The radiative interfere,: 
tained from Eqs. (4.1.2) and (4.1.3) by adding a minus sign, by insert 
position given in Eq. (4.2.33), and by substituting

£>0123, £>0134 -> O0123, £>01.34 followed I
£>0124, £>0234 -> £>0124, £>0234 followed V
£>1234 -> £>1234 followed by
C012 —> CJ12 followed by ?•

Here both £>0124 and £>0234 are determined by substituting (pi,£i) <-> (p2,£j) 111 the 
expressions for £>0123 and £>0134, respectively. As such, the above connection between 
real and virtual corrections implies that £>0124 and £>0234 are evaluated in the upper 
half-plane.

Note that the above-presented connection between the virtual and real non- 
factorizable corrections hinges on two things. First of all, the inclusive treatment 
of the bremsstrahlung photon, with the phase-space integration extending to infinity. 
Second, the fact that both virtual and real corrections are calculated in the semi-soft 
photon approximation, inherent in the double-pole approach.

As mentioned before, manifestly non-factorizable initial-final state interference 
effects are also possible in our approach. As stated in the beginning of this chapter, we 
will now briefly indicate why these effects vanish. In Sect. 4.1 this fact was used as the 
first of two theorems for establishing a link to the construction of the non-factorizable 
corrections in terms of currents in Chapter 2. Let us consider, for example, the initial­
final state interference contribution corresponding to the photonic interaction between 
the positron [e+(<?i)] and the positively charged final-state lepton (f+(A:i)). In the 
semi-soft photon approximation, the contribution of the virtual interference to the 
cross-section is
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danr(A/) = -da°PARe f

4.3 Modified standard technique: calculation

4.3.1

with k0 
interfere . •

In this section we present the calculation of the relevant virtual scalar functions, using 
Feynman-parameter integrals. In addition the photon-pole parts of these functions are 
given, from which the real-photon corrections can be extracted. The striking difference 
with the usual calculations of scalar integrals lies in the systematic application of the 
semi-soft photon approximation.

■^virt — f

Scalar four-point functions
in the semi-soft photon approximation

In this subsection we illustrate how to calculate a virtual scalar four-point function 
in the semi-soft photon approximation and how to extract the photon-pole part. 
Consider to this end

dAk_____________________________ 1____________________________
(2tt)4 [k2 + io][2(p1 • k) 4- + io][2(p2 - k) + D2 + zo][2(p3 ■ k) + D3 + io] ’

(4.3.1) 
where Z)t- = p? — Mf. In general, the energy components p? of the arbitrary momenta 
Pi are not necessarily positive. In contrast to the usual Feynman-parameter technique,

3In our example we need Eq. (4.3.28) with k2 replaced by —q\. Note that, as a result of this 
substitution, the invariant S12 becomes negative.

virtual correction is equal to the photon-pole contribution

d?k 327ra (q\ -k\)D\
(2tt)3 2cj [£h — 2(pi • &))[—2(Aq • k) + io][—2(gi • k) + io) ’

(4.2.40)
■ 7------------------------------------

“ 4- A2 — io. On the other hand, the corresponding bremsstrahlung 
written as

• c p [ d3k______________ 327ra(qI ■ kt) D[___________
' DPA e J (2tt)’ 2w [p; + 2(P1.*)][2(A:, • k) - to][-2(?1 ■ k) + io] ’

(4.2.41) 
•ast two expressions, one can readily derive that the virtual and real 
viffer by an overall minus sign and the substitution D\ —» — D\. In

• derive an explicit expression for infrared-divergent virtual scalar 
•ns [see Eq.(4.3.28)].3 From this expression one can see that the sub-

-DJ does not change the real part of the interference (4.2.39), i.e. the 
a vanishing non-factorizable cor- 

other non-factorizable initial-final and initial-intermediate

By coi 
interfer 
the ne: • 
four-pc . fu- 
stitution 
sum of virtual and real interferences gives rise to 
rection. Analogously, no 
state photonic interferences contribute to the double resonant cross-section, if both 
virtual and real corrections are included. Similar arguments can be used to prove that 
initial-state up-down QED interferences vanish in our approach.
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(4.3.2)

with

(4.3.3)

(4.3.4)

(4.3.5)

(4.3.6)

(4.3.7)

71(C) = ECi A and pm(C) = 2Ec.p!‘.

d4k____________________1________________
(2tt)4 + io][fc0J3(f) - k-p«) + A(£) + io-

The quantities A(£) and p^f^) are given by

where the Feynman-parameter transformation is applied to all propagators, we apply 
it only to propagators that are linear in k:

Anrt(C) = /

UO = f

I (f) = -i f d3k_______________ 1______________
"" 'J (277)3 2|k|(-|fc||E(^)|-.2:|i||fJ(?)| + A(f) + w)3’

The energy component E(£) of can be positive or negative. Ho here is 
a freedom to choose E(f) < 0, because one can always perform a transformation of 
variables k0 —ko. Then

d4k_____________________ 1___________________
(27r)4 [^o - k2 + to][-A:o(£(C)| - k-p(£) + -4(f) + io]3

In the complex fc0-plane the denominators give rise to poles. There are two photon 
poles, one in the upper and one in the lower half-plane. The second denominator 
gives rise to a “particle” pole in the upper half-plane, for any value of &. It should be 
noted that this combines the three particle poles present in (4.3.1), which could lie in 
the upper or lower half-plane. Closing the integration contour in the lower half-plane 
we get

Dvin = 2f d3C<5(l-£^.)/virl(C), 
0 *=1

where x = cos#, with 8 being the angle between p({) and k. It is not very difficult 
to perform the rest of the integrations in momentum space. The final result is

, = 1
877* .4(C) (p3(£)-io|£(£)|)-

As we have seen in the previous section, the real-photon radiative interferences 
can be obtained from the photon-pole parts of the virtual corrections. Let us therefore 
consider the photon-pole part of (4.3.1) in the lower half of the complex fco-plane:

D-y d3k______________________ 1_____________________
"rt 1J (2tt)3 2 |fc| [2(p, ■*) + £>!+ io][2(p2 • fc) + D2 + io][2(p3 • k) + D3 + io] ’

(4.3.8)
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(4.3.9)

(4.3.10)

-2«r<W)]J[p2(<)] ,AUO = - (4.3.11)

4.3.2

with Ao = \/k2 — io. One can again proceed by introducing the Feynman parameters 
to obtain

Equa 
the r. 
the '. 
a ws 
as a

Calculation of the scalar four-point functions
In this subsection we present the calculation of the virtual scalar four-point func­
tions and the associated photon-pole parts. Everything is considered in the semi-soft 
photon approximation. Since the four-point function P1234 does not involve this ap­
proximation, we defer the corresponding results to App. A.l and merely refer to the 
literature [7, 8] for its derivation.

8tt2 A(O }p2(f) - io|E(C)|

where the first term in the curly brackets corresponds to the full virtual scalar function 
and the second term is the necessary modification. The second term in Eq. (4.3.11) is 
the analogue of the “particle”-pole contribution in the approach of [3]. Note that this 
term has an extra factor i. If all quantities were to be real (stable-particle case), then 
this term would not contribute to the non-factorizable correction to the cross-section, 
for which only the real part is important. In Sect. 4.1 this fact was used as the second 
of two theorems for establishing a link to the construction of the non-factorizable 
corrections in terms of currents in Chapter 2. In the case of unstable particles, this 
“particle”-pole contribution is felt by the imaginary parts of the kK-boson propaga­
tors, resulting in a potentially non-zero contribution to the cross-section. If one were 
to evaluate the photon-pole part of (4.3.1) in the upper half of the complex A?0-plane, 
one merely would have to replace jE(£) by — E(g) in Eqs. (4.3.10) and (4.3.11).

In practice, we calculate the relevant four-point functions 2?Virt as well as the cor­
responding particle-pole contributions -Djjjf. The photon-pole part is obtained 
as Djirt = Z)virl — which can then be used to evaluate the real-photon ra­
diative interferences. The complex half-plane where the particle-pole (photon-pole) 
contributions should be evaluated is fixed according to the rules given in Sect. 4.2.4.

’/(27T)’ ___________________ 1___________________
2 |£| [£(£) - io - x |fc| |p(C)| + 4(C) + io]3

’ C) and (4.3.9) are the same up to small modifications. In the case of 
alar function, Eq. (4.3.6) was obtained after contour integration in 
lane. In that case we had the freedom to choose the contour in such 
< 0. Now we have no such freedom. So, E(£) cannot be considered 
irity any more. It is clear that the final answer will be

^(f) = “8^2 .4(0^) + i0B(C))-

This r is very similar to the one derived for the full virtual scalar function. 
It can in fa.-- be rewritten as

i 1
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(4.3.12)

0 = y/1- 4My,/.S,

13)— io.

(4.3.14)£^0123

(4.3.15)£>0123 —

with

£>0123

.(4.3.18)4- £i2

______ 1______
>i(C) [p2(0 - «o]

>t(C) = O-D1+OA, PM(0 = -20pf + 20P?-20*r (4.3.16)
As was indicated before, the integral will be calculated for small final-state fermion 

masses and in the double-pole approximation. This implies

2(pi • fci) « Pi ss Mj, and 2(p2 ■ /c2) ss p2 « Mj,. (4.3.17)

What is left is the integral over the space of Feynman parameters. The details of 
the integration are presented in App. A.2. The final answer reads

i 1
16tt2MJ, [D2 - CA]

(x»; () + ^>2

0-1 . 
I’ = ^H + 20’ 

. S21V

{2£i2(-;i)
(-;() + [in^f+21n
\xa J I m\

Before listing the various results, we define our notation. To write down the ana­
lytical results we need to introduce some kinematic invariants:

li,2 = *i,2» s = (Pi + P2)2, S12 = (&i + fc2)2,

S211' = (£2 + ^i + ^i)2> 5122Z — (&i + k2 4- &2)2,

and some short-hand notations:

y° d2’

Q M?v

The virtual infrared-finite four-point function

We start off with the calculation of the infrared-finite scalar four-point Er :oi23> 
which corresponds to the first diagram shown in Fig. 4-1. This functio < • • red-
finite owing to the presence of finite decay widths in the propagators of unstable 
W bosons. In the semi-soft photon limit we find

r d4k________________________ 1______________________
J (2tt)4 [fc2 4- io][£>i - 2(p! • &)][D2 4- 2(p2 • &)][-2(Zci • k) 4- io]

where Z\2 = pf 2 — + i°- Originally the quantities £>i,2 are real, with the usual
infinitesimal imaginary part. At the end of the calculation the analytical continuation 
to finite imaginary parts can be performed. Then Db2 = p?2 “ + i^w^w-

Applying the Feynman-parameter technique as explained in Sect. 4.3.1, we obtain 
the following representation

o 1—1
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6

1

3

I2

(4.3.20)

(4.3.21)^0123 — i1 1
8ttM^ D2 - QDi

The function £i2(x;p) is the continued dilogarithm
£i2(z; y) = Li2(l - xy) + ln(l - xy) [ln(xy) - ln(z) - ln(y)], (4.3.19)

with Li2(x) the usual dilogarithm and x,y lying on the first Riemann sheet. The 
answer for the second infrared-finite scalar four-point function, £>0124, can be obtained 
from Eq. (4.3.18) by substituting (pi,fci) o (Pa> ^2)-

Photon-pole part of the infrared-finite four-point function

As was explained in Sect. 4.3.1, the photon-pole part of a scalar function can be 
obtained from the full scalar function by subtracting the “particle”-pole contributions. 
According to Eq. (4.3.11), the “particle”-pole contributions in the lower half of the 
complex /c0-plane are given by

Figure 4-4. The integration area (shaded region) in the (£i,£j) Feynman-parameter space for 
the calculation of the particle-pole part £qJ23 of the infrared-finite scalar four-point function 
Dq\23- The thicker curves indicate the solutions of p2(f) — 0, with f2 = 1 — Af2v/si22/.

a* __ fafa+asoo/)

^0123 ~ 9Z f
Z7T J

0

The integration area is defined by the 0-function for the energy and by the condition 
£1 +£2 < 1- The allowed area of integration and the curve where the J-function has a 
non-zero value are schematically shown in Fig. 4-4. The depicted situation represents 
the most general case for the kinematics we are interested in.

After the integration over the ^-function has been performed, one is left with a 
simple one-dimensional integration of logarithmic type. The final result is

[ln(l - yox,) - ln(l - zs/C)]

<,+<.2<1 Jr-

<W)] W)l-
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All 34

(4.3.23)

(4.3.24)

and
(4.3.25)

1 (4.3.26)4)134 (£) = — In

(4.3.27)

A0134 —

(4.3.28)

with
P2«)

4
The masses of the final-state fermions, mi and m2, are taken to be small in our 
approximation.

One is left with a twofold Feynman-parameter integration (see App. A.3), which 
results in

’..22) 
not 

A for 
and 
ined 

usual

flMjV + £2m2 +

d'k_____________________ 1____________________
(2ir)4 [fc2 _ A2 + zo][-A-o |£(C)| - k-p(f) + A(& + io]3

mi m2

—$12 — io
1

D,
i 

167T2S]2

with

/0134(C) = f

The virtual infrared-divergent four-point function

Here we describe the calculation of the infrared-divergent scalar four-point function 
A)i34t which enters the non-factorizable corrections through the decomposition of the 
five-point function. Similar four-point functions may also appear in the initial final 
state interactions, but, as was mentioned before, the interactions of this type vanish 
in the sum of virtual and real contributions. The four-point function 

r d4k 1
J (2tt)4 [k2 - A2 4- io][D! - 2(P1 • A:)][-2(A:1 • k) 4- io][2(k-

A - x/A2 - A2p2 \ 1 
A 4- x/A2 - X2p2 J J

'2 + ClCz-^/Jz — C1C3^12 + ~ s211')-

is infrared-divergent, because only one unstable particle is involved, 
enough to regularize the divergence. Therefore we introduce a regular 
the photon in order to trace the cancellation of infrared divergences 
real corrections. Again we can apply the Feynman-parameter technique: 
in Sect. 4.3.1. However, special care has to be taken with the photon ma. 
we can introduce Feynman parameters according to

1 3
M)i34 = 2 y d3£($(l - /0134(C),

0 i=1

/i(e) = (2d„ ^(o = -2c, k>; -2&rf + %
Again we can exploit the freedom to perform the variable transformation kQ —> -k0 
in order to fix the sign of the energy component £({). After the integration over 
momentum space, the details of which can be found in App. A.3, we obtain 

i d
8rr2 dp2 t y/A2 - A2p2
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E(u, t) = 0

derived in

(4.3.29)/q 134(f) =
i 

16tt2|^(C)|

Photon-pole part of the infrared-divergent four-point function

The procedure for calculating the photon-pole part £>q134 follows our general strategy, 
i.e. we calculate the corresponding “particle”-pole contributions and subtract them 
from the full virtual scalar function. The difference between this case and the one 
discussed in Sect. 4.3.2 lies in the fact that here both photon-pole and “particle”-pole 
contributions are infrared-divergent. So as to keep track of the cancellation of the 
infrared divergences, we again introduce a regulator mass A for the photon.

In App. A.3 the following convenient representation for /0134(f) was 
Eq. (A.14):

The answer for the second infrared-divergent scalar four-point function, Po234. can 
be obtained from Eq. (4.3.28) by substituting (pi,fci) (P2,A:2).

Figure 4-5. The area of integration in the (u, t)-plane for the calculation of the particle pole 
^0134- The shaded region is the area of integration where E(u, t) > 0. The doubly-shaded 
region is the area of integration where E(u, t) > 0 and p2(u, t) > 0. The thicker curves indicate 
the solutions of p2(u, t) = 0, with tt* ~ — C^w/m2-

°r _________________dz_________________
L [-1^(01 -1 ?(e) 1 z + -4(e)+’o]2'

From the general discussion in Sect. 4.3.1 we know that the photon-pole contribution 
to the four-point functions in the Feynman-parameter representation, /Jrt(f), can 
be obtained from the complete virtual function, /Vjrt(f), by a substitution |2?(f)| —>
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— £>oi34, has the form

3
(4.3.30)

i=l

where

.3.31)

«) = 3.32)

F)Part — 
^0134 — (4.3.33)

4.3.3

(4.3.34)

M(«)+'o)2

1
87rs12£>i

—£(£). Then the “particle”-pole contribution, £>0134 = £>01.34

By analj’sing the pole structure of the last expression, it is easy to reab 
is only non-vanishing for p2(f) > 0. This results in a simple formula

The Coulomb-like scalar three-point function
As was pointed out in the beginning of this chapter, a gauge-invariant definition 
of the non-factorizable corrections requires the proper inclusion of a Coulomb-like 
contribution. In this subsection we calculate the associated scalar three-point function 
in the semi-soft photon approximation. This three-point function is infrared-finite, but 
ultraviolet-divergent. This divergence occurs as a result of the fact that we neglect the 
fc2 dependence of the propagators, following our general semi-soft photon strategy. 
Although the virtual and real Coulomb-like contributions to the cross-section are 
separately ultraviolet-divergent, the sum is finite.

The virtual Coulomb-like scalar three-point function C012 is defined as (see Fig. 4- 
2):

=2 f d3(s(l - EC.) 4^(0, 
0 *—1

<W)] 
44(0^

What is left is the integration over the space of Feynman parameters. In order to 
simplify the calculation it is advisable to make the change of variables = t/(l 4- 
t 4- u) and & = 1/(1 4-1 4- u). The area of integration in the (u, i)-plane is shown 
schematically in Fig. 4-5. The final result is

rIn(-c')+ln(^)-lnQ]
This is the same result as obtained in Sect. 4.4, where we will approach the various 
calculations in a significantly different way.

c = /• _______________ 1________________
012 1 (2?r)« [A2 + fo][£>i - 2(p, ■ *)][Z?2 + 2(p2 • fc)]' 

Similar to the calculation of the scalar four-point functions, we introduce the Feyn­
man parameters only for the propagators that are linear in fc. We limit the area of

«g[g(01 d
8rr2£(f) dE(£)

+F____________ £(C) dz________
_•£ [E(C)]2(^ + A2)-(|p(C)|3--4(f)"

9[B(0] d 
4tt dp2^)
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k by the condition |£| < A, where A » Tw- After having performed

C‘oi2 In

(4.3.35)In

C,

+ In

(4.3.37)

where
the Fe

|2?| - |p| - »/A 
-A/A

1 
|p|(|S|-|p|)

1
?-(|S| + |p|)

integration over ' . ...
the momentum integration, one is left with a one-dimensional integral over Feynman 
parameters:

x-tparl 
°012

- 2 Li2 fl - —) + | ln2(y0) 
\ x,J 2

— 2i7r In —1 >. (4.3.36)

+ £i2(—; — 
\Po x,.

—iD2
2MWA

|5| + | p| - 4/A
-A/A

+ ^2D2 and p"(£) = —2fi pf + 2£2p£. The final integration over 
meters yields

^{£i2Go; i)
+ln(i-)[ln2Sk

In a similar way one can calculate the particle-pole contribution which can 
be used to extract the photon-pole part Cq12 = C"oi2 - Cq*2. The final answer for the 
particle-pole contribution reads

8^{ln(l - x.) + ln(l + x.) - ln(l - yox.) - ln(^g) }

Note that the real part of Cq??1 does not contribute to the non-factorizable corrections. 
Therefore, the A dependence effectively drops out from the particle-pole contribution.

One may wonder how the non-factorizable contributions (4.1.2) and (4.1.3) to the 
cross-section compare with the Coulomb contribution as calculated in the literature. 
Our calculation is based on the assumption of being at least a few widths away 
from the threshold [the accuracy of this approximation is of <9(Fw/AE)], whereas 
the Coulomb effect in the literature is valid in the non-relativistic region, where 
it approximates the cross-section with accuracy O(/3). Therefore one could try to 
compare them in an overlapping region, where IV AE Mw The Coulomb 
effect calculated in Ref. [9] consists of two parts. One contribution that is also present 
for on-shell VF-bosons, and one that comes from the off-shellness. The former is related 
to factorizable corrections and the latter is related to non-factorizable corrections and 
vanishes upon integration over the virtualities4. In the overlap region (IV 
AV) this off-shell term equals the 1//? part of our full expression.

4 Only soft and semi-soft virtual photons contribute to both parts. For the on-shell (factorizable) 
part of the Coulomb effect photons with momenta a> « (32Mw and |£| « flMw are important 
(hence k2 can not be neglected in the propagators of the unstable particles). On the other hand, 
only photons with momenta « Tiv and |£| « IV//3 give the leading contribution to the off-shell 
part of the Coulomb effect. Far from the threshold, where Fw AF Mw, the two regions in the 
photon-momentum space are well separated. Because of this the effects are additive. Near threshold, 
where IV « A£, the two regions start to intersect.

Section 4.3: Modified standard technique: calculation
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Direct momentum-integration method4.4
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In this section we present an alternative method of calculating the non-factorizable 
corrections, i.e. the so-called direct momentum-integration (DMI) method. As in 
Sects. 4.2 and 4.3, we use the semi-soft photon approximation and assume the charged 
final-state fermions to be massless, which is a good approximation for the • ■ ss un­
der consideration. In contrast to Sects. 4.2 and 4.3 we do not make an 
about the mass of the final-state neutrinos, because it does not simple 
tion significantly. This gives us the opportunity to apply the results < 
to top-quark pair production. Following the approach of [3], we w 
tudes corresponding to the diagrams shown in Fig. 4-1 in terms of 1 
scalar four-/five-point functions. In contrast to the Feynman-paramet 
Sect. 4.3, we do not introduce Feynman parameters, but perform inste. 
tegration over momentum space [3]. The calculation can be consider- 
by an appropriate choice of the frame.

First we calculate the infrared-finite virtual and real four-point fu.-’.ci-ion The 
calculation is close to the one presented in [3], but in contrast to [3] we make a clear 
separation between the virtual and real contributions. Our final result agrees with 
the one of [3], as well as with the one obtained in the MST in Sect. 4.3.2. Next we cal­
culate the infrared-divergent virtual and real four-point functions. Again we perform 
a separation of the real and virtual contributions, and provide a careful treatment 
of the divergences. All this is needed in order to trace the cancellations of infrared 
and collinear divergences. We find complete agreement with our results obtained in 
Sect. 4.3.2. At the same time the structure of the divergences in our results appears 
to be significantly different from the one obtained by using the method of [3], even in 
the complete answer when virtual and real corrections are summed up. Although the 
infrared-divergent scalar four-point functions do not appear directly in the answer for 
the non-factorizable corrections, the observed difference with the method of [3] turns 
out to be indicative, because similar problems arise in the evaluation of the (infrared­
divergent) five-point functions. Finally we calculate in the same way the virtual and 
real five-point functions. After summing up the virtual and real five-point functions, 
we find, in contrast to the result in [3], that all collinear divergences cancel exactly, 
even for cross-sections that are exclusive with respect to the virtualities of the W 
bosons.

In conclusion, the calculation presented in this section is an extension of the 
method of [3]. We provide a proper treatment of the infrared and collinear divergences, 
and make a clear separation of the virtual and real corrections. Because of this, the 
calculation becomes much more involved. We use the results obtained in this section 
as an independent check of the results of Sects. 4.2 and 4.3. Although the methods 
are completely different and the answer of this section is very complicated, a perfect 
numerical agreement between our two calculations is observed.

Before listing the various results, we first define the notation. For the calculations 
in the DMI method we need to specify the momenta in the centre-of-mass frame of
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Pi (4-4.1)(E, p) = E(l,v) and p? = (E, - p) = E(l, -v),

hell) velocity of the IV bosons [see also Eq. (4.3.13)]. The other

..fct) = Et (l.vt) and ki = (E2,k2) = E2(l,v2), (4-4.2)

4.4.1

11 
Di - 2(p, • k)

with |v| 
relevant

with |v.
some (pc 
Xi = cos 
by 012- Sc ?.;r
the plane span.. by and k2 we define #12 = Z(vi, V2) and a?i2 = cos0i2-

the initial state. Because of the semi-soft photon, double-pole approximation (DPA), 
which has been defined in Chapter 2, the four-momenta of the two intermediate W 
bosons are related in a simple way:

Non-factorizable infrared-finite corrections
In this subsection we briefly describe the calculation of the infrared-finite four-point 
functions in the DMI scheme, following Ref. [3]. The result agrees with the one pre­
sented in [3], so this subsection is merely presented for completeness. The contribution 
of the infrared-finite virtual four-point function D0124 to the non-factorizable matrix 
element is given by

M = — f —____________________ 16to (p, ■ fc2)__________________
0124 dfadJ (2n)* [ki + io][2(k k2) + io][Dl-2(pl-k)][D2 + 2(p2-k)]’

(4.4.3) 
where MgPA = A7gPA/(DiD2) is the Born matrix element of the process, involving 
the production of an intermediate W-boson pair and its subsequent decay. We start 
the calculation by decomposing the unstable W-boson propagators according to

_ ____________1______________
[A - 2(px • k)][D2 + 2(p2 • *)]

- rrii/Ei for (i = 1,2). In addition we need the definition of 
with respect to the direction of the W+ boson: Oi = Z(v, Vj) and 
, 2).5 The difference of the azimuthal angles of k\ and k2 is given 
2 = 0 the final-state three-momenta ki and lie in one plane. In

1_________________
Z?2 + 2(p2 ■ &)J D + 4.p’k

(4.4.4) 
where D — Di + D2. The first term has two particle poles: one in the lower and one in 
the upper half of the complex A:0-plane. We close the contour in the lower half-plane, 
resulting in one particle-pole and one photon-pole contribution. The second term 
has all its particle poles in the lower half-plane. By closing the integration contour 
in the upper half-plane, only one of the photon poles will contribute. Note that the

5Note that this definition of 02 is different from the definition of O4 in Chapter 2. In one case 
the IV~ decay angle is defined with respect to the W+-direction, and in the other with respect to 
the IV“-direction. The definition of this chapter was adopted in order to keep in line with notations 
used in [3]. Once one keeps in mind this difference it should not lead to any confusion, as the 
transformation from one notation to the other is simply 04 = 7r — 02.
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din,

(4.4.6)&
where

(4.4.7)

(4.4.8)

(4.4.9)

(4.4.10)

Here r|| and rx 
dicular to v2:

d3k__________________ 1_
(2w)’[(tU)2-*2] [£ + 2v £)[&

The propagators can be exponentiated by introducing an integrarici 

fdTdrtM^]/ 
0

< 
.4.4.5) 

me”:

2z2(1 - fe) 
/?(! - z|)

— — ^DPA
d3k______

(2tr)3

— ^DPA

-/W0124

(4.4.11)

Eq. (4.4.4). This particle pole is situated at ka = v2-k. The corres: 
reads

47ra 1 — {3x2
~D} 2E

[lnUJ+ln 1-2^2/ 
ln^)+ln^?)+ln 

D

above decomposition mixes photon- and particle-pole contributions. In order to avoid 
possible confusion with the pure photon- and particle-pole contributions, we will write 
A/0]24 an4 JAnz” >f the decomposition is used.

Particle-pole residue

We first concentrate on the particle-pole residue contributing to ti “rm in
esidue

4ira 1 — 0x2 r
~D, 2E J

T|| = 2{3x2t - (1 - fe)Ti, r± = /3(2r + r,) sin 02.
Note that 1 — v2 = m|/E2 is small, but finite.

To do the remaining integrations over r and t,, we can make a change of variables 
according to (t,Ti) —» (£, y), with r = £y, Ti = C(l — y), and the Jacobian | I = C- 
The area of integration changes from r > 0 and ri > 0 to £ > 0 and 0 < y < 1. 
After this change of variables, the quantities r|| and rx will be proportional to f, 
rendering the integration over £ trivial. The last integral over y can be calculated in 
a straightforward way, yielding after some manipulations

x2 <0 ■ -MoiS* = ^dpa \Oiri(x2)

x2 > 0 ■ ^0124* = fi^DPA n nlr 1
Dtri(x2)

T = 2rv — Ti (v2 — v).
The integral is infrared-finite, so there is no need to introduce a non-zero photon 
mass as infrared regulator. The spatial integration can be recognized as a relativistic 
Coulomb potential of a moving particle:

,, x _ r d3k e**'r _ 1
"J (2vr)3 (v2-k)2-k2 yr2 + rl(l-«i)'

are the absolute values of the components of f parallel and perpen-
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where

Photo..

^0124

111

(4.4.15)

of the two photon-pole

^0124

' - fe 
D,

-ln(D)+ln(-D2)]
(4.4.14)

perform the integration over the azimuthal angle, with the help of

Now we 
each of! 
tions by 
half of I. 
yielding

^DPA
dx 

rj(x) |x - x2|

ft 1 — 0X2 

2?r D1T](x2')

d?Qk 1
2tt r/(x) (1 - v2-nk)

A«242 = -M°pA

M()124 ~ ^DPA

Next one can 
the formula

res

photon-pole residues. There are two such contributions, one in 
he decomposition (4.4.4). We will indicate these two contribu- 
tH242, respectively. For the contour is closed in the lower 

.-plane. In that case the photon pole is situated at A'o = 1^1 — io,

(4.4.16)
The last integration gives rise to integrals of logarithmic and dilogarithmic type. Let 
us single out the answer for the 0-function-dependent terms:

fir {C,[S(-x2) - 0(z2)) + 2C29(x2) + 2C30(-x2)},

(4.4.17)

a 1 — 0x2 [ 
2tt D} J

rcPQt 1
J 2?r r?(x) (1 - v2-nit)

1 = 1
J 2tt 1 — u,-nt |x — Xi|

This expression is a possible source of collinear divergences, which are regularized 
by introducing the small non-zero fermion masses. In terms of this regularization, 
|z — Xi| is replaced by ^(x — z,)2 + m2(l — x2)//?2. The sum 
residues amounts to 

a 1 — 0x2 r 
2n Dt /

[ln(^)-l-CO>+'"<-'>.>]
(4.4.13) 

Here n*,. stands for the unit vector in the k direction and Q* indicates the angular 
variables in spherical coordinates (with the polar axis defined along p). For M0i24 
the contour is closed in the upper half of the complex fc0-pla.ne. The corresponding 
residue can be obtained from Eq. (4.4.13) by adding an overall minus sign and by 
substituting /?—>—/? and D\ <-> D2 inside the square brackets:

—4- io
1 + fix

r](x) = (14- x{3) Di 4- (1 — x@) D2. (4.4.12)
The result for is not the same for x2 < 0 and x2 > 0. This is caused by the 
propagator decomposition (4.4.4). However, the complete result, with the photon-pole 
residue included v. ill be independent of the sign of x2.
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where

C2 In
*2

(4.4.18)C3

unc-

(4.4.19)

where
(4.4.20)

D
’l(-l)

The pure photon-pole part

As was already explained in Sect. 4.2.4, the photon-pole parts of the virtual scalar 
functions can be related to the corresponding bremsstrahlung interferences. To this 
end, one needs to calculate the pure photon-pole contribution to the matrix element, 
without performing the decomposition of the unstable IV-boson propagators, since 
this decomposition mixes photon- and particle-pole contributions.

This calculation is pretty much the same as the one discussed above. We present 
only the answer:

sign
the

7 the

— A?dpa

Afoi24 — ^DPA

- F, (x2; -0|z2)

s ^6 {[fitote)-™-™..)]

- ^(--Dol^)] In(^)

Separately, the particle-pole residue and the photon-pole residues depe: 
of x2. However, the sum of these terms does not. This dependence 
intermediate stage of the calculation is a consequence of the decorn ■ 
unstable JV-boson propagators.

The final answer for the contribution of the infrared-finite virtual . 
tion .Doi24 to the non-factorizable matrix element is given by

-£>0; -/J|x2) + F (x2; 0\i2^

1-fe Ejl 
+ In —; f, m2J J

- +F,(

+ iJ21n2g?)+ln_^L + 21n ----
I D, r?(-l) 0(1 - x2)

C, = In(^)+ln(^)+m(^), 
\ 77(1) J \TT$J

\ D J \x2 — 1J

_ 1 D\ + P2
0 D2

The logarithmic and dilogarithmic functions Fit2 can be found in App. C.l. The 
final answer for M0i24 agrees with the answer presented in [3]. It is also in complete 
numerical and analytical agreement with the corresponding expression in Sect. 4.3, 
which was calculated with the help of the MST.

The contribution from the other infrared-finite virtual four-point function, D0123, 
can be obtained from Eq. (4.4.19) by substituting (px, ki) o (p2, ^2)-
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-Fi . (4.4.21)

4.4.2

(4.4.23)

\red-divergent scalar four-point function
present the calculation of the infrared-divergent virtual scalar 

C’oi34- In the DMI method such functions are not needed for the 
n-factorizable corrections. They arise in the form of initial-final 
iich corrections vanish when the corresponding bremsstrahlung 

.'m into account, as was explained in Sect. 4.2.4. We perform the

J dr dt e1T2^ J 
o

Particle-pole contribution

One can proceed in the same way as in Sect. 4.4.1. We take the residue at the particle 
pole k0 = v2-k and exponentiate the propagators by introducing an integration over 
“time”:

i 
8EE{ E2

d3k________eifi
(2tt)3 (k-v2)2 ~ k2 - X2’

F)Parl
zy0134

er half-plane (see Sect. 4.2.4).

M)134 = J

(~D0;[3\x2^ + F, (-£>0;-/?|:r2) + Fi (x2; 0|z2) - Fi (z2;-/?|x2) j

Note that the photon pole has been evaluated in the upper half of the complex 
l'o-planc. Pho reason for this lies in the fact that we have opted to perform the 
calculations in ; he most economic way. In this approach Dj124 is obtained from Dq123 
by substi ip .£,) «-> (p2,fc2), which automatically shifts the photon-pole from 
the low*.:

where f = r (v — v2) + t (v, — w2). Again we can perform the integration over the 
momentum k, which is similar to the A-screened relativistic Coulomb potential of

In this 
four-pot: 
calculate 
state in., 
interfere: 
calculation main ;- to study how one can handle infrared and collinear divergences 
in the DMI scheme and to provide an independent check of the results obtained in 
Sect. 4.3.

The infrared-divergent virtual scalar four-point function D0134 is defined as

d*k 1
(2tr)■’ [*4 - A2 + io][D, - 2(pi • *)][—2(fci • k) + io][2(*:2 • k) + to]’

(4.4.22) 
We regularize the infrared divergences by introducing a regulator mass A for the 
photon. There are also collinear divergences, which are regularized by the small non­
zero fermion masses.

The pole structure of this integral is such that no propagator decomposition is 
required. There is one photon pole in each of the half-planes of the complex variable 
k0. There are two particle poles in the upper half-plane, and only one in the lower 
half-plane. Therefore, we opt to close the integration contour in the lower half-plane, 
resulting in only two contributions to the scalar function: one photon-pole residue 
and one particle-pole residue.
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e (4.4.24)

such

'rj+rl(i-v?)
^0134 — ~ 25)

(4.4.26)

(4.4.27)

(4.4.28)

£>0134 — —

a moving particle. As the scalar function is infrared-divergent, 
photon mass A. The result of the integration is

i 
32irEEiE2

XE2 (b + 2y/ac) / J ’

__ 1______________________
■][w - |*| (n*-vi)][tu - |*| (nt-v2)]

(4.4.29)

where C is the Euler constant.
The last integration over r is relatively simple, yielding

[ln(J* )-ln(^ 
[_ / \Ad\y

The invariants Si2 and s2iv are defined in Eq. (4.3.12).

Di 
2E(l—0x)

yi+rKi - vq)
Here both A and 1 — v2 are small. We will consider the limit A -» 0 and 
that A C \/l — v2.

The particle-pole contribution now takes the form

oo

A = I dt 
0

one should keep the

1___ 1_
87TS12 Di

e 

y/rjj + rx (1 - v?)

= a + bt + ct2, with coefficients

Photon-pole contribution 

Next the photon-pole residue at *0 = cu = \/*2 + A2 — io is determined:

i r d3k
l6EEtE2 J (27r)3w (1 - /3z)[w -

e
\/a + bt + ct2

r d3k e"'*
^A(r) - -4tt j (2jr)3 _ *2 - A2

Va+M+ct2
« ~^= [-C 4- In 

x/c L

where rjj 4- r2 (1 — v2)

a = r2(l — 0x2)2 4- r2/32 sin2 02,

m2b = 2t(1 - x12)(l - fix2) 4- 2 —| 77?sin02sin0i2, ±/2
c = (1 - xt2)2 4- sin2 012.

The integral over t is logarithmically divergent in A:

-i)-,nO]
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(4.4.30)

After th<

(4.4.31)^0134 — [A + A + A],

where

Jo In

. (4.4.32)A

Io =

with

Za,b =

(4.4.34)
Ji =

J2 =

i
1 

2(1 — z,2)

Xj + x2 ± i sin Oi sin 02 sin <A2
1 + 112

1 — Z]2 — Zj(Zi - X2), Ki = x2- XtXi2,

1 — 112 — X2(x2 — Zi), K2 = X1 — Z2Z12.

EX(l-/3x)J’
(4.4.33)

£?A(1 -fix))'
/I — nk-v\
\ 2

/

”(/

The expression for I2 can 
integral A is similar to the 
single-logarithmic collinear divergences. The integrals A,2 are new and give rise to 
double-logarithmic terms. They are evaluated as a principal-value integral, since the 
singularity present in l/fATt — is an artefact of the split-up (4.4.30) and 
disappears in the sum A + A-

As a next step we integrate over the azimuthal angle <f>. We obtain for the first 
integral

V dx f."
/ (z - za)(z — z6) L |z - zj

__ J________ J___ 1
co - |f| (njt-fi) w - |£| (nk‘V2) J

n over |£| the photon-pole contribution will be of the form

i 
1Q'k2E\E2D\

We want to keep the propagators [u; — |fc| (n^-vi)] as they are, instead of writing them 
as |£| [1 - as was done in Ref. [3]. Keeping the exact form of the propagators 
leads to double-logarithmic collinear divergences. If, instead, the simplified version 
were to be used, then the double-logarithmic terms would be lost, and one cannot be 
sure whether the .<’ngle-logarithmic divergence and the finite part would be correct.

First -- p. • the integration over |£|. The presence of A in the light-fermion 
propag-. \ ates things considerably. The light-fermion propagators can be
rewrittv •■owing way:

1_____________
■ Ui)][w- |£| (n*-u2)]

1
l/:| (A'Ci - nkv2)

rA^+A^G] ln/ 
L |z - zj |z - z2| J V

d?£lk 1
4?r [1 - nfVi][l - nt-v2]

___________ 1___________
4tt [nt-vj - n* v2][l - (n*-Vi)2]

be obtained from A by the substitution <-> v2. The 
one that shows up in the approach of [3]. It contains only
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(4.4.35)Zi =

.36)

/o =

(4.4.37)

4.4.3

x
(4.4.38)

11

7721 77^2

«12

£>i - 2(pi • fc) + D2 + 2(p2 • k)\o + 4pk'
(4.4.39)

be
3:

1
1 + vtx

1
[Dr - 2(pj • k)][D2 + 2(p2 • k)]

Eg 

4(1 - Z12)

dx
\Jx2 - x\

r d*k _________________________ IGtto (k\ ■ k2)_________________________
J (2rr)4 [A:2 - A2 + io][-2(k • k,) + to][2(k • k2) + to][Z?i - 2(k • p,))[D2 + 2(k • p2)]'

In analogy to Sect. 4.4.1, one can perform a decomposition of the unstable IV-boson 
propagators

Non-factorizable corrections 
from the five-point functions

In this subsection we describe the calculation of the scalar five-point functions using 
the DMI method. The contribution of the virtual five-point function to the non- 
factorizable matrix element is given by

Af = iM°PA

As indicated in Sect. 4.4.1, |z — z,| should be regularized by keeping the small non­
zero fermion masses: |z - z,| -> <J(x - z<)2 + p2, with g2 = m2(l - x2)/E2. Using 
the result for the principal-value integral given in App. C.2, we find for the second 
integral

where z± = </(l ± Zi2)/2 .
One is left with a one-dimensional integration over z. The integrr 

expressed in terms of the dilogarithmic functions !F\ and 7^2, defined

A,2 = 5i-:[>’i(z+;vi,2) + 772(z+)]. 
ox_

The answer for the integral /q is

1 1 (EX&\x (In —— In \-Dj k
x 2

)-£

1J kl+VlZ/U- +Ll — v\X

1 - Z12

where the function K. is introduced in App. C.3.
The complete expression for the infrared-divergent scalar four-point function is 

obtained as the sum of the particle-pole and photon-pole contributions. When com­
paring all the above results with the ones obtained in Sect. 4.3.2, complete numerical 
agreement is found for both virtual and real four-point functions, including collinear 
and infrared divergences.

4|u, - £>21J
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where r2

where rjj + r^(l - u|)

(4.4.42)c

t is performed, yielding the logarithmically-

, (4.4.43)= -A/g,

(4.4.44)+ In

In this way the matrix element splits into two terms. If the integration contour in the 
complex fcg-plane is chosen properly, each term involves one photon-pole contribution 
and one particle-pole contribution.

£>y + 2D,(l - y) 
4iE

Cr 1 — X12

E2

1-vJ)

, (4.4.41)

M2p*r'

• e particle-pole residue that contributes to the first term in 
d in the usual way, by taking the residue at = Uj f and sub- 

'ng the propagators. In this case this procedure requires three

Particle-pole -< :idues

We first
Eq. (4.4.3' 
sequent! 
integral'.

e V'-'i_______
yrjj + r2 (1 - v?)

oo 
la

ipa8E2.
0

To linearize b 4- 2>/ac with respect to

JdrdH [_c +
------   . _v ..i.l. t _j one of the integration variables, one should 

make a change of variables according to (r, r,) —> (£,!/), with T = T> = — !*)•
In this way, the integration over can be trivially performed:

4mi(l-rli) \ + ( / 
XE2(V + 2Va’d')J \

Zdtdrdr,?!*^] / ------,
J ' J (27T)3 (A:-v2)2 — Jt2 - A2

(4.4.40) 
.6 — V2) 4-t (^i — £2). The integral over d3k is the same as the 

one evahurh 1 ue calculation of the infrared-divergent four-point function [see 
Eq. (4.4.24)]. Again, a non-zero photon mass A is needed for the regularization of the 
infrared divergences. The particle-pole residue now amounts to

= -M°pa £ 7dt dr dr, •
o hi J

0

= a 4- bt 4- ct2, with coefficients

a = [t/3x2 - t,(1 - 0x2)]2 + (r + r,)2/32 sin2 82,

b = — 2(1 — xi2)[t/3x2 — r,(l — /?x2)] + 2 0(r + r,) sin0,2sin82,

(1 -z,2)2 + ^|sin2912.

Following Sect. 4.4.2, first the integration over
divergent result
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0, .r2 < 0 :x.

A/,parl’ = - M°,

ln(—2/?z2)+

z2 —> Xj, m2 —► Tni, E2 —► E\, D\ *-> D2, ft —t ft 1 ■

(4.4.45)

with

*(Di,D2,x) = *0 + *12 + *0,

the 
lies,

■ -ally 
pole 
i on

jDiP(z2)

! «*
>pA 2

Note that the terms ln(^-) and In(^) cause the difference with the results presented 
in Ref. [3],

JIPA *

+2nL^} Ml-fe)-

Photon-pole residues

Next we determine the photon-pole residues. Each of the terms in the propagator 
decomposition (4.4.39) gives rise to one photon-pole residue, situated at fco = =

±yfc2 + A2 — io. In the same way as in Sect. 4.4.2, the light-fermion propagators 
occurring in the photon-pole residues can be rewritten according to Eq. (4.4.30). 
Again we introduce spherical coordinates, with the polar axis defined along p. For 
the integration over |fc| we keep the A dependence of u in order to get the correct 
divergences. The combined result of all photon-pole residues is given by

P2.’ xl -+—1- [$(O1, a2)+$(a2,01)]}, 
(1 — Oi)(l — a2) D\D? 1 JJ

(4.4.46)

2 , 2AE 2 E2 2 D D±_
D} Dln + DtD n m2 + D2D “ iAfJ, D; P2 t

where the coefficients a', b', and c1 follow from the coefficients a, 6, and c, by substi­
tuting t —» y and Ti —t (1 — y).

The last integration is technically quite involved, but only gives rise to logarithms. 
Note that one should carefully analyse the infrared and collinear divergences, present 
in this integral. The final answer is formally different for x2 < 0 and x2 > 0. This 
is the same phenomenon as observed in Sect. 4.4.1, which can be attributed to the 
decomposition of the IV-boson propagators. The result for the photoi - idue 
will compensate this dual behaviour, leading to a combined result that ; 
the same for both x2 < 0 and x2 > 0. In a similar way the secon? 
residue, corresponding to the second term in Eq. (4.4.39), will form 
the sign of Zj.

We will not bore the reader with all the different cases and mere 
answer for the case xt > 0, x2 < 0. Taking into account both partici 
the final answer reads

M'’’ = -M»PA“(l-z12)/^{

2
DXD

a
7T

D.2XE
M2W

2
' DiD

2(1 + /3z2) 
O2r/(z2)

D

4fe 
Z)p(z2)

2
D2D

Inf#) \dJ
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*o =

iir [0(3x) - 0(-#r)J,

(4.4.47)4’(.' In

— 2 In

(4.4.48)+ 2 In

and 77„,(, =7?i == 20D

(4.4.50)

2/3i, 
’i(^)

-12
1 - X2

L) i Z?2 i J

Dy 

(1 - 0x\
ln(

+ A/Spa

and a, —-
The '!• 

the divei, 
collinear . 
already en< 
divergences

As in 
maining integration

Di X
M^(l+0x))y^12

1 + Xi.

—)[ln(^)+<4«12 / L \M^/

1^).

M«7’ =

Z7T U K2 [in S2 -2 in +K2 [in +2 in 
+ E ^[ln( 

{^■['"w+2to 
+ E Mln(

The coefficients 77 are given by (i = 1,2)
[K.D^MDy-D.) Kj=2fe and
(1 + Xi2) T)(xa) T](xi,) ri(Xi) rtXi) 7?^‘\

(4.4.49)
of the particle-pole residues and Mg is independentAs in Sect. 4.4.1, only the sum

of the sign of Zi,2. . ,
The evaluation of the remaining terms in Eq. (4.4.46) is straightforwar . e 

answers for the - and #-terms are given by

Mo7 = -MgPA — In
7T LJ\Lf2

we proceed by performing the azimuthal integration. The re- 
over x = cosO gives logarithms and dilogarithms. Most of the 

ingredients of this final step in the calculation have already been discussed above. 
Therefore we only give the answer. First we do so for the 'I'a-terms. As was observed 
for the particle-pole residues, the results depend on the sign of Xj,2- Adopting the 
same sign choice as in Eq. (4.4.45), we obtain

Xi > 0, x2 < 0 :

-

^1}
- [in 4- 2 In

L mf

^)J).

 1 - 0X
D,7,(X) "

20x
Dr)(x)
________1________
(«i - a2)(l - a?)

= 1,2).
i1.4.46) also emerges in the calculations presented in [3], up to 
■E). This 'I'-term contains infrared divergences and logarithmic 
The other two terms in Eq. (4.4.46) are of a type that was 

) Sect. 4.4.2. They will give rise to double-logarithmic collinear

a . 1 
— ITT — 
2tt D

\ + 0x
+ D2r/(x)

a
27T

>1(^2)

D

1-Xj J

D J
~ xi

1 — Xj
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[Zi(x+;v2) + >ri(x+;vi) + 2^2(r+)]. (4.4.51)

(4.4.52)

with

1

(4.4.53)

(4.4.55)

(4.4.56)

- £

D

M? = -Af°PA

MS = -MgPA -

— ^DPA XT

Here Do is defined in Eq. (4.4.20) and the functions Fi and F2 are 
Note that the coefficient depends on /?. The contribution M} 
by substituting (E?, m2, 12) ++ (Ei, mi, zi) in Eq. (4.4.53).

The final answer for the contribution of the virtual five-point function to the 
non-factorizable matrix element can be obtained as

M = M'pan’ + M? + M? + Mil + M/, (4.4.54)

with the various contributions given by Eqs. (4.4.45) and (4.4.48)-(4.4.53). This an­
swer was compared numerically with the corresponding MST-expression in Sect. 4.2, 
which was derived by means of a decomposition of the five-point function into a sum 
of four-point functions. A complete numerical agreement was observed.

m27’

K^b(-n°l:c2)-F'(-D“:
- WgpA 1 o P2> 0-^-0}.

Z7T I 1

a 1 — Z12 1 

2% DxD2 4x_
The functions Fi and F2 can be found in App. C.3. 

Finally, the answer for the 'Flu-term reads

M‘£ = M'C' + M?',

1 , In 
D1D2

0X2 HSDin® -Fi(r2;-/3’

: given in App. C.l. 
!7 can be obtained

m1m2\ / XE \

a
2tt [Pi7/(z2)

1 - 0Xj 

2D\T)(xi)

Pure photon-pole part

In order to calculate the real-photon radiative interference corresponding to the five- 
point function, one has to determine the photon-pole residue in the lower half-plane, 
without performing the propagator decomposition. The calculation is more or less 
the same as the one discussed above.

The answer can be written as

M7 = MS + MS + MS + M'2'.

Note that the MJ’ contribution is the same as before [see Eq. (4.4.51)]. The other 
contributions are changed slightly:

a
7T
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and

(4.4.57)

The cont'

4.5 < e results

da.

i

1 - 
2£>,r;(a:i)- E' m2 ' . =^»

W = A/?’ + M°pA

■ an be obtained by substituting (E2, m2, x2) <-> (fi, mi, i|).

1 ~ 0x2
Div(x2)

- -JJ- ^2(-T>o|l2)|-

a .
----- ITT
2tt

Up to now used on the case of purely leptonic final states. For the purely
hadronic o . .. -vrc many more diagrams, as the photon can interact with all 
four final-state ft.- >>ions. In order to make efficient use of the results presented in 
the previous sections, we first introduce some short-hand notations based on the re­
sults for the purely leptonic (LL) final states. These short-hand notations involve 
the summation of virtual and real corrections to the differential cross-section. For 
instance, the virtual corrections originating from the first diagram of Fig. 4-1 can 
be combined with the corresponding real-photon correction into the contribution 

MIP2)- In a similar way, virtual and real five-point corrections can be com­
bined into da^kr, k{\k2] k^). The gauge-restoring “Coulomb” contribution will be 
indicated by dac(pl |p2). In terms of this notation the non-factorizable differential 
cross-section for purely leptonic final states becomes

dabL(ki; k2) = da^ki; k\\p2)+dabl(k2; k'2\pi')+da(bl(ki, k'i\k2, A:2)+<*7C(pi|P2)-
(4.5.1) 

Analogously the non-factorizable differential cross-section for a purely hadronic final 
state (HH) can be written in the following way

|A:2; k2) = 3 x 3^ da^ki; A/Jp?) 4- - da^L(k\\&1IP2) + z da^L(k2\ fc2|pi)

+ TrfCTz.t(fc2;*2|Pi) + I ■ |dorS(*:i;MI*:2;*2) + | ■ \da{bl(,k'i\ki\k2-,k2) 
o O o OO

+ | ■ ‘xda^ki^kWk'^kn) + | | daSW; *11*2; **) + dac{pi |p?)] • (4.5.2)

In order to keep the notation as uniform as possible, the momenta of the final-state 
quarks are defined along the lines of the purely leptonic case with ki (AJ) corresponding 
to down- (up-) type quarks. If one would like to take into account quark-mixing effects, 
it suffices to add the appropriate squared quark-mixing matrix elements (|V^j|2) to the 
overall factor. Note that top quarks do not contribute to the double-pole residues, 
since the on-shell decay W —> tb is not allowed. Therefore the approximation of 
massless final-state fermions is still justified.
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A,

(4.5.3)

Numerical results4.6

(4.6.1)[l + <5„f(f)J,

For a semileptonic final state (say HL), when the IV+ decays hadronically and 
the W~ leptonically, one can write

ant-
Afl,2 
,Tw-

-1
-1/2 
-1/4 

0 
1/4 
1/2

1

In this section some numerical results will be presented. The quantity of interest is 
the relative non-factorizable correction <5nr, defined as

-1/2 
+0.64 
+0.51 
+0.39 
+0.23 
+0.07 
-0.07 
-0.25

-1/4 
+0.50 
+0.39 
+0.27 
+0.13 
-0.02 
-0.15 
-0.30

1/4 
+0.21 
+0.07 
-0.02 
—0.13 
-0.24 
-0.32 
-0.42

1/2
+0.06
-0.07
-0.15
-0.24
-0.32
-0.38
-0.47

-1
+0.81
+0.64
+0.50
+0.36
+0.21
+0.06
-0.16

A2 
0 

+0.36 
+0.23 
+0.13 
+0.00 
-0.13 
-0.24 
-0.36

Table 4-1. The relative non-factorizable correction M2) [in %] to the
mass distribution da/[dM\dM2\ for some particular values of M12. The invan; 
are specified in terms of their distance from Mw in units of fw, i.e. Aii2 = [.W, . 
Centre-of-mass energy: y/s — 184 GeV.

where f represents some set of variables. Here we consider consecutively the distribu­
tions da/[dMldM2dcos0i], da/[dM}dM2\, da/dM\ and da/dMav, with M, = y/rf, 
Mav — |(Mi + M2) and 0[ is the decay angle between the lepton momentum fci 
and the Wz+-momentum pi in the LAB system. Note in particular that the relative 
non-factorizable correction 5nf is the same for da/dM^ and da/dMl distributions.

The results are shown in Fig. 4-6 for the angular distribution, and in Table 4-1 and 
Fig. 4-7 for the invariant-mass distributions. The pure invariant-mass distributions 
play an important role in the extraction of the l+'-boson mass from the data through 
direct reconstruction of the Breit-Wigner resonances. In this context especially the 
position of the maximum of these Breit-Wigner curves is of importance. All results

da _ dgppA 

de d?

__ 1
-0.16 1
-0.25 I
-0.30 ;•
-0.36
—0.4'
-0.-'
-0.

daHL{ky, k\\k2, k'2) = 3 [| da^k^k'M + | da^L(k\, k,\p2) + da^k2, k'2\Pl) 

+ |d<7[52(A:i; + | da^l(k\; fci |k2; k2) + dcrc(pi |p2)j.
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0.04

<5nf f-j. !'

cos Oi•0.04 * 1.00.80.60.40.2

0.007

0.001

-0.001
I

-0.003

-0.005

M [GeV]90868472

\\

0.005 l

0.003 I

M,,Mg
----------- 78,78
---------- 78.82
-----------81.82
--------  B2-7A-

-0.007 L 
70

-j—-j—|—i—j ( |

I — — (M.+MJ/Z
I --- M, ____

to the single invariant-mass distri- 
the distributions with respect to Mi and Mow.

.....
1..1..t....

74 76

Figure 4-7. The relative non-factorizable correction 5nf(M) 

butions da/dM. Shown are the corrections to t..~------------
Centre-of-mass energy: y/s = 184 GeV.

0.02

Figure 4-6. The relative non-factorizable correction <5nf(Mi, M2, cos#i) to the decay angular 
distribution do/[dM}d M2d cos 6 x] for fixed values of the invariant masses Mi,2 [in GeV]. Centre- 

of-mass energy: >/s = 184 GeV.

Mw
4-

i j 1 ri '•
1.. t TT"
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0.6

<5nf
0.4

[%]
0.2

0.0

-0.2

eV]72 74 76 78 80 82 84 86 88 90

in this section are presented for the following set of input parameters:

rz = 2.49 GeV,Mw = 80.22 GeV, fw = 2.08 GeV, 91.187 GeV,Mz

Figure 4-8. The non-factorizable corrections to da/dM\ for e+e~ —> W+W ■ 1 ’ rmions 
with different final states. Final states: hadronic-hadronic, hadronic-leptonic, leptonic-hadronic, 
leptonic-leptonic. Centre-of-mass energy: >/s = 184 GeV.

a = 1/137.0359895, sin2 0w = 0.226074.
This set of parameters is slightly different from the one adopted in Chapter 2, where 
both factorizable and non-factorizable corrections are calculated with the parameter 
set of Sect. 2.1.2. However, the non-factorizable corrections of this chapter differ 
numerically little from those of Chapter 2, as can be seen by comparing tables 2-3 
and 4-1.

From Fig. 4-6 it is clear that corrections of a few per cent could arise for angular 
distributions. They should, however, vanish after integration over M\ and M2, as 
was mentioned before. The non-factorizable corrections <5nf(Mi,M2) to the double 
invariant-mass distribution are presented in Table 4-1. From those results one can 
expect that c5nf will be less steep for the Mi distribution than for the Mav distribution. 
This is confirmed by Fig. 4-7. The corrections shown in Fig. 4-7 lead to a shift in 
the position of the maximum of the Breit-Wigner curves of the order of 1-2 MeV. 
These results have been obtained for the centre-of-mass energy y/~s '= 184 GeV. On 
the interval 170-190 GeV the largest corrections are observed for 170 GeV, where the 
corrections are about a factor of two larger than those at 184 GeV. At 190 GeV the 
corrections are slightly smaller than those at 184 GeV.

In Fig. 4-8 the relative non-factorizable corrections to the invariant mass distribu­
tion da/dMi are shown for various final states (hadronic-hadronic, hadronic-leptonic, 
leptonic-hadronic, leptonic-leptonic). Qualitatively all corrections are similar. The

------- lep-had 
------ had-lep 

-------- had-had 
lep-lep
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<5nf

0.10
[%l

7 05

Mi [GeV]9692 9482 84 86 88 90

4.7 Conclusions

□

0.15

----
----------------ddS9
--------------- UUCC
-------------uudd

Figure 4-9. The non-factorizable corrections to da/dM\ for e+e —> ZZ —> 4 fermions with 
different finai states. Final states: ddss, uucc, uudd. Centre-of-mass energy: >/s =
192 GeV.

r

corrections are quantitatively different for the leptonic-hadronic and hadronic-leptonic 
cases because of the definition of M\, which refers to the invariant mass of the fermion- 
anti-fermion pair mentioned first (thus in the first case Mi is the invariant mass of 
the leptonic pair and in the second case of the hadronic pair).

The methods and most of the actual formulae in this chapter can also be applied 
to ZZ production. In Fig. 4-9 we plot the non-factorizable corrections for this case. 
We consider ddss, p.+ii~r+T~, uucc, uudd final states at the centre-of-mass energy of 
x/s = 192GeV. The corrections are small. The smallness of the corrections results from 
the fact that <5nf is asymmetric in respect to ki <-> k\ or k2 <-> k'2. For all observables 
that involve an integration over the phase space that respects this symmetry, the non- 
factorizable corrections are suppressed either by the charges or the vector couplings 
of the final-state fermions. If an integration over the decay angles is not performed 
this suppression does not apply.

Results like those of Figs. 4-8 and 4-9 have been obtained in an independent 
calculation [10]. Agreement between two calculations has been discussed in Ref. [11].

In this chapter we studied two methods to evaluate non-factorizable QED corrections 
in the double-pole, semi-soft photon approximation. We derived results for VF-pair 
production, which are valid a few widths above threshold.

One technique (DMI) is an extension of that of Ref. [3] in the sense that the virtual 
and real photonic corrections are clearly separated and also regularized by a photon

98 100
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Appendix A: Feynman-parameter integrals

A.l The on-shell four-point function

.ns

much
L It is

ent
zed

mass A and charged-fermion masses mi and m2- The resulting formulae are rather 
complicated and are different from those of [3].

The second method (MST) extends the standard technique in the sense that five- 
point bremsstrahlung interference terms are decomposed into four-point, terms and 
that the semi-soft photon approximation is used from the start in the evaluation of 
real and virtual n-point functions. The results obtained with this method are 
simpler than the DMI ones, but the two are in complete numerical agr 
interesting to repeat at this point that our results of this chapter are : 
with an independent calculation [10). Also the authors of Ref. [3] hav 
their results and now state agreement.

The MST can be easily generalized to more involved final states by 
ward extension of the decomposition of five-point functions to the deco 
n-point functions.

In principle these corrections could be relevant for tests of triple gau. 
plings and for the determination of the W-boson mass. For the latter th 
are of O(a) and change the W line-shape by about 1%. For the forme. .-ish
at the O(q) level. In view of the present experimental accuracy, the common practice 
of neglecting non-factorizable corrections in the energy region at least a few widths 
above threshold is justified. When one gets into the threshold region, the Coulomb 
effect starts to dominate and should be given a separate treatment. Its numerical 
consequences in this non-relativistic region have been studied in the literature, see 
e g- [12].

As was mentioned above, the methods and most of the actual formulae in this 
chapter can also be applied to ZZ, ZH production and to top-quark pair production 
with subsequent IV6 decays. In the latter case the top-quark, W and b take the role of 
W, v and C, the gluon that of the photon. In that case the DMI formulae are directly 
applicable since no assumption on the neutrino mass was made. The MST formulae 
would need a small modification. This top-quark case will be discussed in the next 
chapter.

In this appendix we use Ref. [7] to present a compact expression for the on-shell 
four-point function £>1234, which appears in the decomposition of the virtual five- 
point function in Sect. 4.2.3. The result for 0(234 can be obtained from O1234 by the 
substitutions pi -> — pi and Aj —> —fcj. The results of [8] provide an independent 
check on the formula presented here.

As was mentioned before, the four-point function 04234 has to be calculated with­
out semi-soft photon approximation and in the on-shell limit. The resulting function,
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£*1234

— z2)-

-0
where r14 is a s,. he equation

AS

with coefficients

A5d = -2(fcs - *s).b

A.2

■£>0123 ~ —

and =fi =

-£i2

t
1 + I + ti

I 
0 0

</<2

. 2(pi • fc2)

i 
4tt27?2

-£i2(

+ £12 f—5 ~~zk)
V14 /

\ > ■ r'

+ io; -zk ) + In: _ J

does not conta- air 
the answer rea<

The infrared-finite four-point function

In this appendix we briefly describe some of the details of the FeynmaB-psramecrc 
integral belonging to Doi23 (see Sect. 4.3.2). The integral to be extaluatec ss ever 
Eq. (4.3.15). In the notation adopted in Sect. 4.3 this integral reads

defined as
r d'k_____________________________1___________________________

J (2»r)■> [(A- - P1)2 - + p2y - M^][(k - A:,)2 - mfflk + ktf - < ’
(Al)

divergences. Upon neglecting the fermion masses mj and r-.2

with

= «22(1 - 0 + €!&(-! - C + x. + 1/z.) + fl + - ft f- ■' x '

We perform the following change of variables:

1
1 + t + u

s - 2Mg, _ io1 ru 4----- =
ru

The quantities zti2 are the solutions of the equation

az2 + bz + c + ido = 0,

a = 2(fej • k2) - 2(p2 ■ ki), c — 2(fci • k2) - 2(pi • ts).

>/f2 , 4(P! • fc2)(p2 ■ A:i) 4(P1 ■p2)(A:1 •/c2)
Mw+ mK



120 Non-factorizable correctionsChapter 4:

Accordingly, the area of integration changes from

(A.9)Ci >0, &>0, Ci + C2 < 1,

to
(A.10)

A.ll)

A>134 (C) = — 3*Vp2 + z2 + a2 [-1^(01 %/p2 + * + - | p(c)l 2 + >1(0 + io]
(A.13)

(A.14)^0134(C) =

The integration over p becomes trivial:
00

/ 
—00

Mh'A1123 — ~

1
[1 + U + t]3

i 
167T2£>2

i 
16tt2|F(C)|

(A.12) 
The second expression in the denominator of the integrand is linear in u up to the 
small term u2m2/M^, which is needed to regularize the collinear divergences of the 
integral. When performing partial fractioning of the integrand, this term should not 
be neglected; it has to be treated as a small parameter.

Performing first the integration over u and then the integration over i, we obtain 
the final result (4.3.18) for D0123, expressed in terms of logarithms and dilogarithms.

A.3 The infrared-divergent four-point function
Next we present a few steps in the calculation of the Feynman-parameter integral 
belonging to £>0134 (see Sect. 4.3.2). The first step involves the integration over mo­
mentum space, as represented by Eq. (4.3.24). The contour will be closed in the lower 
half of the complex fco-plane, where only one pole is situated at ko = \f k2 + A2 — io. 
We introduce cylindric variables in the p(f) direction:

if pdp dz
S^2 J

/oi«(C) 167t2A|£?(C)| 3|S(C)I

0 < t < 00, 0 < u < 00.

The Jacobian of the transformation is given by

p(CiCa)
I d{tu)

The final integral to be evaluated looks like

f du dt
I [yo +1][t2 + t(x, + i/z,) +1 + u(i + tc)

dz
[-|B(C)| - | p(C)| z + A(C) + io]2'

The last integration simplifies if one uses the representation:

__________dz/x/^+l 
1° -\E^)\^+l-\p^)\z + A^)/X + io '

(A.15)
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(A.16)& =

es the form

1£>0134 —

am;

(A.18)

(A.19)t = t1 + cu,

which leads to

(A.20)

After changing the order of integration according to

(A.21)

Appendix B: Why 7Z, vanishes
In this appendix it will be shown that the second term in Eq. (4.2.30), given by

(B.l)Vole

where the 
versions of ■■

of A' and p'2 have now changed. Those quantities are rescaled 
The rescaling is performed in such a way that p'2 changes to

Mw 
u —>------u.

7711

^-JlL^+^A + l. 
772! 7722 m2 7721

p'2 
4M2,

d4A 
(25r)W0

1
1 + u + t

Z,rj(k ■ Vj) + 2aA2 
NtN2N,NA

°° ar , , dJ dudt-^

In this w;

In order to linearize this expression with respect to u, one has to introduce one more 
variable transformation

oo oo

J du J dt' 
0 — cu

oo oo

y du J dt —> 
o o

& = r

0 oo

y dt1 y du, 
-t‘/c

one can perform the rest of the Feynman-parameter integrations to obtain the final 
result (4.3.28) for £>0134-

followed by t —> ----- t,
7722

(A.17)
A' + X/A'2-Ai!p'2/J v

00 00

=y dt' y du+ 
0 0 -OO

Introducing the standard variable transformation t = x/z2 + 1 — z , the final integra­
tion can be performed, leading to the result given in Eq. (4.3.26).

The second stage of the calculation involves the integration over the Feynman 
parameters. We start with Eq. (4.3.26). This time we combine a change of variables, 
analogous to the one utilized in the previous appendix, with a rescaling :

... 77217722
With C = ------------,

$12

^ln

P'2 .2,2 S12 . , CMw . , Mw , , .
= £ + 22------------tu H----------- t H---------u + 1.

7721 7722 7722 7721

d
dp'2 I xM'2 - A'V
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(M)) (fco)

o

3 ••••3 ••••

(a) (b)

.he

(B.2)'Pole

Figure 4-10. The pole structure of P in the semi-soft photon approximation (a', 
formation of the integration contour in the complex Aco-plane (b). The solid cii 
particle poles, the open circles the photon poles.

is actually zero. In this integral the photon is not necessarily on-shell, because the 
residue is not taken in the photon pole. However, by power counting we can conclude 
that only soft and semi-soft photons give a noticeable contribution to the integral. All 
other contributions are formally of higher order in the expansion in powers of Tw/Mw- 
Therefore we use the semi-soft photon approximation to evaluate this integral. As a 
result, all particle poles are situated in the same half-plane of the complex ka variable, 
as is shown in Fig. 4-10(a).

Next one can deform the integration contour in the way depicted in Fig. 4-10(b). 
Note that the orientation of the contour is reversed. Figure 4-10 shows that the 
sum of the particle-pole residues is equal to the sum of the photon-pole residues 
with the opposite sign. This is a consequence of the semi-soft photon approximation 
and of the fact that all particle poles turned out to be in the same half-plane of the 
complex variable. The latter is the result of the transformation (4.2.25) introduced 
in Sect. 4.2.2.

Let us consider the following general integral

p • k
NMNi

where p^ is an arbitrary vector. In the semi-soft photon approximation the denom­
inators can be written as No = k2 — A2 + io and Ni = 2(pi ■ k) + p2 — m2 + io. As 
mentioned in Sect. 4.2.2, the momenta p, are time-like and have positive energy com­
ponents, i.e. Ei > | Pj|- For simplicity we take the photon to be massless, i.e. A2 = 0, 
but the arguments that follow do not depend on this. Deforming the integration con­
tour as described above, and subsequently taking the residues in the photon poles,

r d'k ~ J (2ir)4N0
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one can write

R(p) = 2tri y

In spherical coordinates this takes the form

7?(

(B.4!

—|fc| and

TC(p) (B.5)

C.l

= y a '"f1 + [e(x - Xi) - S^x‘ ~ *)]• ic.n

(C.2)Fi(a;0\xi') = —2Li2 + Li2

ln(l +x»3)-+ ln ln(l - 0) + In ln(l + 0) - 2 In

I

Appendix C:
Special functions and integrals in the DMI method

i*i-•» 
(B-3)

The functions Fj and F2
In this appendix we present the functions F\ and F2, which are used in the calculations 
in Sect. 4.4. The function F\ is defined as

0(1 + a) 
1 + 0.0

d|*|
(2tr)<

1+0
1 + 00

0(a ~ *■)
1 + 00

1 + J.0
1 + a.0.

1-0
l + a0 

0(a ~ 1)
1 + a0

Here a is a complex number with a non-zero imaginary part, and 0 and r, are real 
numbers with absolute value smaller than 1. The analytical expression for this func­
tion is given by

lw=— |k|+«o
+ 2tri j

In the seco a
Ok -+ —nt, to ,'bt.i:..

7itr /
—oo

d3k (p • k) 
(2tr)«2w NkNtNjN,

d3k (p ■ k) 
(27r)’2w NlN2N3Ni[

________ 1£|2 (g + f(»t)|pl)________  
n [-2|*| (Ef + f.(Qt)| pj) + p? - m? + io]

■'!*|d2nt__________ |fc|2(£-/(Qt)|p|)__________

(2’r)“ n [2|*| (Et - fi(fh)IPil) + P? - m? + io]

•an make a change of variables according to |*| -+ -

4*1 d?Qk_________|*|2 (K + f(Qt)|p|)_________
(27r)4 _n [_2|k| (£, + /,(nt)lPil) + pl - + «o]

This integral is ultraviolet-finite and all poles are situated in the same half-plane of 
the complex variable |£|, since Ei > |pj and |/i(Qjt)| < 1. By closing the contour in 
the opposite half-plane, one finds 7£(p) = 0. From this it trivially follows that Tv = 0.
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Ft(xi;/3\xt) = ln(l + Xi/3) ln(i^-) (C.3)

(C.4)

.:orre-

(C.5)F2(a|zj) = —21n(zj — a) + ln(—1 — a) 4- ln(l — a),

and
= InfiSY\ m- /

(C.6)

C.2

(C.7)

with
(C.8)B = v2sin0i2sin0.and

cos# G (4-z+, +1)4-

/« =

where

VA2 - B2 = !«! - f2| y/x2 - x2+. (C.10)andx+ =

In non-collinear situations one can take «i,2 —> 1, resulting in x+ = y/(l + xl2)/2.

A = (vi - v2cos012) cos B

The principal-value integration yields

For a and x,- the same restrictions as indicated for the function Ft a; 
spending analytical expressions are

cosO € (—1, —x+)
(C.9)

vj(l - x?2) 
v? + v2 - 2v1u2Xi2

The other function, is defined as

The azimuthal principal-value integral
In this appendix we present the result for the azimuthal principal-value integral, used 
in Sect. 4.4:

In addition we need this function in the special case a = xiy without non-zero imag­
inary part. There, the integral F\(xi] is logarithmically divergent. This is a 
collinear divergence and should be regularized by keeping the small non-zero fermion 
masses. The answer in this case is

— ;-Li2(s

* 2?r A — Bcos<t>)

for AjB 6 (4-1,4-oo) or equivalently

1 dxF2(a|x,) = y - S<x‘ ~ x)]

for A/B 6 (—oo, — 1) or equivalently
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C.3

•^1(1+; v) = J (C.ll)

T

(C.13)

which amounts to

(C.14)

a sum. This sum

(C.15)(*+;«) + 7r2(x+) =

(C.16)ln(B -x),

/C(A; Bjx0; fi2) =

(0.17)

7T2 

T

He 
v -

iln2(l - x2) - ln(x+) ln( 1 - x2 )1.

(C.12)

- Li2

- Zi2

*+ 
x+ - 1

A - 1

B - x0
B — 1

1 — vx
1 + vx

dx
yjx1 -x\

I with 0 < x+ < 1, and the quantity v is real and close to unity. For 
’.'er for this integral is given by

1
•/1 - x+

tt2 
“ T +

^Li2(x2 ) - y + ln(x+) ln(l - x2 )j

-1
A 4- a?o

+ £12

+ ln(B - xq) ln(

Tim < . ion Ft is defined as

^(*+) = f

The functions Fi, J-2 and K

In this appendix we present the functions Th, JF2, and IC, used in Sect.4.4 for the 
infrared-divergent four- and five-point functions.

The fi nation T7, is defined as

IC(A; Z?|x0; fi2) = /------------- ,
/ (x + A)\/(x-Xo)2+/i2

A being a complex number with a non-zero imaginary part, and B being real and 
larger than 1. The quantities x0 and fl are real, with |xq| < 1 and fl2 <g 1. The 
resulting analytical expression is somewhat more complicated:

-M
________ A - 1 
4(1 — Xq) A + x0

1 —
2 )

^2(x+) = 1

v 1— x+
In our explicit formulae, the functions and J-2 always enter as 
can be represented in a compact form:

1 - ■ [-lln2f \/l -x2+ I. 2

The function K. is defined as

[2 \ 2

/ B — Xo A + 1
\ B - 1 ’ A + io

—-— In 
1 — vx

( , A + 1
11; -7-—( \ A + io

5-1-1 A + Xq 
B — x0 ’ A — 1 .

M2

dx 1
yjx2 — X2 1 + 1

■K2

6
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5

5. oduction
'i future collider experiments, a detailed investigation of the production

e+e ,77 —> it —> bW+bW —> 6 fermions, (5.1.1)

In
ex.
of.

Interconnection effects 
ir to-quark pair production

qq, gg—> ttbW+bW —> 6 fermions. (5.1.2)

A lot of effort has been put into an adequate theoretical description of these reactions 
(see e.g. Ref. [2] for two review papers). Most of these studies treat the top quarks as 
stable particles, which is a reasonable first approximation since Vt/mt = (9(1%). For 
the reactions qq, gg —> tt these studies comprise QCD [3] and electroweak [4] one-loop 
corrections, as well as the resummation of soft-gluon effects [5]. Also for the reactions 
e+e~,77 —> tt both the QCD [6) and electroweak [7] one-loop corrections are known. 
Moreover, the tt threshold, with its sizeable QCD [8] and Yukawa interactions [9], 
has been analysed in detail.

One would, however, like to treat the top quark as an unstable particle, with 
a Breit-Wigner distribution describing its line shape. The most economic approach 
for treating processes that involve the production and subsequent decay of unstable 
particles is the so-called leading-pole approximation (LPA) [10]. This approximation 
is based on an expansion of the complete amplitude around the poles of the unstable

- the treatment of QED interconnection effects in W-pair production, as 
’hapter 4, will be carried over to QCD and tt production. The material 

has been published in the literature, [1].

At ■ -s

of - -c? pairs will substantially contribute to our knowledge of the top-quark
properties and thereby of the Standard Model. An improved measurement of the 
top-quark mass mt, for instance, can serve to obtain improved indirect sensitivity 
to the mass of the Standard Model Higgs boson. This is achieved by combining the 
high-precision measurements of the electroweak parameters at LEP/SLC with the 
direct measurements of the top-quark and W-boson masses.

Pairs of top quarks can be produced in hadron collisions at the Tevatron (pp) and 
LHC (pp), as well as in e+e~ and 77 collisions at a future linear collider. Since the top 
quark has a large width as compared to the QCD hadronization scale, Tt ~ 1.4 GeV 
Aqcd « 200 — 300 MeV, it predominantly decays before hadronization takes place. 
Therefore the perturbative approach can be used for describing top quarks. The main 
lowest-order (partonic) mechanisms for the pair production of top quarks are
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Definition of the non-factorizable corrections5.2

‘These gluons will still be perturbative in our case as their typical energy (Eg ~ Ttjv £1.4 GeV) 
largely exceeds the QCD hadronization scale (Aqcd « 200 - 300MeV).

In the LPA approach reactions'like (5.1.1) and (5.1.2), which involve unstable parti­
cles during intermediate stages, can be viewed as consisting of separate subprocesses, 
i.e. the production and decay of the unstable particles. Having this picture in mind, 
the complete set of radiative corrections can be separated naturally into a sum of cor­
rections to these subprocesses, called factorizable corrections, and those corrections 
that interconnect various subprocesses, called non-factorizable corrections. It should 
be noted, as was explained in Chapter 2, that it is often misleading to identify the 
non-factorizable contributions on the basis of diagrams. Such a definition is in gen­
eral not gauge-invariant. Rather one should realize that only real/virtual semi-soft 
gluons1 with Eg = <9(I\) will contribute, the contributions of the hard gluons being 
suppressed by Vi/Eg. This is a consequence of the fact that the various subprocesses 
are typically separated by a big space-time interval of <9(l/rf) due to the propaga­
tion of the unstable particles. The subprocesses can be interconnected only by the

fi-threshold. If in reactions (5.1.1) and (5.1.2) also the W bosons are 
ble particles, then also for these particles the leading pole residues si 
this approach the complete set of corrections to reactions (5.1.1) an< 
splits into two groups: factorizable and non-factorizable corrections 
corrections are directly linked to the density matrices for on-shei 
decay of the unstable particles. The non-factorizable corrections • 
describing interactions that interconnect different (production/dec 
off-shell process. A detailed discussion of this method with all its : 
found in Ref. [11] and in Chapter 2, where the method has been ap, 
plete set of O(a) radiative corrections to the process e+e~ —> H/+1V' 4 iermions.
For ttproduction partial results along this line exist [12], involving a subset of the fac­
torizable corrections to the reaction e+e“ —» tt —> bW+bW~ —> 6 fermions. However, 
the non-factorizable corrections are needed for a complete O(os) calculation.

In this chapter we apply our calculations presented in Chapter 4 to the non- 
factorizable O(as) corrections to tt production at various colliders. We discuss the 
effect on the invariant-mass distribution of the off-shell top quark and the resulting 
shift in the maximum of the distorted Breit-Wigner distribution.

particles, which can be viewed as a prescription for performing an effective expansion 
in powers of Fj/A/,. Here A/, and Ft stand for the masses and widths of the various 
unstable particles. The residues in the pole expansion are physically observable and 
therefore gauge-invariant. The actual approximation consists in retaining only the 
terms with the highest degree of resonance. In the case of top-quark pair production 
only the double-pole residues are hence considered and the LPA becomes a double­
pole approximation (DPA). This approximation will be valid sufficiei: . ’ above the 

d as unsta- 
aken.In 
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ton and 
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he com-
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5.3 Colour dependence
of the non-factorizable corrections

• 'he generic structure of the complete ^-production process qq —> tt
> fermions in the LPA. The open circles denote the various production and decay 

As an example also the non-factorizable semi-soft gluon interaction between the
- decay subprocesses is shown.

We start off by considering the simpler case of stable W bosons. At the end of this 
section we will indicate what happens if the W bosons decay hadronically. For stable 
W bosons one can identify three subprocesses: ttprOd, *dec> ^dec- The non-factorizable 
corrections are given by the semi-soft gluon interferences between these different sub­
processes. As only semi-soft gluons contribute, the virtual and real matrix elements 
factorize in terms of lowest-order matrix elements and semi-soft currents. In view of

radiation of semi-soft gluons with energy of O(r,), which induce interactions that are 
sufficiently long range. Hard gluons (Eg = » T,) as well as massive particles
induce short-range interactions and therefore contribute exclusively to the factoriz­
able corrections, which are governed by the relatively short time interval ~ l/Af, on 
which the decay and production subprocesses occur. A more detailed discussion of 
these issues can be found in Refs. [11, 13, 14] and in Chapter 2.

In Fig. 5-1 we show schematically the partonic process qq tt bW+bW~ —> 
6 fermions. The process consists of five subprocesses, which we will denote by ttprod» 
^dec, ^dec> ^dec’ aQd ^dec- Fig- 5-1 these subprocesses are indicated by the open cir­
cles. The non-factorizable semi-soft gluon interactions interconnect any two different 
subprocesses, as is exemplified in Fig. 5-1 for the two top-quark decay subprocesses. 
The coupling of such a gluon to a certain subprocess can be written in terms of semi- 
soft currents. In contrast to soft-gluon currents, the effect of the gluon momentum on 
the unstable-particle propagators cannot be neglected in the semi-soft currents. The 
various non-factorizable corrections to the cross-section are just given by all possible 
interferences of the seini-soft currents. This will be made more explicit in the next 
section.
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(5.3.1)QlMQife) -> t(pi)t(p2) -> h(*:i)Mz+(*:'1) t(/c2)IV (».

(5.3.2)

, (5.3.3)

. (5.3.4)

(5.3.5)

element 
funda- 
on the

the possible presence of coloured particles in the initial state (<?q, gg), this factoriza­
tion depends on the colour structure. For the reactions (5.1.1), which involve only 
colourless initial-state particles, the tt pair is produced in a singlet state. In contrast, 
the tt pair is produced in an octet state in the lowest-order annihilation process 
qq tt, which involves the time-like exchange of a gluon. Both singlet and octet 
states are present in the lowest-order gluon-fusion reaction gg —> since in that
case also space-like top-quark-exchange diagrams contribute. Becan ■ se differ- 

-.rorizable 
■sion. 
st-order

ences in the colour structure of the lowest-order reactions, also th. 
corrections will come out differently, as we will see from the follow! -

In order to keep the notation as general as possible, we write 
partonic reactions in the generic form

('Areal'l'^'K 
X nf

X nf

where Q1Q2 = {e+e“, 77, qq, gg}. The corresponding lowest-ordei 
will be denoted by (-M0)i)C|, where i,j indicate the t,t colour indiv 
mental representation. The colour indices Ci,c2 belonging to Qi,Q?. depeiid 
specific initial state: they are absent for the colourless e+e~ and 77 initial states, and 
they are in the fundamental/adjoint representation for the qq/gg initial states. The 
momentum, Lorentz index, and colour index of the semi-soft gluon will be denoted 
by k, fi, and a, respectively.

By using the relation

for the SU(N) generators T“ in the fundamental representation (with TV = 3 for 
QCD), the virtual and real non-factorizable corrections take the generic form:

jvirl — 1

da- - ^-2?

-1 dr0
Kin 2s

Si-i" \jt(Ja - Ju - je)„ + J[(Ja + Ju + Je)w + 2Jt 

+ 5i"i' 6j’j" [/V Ji(Ja + Ji + j7e)M + N Jj(Ju — Ja — JZe)M

(Ai;)^(A4o)^Re{i/^^

(A4;)^(A40)^Re{/

Here the pre-factor consists of the lowest-order phase-space factor in the LPA [dfo], 
the partonic flux factor [l/(2s)j, and the initial-state spin and colour average [l/ICin]- 
The non-factorizable kernels can be expressed in terms of semi-soft currents according 
to
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( (5.3.6)

(5.3.7)% =

£>1
= - 9s

(5.3.8)~9s
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— 9s

Jq — 9s (5.3.9)
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for gluon emission from the decay stages of the process, and
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JH = 9s[ 
L 

= -4- I- 

^ = s.[

- (Jf Jios + MJa.* + JfJa.j] }

+ {<?/>" (T“)zr JfVe.p},

»i"i" 6ff [Z7 “(la - Ta - io), + Tt “(Ta + Ta + Zo)„ + 2Tt

1- 6,., 6rj,. [^"(I,,- + la + Zo)„ + NTj“(Ta - Ta - Zb)p

9 11- - (zrzf,„ + H“Ia,„ + rl“Itl,„)] j
+ (Qm) 2 2 1 ' (fyj" (T'a)i"i'Tt“To,li +<5i"i' (7^);y zf*''2o,),|.

The terms proportional to project on the lowest-order singlet tt states,
whereas the terms proportional to 6{"e 6j'j" completely factorize the lowest-order 
cross-section. The colour structure

0 for e+e_,77

^^e;(Ta)e;d1+^eie,(T°)^e; for 99 
ie,<';(Fa)<i!'dt+6^dl(F^yt!le; for gg

depends on the specific initial state and in general does not project on explicit lowest- 
order tt colour states. Here Fa are the SU(N) generators in the adjoint representation, 
which are defined in terms of the SU(N) structure constant according to (F“)bc = 
—ifabc. Note that for e+e~ and 77 initial states the currents Jq , and Zq completely 
drop out of Eqs. (5.3.3) and (5.3.4), as it should be for colourless particles in the initial 
state.

The semi-soft currents appearing in the virtual non-factorizable corrections are 
given by
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needed to

zr = -a. .3.10)Zf = 9s

and

= 93

.3.11)2? = -9.

zrz*p -> -zrz<f, -> r^ia.

(5.3.12)d<7nt = ^nf

(5.3.13)

(5.3.14)

__ £2
Z?2

Here riCTnom.i 
for producing the intermediate ft pair in 
completeness we note that

rfc'nLn = d^Born,! + da^ornS.

__ D' 
kki J Di 4- 2kpi ’

kpi

kqi

[A^-l
[ 2.V

3n, = 2Re|>/

-/

for gluon emission from the production stage of the process. Here g$ is the QCD 
gauge coupling and Di2 — p?i2 — mJ + imtrt is a shorthand notation for the inverse 
top-quark propagators. Note the difference in the sign of the io parts appearing in 
the currents Z7@, and Z7e,«7e- These infinitesimal imaginary parts are 
ensure a proper incorporation of causality.

The corresponding semi-soft real-gluon currents read

*Pi

and dosorn.8 are the lowest-order multi-differential cross-sections in DPA 
a singlet and octet state, respectively. For

p£] 
fcP2j

+ «L]

*1]
kp2 fck2J

dOBom.l dOBom.sj ,

[Jt St,* + JfJtl,,. + JfJu.,]

[pf. _<]
[kpi kpaj’

/'9i *92]’

= 93

d*k 
(2it)4 [fc2 + to]

By simple power counting one can explicitly see from the above specified currents 
that the contributions of hard gluons are suppressed and that effectively only semi- 
soft gluons with Eg = k0 = O(r() contribute. In view of the pole structure of the 
virtual corrections, governed by the infinitesimal imaginary parts io, many of the non- 
factorizable corrections will vanish when virtual and real-gluon corrections are added 
up. For instance, as was explained in Chapter 4, all initial-final state interferences 
will vanish, leaving behind a very limited subset of ‘final-state’ interferences [11, 14]. 
The following holds for the remaining interferences:

= do^,r, = da^ornfi,

with similar effective replacements for J#. As a result of these properties of the 
non-factorizable corrections, a factorization per colour structure emerges:

ig = -9s
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5 aerical results
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(5.4.2)
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■ of Eqs. (5.3.12)-(5.3.14) we can now in principle evaluate all kinds 
of a ntial distributions, with and without non-factorizable corrections. Al-
though I •. Lorized structure of the non-factorizable corrections is very transparent 
in Eq. (5.3.). integration of the inulti-differential cross-sections will affect this struc­
ture. For instance, in Eq. (5.3.12) the correction to the singlet cross-section differs by 
a factor —8 with respect to the octet one. However, for the calculation of the relative 
non-factorizable corrections to a one-dimensional distribution, one has to evaluate the 
ratio of the integrated Eqs. (5.3.12) and (5.3.14). Since <5nf depends on the integration 
variables, the thus-obtained singlet and octet correction factors will not necessarily 
differ by the factor —8.

At this point we stress that any observable that is inclusive in both top-quark 
invariant masses, such as the total cross-section, will not receive any non-factorizable 
corrections. This is a typical feature of these interconnection effects (see e.g. Chapter 4 
of this thesis or [14]). As an example of a distribution that is subject to non-vanishing 
non-factorizable corrections we focus on the invariant-mass distribution of the top 
quark, which can be used for the mass determination. To this end we determine the 
non-factorizable correction <5nf (A/) for the distribution

^7 = +
dM dM L J

where M is the invariant mass of the 5-quark and the W+ boson. The maximum 
of the Breit-Wigner distribution can be used to determine the top-quark mass. The 
linearized shift of this maximum as induced by the non-factorizable corrections is 
given by

The non-factorizable factor 5nf can be obtained from the formulae of Chapter 4. The 
results of Sect. 4.4 (DMI method) should be used, since those allow for massive decay 
products from the unstable particles, which is the case for the top-quark decay.

We conclude by considering the case that also the W bosons are unstable. This 
adds two decay subprocesses, and to the three we have considered so 
far. c «b. I bosons decay leptonically, nothing changes as the gluon cannot couple

• ay subprocesses in that case. For a hadronically decaying IF boson 
■-Terences have to be taken into account. However, such interferences 

as a result of the singlet nature of the W-boson decays [i.e. Tr(Ta)=0].

AM = | T?
8 1 dM

The correction 5nf(M) is calculated for the four different mechanisms of tt pro­
duction, i.e. initiated by e+e~, yy, qq and gg. For the centre-of-mass energies of these 
(partonic) reactions we take y/s = 355 GeV and 500 GeV. These values exemplify the 
non-factorizable corrections in the vicinity of the threshold and far above it. As men­
tioned before, the adopted approximation in our calculation (LPA) forces us to stay
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6»f

[%]

V]

(5.4.3)mt = 173.8 GeV, Mw = 80.26 GeV, Mz = 91.187 GeV,

and

0.3536 for x/s = 500GeV, (5.4.5)c»s(l-4GeV) «

Figure 5-2. The relative non-factorizable correction <5„/(A/) to the single invan. 
bution da/dM. Centre-of-mass energy: y/s = 355 GeV.

mass ciistri-

as(6.8 GeV) Rs 0.1955 for ,/s = 355GeV, (5.4.6)
corresponding to as(Mz) = 0.1180 at the Z peak. It should be noted that choosing 
another scale in as will only affect the normalization of the correction.

In Fig. 5-2 the non-factorizable correction 5nr is plotted as a function of the in­
variant mass M at the centre-of-mass energy of 355 GeV. The <5nf values for the pure 
singlet e+e~ initial state and the pure octet qq initial state differ approximately by 
the afore-mentioned factor of —8. For the gg initial state the Born octet part is 
larger than the singlet one, resulting in a non-factorizable correction that lies be­
tween the e+e~ and the qq case. The correction for the 77 initial state is virtually

F, = 1.3901 GeV, (5.4.4)
the latter being the O(as) corrected top-quark width. The correction <5nf is propor­
tional to as, for which we have to choose the relevant scale. For y/s = 355 GeV 
the main contribution originates from the non-factorizable Coulomb effect present in 
<5nf. Its typical momentum is determined by the top-quark width F, and velocity /3: 
Vt/P ~ 6.8 GeV. At 500 GeV softer gluons contribute and therefore the typical gluon 
momentum is T( ~ 1.4 GeV. Therefore we choose

sufficiently far above the tt threshold (read: a few times F,). The numerical values 
for the input parameters are

80

40

-80

- ee
- <?<?

99

167 170 173 176 179
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<5nf

!%]

M [GeV]

5.5 Conclusions

Figure 5-3. The relative non-factorizable correction to the single invariant-mass distri­
bution do/dM. Centre-of-mass energy: y/s = 500 GeV.

indistinguishable from the e+e“ one and is therefore not displayed. Evidently the 
distortion effects from the singlet corrections are very large, which is due to a large 
non-factorizable Coulomb correction inside <5nf- The maximum of the Breit-Wigner 
distribution is hardly affected by this large correction. One finds for the various ini­
tial states e+e“(77), gg and qq AM « -85, -15 and 4-10 MeV respectively. The 
situation at 500 GeV is depicted in Fig. 5-3. The overall correction is small, which is 
typical for non-factorizable corrections further away from threshold. The shift in the 
maximum of the Breit-Wigner distribution is of the order of 5 MeV for the e+e~ and 
77 initial states, and even smaller for the qq and gg initial states.

In order to obtain hadronic distributions from the partonic ones, the results for 
the qq and gg initial states should of course be properly folded with the parton 
densities of the colliding hadrons (pp at the Tevatron, pp at the LHC). The bulk 
of the partonic contributions originates from the energy region not far above the tt 
threshold (s < 8m?, i.e. y/s < 500 GeV), which is exemplified by the partonic energies 
355 and 500 GeV used in our analysis.

In this chapter we have summarized the gauge-invariant description for calculating 
the O(as) non-factorizable QCD corrections to pair production of top quarks. The 
formalism is presented in a general way, making it applicable to all relevant initial 
states. The resulting final formula for the non-factorizable corrections involves the 
same quantity <5nf for all reactions. This quantity can be numerically calculated using 
expressions available in the literature.

6

2

179176167 170 173

--  ee
— qq
— gg
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Although the formalism can be used for numerical studies of many distributions, 
the focus of our numerical evaluation has been on the invariant-mass distribution 
of the top quark, which can be used for extracting the top-quark mass. In spite of 
the possible sizeable deformations of this line-shape distribution, its maximum is 
shifted by less than 100 MeV. It should be noted that higher-order non-factorizable 
corrections might be needed for a more precise quantitative descrip* •< of the Breit- 
Wigner deformation.
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Samenvatting

teit en stralingseffecten 
roductie van W-bosonen

I?
ir

; :ud Model van de wisselwerking tussen verschillende elementaire deel- 
■acht een nauwkeurige beschrijving te geven van alle tegenwoordige 

, erimenten. Tot nu toe komen alle experimentele resultaten overeen met 
van het Standaard Model. Hoewel dit op een succesver-

tjes .
ver?!:.
de voorspelde resultaten
haal lijkt, is verder onderzoek noodzakelijk. Er zijn namelijk effecten, voorspeld door 
het Standaard Model, die nog niet ontdekt zijn. Bijvoorbeeld het bestaan van een 
nieuw deeltje, het Higgs-boson. Bovendien zijn er aanwijzingen dat het Standaard 
Model tekortschiet bij extreem hoge energieen. Al met al genoeg motivatie om het 
Standaard Model nader te onderzoeken en verder te toetsen. Toekomstige versneller- 
experimcnten zullen bij hogere energieen en met een grotere nauwkeurigheid uitge- 
voerd worden. De resultaten van deze experimenten zullen vergeleken moeten worden 
met de voorspelde uitkomsten van het Standaard Model. Deze voorspelde uitkom- 
sten dienen van dezelfde kwaliteit te zijn en eenzelfde nauwkeurigheid te hebben als 
de experimentele gegevens. De complexiteit van de berekeningen met hoge nauw­
keurigheid stelt een duidelijke uitdaging aan de theorie. In dit proefschrift wordt 
ingegaan op dit soort van berekeningen voor paarproductie van instabiele deeltjes. 
In het bijzonder wordt de paarproductie van W-bosonen gedetailleerd bestudeerd. 
De twee voornaamste fenomenologische doeleinden van de experimentele studie van 
dit proces zijn het verkrijgen van de massa van het W-boson en het bepalen van 
de drievoudige ijkboson-koppelingen. De massa van het W-boson kan, gecombineerd 
met precieze kennis van andere grootheden van het Standaard Model, zoals de massa 
van het Z-boson en het top-quark, de mogelijke waarden inperken van de massa van 
het nog-te-ontdekken Higgs-boson. Zelfs kan de precieze massa aanwijzingen geven 
voor mogelijke uitbreidingen van het Standaard Model. Aan de hand van de drievou­
dige ijkboson-koppelingen kan een zeer fundamentele eigenschap van de electrozwakke 
theorie getest worden: de niet-abelse ijkgroep structuur.

Het doel van dit proefschrift is tweeledig. Aan de ene kant worden de een-lus 
(9(a) stralingscorrecties voor het proces e+e~ —> 4 fermionen bestudeerd. Immers 
elk W-deeltje vervalt in twee fermionen, zodat de eindtoestand voor paarproducie 
van W-bosonen vier fermionen bevat. De volledige (9(a) berekening is niet doenlijk 
wegens de grote complexiteit en ook niet zinvol omdat vele bijdragen klein zijn. De lei- 
dende termen worden verkregen door een expansie rond de polen van de W-bosonen 
uit te voeren. Een dergelijke berekening van stralingscorrecties is van fenomenolo-
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gisch belang voor de huidige LEP2 experimenter!. Aan de andere kant wordt in dit 
proefschrift het idee uitgewerkt, dat het genoemde pool-schema in het algemeen een 
geschikte en tamelijk krachtige methode is voor het werken met processen waarin 
instabiele deeltjes een rol spelen. Dit maakt het onderzoek relevant voor vele toekom- 
stige experimenten waarin instabiele deeltjes geproduceerd zullen worden

In hooftstuk II wordt de methode van pool-expansies en de verde-; 
stralingscorrecties in een som van factoriseerbare en niet-factoriseerba 
besproken. Deze opslitsing is van essentieel belang voor de methode. I 
waarin instabiele deeltjes een rol spelen kunnen beschouwd worden als 
verschillende goed gescheiden subprocessen, waar de instabiele deeltjes 
geproduceerd en vervolgens vervallen. De factoriseerbare correcties zijn 
correcties die slechts een van de subprocessen beinvloeden. De niet-fa 
correcties zijn die correcties, die verschillende subprocessen met elkaar 
Dit leidt tot correlaties tussen de verschillende subprocessen. De problem 
trekking tot ijkinvariantie, samenhangend met deze werkwijze, worden ii 1 be­
sproken. De (9(a) electrozwakke factoriseerbare correcties worden berekend en wor­
den gecombineerd met de niet-factoriseerbare correcties, die worden uitgerekend in 
hoofdstuk IV. Aan het eind van hoofdstuk II worden numerieke resultaten gepresen- 
teerd. Deze resultaten omspannen voor de eerste keer de werkzame doorsnedes met 
complete (9(a) stralingscorrecties voor de paarproductie van niet op him massa-schil 
liggende I4z-bosonen.

In hoofdstuk III wordt de kwestie van de eindtoestandsstraling besproken, welke 
aanleiding geeft tot een opmerkelijk resultaat in hoofdstuk II. Dit resultaat houdt 
in dat eindtoestandsstraling een aanzienlijke correctie kan geven voor de invariante- 
massadistributie van een instabiel deeltje, iets dat a priori tamelijk onverwacht is. 
Gewoonlijk resulteert de begintoestandsstraling in sterke effecten (versterkt door de 
zogenaamde colineaire logaritmen). Soortgelijke versterkte effecten zijn in principe 
ook in zowel virtuele als reele eindtoestandsstraling aanwezig. Deze uitdrukkingen 
zijn afkomstig uit een speciale kinematische configuratie, waarbij een foton wordt 
afgestraald door een bijna massaloos fermion in een bijna colineaire richting. In deze 
situatie is het moeilijk deze twee deeltjes van elkaar te onderscheiden, hetgeen het mo- 
gelijk maakt ze te beschouwen als ontaarde toestanden. Het Kinoshita-Lee-Nauenberg 
theorema stelt echter dat deze colineaire logaritmen wegvallen wanneer men over alle 
ontaarde toestanden middelt. In het geval van begintoestandsstraling blijven deze ter­
men wel bestaan, omdat het niet mogelijk is een dergelijke middeling uit te voeren. 
Experimented is er slechts een (e+e“) begintoestand. In het geval van eindstraling 
vallen deze logaritmen gewoonlijk weg. In de aanwezigheid van instabiele deeltjes, die 
bijvoorbeeld in een fermionpaar vervallen, kan de invariante massa van het fermion­
paar beschouwd worden als een extra quantumgetal, die de verschillende ontaarde toe­
standen van elkaar onderscheidt. Zodra dit quantum-getal ’’vastligt” (bijvoorbeeld als 
men de invariante-massadistributie beschouwt), treden de KLN cancellaties niet meer 
op en zodoende geeft de eindstraling grote correcties, net als de beginstraling. Ten- 
einde de lezer ervan te overtuigen dat dit niet door onze methode van pool-expansie
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veroorzaakt wordt, wordt een eenvoudig model geanalyseerd waarin de berekening 
analytisch uitgevoerd kan worden, zonder gebruik te maken van de pool-expansie. 
Hetzelfde effect komt ook hier naar voren.

In hoofdstuk IV wordt een berekening van de niet-factoriseerbare correcties en 
hi::, imp’:cuties voor W-paarproductie gepresenteerd. Een rekenmethode die speciaal 

de evaluatie van deze correcties wordt ontwikkeld. Deze rekenmethode 
ucompositie van de ”veel-punts” scalaire functies (zowel reeel als virtu­

al van ” lagere-punts” functies en is zo ontwikkeld dat ze ook toepasbaar 
xere processen waarin meer instabiele deeltjes een rol spelen.
lere toepassing van de methodes die in hoofdstuk IV ontwikkeld zijn 
fdstuk V een-lus QCD ’’interconnectie” effecten in paarproductie van 
ekend. Sinds de ontdekking van het top-quark in 1994 heeft dit pro- 
•taan in het bestuderen van de eigenschappen van het top-quark. Een 

. -eoretische voorspelling voor dit proces is daarom gewenst. De pertur- 
ba : t interconnectie” effecten kunnen op een natuurlijke en eenvoudige wijze 
berekend worden. Derhalve kan dit hoofdstuk beschouwd worden als een illustratie 
van de kracht en de universaliteit van de technieken die in dit proefschrift besproken 
zijn.
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This thesis.

3. It is common to use either a fixed or a running width in (radiative) Im­
pair mediated 4 fermion (+7) production. A fixed width guarantees 
£7(1) gauge invariance only. SU(2~) gauge invariance can be achieved 
by using in addition a complex mixing angle. The accuracy of this 
procedure is O(rw/Mw), the same as of the double-pole approximation 
discussed in this thesis.

2. N-loop non-factorizable corrections can be written in terms of semi-soft 
currents similar to the ones discussed in this thesis. For example, the 
virtual non-factorizable correction has the form

where the product of semi-soft currents, J+ and J7_, is defined by the 
rule j£(k, D±) * J£(l, D±) = J£{k, D± ± 2p± • k).

where /?, M and T are respectively the velocity, mass and width of the 
unstable particle.
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1. The non-factorizable corrections to the pair production of unstable par­
ticles vanish at high energies, <5nf ~ E-4. If unstable particles are 
charged, the Coulomb effect dominates radiative corrections close to 
threshold. The following ansatz describes the non-factorizable correc­
tions to the double invariant mass distribution reasonably well for all 
energies



4.

5.

6.

7.

8.

9.

Consider a soldered Il-like tube with liquid in both knees of the tube 
with some level difference. Both effects of friction of the vapour over 
the walls of the tube and over the buffer gas have to be taken into 
account in order to understand correctly the velocity with which the 
liquid levels become even.

The following two curious observations might have some deep explana­
tion. The number of leptonic fermionic modes in the Standard Model is 
the same as the number of bosonic modes with which they interact. If 
the chiral symmetry breaking in QCD would occur via the fundamental 
scalar fields, then the number of quark fermionic modes would be the 
same as the number of bosonic modes with which they interact.

The Dyson resummation can be done in a gauge invariant way by using 
nonlocal effective lagrangians.
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The gauge breaking terms due to a wrong treatment of the width can 
spoil the results significantly not only in the case of IT production, but 
also in processes involving other unstable particles, like a top quark.

The exponential decay law has to be violated at small times because the 
energy spectrum of the states is bounded from below. This is called the 
quantum Zeno effect; it is neglected in the double-pole approximation.

The Dyson resummation of the self-energies for unstable particles re­
arranges the perturbative expansion in a and thus in general breaks 
gauge invariance. In order to restore the gauge invariance of the ampli­
tudes one has to perform an additional expansion in some parameter. 
In case of the pole-scheme expansion the parameter is T/M, whereas 
in the fermion-loop scheme it is aNf.
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