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Chapter 1

General introduction

i

1The name quark was introduced by M. Gell-Mann, who took it from James Joyce’s Finnegan’s 
Wake: ‘Three quarks for Muster Mark’.

Quantum Chromo Dynamics (QCD) is the commonly accepted theory of the strong 
"actions. The strong force acts among quarks and gluons, the constituents of 

ns such as protons and neutrons. It is one of the four basic interactions that are 
i, three of which have been unified in the standard model [1] while the quantum 
' of gravity cannot be implemented in this model yet. All these theories have 

.;>;nmon that they describe interactions through the exchange of intermediate 
sons: gluons in QCD, the photon in QED, W- and Z-bosons in the weak model 

gravitons in gravitation. The matter content of these models is constituted by 
fermions, such as quarks in QCD.

Historically, QCD developed from the quark1 model. In the early sixties SU(3) 
symmetry was introduced to classify the observed particles [2]. Accordingly, Gell- 
Mann and Zweig [3] postulated that hadrons are composite objects, made up of three 
quarks (baryons) or a quark-antiquark pair (mesons). The three fractionally charged 
constituents of hadrons are nowadays called up, down and strange quarks. Later on, 
one established at higher energies the existence of heavier quarks, called charm [4] 
and bottom [5]. A sixth quark named top can tacitly be assumed to exist, although 
there is no experimental confirmation for this fact. These different types of quarks 
are referred to as flavours.

To explain the baryon spectrum in a simple way, one had to assume that the three 
quarks are in a symmetrical state. However, these constituents are spin-| objects 
obeying Fermi-Dirac statistics and thus, their combined state should be antisym­
metric. A solution to this problem was proposed by Greenberg [6], who assumed 
quarks to obey three-fold parastatistics. The problem was definitely solved by the



2This experiment
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was awarded the 1990 Nobel prize for physics.

introduction of the internal quantum number colour and the additional hypothesis 

that only colour singlet (‘colourless’) states can occur as physical particles [7]. Also 
the rr° —» 77 decay width [8] and the 77-factor, defined in the e+e~ scattering process 

[9], give evidence for the existence of three colours.

In 1968 the phenomenon ‘scaling’ [10] was observed at SLAC in the deep inelastic 
electron-proton scattering experiment2 [11]. This means that at high energies the 

dynamics of this deep inelastic scattering (DIS) process becomes independent of the 

interaction scale. This fact can only be understood in essentially free field theories. 

However, when a quantum field theory becomes asymptotically free at high energies, 

only a minor deviation to scaling behaviour occurs. Non-abelian gauge field theories, 

formulated already in 1954 by Yang and Mills [12], were shown to exh ■ i ' unique 

property: the coupling constant vanishes logarithmically for increasin'

The two concepts colour and local gauge invariance were put to; 

(colour) St/(3) gauge field theory QCD. As a consequence eight 

bosons emerge, which couple to colour and, because they carry cole- 

couple also to each other. These bosons are the so-called gluons 

quarks together. The gluon self-interactions contribute to the explane/ ■ oi he ex­
perimental observation that neither quarks nor gluons have ever been isolated. This 

confinement of the hadronic constituents has never been proven rigorously within the 

context of QCD despite great efforts in the last few decades. It is an outstanding 
problem that can hopefully be solved by using non-perturbative techniques [14].

In this thesis we will restrict ourselves to perturbative QCD. The vanishing of 

the strong coupling constant at high energies justifies the application of an expansion 
around the free field theory in deep inelastic scattering processes. The separation of 

the hadronic bound state effects and the high energy behaviour of their cross sec­

tions can be described by two models. The oldest approach is the operator product 

expansion [15], which is only applicable to lepton-hadron scattering. The two energy 
scales of a hadronic cross section (i.e. the interaction scale and the hadron momentum) 

appear in two separate quantities, the Wilson coefficient and the operator matrix el­

ement. The latter is only measurable, whereas the first one can be calculated in the 

context of perturbative QCD. The second model has a much wider range of applica­

bility. It was introduced by Feynman [16], who called it the parton model. Partons 

are the constituents of hadrons. According to this model the hadronic cross section 
is equal to the incoherent sum of partonic cross sections, which are weighted with 

so-called parton distribution functions (densities). Some years after the introduction
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of the parton model the partons were identified with the quarks and gluons of QCD. 
These two approaches, the operator product expansion and the parton model, are 
discussed in an introductory way in chapter two of this thesis.

The operator product expansion and the parton model both explained the ob­
served ‘seeding’ behaviour in the DIS process. Inspired by the success of the parton 
model, Drell and Yan [17] formulated a mechanism for massive lepton pair produc­
tion in deep inelastic hadron-hadron scattering processes. According to them the 
lepton pair is produced by a decaying, highly virtual photon that is created during 
the annihilation of a parton-antiparton pair from the two hadrons. Due to the suc­
cess of their description, the production of massive lepton pairs in hadron-hadron 

altering experiments is often referred to as the Drell-Yan (DY) process. The DY 
del predicts scaling of this process too, a fact that was confirmed by experimental 
a [18].

spite of the promising models, which put the theory of strong interactions on the 
of a predictive theory, consistent with the experiments up to some degree, it was 

a satisfactory description of the strong force yet. Some years after the introduction 
‘he parton model, deviations of scaling were observed in the DIS experiments [19]. 

loreover, the normalisation constant needed to account for the discrepancy between 
the experimental DY data and the theoretical predictions, generally called K-factor, 
was rather large (about 2-3) [18]. In order to solve these problems one calculated 
higher order corrections (in the strong coupling constant a,) to cross sections. The 
determination of higher order corrections is not so trivial, because the appearance of 
initial state divergences make the partonic cross sections undefined. However, Politzer 
[20] discovered that these mass singularities, which are due to the masslessness of both 
quarks and gluons, could be removed by renormalisation of the parton densities. This 
was true, because the DY and DIS processes contained the same initial state collinear 
divergences. The renormalisation procedure of the parton densities is called mass 
factorisation. It is equivalent to the renormalisation of the operator matrix elements, 
which appear in the operator product expansion.

The mass factorisation procedure yields the parton distribution functions inter­
action scale dependent. The latter dependence is determined by the anomalous di­
mensions of the operators, which appear in the operator product expansion. These 
anomalous dimensions can be calculated from the renormalisation procedure of the 
operators. However, the renormalisation of the gauge invariant operator that con­
sists of gauge fields (the gluon operator) is not straightforward and has been subject 
to discussion for many years. Gross and Wilczek [21] discovered that the one loop
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Chapter 2

Deep inelastic lepton-hadron scattering

Introduction2.1

(2-1.1)€> + H —i2 + ‘X’

Q = ~q , (2.1.2)

(2.1.3)

and

(2-1.4)

7

T = __
2p?’

where v and r represent the energy transfer to the hadron in its rest frame and the 
Bjorken scaling variable, respectively. The inclusive cross section of the DIS process

M

is depicted, where the interaction is mediated by one of the vector bosons of the 
standard model (V = 7, W1*1 or Z). The symbols and H refer to the incoming lepton 
and hadron, respectively. The scattered lepton is denoted by t-i and ‘X’ indicates any 
combination of hadronic states that is allowed by conservation of quantum numbers.

As shown in the figure, q represents the momentum of the vector boson, whereas 
kt, p and px denote the momenta of H and X, respectively. The mass of the hadron 
is M. Furthermore, we introduce some kinematical variables which are frequently 
used

inelastic lepton-hadron scattering is an important process, which provides us
1 formation about the structure of hadrons and about the nature of strong 

actions at high energies.
figure 2.1 the deep inelastic scattering (DIS) process



Fig. 2.1. The DIS process.

which

|X)7?'“'(q;)P. (2.1.5)(J =

= ft, a? = 0,
(2.1.7)"? = \I3 -2g,sin2flvv), af =

8

;pton|£2)(H|J^ron

is obtained by averaging over the initial states and summing the fine ! 
in the rest frame of the hadron can be expressed by

^E(2-r^(P+9-Px)|^i^
* «2.X

The quantity 2?'“'(g2) is the propagator of the vector boson and £, are the energies 
of the incoming and outgoing leptons in the rest frame of the hadron. The quantities 
jtepion jhadron aj.e lepton and hadron currents, respectively. The leptonic 
current is given by the standard model and equals

(€i|JUpto„|€2) = _iS(£2)7/i(v + a7s)U(/1). (2.1.6)

In this formula v and a denote the vector and axial parts of the vector boson coupling 
to the lepton pair, which for any lepton are given by

2sin 0w cos0w 2q/sin $w), 2sin0w coeffw

V( 2y/2sin0w ’ a< 2>/2sin9n, ’

where gi describes the charge of the lepton (in units of the elementary charge e), 8w 
is the weak mixing angle and I3 denotes the weak isospin of the lepton (/3 = ±|).

The hadronic current is theoretically less well known, but some characteristics are 
described in the context of perturbative QCD.

The vector boson propagator is usually considered in the convenient Feynman- 
’t Hooft gauge, where it has the particular form

Px
H



= (2.1.8)

(2.1.9)

= 4(v2 + a2) [kfk^ + - g^ki-kt] - Sivac^^k^kjx, (2.1.10)

(2.1.11)

(2.1.12)

F1(r,<?2) +W^Q2) =

(2.1.13)

9

7 V" q2 9‘'.
- ^^qX-^F3(T,Q2), 

provided we assume that the hadron (weak) current is conserved at high energies. 
We have chosen dimensionless hadronic structure functions F;. The decomposition

q^q* 1
?2 /

i p-q

L^W^,

where the lepton masses are neglected and v and a are given in eq. 2.1.7. The last term 
■ cq. 2.1.10 is absent in pure electromagnetic processes due to parity conservation. 
7 hadronic tensor is given by

= X^)*S\q + P - px)(H| jt(0)|X)(X| J,(0)|H)

= A-y^xe-’^HIJ^J^OJIH)

= ^/^e^Hqj’W.J^O)] |H).

The second line follows from translational invariance, whereas the last equality can 
be shown to hold by using spectrum conditions (the hadron is stable, this implies 
p°x > p°, from which one can see that the second term of the commutator does 
not contribute to the integral). The tensor cannot easily be calculated within 
the context of a well-known field theory and therefore plays a central role in the 
theoretical problems concerning the DIS process. The fact that is the Fourier 
transform of the expectation value of a causal commutator between one particle 
states, is very important, as we will see later on.

Lorentz and time-reversal invariance lead to the following expression for this 
tensor

- rtWPV^W2),

q1 -My2'
where My is the mass of the vector boson. The expression for the differential cross 
section reduces to

cPa ira2
dQ2dv ~ (q2 _ My2}2Ex2M

where a — e2/4ir is the fine structure constant. The leptonic tensor L‘“' can be 
calculated in electroweak theory and is equal to

p-q
q2



due to
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and Q2, are considered in the region 
r only and 

■imental 
LAC [2]. 
he gross 
ructure

1 + MF2COS2

(2.1.14) 

case (see below 
2.1.10) the structure function F3 drops out in pure electromagnetic processes 
parity conservation.

Bjorken [1] was the first to suggest scale independence for the structure functions 
in the deep inelastic region. This statement is equivalent to the following claim: if the 
structure functions, which are dependent on r 
of very large Q2, they will appear to become functions of the variabi 
their (^-dependence will drop out. Immediately after his suggestion 
confirmation was found by the electron-proton experiment carried oi 
This confirmation provided a clue for theoretical physicists how to de.- 
features of the hadronic structure tensor. The scale independence o> 
functions could originally be explained in two different, but equivalen i.e. the 
operator product expansion [3] and the parton model [4]. Both approaches start 
from the experimentally satisfied condition that Q2 is very large. In this situation 
one can study in the Bjorken limit, which is defined by Q2 —► oo, while r stays 
fixed. Later on, both methods were unified in the context of perturbative QCD. 
Perturbative QCD can predict interesting properties of certain physical quantities, 
like scaling deviations which were found [5] a few years after the discovery of scale 
independence. These deviations can be explained by higher order QCD corrections, 
which predict the scale evolution of the moments of the hadronic structure functions 

[61-
In the next section we will discuss the first approach. One might consider the 

integral representation of Wuu (eq. 2.1.12) and ask which part of the integration 
region is most important. This leads to a light-cone view of the DIS process and 
subsequently to the operator product expansion (OPE). Secondly, in section 2.3 we 
will consider the hadronic states in eq. 2.1.11 as a superposition of pointlike objects. 
Non-relativistic perturbation theory in an infinite momentum frame together with 
the neglect of transverse momentum of the constituents lead to the parton model of 
inelastic scattering processes.

Broken scale invariance is one of the main topics of this thesis. It does not only 
provide a falsifiable quantity in order to test perturbative QCD, but it also involves

of the hadronic tensor enables us to express the cross section of the DIS process in 
terms of the structure functions F,. In the rest frame of the hadron this leads to

+2„a^-±^F3sin^') ,
v 2)

where 6 is the lepton scattering angle (see fig. 2.1). As in the leptonic



2.2 The operator product expansion

2.2.1 Light-cone dominance

(2-2.1)

(2.2.2)

11

the renormalisation of composite objects within a non-abelian field theory, which is 
still a very complicated problem in theoretical physics.

qx = v(x0 — x3) — Mtx3.

From the definition of v in eq. 2.1.3 it follows v = qQ. Expressing q3 in terms of the 
kinematical variables in the limit v —♦ oo leads to q3 —♦ v + Mt. Therefore, the inner 
product in the exponent of eq. 2.1.12 can be written as

One way to tackle to the specification of the hadronic tensor starts at considering 
the integral representation 2.1.12 in the Bjorken limit, i.e. Q2 —> oo and r fixed. The 
kinematical variables in the rest frame of the hadron can be parametrised by

As we stated in the preceding introduction, the main theoretical problem of the DIS 
process is the calculation of the structure functions Ft or, equivalently, the calculation 
of the hadronic structure tensor Probing the hadron through the exchange of a 
vector boson with a large momentum, one has a starting point for a theoretical de­
scription. In this section we will give the approach of the operator product expansion 
(OPE), applied to the product of the hadronic currents, which was first proposed by 
Wilson [3] and later proven to hold in free field theories and some simple interacting 

/i theories [7). The Callan-Symanzik equation [8], applied to the OPE, yields the 
dependence of the Wilson coefficient functions. This result reveals why one is 
ted in the renormalisation of the operator matrix elements (OME’s). Another 
tant property is the existence of a one-to-one correspondence between the ul- 
let (UV) singularities of the operator renormalisation constants and the mass 
•/.•rices emerging from the QCD radiative corrections to various parton subpro- 
appearing in deep inelastic scattering. This makes the calculation of operator 

renormalisation constants also relevant within the context of the parton model (see 
section 2.3).

The Riemann-Lebesgue theorem [9] tells us that the dominant contributions to the 
hadronic tensor come from the integration region where the phase of the exponent is

P = (M,0), 
q = (qo,0±,q3)-



(2.2.3)

*o

*3

(2.2.4)

2.2.2 The Wilson hypothesis

12

Fig. 2.2. Support of the integrand of

stationary. Of course, this is only true if the remaining part of the integrand does not 
exhibit too large phase fluctuations. Assuming the latter restriction to be satisfied, 
we meet the stationary phase condition if

|*o - *s| = O Q) ,

w - °Gk)-
Since the region x1 = (x0 — z3)(*o + x3) — x2± < 0 is excluded, due to causality 

of the current commutator in eq. 2.1.12, and (x0 — *3)(*o + *s) = O(l/Mri') is 
suppressed by the factor iz, it can be concluded that the contributing xj_-components

are also suppressed by a factor 1/iz. As a result, in the Bjorken limit the exponent 
in eq. 2.1.12 becomes stationary in the region

The support of the integral is sketched in figure 2.2. It shows that the tensor 
only receives contributions coming from the light-cone region of the commutator of 
the two hadronic currents. This is called light-cone dominance [10].

In this section we will formulate the operator product expansion, which is an adequate 
tool to handle the product of the two currents, showing up in the expression for the 
hadronic tensor in eq. 2.1.12. As we will see, this product can be expanded in a 
more manageable form.

The original version of Wilson’s hypothesis [3] stated that a product of two op­
erators, that becomes singular when the distance between the points at which the 
operators act approaches zero, can be written as



(2.2.5)X(x)B(O)

T(0(x)^(O)) = <Kx)</>(0) 1+ :^(x)<6(0):, (2.2.6)

(2.2.7)

JM(x) =: V>(x)7MV’(a:): • (2.2.8)
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£C,(x2)O,(0), 
1=0

f;c,(x)o.(o).
i=0

the light-cone. It can be 
an expansion exists. It can

/l(x)B(0)

In this formula, the Oi constitute a finite set of n local operators, which can be 
constructed by means of the fundamental fields of the theory. The operators are un­
derstood to be regular at x = 0. The whole singular behaviour at the right-hand side 
of eq. 2.2.5 can be attributed to the quantities Ci (the so-called Wilson coefficients). 
These quantities have to be interpreted in a distributional sense (generalised func­
tions [9]). The operator product expansion was proven by Zimmermann [7] within 
perturbation theory through application of the BPHZ method.

Operator product expansions, like in eq. 2.2.5, can be formulated for several types 
of products, like the time-ordered product, or a commutator of two operators. In 
fact, the whole idea has its origin in Wick’s normal ordering theorem [11], which 

. s the time-ordered product of two operators to a normal ordered product and 
ular distribution. For instance, for two fields </> it says

where 1 and : ^(z)0(O): are regular operators, while the contraction <^(x)<^(0) is a 
singular function (the Feynman propagator).

However, we need a light-cone expansion rather than a short distance expansion 
for the current commutator in eq. 2.1.12 (see section 2.2.1). Therefore, we want to 
express the product of two hadronic (weak) currents near 
proven (in free field, <j>* and Yukawa theories), that such 
be written like

where the C; denote the Wilson coefficients, which are singular as x2 —♦ 0. Note 
that there are now infinitely many operators. This is due to the fact, that such an 
expansion involves more than one quantity which becomes asymptotic [7]. In the 
Bjorken limit of the scattering process under consideration this amounts to taking 
the limit of Q2 —> oo and p q —♦ oo.

We want to exemplify such an expansion here by considering the electromagnetic 
current of free fermions,



(0))

(2.2.9)+ non-singular terms,

(2.2.10)

eq. 2.2.9

2.2.3 The operator product expansion applied to structure functions

(2.2.11)

(2.2.12)ImT^I?2)

This theorem makes it possible to derive the following dispersion relation:

(2.2.13)
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This tensor can be expressed in structure functions T,, analogous to the decomposition 
of into functions F,. The optical theorem relates these structure functions by

The time-ordered product of two such currents can be written as (using the Wick 
expansion)

where we made use of the identity = sMA„a7‘' — ■,
with SpAp<r = + SwoSi/A — 9w9x<>- The operators are defined by

O’"-^(y) =
O’*-•••<'■"

= xFi(r,Q2).

lmr;(r',Q2) 
t’-t

Fj(r',Q^ 
t'-t

The expansion 2.2.9 is exact in free field theory. It is clear that the s 
only extends to infinity in the light-cone limit and not in the short di. limit.

^:V>(!/)7’^’--.^'"V>(lf):, 

(») = :’/'(y)7’753‘1' ■ ■-^"^(y): .

(o)->e^o;w-*

In the DIS process, the product of two hadronic currents is important. It is convenient 
(see previous section) to consider the time-ordered product of these two currents, 
though this is not necessary. The corresponding hadronic quantity can be identified 
with the forward virtual Compton scattering amplitude and is related to by the 
optical theorem. It can be written as follows

Ti(T,Q2) = - f1dr'lmTi('T',Q2'> = ['dr'- 
IT Jo t' — T Jo 

m=l T J0

T^ = ^J d*x (J„(z) J„(0)) |H).

i xx 
2r2 (x2 - te)2

T (Jp(x) J„(0)) = 1 +
it* (x2 — tc)

X £ (1 - (-l)m)
m=0



dj)„)dM...dv„DC$\x2)- 

(o). (2.2.14)

(2.2.15)— m.Ti

1. The non-singlet quark operator

q.r

(2.2.16)

2. The singlet quark and gluon operators

(2.2.17)

and

(z) =

(2.2.18)
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(z) = [V’W?"’
+ trace terms

-Mm

...Mm

0q7--(z) = ^-5 [v>(z)7“1 
+ trace terms.

+ ... <u,c£’(z2) ] O'41-""
The summation index j runs over the set of possible operators in the model, while 
the sum over m extends to infinity. Dimensional analysis shows that the strength of 

singularities of the functions depends on the twist of the operators Qt*1-"”', 
■■ is defined as

which can be used later on in order to derive a simple relation for the moments of F{. 
In view of the decomposition in structure functions, the operator product expansion 
takes the following form

'~S [F”**1 (z)D« ... Faa“"' (z)]

+ trace terms.

; isc singularities become stronger as the twists of the operators lower. The operators 
with lowest twist are the most important ones (here Tj = 2). Operators with higher 
twist lead to suppression factors p2/Q2 = M2/Q2 in the structure functions 7) and F;. 
Therefore, only the lowest twist operators are contributing in the expansion 2.2.14.

In the special case of QCD, all twist-2 operators can be classified according to 
their flavour group representation. They represent two classes:

|iT(Jm(z)J„(0))^°

DM ... D“"' (1 ± 75)V>(z)]

£)'*”•(! ±75)^(x)]

- spin= dim = dim o;1-""

E [ - im - O-’dA) dM • • • du„C^\x2) 
mJ



(2.2.19)

.2.2.20)

(2.2.21)

to relate the expressions from eq. 2.2.20 to the

(2.2.22)dr t'
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one can 
ng twist

(HlOt*-""

since the operators are completely traceless and symmetric (they are in an irreducible 
representation of the Lorentz group, as we noticed already in the specif - of QCD 
operators). Using the expression of the matrix elements of the opera 
trike the Fourier transform of the OPE (eq. 2.2.14) like in eq. 2.2.11.
the structure functions 7) become equal to

r.(r,Q2) = E

upon defining the Fourier transforms of the coefficients Cj™’ as

C^Xq2) = (Q2')m J^xe^C^X^Y
The optical theorem enables us
hadronic structure functions F;. The combination of the dispersion relation 2.2.13 
and eq. 2.2.20 yields the following sum rules

F.^XQX = Jo'dr r"-1 F,(r,Q2) = ± E C^XQ^Xp2),

Here <S denotes the symmetrisation of the operators in their Lorentz indices p, and the 
trace terms are necessary to make these operators traceless. The Xr in eq. 2.2.16 refer 
to matrices in flavour space, whereas the index a in eq. 2.2.18 stands for the colour 
index. These properties follow from the fact that according to Wilson’s hypothesis, 
it is sufficient to consider the operators which belong to irreducible representations 
of the internal (S17(3)f, SU(3)c) and the external (conformal) group.

Returning to the general case of eq. 2.2.14, the matrix elements of the operators 
Ot"! can be expressed in the following way

|H) = >lJ’n’(p2)(pM1 .. . p''"' + trace terms),

where F^ is called the Mellin transform of F;(t). The expression states that the 

moments (Mellin transforms) of the structure functions F, are related to the Wilson 
coefficients of the leading operators with spin m which show up in the OPE 2.2.14. 
The operator matrix elements (OME) are uncalculable, because of the lack of a 
suitable non-perturbative method in QCD. However, the coefficients can be 
calculated in perturbative QCD. One simply considers the moments of the hadronic 
structure function and the OME in the case of quarks and gluons. The coefficients 
are obtained by matching the tensor structures on both sides. The lowest order 
calculation in QCD shows scaling of the structure functions in the Bjorken limit. 
Higher order corrections to these matrix elements involve the renormalisation of the



Callan-Symanzik equation for operator matrix elements2.2.4

(2.2.23)

(2.2.24)
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operators that occur in the OPE. This renormalisation procedure will cause a Q2- 
evolution of the coefficients that is determined by the renormalisation group equation. 
The discussion of Q2-dependences will be the subject of the next section.

explicitly shown, but where the index that labels the

occurs in eq. 2.2.24 has the following multi-

At the end of the previous section, it was made clear that the moments of structure 
functions are connected to the Wilson coefficients of the operators from the product 
expansion. This was considered in the most general case, in which Ajm\p2) belonged 
to the expectation value of an operator between hadronic states. However, like in the 
case of the parton model, the OPE is usually embedded in QCD.

The Lagrangian of QCD contains quarks, gluons and, in a general covariant gauge, 
: s. The quantised theory involves the construction of states, built out of the 

.al particles. Bearing this in mind, we introduce as an analogy of eq. 2.2.19 the 
' g operator matrix element

|p, J) = p1*' ■. .pMmX”>(p2) + trace terms,

i,j indicate particle types and Of1'"'''" is one of the twist-2 operators in QCD 
(".; -qs. 2.2.16-2.2.18). The matrix element is considered to be renormalised. The 
moments of the structure functions can be generalised to equivalent quantities, be­
longing to processes with QCD particles. In view of eq. 2.2.22 we introduce the 
following equation at the particle level

J
where all dependences are
structure functions is left out. The index j labels a particle type in this equation! The 
variables g and p2 are introduced; they denote the renormalised coupling constant 
and the scale at which the renormalisation took place, respectively. Notice that 
in principle there are two scales. The first one is the scale that appears in the 
argument of the renormalised coupling constant g(p2). The second one is the operator 
renormalisation scale, which scales the momentum p2 in eq. 2.2.24. The latter can be 
identified with the mass factorisation scale (cf. eq. 2.3.6). For convenience, we will 
put the two scales equal to each other. All functions in eq. 2.2.24 are dimensionless 
(at least at the twist-2 level), which enables us to give the dependences on momenta 
as quotients.

The operator matrix element that 
plicative renormalisation property



(2.2.25)

(2.2.26)0,

(2.2.27)
k

where the following abbreviations have been introduced

(2.2.28)MS)) = M

(2.2.29)= 0.
dg

It is convenient to introduce a logarithmic variable

(2.2.30)

write the Callan-Symanzik (CS) equation for the Wilson coef-

(2.2.31)0.
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']47’(<^2),£)=o,

dg^M3)

Subsequently, we can 
ficients as follows

4m)(p.p2) = E<W)M<7’ (s(m2), J

51nZ

The quantities /? and 7 are the well-known ^-function and the general definition of 
an anomalous dimension, respectively, where in the latter case Z denotes a general 
renormalisation constant. Combining the two differential equations, one can deduce 
for the Wilson coefficients

where the hatted quantities denote the unrenormalised (bare) ones. In the literature 
one often replaces matrix elements by vacuum expectation values of time-ordered 
products in which the particle fields are included. This leads to another formulation 
of renormalisation properties, which includes the anomalous dimensions of the particle 
fields as well. However, the equality that will be given for the coefficients Cj™’ (see 
eq. 2.2.29) is not changed by this procedure.

Since the bare, unrenormalised quantities are independent of the scale one can 
derive the following renormalisation group equations (or Callan-Symanzik equations) 
for the structure functions and the operator matrix elements

1
2

P2

M'



By solving the following set of equations for the coupling constant g,

(2.2.32)

(2.2.33)

(2.2.34)

(2.2.35)

(2.2.36)
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where ^-ordering is necessary, because the matrices 7 do not commute in general. 
Another way to solve the CS equations is obtained by a solution for / in terms of the 
coupling constant g. In that case, the formal expression reads

it is possible to make the implicit /-dependence of g in the Wilson coefficient explicit. 
This is the procedure of introducing a running coupling constant, in which the actual 
value of g0 is extracted from experiment. When the solution of eq. 2.2.32 (the running 
coupling constant) is substituted into the expression for the Wilson coefficients, the 
/3-term drops out of the CS equation and the latter is equally well described by

dg(/) 
dt = /?(</(<)), 

s(0) = go,

7(g'. *0)

0(<7',to)

In both cases the expressions for the coefficients reveal that the scale dependence is 
governed by the anomalous dimensions 7}”’. The calculation of these quantities

at higher orders involves the renormalisation of the operators of the OPE. In the case 
of identical quantum numbers the matrix Ztk gets off-diagonal non-zero elements and 
mixing of operators occurs. A discussion of operator mixing and renormalisation at 
one loop is given by several authors [6]. We want to study this complication in detail 
in chapter 3, specified to the case of mixing between gluon and ghost operators. This 
is not entirely the same problem as genuine operator mixing (because ghost operators 
do not appear in the Wilson expansion), but it should be studied in order to perform 
renormalisation of the gluon operator in a covariant gauge.

4m)(ffo,t) = [rexp{y‘dt'7(<Zo,t')}](”)C}’n)(<?o,/o),

= [texp | J dg'
(m)

3m)(go, to).

the /-dependence is explicit and the corresponding partial and total derivatives 
interchanged. The solution can formally be written as

^C[m)(go,t) = ^\go,t)c!m,(go,t), 
lit

(m) 
7ik =



2.3 The parton model

hadronsvector boson
9

hadrons

partons

hadron P

Fig. 2.3. The parton picture of deep inelastic scattering.

20

frame technique and the assumption of negligible transverse momenta of the par- 
tons provide a justification for the parton model. Moreover, the lowest order results 
reproduce those of the operator product expansion.

In the next section we will show that already a very simple assumption about the 
nature of partons reproduces some important, experimentally verified phenomena. 
Higher order QCD corrections will contain collinear divergences, which make mass 
factorisation necessary. This technique is the subject of the last subsection and it 
will be shown that anomalous dimensions enter the discussion again.

The parton model [4] is an alternative approach to study deep inelastic structure 
functions. In this model hadrons are considered to be complex syntheses of under­
lying constituents, the so-called partons. However, the interactions between these 
partons only show up in a set of measurable quantities, i.e. the parton distribution 
functions. Theoretically, these functions are just a set of parameters. When a collision 
takes place, the partons are considered to be observed in a frozen state; effectively, 
the parton model deals with them as if they were free particles. This enables us to 
consider the scattering process as a weighted, incoherent sum of parton scattering 
processes, cross sections of which are calculable within a dynamical theory describing 
the partons, such as QCD. The idea is shown in figure 2.3. The infinite momentum



(2.3.1)

(2.3.3)

(2.3.4)

• The Callan-Gross relation [12] holds: Fj = 2Fj.

• The structure functions
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are scale-independent.

In general, higher order contributions to the DIS process will spoil both properties. 
Due to mass singularities the higher order calculations of involve the introduction 
of ^’-dependences of the distribution functions These dependences are controlled 
by the same quantities (anomalous dimensions of composite operators) as the Q2- 
dependences of the coefficients cJm’(Q’) discussed in section 2.2. Singularities are 

the subject of the next section.

2.3.1 A simple parton model

A hadron is described by a set of distribution functions /“(£), which give the prob­
ability of finding a parton a, which carries a momentum fraction f of its parent 
hadron. Due to infinite momentum frame arguments, ( can only take values in the 
range 0 < £ < 1. According to this definition, the hadronic structure tensor takes 
the form

W^(T, = AH«) Q2) «(T - &),

where denotes the parton structure tensor, belonging to the subprocess of parton 
a. The argument of the hadronic tensor, r, is replaced by x, which is the equivalent of 
the Bjorken scaling variable at the parton level. Using p“ = £p (p“ is the momentum 
' 'incoming parton, cf. fig. 2.3), we must have £x = r, which is expressed by the 
5- 'unction.

us assume that the electromagnetic parton current takes the simple form

(“L/JX1)!0) = -ieau“7(1ua, (2.3.2)
r, ■ the partons are considered to be spin-| particles and eo is the charge of the 
parton. For the lowest order contribution to the parton structure tensor one finds

W^(x, Q2) = ^^5(1 “ 2) [2P»P“ + Pi?- + .

Substitution of the expression 2.3.3 into eq. 2.3.1 reveals, after projection onto the 
structure functions Fi and F2 (F3 is absent in this pure electromagnetic example),

^i(r,Q2) = |Z>’/aH(r), 
a

K(t,Q2) = £>l/aH(r). 
a

As we can infer from these results, the lowest order calculations predict the following 
features:



2.3.2 QCD corrections within the parton model

(2.3.5)
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4 + e instead of dimensions, 
terms 

r origin.
goes to 
by cou- 
to zero, 

em [13], 
arc consid- 

This happens when the momenta of 
can be expressed

The simple parton model, as described in the previous section, is nowadays supported 
by the gauge field theory QCD to describe the partons, which are identified with 
quarks and gluons. QCD is an asymptotic free theory, which means that the coupling 
constant decreases towards zero if energies increase. Therefore, at high energies one 
can apply QCD perturbatively to calculate cross sections. Moreover, the running 
coupling constant provides an argument for the issue, why the parton model is not 
in total contradiction with the fact, that free quarks have never been observed.

The calculation of higher order corrections to parton structure functions involves 
phase space and loop integrals. As these integrals are not always well defined, one 
should introduce a regulator to be able to calculate them. We will choose dimensional 
regularisation, i.e. we perform our calculations in n =
The singularities, appearing in the integrals, will manifest themselv 
(where i is a positive integer). These poles can be classified according

Firstly, divergences show up in loop integrals where the loop mor 
infinity. These are called ultraviolet (UV) divergences; they are r- 
pling constant renormalisation. Secondly, if the integration momentu 
one may encounter infrared poles. According to the Bloch-Nordsier 
these singularities cancel if both virtual and bremsstrahlung diagrams 
ered. Thirdly, collinear divergences can occur.
two massless particles become parallel. A propagator [(p — t)2] 
in that case by

which gives rise to a singularity in both phase space and loop integrals.
In quantum field theory there exists a very powerful theorem due to Kinoshita, Lee 

and Nauenberg [14], which determines the mass singular behaviour of a given quantity. 
It states that when the mass of one of the particles goes to zero the quantity is finite, 
provided one sums over all initial and final states which are degenerate in energy or 
mass. The latter means that they are experimentally indistinguishable. In the case 
of parton structure functions this condition is met for the final states only, because 
we consider an inclusive process. Therefore, we can conclude that the divergences, 
left over in the final expression for a parton structure function after renormalisation 
of the coupling constant, are initial state collinear divergences. These singularities 
are removed by renormalisation of the parton densities, a procedure which is usually 
called mass factorisation [15].

(p-*)2 = -2|;||£|(l-cos0)



splitting

Mass factorisation and the renormalisation group2.3.3

(2.3.6)

(2.3.7)
b
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where p2 represents the mass singularity originating from the incoming parton a. 
Note that we have suppressed the index of the structure function. The singular split­
ting functions rta are universal and the functions Aj are free of collinear divergences. 
The parameter p is the so-called mass factorisation scale, which is arbitrarily chosen. 
For convenience we have put it equal to the renormalisation scale (see the discus­
sion below eq. 2.2.24). It is immediately clear, that the parton structure function 
cannot explicitly depend on the mass factorisation scale p. This fact gives rise to 
the formulation of a renormalisation group equation (RGE), applied to these struc­
ture functions. It is convenient to express eq. 2.3.6 in terms of the moments of all 
occurring quantities, i.e.

=Erl

At fx2,s(p2),^ ,

■ s factorisation theorem, applied to the parton structure functions, which 
deduced from the parton tensor in eq. 2.3.1, will give rise to a completely 
discussion as can be found in section 2.2.4. The precise statement of this mass 

? 'nation theorem is that after coupling constant renormalisation and cancellation 
of ;R divergences, the parton structure functions can be written as

Fa f^><?(p2). = ZL / dx' [ dx2 6(x - Xix-i)
\ P / b Jo

The wide range of applicability of the parton model finds its origin in the mass 
factorisation theorem, which states that mass singularities have a universal character, 
i.e. they are process independent. This implies that the parton model can also be 
used to describe other processes, like the Drell-Yan process, a deep inelastic hadron­
hadron scattering process in which a lepton pair is produced [16], Such a theoretical 
description is not possible in the framework of the operator product expansion, be­
cause one does not have light-cone dominance in this case. QCD corrections to the 
Drell-Yan process will be the subject of chapter 4.

As in the case of coupling constant renormalisation, mass factorisation will intro­
duce a new, arbitrary mass scale. Unfactorised quantities cannot depend on this mass 
scale. This implies the formulation of renormalisation group equations on 
functions and correction terms, which is the subject of the next section.

t’(p(p2),^) A<m)(ff(p2),^),



(2.3.8)

(2.3.9)0,

(2.3.10)

A^Gzo.i) (2.3.11)

by

(2.3.12)

(2.3.13)

(2.3.14)
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. t means 
.11 as for

the collinear divergences will be absorbed in these new parton density functions and 
the correction term A4 becomes finite. The scale dependence of the parton distribu­
tions is determined by the so-called Altarelli-Parisi equations [17]

The densities can be evaluated for any t once they are measured at a certain experi­
mental value of Q2. The moments of the hadronic structure function can eventually 
be written as

where the Mellin transform of a function f(x) is defined by 

y(m) = f'dx xm"7(z). 
Jo

The RGE for the functions (DIS correction terms) becomes

[(^+- <m)] A‘m) =
where we have introduced the quantities 7^’ by

These quantities are found to be the same anomalous dimensions which appeared 
in section 2.2.4 in the scale dependences of operators. The equatio- ■■ the DIS 
correction function is exactly the same as the one for the Wilson coeffi 
that the solution can be stated immediately for the splitting function: 
the correction terms. The result for the correction term is

= [t exp A^m)(ffo,to),

where the logarithmic variable t is introduced in exactly the same way as before in eq. 
2.2.30. Furthermore, the running coupling constant is introduced in the above equa­
tion. This makes the t-dependence of the correction term explicit (see the discussion 
in section 2.2.4).

The parton structure functions are combined with the parton densities to give 
the hadronic structure functions (see eq. 2.3.1). If one now introduces scale dependent 
parton density functions in terms of the old ones

/'m)(t) = r<?)(ff(i>90),i)A(m),



(2.3.15)
^1 + ^2-

>Va6 ^2

(2.3.16)

(2.3.17)
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+ H2 - V+ ‘X’

^(m,(<7o,t) = S/.(m)(^.‘)A(,")(ffo,t)A'T)(so,to), 
a,6

x Tea

where the scales pt3 and p?3 indicate the mass divergences of the two incoming par­
ticles. Note that in the actual calculation in chapter 4 the partons are set on-shell. 
In that case the collinear singularities reappear as pole terms e-’. The equivalent of 
eq. 2.3.14 in this case is

The DIS correction terms are really correction terms, because if the choice p3 = Q3 
is made, these expressions will only depend on the scale Q via the running coupling 
constant. This means that in lowest order the correction term cannot depend on Q.

The status of eq. 2.3.14 is completely the same as the one of eq. 2.2.22 in the 
operator product expansion. The correction terms A can be identified with the 
Wilson coefficients C and the parton densities f with the operator matrix elements A. 
Since in both cases the dependence on Q3 is completely contained in one expression, 
the actual evolution of this dependence should be parallel. This explains why the 
anomalous dimensions play the same role in the OPE as well as in the parton model. 
A beautiful property of the operator matrix elements is that its ultraviolet divergences 
are uniquely related to its collinear divergences. This enables one to use the pole terms 
-• the renormalisation constants of the matrix elements as splitting functions in 

iorisation procedure of dimensionally regularised on-shell cross sections.
She Drell-Yan process one can formulate a similar set of equalities [15]. This 

a ‘crossing’ of the DIS process, i.e.

where are the moments of the hadronic structure function and A^ denote 
the Drell-Yan correction terms. The calculation of these quantities is the subject of 
chapter 4.

The formulation of the mass factorisation theorem in this case reveals an equation 
for the parton structure functions, analogous to eq. 2.3.6, which is given by

M2
P2

^2,%^ = 52 / dx' [ dx2 I dx3S(x - X!X2X3) 
Pl3 P2 J

~ P2
Pl3
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Chapter 3

The anomalous dimension of the gluon operator

Introduction3.1

One

1. The non-singlet quark operator

(3.1.1)
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• ■ ■ D“m(l ± 

+ trace terms.

soo.
pre: is, leading to a wealth of predictions, which

' is most important successes of the theory of perturbative QCD is the pre- 
. the scale dependence of the structure functions, measured in deep inelastic

■ idron scattering. From these deep inelastic structure functions one can infer 
. n distribution functions (densities), which therefore become scale dependent 
. parton densities have been used as input for many other deep inelastic (hard) 

can be tested by experiment. As 
has n shown in the introductional chapter, the scale evolution of the structure 
functions is determined by the anomalous dimensions of composite operators. These 
operators appear in the (Wilson) operator product expansion (OPE) of the current 
commutator, the Fourier transform of which defines the hadronic structure tensor 
showing up in the calculation of the deep inelastic lepton-hadron scattering cross 
section. Using renormalisation group methods, one can derive a one-to-one corre­
spondence between the coefficients of the scale violating terms and the aforementioned 
anomalous dimensions.

Immediately after the discovery of asymptotic freedom in non-abelian gauge field 
theories and in particular in QCD, the renormalisation of these operators was carried 
out up to the one loop level. To clarify our discussion and the findings in the literature, 
the operators showing up in QCD can be divided in two classes according to their 
representation of the flavour group:



2. The singlet quark and gluon operators

■ ••D*‘m(l ±75)V>(i)]

(3.1.2)

and

O«-'‘”(x) =

(3.1.3)

al flavour
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'^S [F“M,(x)£>« ... f°’w"(x)]
+ trace terms.

'^-S [^x)r'D^
+ trace terms

Here 5 denotes the symmetrisation of the operators in their Lorentz indices p, and 
the trace terms are necessary to make these operators traceless. The Ar in eq. 3.1.1 
refer to matrices in flavour space, whereas the index a in eq. 3.1.3 stands for the 
colour index. The matrix 75 is added in case one does not averag' the spin
of the quark field. These properties follow from the fact that accord Wilson’s
hypothesis the operators belong to irreducible representations of the 
and colour SU(3) and the external (conformal) groups.

One of the consequences of Wilson’s theorem is that operators, belong to
the same irreducible representation, like the two in class 2, mix unde jrmalisa-
tion. This property follows from the phenomenon that the renormalisation constant 
of a given operator receives contributions from virtual corrections to all other op­
erators belonging to the same representation as the original one. In this way the 
operator renormalisation constant becomes a matrix. This feature is common for all 
renormalisable theories. However, as has been discovered for the first time by Gross 
and Wilczek [1], in gauge theories a second type of mixing occurs. In this case the lo­
cally gauge invariant (physical) operator 3.1.3 mixes with gauge variant (unphysical) 
operators. They consist of products of gauge fields as well as ghost fields, and are 
hereafter called alien and ghost operators, respectively. Therefore, this phenomenon 
already appears without the presence of quark fields and the corresponding operators 
in eqs. 3.1.1 and 3.1.2.

The origin of this feature, which is characteristic for Yang-Mills field theories as 
well as gravity, was explained for the first time by Dixon and Taylor in [2]. They 
showed that the renormalised effective Lagrangian is invariant under a more general 
type of gauge transformations as the bare effective Lagrangian. The latter is invariant 
under the usual local gauge transformations. In this way they could construct the 
gauge variant operators order by order in the coupling constant, which are needed 
to render the theory renormalisable. This construction was put on a more general 
footing in [3] by using BRST techniques. Unfortunately, the insight gained by the
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2. The equality of the results, obtained from calculations in different gauges, 
should directly follow from a proper application of the rules given in quantum 
field theory, without having recourse to arguments derived from supersymmetry.

3. The axial gauge chosen in [5] is a lightlike one. As is pointed out in [8], this 
singular gauge leads to an unrenormalisable field theory by power counting. 
Therefore, its result would be suspect, if it did not satisfy the supersymmetric 
relation mentioned above.

: anomalous dimension of the gluon operator is a physical quantity, which 
-ermines the scale evolution of the parton and in particular the gluon dis- 
bution function, and therefore, no uncertainty concerning its status can be 

accepted.

work done in the references [2, 3) was not sufficient enough to lead to an unambiguous 
prescription for the computation of the anomalous dimension of the gauge invariant 
operator beyond the one loop level. This became apparent in the calculation of the 
second order anomalous dimension of the gluon operator in 3.1.3 carried out in [4] by 
using a covariant (actually the Feynman) gauge. Their result was not in agreement 
with the calculation done in a physical (axial) gauge presented in [5].

This would lead to the conclusion that the anomalous dimension of a physical 
(gauge invariant) operator is gauge dependent, which is of course unacceptable. The 
issue, which anomalous dimension is correct, was decided in favour of the results 
obtained by the axial gauge calculation [6]. As has been pointed out in [7], the 
anomalous dimensions of the quark and gluon operators satisfy a relation, which 
is derived from supersymmetry. The ‘axial gauge’ result satisfies this relation in 

to the covariant one. However, to our opinion the status of this ambiguity 
^satisfactory for the following reasons:

In this chapter we will show that the result for the anomalous dimension obtained in 
the axial gauge is correct and can also be derived from a covariant (here Feynman) 
gauge calculation. The main reason for the discrepancy between our work and the 
covariant gauge calculations in [4] can be attributed to the fact that the renormal­
isation of the gauge variant operators leads to a counter term corresponding to the 
physical operator in eq. 3.1.3. The latter counter term is needed for the computation 
of the anomalous dimension and was neglected in the previous work. The last feature 
does not show up when the gauge variant operators are calculated in the axial gauge, 
as is shown in [9]. In this case, the mixing matrix gets the Jordan form and hence,



corresponding

3.2 One loop corrections to the gluon operator
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The gluon operator has the same quantum numbers as the flavour sintJ .ark oper­
ator. Therefore, the renormalisation procedure involves mixing between these oper­
ators. However, as stated already in the introduction, another kind of mixing occurs 
when the renormalisation of the gluon operator is considered. This phenomenon is 
present even if the quark operator is absent. Therefore, in order to simplify our dis­
cussion, we will limit ourselves to pure gauge field theories and leave out the quark 
operators from now on.

The presence of this kind of mixing (i.e. mixing of the gluon operator and new 
gauge dependent operators, which are built out of gauge fields) can beautifully be ob­
served at first order in the loop expansion by comparing renormalisations of the gluon 
operator in two different gauges, i.e. the axial and the covariant gauge. Axial gauge 
fixing terms do not give rise to the introduction of ghost terms in the Lagrangian; 
hence, there will be no mixing with possible ghost operators in that case. This does 
not imply that the renormalisation procedure cannot give rise to new, unphysical op­
erators, but these new structures can easily be distinguished from the original gluon 
operator. Furthermore, Crewther [9] showed that the renormalisation of the latter is 
not affected by the introduction of unphysical operators. On the contrary, the covari­
ant gauge does exhibit the property, that counter terms which involve ghost fields 
and new structures with gluon fields must be introduced during renormalisation. In 
this case the renormalisation matrix is as such, that the new operators can influence

the unphysical anomalous dimensions cannot affect the physical one 
to the operator in eq. 3.1.3.

This chapter will be organised as follows. In section 3.2 we present the one loop 
calculation of the operator matrix element. It will become clear, that the gluon 
operator cannot be renormalised in a simple way by multiplicative renormalisation. 
We will reformulate the problem in section 3.3, where we rely heavily upon the 
findings in [2, 3, 10]. In section 3.4, we present the calculation of the unrenormalised 
matrix elements of the physical as well as the unphysical operators and show their 
renormalisation. Our conclusions and some final remarks will be given in section 
3.5. Feynman rules will be given in appendix 3A and the technical dr t ails of the one 
and two loop integrals will be discussed in the appendices 3B and pectively.
Appendix 3D contains some long expressions which are needed in tb. lations in
section 3.4.



3.2.1 Introduction of the gluon operator

(3.2.1)

(3.2.2)

(3.2.3)
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■ : ider the pure Yang-Mills field Lagrangian (without fermions), which is given 

by

(3.2.4)

(3.2.5)D?
•a be

the determination of the anomalous dimension of the gluon operator in higher orders. 
The quantity that we want to calculate is the physical operator matrix element. 

This is a S-matrix element, the external states of which are put on mass shell and 
contracted with physical polarisations. However, the calculation of such a quantity 
is not possible in the case of external gluons, because if the gluons would be put 
on-shell, there is no mass scale left in the Feynman integrals. Since we are interested 
in the anomalous dimension of the operator only, we will consider the renormalisation 
of the one particle irreducible (1PI) Green’s function.

^GF =

CFP = -Cd“D°bub,

where and a/ are the (anti)ghost fields. The indices a and b denote colour indices, 
whereas a is called the gauge parameter. In the so-called axial gauge, the ghost term 
decouples from the physical sector of the theory and the gauge fixing term is given 

by

M = + £gf + £fp,

is a gauge fixing term and Cpp the Faddeev-Popov ghost term. In a 
' gauge fixing their expressions are given by

Asp = -^(n"d;)2, 

where is an arbitrary vector. In this case, one usually takes the limit a —♦ 0, which 
is necessary to render the theory renormalisable by power counting [8]. The Feynman 
rules for the gluon propagator, which follow from these gauge fixing terms, are given 
in appendix 3A.1. The field strength and the covariant derivative are defined by

= d.At-d^ + gf^A^,

= ^d.-gf^A^, 

where fabc are the structure constants of the colour gauge group and g is the strong 
coupling constant.

Using path integral methods the introduction of the flavour singlet gluon operator 
(see eq. 3.1.3) proceeds by adding a new source to the action, which is coupled to the



(3.2.6)

where we introduced the following simplifying notation in the last ;

(3.2.8)D =

(0|T (A;(p)Og(0)4(-p)) |0) (3.2.9)
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where the vector A is taken to be lightlike: AJ = 0. The exact form of the bare 
Lagrangian, which is the starting point of the discussion, becomes

Fa = ^FaP,

.. AM„,= AM1.

gluon operator (see also section 3.3). Since we are only interested in the coefficient 
l^e matrix element of the gluon operator, given in eq. 2.2.23, the source 

is chosen in such a way that the trace terms drop out. This can be achieved if the 
form of the current is equal to

= £ym + \FaDm~2Fa = £ym + Of,

by amputating the external legs. The operator Og(0) in this expression is defined 
in eq. 3.2.7. As the expectation value of all connected graphs will be renormalised 
by the factor Z^Zo, the 1PI Green’s function To, will be renormalised by the factor 
Z^1Zo, where Z^ and Zo denote the gluon field and gluon operator renormalisation 
constants, respectively. Therefore, we will have to multiply the results for To, by the 
factor Za in order to obtain Zo-

Since the external fields of the Green’s function under study are kept off-shell, 
the quantity will not be gauge independent. However, the renormalisation constant 
Zo corresponds to a gauge invariant operator, i.e. Og. Therefore, it does not depend 
on any gauge parameter. This remark does not hold for additional operators, which 
must be introduced in the Lagrangian.

A trace taken in colour space is always implicitly understood. Wher nbiguities 
cannot occur, colour indices are suppressed (like in the last line of ee .7).

The central issue of the next two sections is the renormalisation of the gluon 
operator. This problem cannot be solved at the level of real operator matrix elements 
(with on-shell external legs). Therefore, the central quantity will be the amputated, 
one particle irreducible (1PI) Green’s function, called To,. This quantity can be 
deduced from the vacuum expectation value

(3.2.7)



3.2.2 The axial gauge calculation

Fig. 3.1. The lowest order contribution to the 1PI Green’s function.

(3.2.10)
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<5‘“(A-p)’"Zx

•m-1 {4°’(*.P) + ^S.CaA^x,p^

£‘b(Ap)mZ™
:m~' {^<.°J(x,p) + ^Cx<>(r,P)} ,

In spite of the fact that the gluon propagator in the axial gauge hets a quite com­
plicated expression (compared to its form in a covariant gauge, cf. eqs. 3A.2 and 
3A.4), we present the calculation of the 1PI Green’s function in this gauge up to sec­
ond order in g (one loop). The physical motivation for this effort is the form of the 
renormalisation matrix in this gauge. Crewther (9) showed that the one loop result 
of the 1PI Green’s function will contain more terms than the physical operator only. 
However, the counter terms of these new operators, which have to be introduced in 
the Lagrangian, will not be needed for the renormalisation of the gluon operator. 
Therefore, we will not compute them in this section.

The quantity we want to calculate is the 1PI Green’s function, which is multiplied 
by the wave function renormalisation constant ZA- This quantity can be denoted up 
to O(<?2) in the following way

1 + (-l)m
2

x / dx x' 
Jo

1+ (-!)”*
2

x / dx x' 
Jo

where X[)J(z,p) and A4$(z,p) stand for the O(aj) unrenormalised and renormalised 
parts of the 1PI Green’s function, respectively. Further, a, = g2/4ir represents the 
strong coupling constant. The first equation is given in terms of unrenormalised 
quantities (like the hatted a, and the unrenormalised gauge parameter), while the 
second is expressed in renormalised ones. Some factors could already be factored out 
of the O(<72) contribution to the 1PI Green’s function. The spherical factor S, that 
originates from the dimensionally regularised loop integrals, is given by



~/E — ln4r

(3.2.14)

(3.2.15)

loop contribution to the unrenormalised

(3.2.16)
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(3.2.11)

4 + £■ The

given by

(3.2.12)

be found in eq. 3.2.17 (cf. also appe: x 3A.3). The 
loop contril to the 1PI 

,n operator 
expression 

ombination

(3.2.13) 

the first order terms from the following expansions of the

se = exp{| [
where ~je is the Euler constant and e is defined by the dimension n = 
eigenvalue of the quadratic Casimir operator in the adjoint representation is repre­
sented by Ca. It is equal to N in the case of a SU(N) gauge group. Note that up 
to this order we do not need coupling constant renormalisation, because the zeroth 
order Green’s function is independent of g.

Each first term on the right-hand side of eq. 3.2.10 represents the zeroth order 
contribution, which is also shown in fig. 3.1. These expressions are

•C’(s.p) = M™(x,p) = O^(p)«(l-x),
where the tensor OJ„(p) can
second terms on the right-hand sides denote the one
Green’s function, which has a more general tensor structure. T! 
renormalisation constant1 Z^ must be chosen as such, that the firs 
•AdJJ^x.p) is finite. One can determine this constant by considering

= ^'V(*,P) + 
where Z^ and Z^™1 are 
renormalisation constants

^ = l+g(g),S'.C/Z»

= l + Sic/Z'^.

The quantity ^4*,V(z,p) denotes the one
Green’s function and has to be calculated. It can be written as

A™(x,p) = J2XS’MV(x,p), 
1=1

where the quantity > P) corresponds to the i-th Feynman diagram in fig. 3.2 
(i=l,2).

The possible Lorentz structure of the quantities X-’2„(z,p) can be explored before 
calculating anything. A regular base for these tensor structures, which contain the 
vectors p, A and n, consists of seven elements. We will choose a set and label the 
elements by The first one belongs to the physical operator (cf. appendix 3A.3), 
whereas only the last three tensors contain the vector n. We introduce the tensors 
as follows

*The two indices gg indicate that the quantity Zu refers to a gluon-gluon transition.



1000000001

(3.2.17)+

(3.2.18)

(?) = (3.2.19)+

(3.2.20)

(3.2.21)

ot(p) = (3.2.22)+
and

(3.2.23)+
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Fig. 3.2. The one loop contributions to the 1PI Green’s function. The second 
diagram appears twice, because the blob can also occur on the other side.

nMnMp2 
n P (n-p)2 ’

(n„A„ + AMn„)p2 
(A-p)(n-p)

AMA„p2 
(A-p)2

^pp(p) P^v + AmP*
A-p

I'd) = P±El _ P^Ap + AMp„ |
P2 Ap

1 ppA,, 4- A„pp
2 Ap

, _ 1 p„Ap + AMpp

o? , > 1 Ppn„ + nMp„ nMnpp2%Up) = -5----—----+ —rr-2 np (n-p)
These tensors, the last three of which cannot be present in a covariant gauge calcu­
lation, obey the following relations

pMOb3,5.6 = o, p^O3̂ 7 / 0, (3.2.24)

WO” = 0, pVOjp / 0. (3.2.25)

The residual gauge symmetry of the Green’s functions in a gauge field theory after fix­
ing the gauge, i.e. BRST symmetry, is usually expressed in terms of Ward-Takahashi 
(WT) identities2. The least restrictive WT identity, first used by’t Hooft, expresses 
the property of a Green’s function, that it becomes zero when all the external gauge 
particle lines are contracted with their own momenta. In our case this is expressed 
by

2Sometimes also called Slavnov-Taylor identities.

AMApp2 
(A-p)2 ’

ApApp2 
(A p)2 ’

ApApp2 
(A-p)2 ’

ApApP2
A-p ' (A-p)2 ’

. /_■> PpPf Pnn„ + n^p,,
^'^P) = ~2------------ —------+

nMnpp2 
n-p)2



P^Vo,.^ = 0. (3.2.26)

Hence, it follows that

pT<<2!(*>p) = 0. (3.2.27)

(3.2.28)

from which it follows that

= p‘'-4VJ(i>p) = °- (3.2.29)

] O1̂  + [ 16z2 — 4 - 16x ]
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O3

Therefore, the tensors O3̂  and O2„ must be absent too (see equation 
Furthermore, we expect that the tensors O2^’6 do not appear 

result accompanied by singularities in e, because these structures arc 
presence of such pole terms would make the Lagrangian

Og.MF — P — 0,

from which we infer that the cannot occur in the final answer (see eq. 3.2.25).
In the axial gauge there exists also a stronger WT identity, which states that the 

Green’s function already becomes equal to zero if only one of the external gluon lines 
is contracted with its momentum. This property is expressed by

p'T,

■ -4).

one loop 
ocal. The 

non-renormalisable. Our 
final conclusion concerning the Lorentz structure of the Green’s function is that the 
only possible tensor structure of the e-1-terms of the one loop result is 0^, ie. the 
structure of the gluon operator at lowest order.

The actual calculation of the quantities .A^u(x,p) in the general axial gauge 
is rather difficult. Therefore, we only determine the UV singular behaviour of the 
integrals, which shows up like a e-1 term. These singularities can be determined 
without too much effort. A general vector n does not only complicate the integrals, 
it also causes the introduction of a cascade of factors (An)" where i = 0,1,2,..., m. 
The complete treatment of these factors is difficult, but luckily enough at the same 
time unnecessary, because counter terms proportional to (A n)’ only produce (A-n); 
terms with j > i in higher order calculations [9]. For this reason they do not affect 
the renormalisation of the physical operator indicated by Since we are only 
interested in the renormalisation of the latter we suppress the terms (A n)" for i > 0 
by putting A-n = 0 in the calculation. After some non-trivial algebra we find

P) = { [ 8 + 8z2 — 8x — 8x

r [ - xO'„ + 2xO3„ + xOt + (2 - *)C+ 4W 
jPn2

- 2x0^ ] } (3.2.30)



and

X^(*,P)

(3.2.31)

(3.2.32)
'c

by

(3.2.33)

-8(l-x);1-ftf(l-z)}oj1,(p), (3.2.34)
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-P2 
P2

1
e

P 
MV

1+“'{/(x)-/(l)},<fx(i -x);:

-n

= eG£) ( [8-8(1-x);1]0;iz+[4 + 16x-16xj]0;

r [ xO^

Jo

{ 16 + 8x2 — 8x — 8x

where the last term of the left-hand side of the above equation represents the wave 
function renormalisation constant at first order. The factor (—p2/p2) is intro­
duced for notational convenience; it does not affect the pole structure. It is clear that 
this expression is independent of the axial gauge vector n. As the expression 3.2.34 
is the only contribution to the physical operator renormalisation constant, this must 
be a quantity which is generally gauge independent. This does clearly not hold for 
the non-pole terms, as we will see in the next section where we calculate the above 
quantity up to constant terms in the covariant gauge.

When the inner product A-n is put equal to zero, it is sufficient to introduce 
a single counter term of the same form as the original gluon operator in order to

2 4V(*,p) + zV’4°W) =

- 2xO\ - xO’v + (x - 2)O«„ + 2x0^ ] },

■•) is a general ‘test’ function, which is regular in x = 1. 
normalisation constant of the gluon operator is determined by the sum

.cessions 3.2.30 and 3.2.31 and the inclusion of the effect of wave function
> . ation. The first order coefficient of the latter quantity in this gauge is given

4!) = - [A e 1

where the common one loop factors were suppressed (see eq. 3.2.14). The total UV 
singular result in the x-language is equal to (see eq. 3.2.10)

+ 4^
p2n2

where the tensors are given in eqs. 3.2.17-3.2.23. The parameter p is an arbitrary 
mass scale, which expresses the mass dimension of the coupling constant. The dis­
tribution (1 — x)^1, appearing in eq. 3.2.31, is a regular distribution in the following 
sense:



-S(l-z);1 - yfi(l-z)] , (3.2.35)

7SS ’ (3.2.36)

(3.2.37)

7^(2) = 0. (3.2.38)
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render the one loop result finite. Renormalisation in the MS scheme implies that this 
counter term is given by

8 
m + 2

This identity is a special example of the general property that conserved quantities 
have a zero anomalous dimension.

The calculations of the complicated one loop integrals in the general axial gauge 
can be facilitated by making a more suitable choice for the vector n. For instance, 
the integrals become considerably easier when the vector n is lightlike, i.e. n2 = 0. 
Furthermore, the tensor structure of the quantities Xj'Ju(x,p) can be reduced to the 
first four tensors given in eqs. 3.2.17-3.2.20, by choosing the axial gauge fixing 
vector n proportional to the vector A defined in eq. 3.2.7. However, there is prize to be 
paid since such a gauge fixing term yields a Lagrangian, which is not renormalisable 
by power counting [8]. Moreover, one will encounter a new kind of divergences in the 
Feynman integrals, the so-called gauge singularities. Nevertheless, we will present

8 8 yj 8 _ 22
m + 1 m — 1 ~ i 3

Since for m = 2 the gluon operator becomes equal to the stress energy-momentum 
tensor, it follows from energy-momentum conservation that eq. 3.2.37 satisfies the 
relation

~e^S‘CA°f

x y dzzm-1 [ 16 + 8z2 — 8z — 8x

where a, = j2/4t is the renormalised coupling constant (cf. eq. 3.2.10) and the 
physical gluon operator Og is defined in eq. 3.2.7. The MS scheme distinguishes itself 
from the MS scheme by the additional constant 7£ — ln47r, which appears in the 
argument of the exponent in eq. 3.2.11. The first order contribution Z^™1 to the 
renormalisation matrix element Za follows from eqs. 3.2.13 and 3.2.3". Expanding 
the anomalous dimension 7M of the gluon operator in a power series

the lowest order coefficient equals

= CX[^ + 
L m



(*.p)=

-4(i-x);:

(3.2.39)

and

*>p) = (3.2.40)

(3.2.41)n-(k + 6p),n-k

(3.2.42)

-8(l-x);:

(3.2.43)— 4 — 4x

39

Th­
eo?

3A

-j(l - x)p2 

M2

-j(l - x)p2 

P2
16z2 ] 4x - 8x2 | O3„(p).

+ { | [ 16x2

-j(l - i)p2 

M2

+ 85(1 —x) In 8 ] 4- 8 + 4z2 — 4x — 4x

+ [ 2 In2 8 + 4 In 6 + 4f(2) ] 5(l-x) } Oj„(p) + [ 2 + 8z2 - 8x ] O2„(p)

8z ] + 8x2 - 4x } OjJ„(p)

\ ( 1 rJ U8*-
er 5 is a gauge regulator, which is used to distinguish gauge singular 
from real UV divergences. It appears in the gluon propagator (see eq.

lacing

- y — 81n<5 ] ,

where p is the external momentum and k is an arbitrary loop momentum. In appendix 
3B the loop integrals are shown. They reveal why such a regulator should be used, 
especially at the boundaries of the integral over x.

The effect of wave function renormalisation is almost the same as in eq. 3.2.34, 
except for the presence of a In 6 term. The calculation of Z& at first order renders 
the following gauge singular expression

^=j[
where the same quantities were factorised as in eq. 3.2.33. The final sum of the 
contributions is equal to

-|e , ,
A<V(*.p) + Z^A^(x,p) = | - [ 16 + 8z2 - 8z - 8z-1 

‘-^5(l-x)] + [ 4f (2) + 4 Ini + 21n2 8 ] 5(1-x) + 8 + 4x2 

-4(l-x);’ }oj,(p)+ [ 2 + 8x3 — 8x ] O2„(p),

the expressions >lJ’pV(x,p) in this case, because one of the two available two loop 
anomalous dimensions has been calculated in this gauge [5].

If n oc A the expressions A-'Jv(x,p) are given by

\ f 1 rJ | ^[16 + 8x2-8x-8i



3.2.3 The covariant gauge calculation

3We have checked this by recalculation of the integrals with the introduction of regulator masses.
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are given

■neans of an 
. e choose 
Moreover, 
Green’s 

..'culation 
However, 

only hope that this also happens for the two loop calculation done m [5].

where the tensors ChM can be found in eqs. 3.2.17-3.2.18. The factor in front of 
was again introduced for notational convenience. Note the structure OjJ„(p) 

has no infinities and O3„(p) vanishes in the sum of contributions to the one loop 
calculation. The first two structures satisfy the relation p"OJ,'J(p) = 0, whereas 
O^,(p) does not. Hence, the one loop calculation in the lightlike gauge satisfies the 
restriction imposed by the WT identity 3.2.28. Furthermore, in order to render the 
one loop result finite, it is sufficient to introduce a single counter term of the same 
form as the original gluon operator. This is not entirely analogous with the case 
of a general gauge vector n (cf. eq. 3.2.35). There the inner product A n was put 
equal to zero by hand, otherwise the operators with the structures (A n)’ had to be 
renormalised too.

f¥om eq. 3.2.43 it is clear why the specific gauge regularisation I 
additional parameter 6 was necessary. Due to the singular gauge fix 
n2 = 0!), there is a gauge singular behaviour of the result near x equal 
the presence of the Ini terms in the final expression 3.2.43 means t 
function does depend on the regularisation of the gauge singularities, 
of the anomalous dimension is not affected at least up to the one loop 
one can

In spite of the nice and straightforward calculation in the lightlike axial gauge with 
ex Am, it must be remarked that there exists another problem due to this gauge 

choice. The Lorentz structures with nM and AM cannot be distinguished. We tried to 
calculate the case where n2 = 0 and A n = 0, but without the assumption nM ex Ap. 
In the final answer, not only the O),„ term, but also other structures exhibit singular 
behaviour. We cannot think of a satisfactory explanation for this phenomenon.

In this section we present the results of the one loop calculation of the 1PI Green’s 
function in a general covariant gauge. The relevant quantity is given in eq. 3.2.10. 
The Feynman diagrams that contribute are the same (see fig. 3.2) and the Feynman 
rules are given in appendix 3A. In this calculation it is not necessary to introduce 
additional regulators like has been done in the lightlike axial gauge, because the gauge 
singularities are harmless and do not affect the pole structure3.

In a general covariant gauge the quantities (see eq. 3.2.16)



by

+
— 2 + 8x2 — 4x + 2x

(3.2.44)

and

^2.1Ax,p') =

(3.2.45)

(l-«) ] , (3.2.46)

-i'
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67 
9

— 4(1—a) ]

- 2(1-a) Jo^p)

-1(1 - x)p2 
P2

X',L(z,P) =

are given in eqs. 3.2.17-3.2.20. The first coefficient of Za in

y | | [8 + 4x-8(l-x); :

4V(®.P) + 4,,4°A^,P) = { | [ 16 + 8x2 - 8x - 8x

+ [ 2 + 8x2

{ - [ 16x2 — 12x + 4x

+ ] 4 — 4f(2) + (1—a) —
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4i

+i

—z(l — x)p2

- 8(1 -x);1 - y<5(l-x) ] + 6 + 4x2 - 4x - 4z-1 — (1—a)(l —x);

- 4<(2) + (1-a) - |(l-a)2 ] 6(1-x) } O^(p)

-x(l - x)p2
P2

— [4 + (1—a)]6(l—x) ] + [ 2 — 2(1 —x);1 ] (1—a)

|(1—a)2 ] 6(1—x) } O’„(p)

12x - 4 - 16x2 + 4(1 — a) ] - 8x2 + 4x + 2(1 -a) J OjUp)

2x - 2 ] O^(p),

y { I [ 8 + 8x2 - 12x - 8x-1 + 2(1 —a)6(l —x) ] 

+ 6 + 4x2 - 4x - 4x-1 + [ (1-x);1 - 2 + 6(l-x) ] (1-a) | Oj,„(p) 

-8x- (1—a)x-1 ] O2„(p)

where the tensors
the covariant gauge is given by

which is explicitly dependent on the gauge parameter a. The sum of the contributions 
is equal to

+ i [ 2 - 2x ] Oi„(p)



(3.2.47)+

o. = [ (d°A dAa)dm~2daA ] , (3.2.48)

(3.2.49)
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-4] - 2 + 2z

- 8x —(1-a)x-’]O^(p)

}ot(p)-
Comparing the above expression with the one given in eq. 3.2.43, where we used the 
lightlike axial gauge, the pole term corresponding to O’„(p) is left unchanged. It 
means that the anomalous dimension 7K is not altered (at this order) by changing 
from an axial gauge calculation to the covariant one. The tensor structure O’„(p), 
which doesn’t satisfy the WT identity 3.2.26, drops out (see eq. 3.2.25).

However, there are a few differences with respect to the axial gauge calculation. 
Firstly, the finite terms which are proportional to the tensors OJ'J(p), are different 
due to gauge effects. This feature is not important, because it just entails a shift of 
finite terms and it does not influence the physically important UV singular behaviour. 
Nevertheless, it is interesting to see that the constant terms of eq. 3.2.47 are explicitly 
dependent on the gauge parameter a. It means that the non-pole part of the Green’s 
function is not gauge independent, even when we include the effect of wave function 
renormalisation. This is important, because it entails the renormalisation of the gauge 
parameter when we treat the two loop calculation. Notice that in the covariant gauge 
the renormalisation constant for the gauge parameter a is equal to the wave function 
renormalisation constant ZA. Secondly, in the final result appears the tensor 0})„(p)> 
which satisfies relation 3.2.26, but not 3.2.28. Moreover, its coefficient shows an UV 
singular behaviour, represented by e-1 (see eq. 3.2.47). Due to this structure a new 
operator has to be introduced in the Lagrangian, the matrix element of which removes 
its divergence. We will call this gauge variant operator the alien operator. At lowest 
order it has the following form (where we use the notation of eq. 3.2.8)

and its Feynman rule is proportional to the tensor structure 0^p(p), given in eq.
3.2.19. The counter term, which must be included in the Lagrangian, is given by

-~SCCA (1t(~ir)o. = -^-ScCAZ^O„ 
e 4ir m(m — 1) 4ir 8

where Zg, is the renormalisation constant belonging to the gluon-alien transition, 
which is expanded in the same way as Zts (cf. eq. 3.2.15). The first order result 
becomes finite if one calculates the Green’s function in which both operators, the 
gluon and the alien one, are inserted. Then one observes that we can write the bare 
Green’s function as a sum of two renormalised Green’s functions in the following way



zAt\ (3.2.50)

(3.2.51)

(3.2.52)

The quantity ^[/'(x.p) is given by

-2]-l+®•^’’(z.p) =
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The new WT identity, which is valid in the covariant gauge, couples the contribution 
of OjJv(p) to the Green’s function of the operator sandwiched between ghost fields. 
Instead of eq. 3.2.28 we have in this case

Fig. 3.3. WT diagram which represents the lowest order contribution to the 
right-hand side of eq. 3.2.51. The dot indicates the amputated ghost vertex, 
which does not have the outgoing momentum like the normal ghost-gluon 
vertex. The X represents the multiplication with the orthogonal projection 
operator p2gtlu — PuPv

1 + (-l)m
2

—z(l — x)p2 
72 )“{>

P.ra; = f^g,

Al'Oj.ne = z<£ >ro„wp + ^^0.,^-

<5“i(A-p)’"^1dxx’"-1|^5eCx41)(x,p)}

The expression is given by the graph in fig. 3.3. The Feynman rule of
the amputated ghost-gluon vertex, that is indicated by a dot and only one ghost 
line, is altered (with respect to the normal ghost-gluon vertex) in the sense that 
one leaves out the outgoing momentum. This reveals the Lorentz index 1/ (see figure 
3.3). An extra feature is the multiplication with the orthogonal projection operator 
P2ff<u- — PpPu, which is explained by J.C. Taylor in [10]. The WT identity 3.2.51 
holds for connected diagrams, but here it can be applied without any modifications, 
because the external self-energy diagram does not contribute.

- pM) , (3.2.53)

1

where the right-hand side denotes the 1PI Green’s function of the gluon operator 
with external ghost fields. It can be written at lowest order in the coupling constant 
as follows



(3.2.54)

(3.2.55)0„ =

(3.2.56)

(3.2.57)Z™ = Z^-
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of eq. 3.2.56 (shown in the second diagram of fig. 3.4), and the WT identity expressed 
by eq. 3.2.51, we have the following equality in terms of the renormalisation constants

Renormalisation of the gluon operator in the covariant gauge at higher orders 
involves mixing between these three operators that we have seen up to now at least.

Fig. 3.4. Diagrams which represent the lowest order contribution to the 1PI 
Green’s function with two external ghost lines. The expression for the diagram 
on the left can be deduced from eq. 3.2.53 by replacing the factor p2AM/Ap-pM 
by 1. The diagram on the right is due to the introduced counter term for the 
ghost operator (cf. eq. 3.2.56).

which is in agreement with the contribution of Oj)„(p) to the gluon operator Green’s 
function that we calculated in eq. 3.2.47 in view of the equality

f \ _ if P \p 2 A p PmJ ■

From the WT identity in eq. 3.2.51 it follows that in addition to the counter term 
for the alien operator (see eq. 3.2.49), we also have to introduce one for the ghost 
operator, which in lowest order in g is given by

where £ and are the (anti)ghost fields. The counter term corresponding to 
which has to be included in the Lagrangian, equals

-Ifo.cJ1 + = -^.SeCAZ^O.
e 4tt m(m — 1) 4?r s

up to the lowest order in the renormalised coupling constant a,. This counter term is 
introduced in order to get a finite Green’s function, which has two external ghost lines. 
The contributing graphs to this 1PI Green’s function are shown in fig. 3.4. Because 
of the relation between and fo„, which in lowest order equals the contribution



3.3.1 BRST invariance

(3.3.1)

(3.3.2)G£ = 0,

(3.3.3)
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A -

The Lagrangian, given by eqs. 3.2.1 and 3.2.2, is invariant under the rigid BRST 
transformations

where

g = (^V)^ -

<5w“

Already at this moment, it can be seen that we will need the newly discovered alien 
and ghost operators up to order g3 in the Lagrangian to perform a correct two loop 
calculation. The actual form of the operators at this order cannot easily be guessed 
by covariantisation of the derivatives or by introduction of the non-abelian field 
strength in 3.2.48. The determination of the correct Lagrangian is the subject of the 
next section.

3.3 One loop renormalisation of the action to order g3

In the previous section it became clear that the gluon operator is not multiplicatively 
renormalised. In other words, the divergent expressions, which one finds at the 
one loop level, do not have the same form as the original ones. Hence, in order 
to achieve finiteness of the theory, one must introduce new counter terms in the 
Lagrangian. The problem under study is the calculation of the two loop contributions 
to the renormalisation factor of the gluon operator, which is O(<74) in the coupling 
constant. This makes it obligatory to determine the new counter terms (due to one 
loop calculations) up to O(g3). Fourth order terms are excluded, because they cannot 
contribute to a Green’s function with 2 external legs.

In this section we want to calculate these terms. In order to justify the connection 
between new gluon (alien) operators and ghost operators, we use the general idea of 
BRST invariance.

= DabJ>X,

= -lg/°b‘uASX, 

=
where A is a ^-independent infinitesimal anti-commuting constant. The invariance 
can equally well be expressed by



(3.3.4)

e

(3.3.6)

(3.3.7)

(3.3.8)

(3.3.9)•GF,
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Following Zinn-Justin [11], we introduce sources K and L for the BRST variations 
of the gluon and the ghost fields, which results in the following action

S[A,(,u>,K,L] = fd*x (£[A,{,a>] +

The Lagrangian £[A,£,u>] is taken from eqs. 3.2.1 and 3.2.2. The generating func­
tional of connected Green’s functions W is defined by

(3.3.5)■iw\j,p,a,K,L,J] =
J[dA][du>][d£] exp [iS + ijdix (j°“A“ + £»P° + 

where j, p and a are sources for the fields, in order to be able to define expectation 
values, and 1 represents the introduction of the gluon operator. The
Legendre transformation of the functional IV, with respect to the sources of the fields, 
gives the generating functional T of the one particle irreducible (1 PI) vertices. In order 
to keep the notation limited, we do not introduce new variables for the expectation 
values of the fields. The actual meaning of A, ( and ai should be contextually clear 
at any moment. We have

r[/U,a>, K, L, J] = p, a, K, L,J]-Jd*x (j^A^ + ^Pa + ^“).

We are now able to formulate two equalities, which we want to maintain at all orders 
in the loop expansion of T. These are the equation of motion for the antighost field,

8K°“'

and the WT identity, which expresses BRST invariance of the action, 

6f sr sr <sr
8A“ 6Ka“ ~ &>° <5£° ’ 

where f is defined by

f = T- J^xC.
which is manifestly gauge invariant.

We are interested in Green’s functions with one single insertion of the gluon 
operator. Therefore, it is natural to differentiate eqs. 3.3.7 and 3.3.8 with respect 
to the source and set = 0. This action will give us the generating
functional of 1PI Green’s functions with one operator insertion, which obeys the 
relations



= d“ (3.3.10)

(3.3.11)

(3.3.12)

3“ (3.3.13)

(3.3.14)

(3.3.15)

(3.3.16)

div

A,

div

6uja = A, (3.3.17)

47

renor-
1 must

e0(r~)^v = [■

6f
6Ka“

Dabub + 4,...„m

6f

as already been expressed in 
loop divergent part of f*1

6A‘

~6A^~

-\arbc^ +

The invariance of the complete system under the transformations 3.3.17 must be 
present, because the derivatives with respect to the sources K and L are the BRST 
variations of the fields A and respectively. One can also show, by plain algebra, 
that the new action is invariant up to the first order in the current under the 
transformations 3.3.17.

8u° 6IS’
<5f <5r« 

<5w“ 6L° +

= 0-
Applying these equations to the case, where f h. 
malised fields (therefore being finite), the one 
satisfy the following restrictions

6 (r"i •••*”•
73 = 8IC“'

if <5 6f 6 
6A‘ 8Ka“ + 6o>° 8L°

where we introduced <70, the generator of BRST transformations in the (A,u>) sector, 

eo = (^v)^-i5r^v^.
Because the relations 3.3.13 and 3.3.14 are valid, we can write down new invariance 
transformations of the action with all operators (the old gluon operator as well as 
the new ones). The action that is meant here can be expressed by

where i runs over the set {g,a,<x>}. The gauge fixing term £qf is left out. The new 
transformations are given by

if'*1'""

6r {rei -Mm
6A° 6K‘>‘ + 

where



3.3.2 Construction of the renormalised action

follows. Firstly,

(3.3.18)

• Its dimension is 2.

want the
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■z

• The expression must have ghost number 1, because it belongs to a BRST trans­
formation, which means that one uj field must be present.

• The parameters, appearing in Q“, must be dimensionless, because we 
theory to be renormalisable.

we will consider the general form of the

• The previous two arguments and the fact that the current has dimension 
—(m — 2) demand that an object (consisting of gluon fields, derivatives, etc.) 
of dimension m — 1 must be added.

• The gluon operator only couples to gluon fields, which means that all diagrams 
with more pairs of external ghost lines are convergent by power counting.

The outstanding question is how the new action is expressed in terms of the renor­
malised fields. If we can give an answer to this question, we have a Lagrangian at 
hand from which we can calculate all counter terms at the two loop level. The beau­
tiful fact is that we have found an invariance of this new action, in spite of the fact 
that we do not know the action itself. However, if we can invent a transformation 
on the field A as such, that the new field A' obeys old transformation laws, we know 
that £ + in terms of A' is invariant. Substituting the new field (in
terms of the old field) into the action renders an action, which is invariant under 
transformations 3.3.17. One should also carry this procedure through for the ghost 
field, but we do not present that here, because it does not influence the calculation 
under study.

The programme is as 
expression

div

= Q‘

• It has a colour index a and a Lorentz index fi.

P,-Pm SK™
It will appear that the quantity Q“ is precisely the extension of the gauge transfor­
mation that is presented by Dixon and Taylor [2]. Secondly, a transformation on the 
field A is given in such a way that the transformed field obeys the old BRST trans­
formation law. Thirdly, we substitute this new field in the Lagrangian. The resulting 
expression for the Lagrangian must be invariant under transformations 3.3.17.

Consider the quantity Q“. One can state the following about it:



Q“ = 7AM9m-,u>“ + (3.3.19)

(3.3.20)Vi “f" t/m—1—»' — V

(3.3.21)

field X') follows

(3.3.22)

(3.3.23)
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—^Dbc ~ gf^R^ ]<J = Q“

= K&^d'

^-2-iA^ + O(g2y

q°

From these conditions one can deduce the most general form for Q°:
m—2

r;

while g0 must be absent.
Looking at the definition of Q“ in eq. 3.3.18, one can easily see that g must be 

O(<72). In the same way one can observe that the extra term in 6u>“ in eq. 3.3.17 
is O(g4). We do not consider this quantity, because its effect is beyond the scope 
of our problem. The parameters g and tj, follow from the calculation of 3.3.18, i.e. 
the divergent part of the Feynman graphs with one operator and one amputated K- 
vertex insertion. The actual determination of these parameters is performed in the 
next section.

Subsequently, we want to find a transformation on the field A, which involves the 
current such that the transformed field obeys the BRST transformation laws
3.3.1. The new field will be implicitly expressed in terms of the old field as

■4; = + R°(A').

From the requirement 6A°' = D“bu>bX (where D involves the new

(6RI
\6Ab„

The polynomial obeys a similar set of conditions as Q°. It must have the same 
dimension and quantum numbers as the field A°, and the coupling to the current 
•Au-Mm must be present. The most simple way to find a general parametrisation4 (in 
view of the restriction 3.3.22) is to take Q“ (see eq. 3.3.19) and replace each term 

by A“. One arrives at the expression
m—2

)m~2A° - gfabc^li £ Ki(di~1Ab)(dm~2~'Ac) + O(g2).

The determination of this form involved the additional restriction that the new trans­
formations 3.3.17 should be nilpotent. This fixes the specific colour factor /a6<: and 
restricts the values of gi. These parameters must satisfy 

m — 2

• The form of the current is given in eq. 3.2.6. This form restricts the
possible Lorentz structures severely.

4We do not know whether eq. 3.3.22 has always a solution. At least up to order g we find one.



(3.3.24)

/T)]

(3.3.26)

(3.3.27)

(3.3.28)

(3.3.29)
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The restriction 3.3.22 determines the parameters k and Ki to be equal to 

m - 2\

, D = i&°Do 

, d = iA°da.

From the discussion below eq. 3.3.20 we infer that a field redefinition of the ghost field 
starts at O(g*). This will not give rise to contributing counter terms in the Lagrangian 
to our problem. However, if one wants to carry through the whole renormalisation 
programme, it is necessary to take care of these terms, too.

The final step to construct the new Lagrangian is the substitution of the new field 
into the old Lagrangian. Up to the relevant order the inverse of relation 3.3.21 is 
simply

A*' = A‘ - R‘(A). (3.3.25)

We substitute this expression into £[A',(, w] + where we understand
the Lagrangian without gauge fixing term. One should leave out £gf> because the 
invariance transformations 3.3.17 are valid for f, which is defined in eq. 3.3.9 as the 
generating functional without the gauge fixing term. The substitution procedure 
gives us the Lagrangian, expressed in renormalised quantities

£ = - £(dM„)2 - Z^d“D^ + Z„Og
Tn—2

+ TiF°Dadm-2A - gf^FS K,d°[(d-'Ak')(dn'~2-

m—2
- - gf^C £ >7.a[(am_2'i^)(^c)],

The constant g, as it was used in this section, can be related to Z^m\ which was 
defined in eq. 3.2.49. At lowest order in the coupling constant we recover the operators 
Oa and O„, given in eqs. 3.2.48 and 3.2.55. The notation applied in the above 
expressions is defined in eq. 3.2.8, but for convenience we give the rules here again

Fa = ^Fa0

A = A°Aa

K = g, 2k, = r]i-r)

where the second and third lines constitute the generalisations of the alien and the 
ghost operators given in eqs. 3.2.48 and 3.2.55, i.e.

m—2
O. = FaDodm~2A- gfakcF‘ V -9“[(9,_1 Al’)(dm~2-'AC)],

tn—2

O„ = - gf‘kcC £ ^3[(3’



3.3.3 The calculation of rj and r/i

(3.3.30)

(3.3.31)

(3.3.32)Vi V
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Fig. 3.5. One loop 1PI graphs which contribute to r?,. They have one operator 
Og insertion (indicated by ®) as well as one amputated K-vertex (indicated 
by •)■

m(m — 1) ’

m — 2
i —1

m — 2
t

1
+ 4

Colour indices are suppressed in those cases where no ambiguities can occur. From 
this new Lagrangian one can calculate the Feynman rules, corresponding to the new 
operators. They are given in appendix 3A.4.

In this section we present the calculation of the parameters r/ and r);. As we apply 
dimensional regularisation throughout this thesis, these quantities are calculated in 
n = 4 + e dimensions. From the definition of Q“ in eq. 3.3.18 it is clear that we can 
determine r] and rj, by considering one loop graphs, which are 1PI and which have 
one insertion of the operator Of. Furthermore, they have one amputated /(-vertex 
insertion coming from the non-abelian part of (£>pw)“, as can be seen in eq. 3.3.4. 
The Feynman rule of such a vertex is equal to the one of the gluon-ghost vertex, 
but without the momentum of the outgoing ghost. The relevant diagram for the 
calculation of 7 was already given in fig. 3.3, but in this case the projection operator 
x is not considered. The diagrams for 17,• are shown in fig. 3.5.

The expressions, due to the diagrams for 17,-, contain non-local terms of the form
m —2 1

.=11

which however cancel in the sum of the 4 diagrams (cf. eq. 3A.17). Further, the 
diagrams for 17, are dependent on the gauge fixing parameter a, but this dependence 
also disappears in the fined sum. We find that r/ and 77,- are equal to

92 „ 1+ (-!)" 1



3.4 Results of the two loop calculations

\
ZA (3.4.1)

za^o, - zavOl + 2gar0. + 2gG,rOw, (3.4.2)

(3.4.3)
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denotes the 1PI Green’s function with two external gluon fields and 
operator O, insertion. This equation is the starting point of 

will calculate the order a] contributions to and 2ga.

r°'ro.
ro„ /

where the operator renormalisation constants are defined in eqs. 3.2.49 and 3.2.56.
Hence, the renormalised Green’s function can be denoted as

Z.g

2^g

'go,

^U'U/

an
our discussion, in which

Zga Z.
z„

we

Let us consider the renormalised Green’s function that contains one gluon operator 
insertion. Because the renormalised Lagrangian contains more operators we have

(^ro, — 2g.ro. - 2gu,rOw).

where To,

where t] can be straightforwardly identified with the renormalisation constant 2’;(m) 
of the alien operator (see eq. 3.2.49) and therefore also with the one corresponding 
to the ghost operator, which was given in eq. 3.2.56. This result is identical to 
what Dixon and Taylor found in [2], except for the factor | that accompanies (-I)1 
in the expression for jj,-. Notice that the r/i satisfy the relation imposed by nilpotency 
of the BRST variations 3.3.17, which was given in eq. 3.3.20.

We have arrived at an expression for the Lagrangian, which is renormalised at the 
one loop level up to sufficiently high order to perform the two loop calculation of the 
1PI Green’s function. 

In this section we show the two loop renormalisation of the gluon operator. We 
perform the calculation in the Feynman gauge, i.e. the covariant gauge with a = 1 
(see eq. 3A.4). In order to do this calculation we use the Lagrangian, which is one loop 
renormalised up to O(g3) (see eq. 3.3.26), to calculate all contributions to the 1PI 
Green’s function. This will lead to the determination of the combined renormalisation 
factor ZA Zq. As ZA is known up to the two loop level we can extract Zq from this 
result.

The most general form of the relation between bare and renormalised Green’s 
functions which we need in our case is

f0„)

ro, = 2,



Z?1 (foa + fow) = (Zag + Z„g) Tog 4- (Zaa 4" Zwa) To, 4- (Zau/ 4" Zuau) Fow. (3.4.4)

(3.4.5)Zag 4- Z^g — 0.

(3.4.6)

be inserted into eq. 3.4.3, yielding (cf.

,m —1

+

(3.4.7)+

B(»)(x,p)=2O2„(p)«(l-z). (3.4.8)

53

Using this property and the knowledge that off-diagonal renormalisation constants 
and To„ are t?(or3), we can invert relation 3.4.4 into

’This fact is established at first order in a,, but it must be true in all orders, because these 
renormalisation constants can not affect the physical renormalisation constant ZM.

As we will see later on, the first sum of renormalisation constants on the right-hand 
side vanishes:’

To. + io„ — (zA — (z„ — i) — zw«) fo. + fOw,

which is valid up to order as. This result can 
eq. 3.2.10)

we will

where -4^(1,p) and A4^(z,p) are defined in eq. 3.2.12. In the above expression 
Bj5(z,p) is the zero loop contribution of the alien operator, which is equal to

-z^
{Zx[4o,)(z,p) +

The unrenormalised one loop contributions B$(x,p) and C$(x,p) come from the 
alien and the ghost operator insertions. The one loop contribution B$(x,p) due to

As the two renormalisation constants Zg« and Zgw are equal to each other (cf. eqs. 
3.2.49 and 3.2.56), we need to consider the sum To. + To„ only. In view of the general 
renormalisation matrix 3.4.1 we have the following equality

4*.’)) B<“>(z,p)

= z~* [zAto, - zg. (zA - (z„ -1) - zM) fo.

1 + (-1)m^(A.p)’n^ldzz'



p.

IQOQOOOOOI

}o;

(3.4.9)+
belonging

® O

^(x.p) =
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4
3

-g(l - x)p2 
M2

Ho-

-2x] }oj„(p)+ [2x2

2x2 ] + 2 - 4x

- 2x ] O2„(p)

to the O’M and 2O2„ structures, respectively.
The quantity C^?(x,p) denotes the one loop contribution of the ghost operator. 

Its expression can be calculated from the diagrams given in fig. 3.7 and its result in 
the Feynman gauge is

— | + 2x

—x(l — x)p2

+ [4-2x2+2I]O^(p)
+ | | [2 + 2x2 -5z + 4x-’ -6(l-x);‘ - |<5(1 — x) ] 

-3C(2)]«(l-»)}o^(p) + |O^(p)).

Note that the quantities Zag and at first order are the pole terms e'

Fig. 3.7. The one loop contributions coming from the ghost operator. The 
Feynman rules which correspond to the operator insertion can be found in 
appendix 3A.4.

Fig. 3.6. The one loop contributions coming from the alien operator. The 
Feynman rules which correspond to the operator insertion can be found in 
appendix 3A.4.

the alien operator can be obtained from the diagrams given in fig. 3.6. Its expression 
in the Feynman gauge is



|«(l-z) }o^(p)+
(3.4.10)

(3.4.11)

and

= cA [ (3.4.12)------ rx +

(3.4.13)

given in eqs. 3.2.44 and 3.2.45,

(3.4.14)

(3.4.15)
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_1^ 
m

I-

5
2(m+ 1)

<>(*,?) =

3 3
i "4

5
2(m + 1)

The unrenormalised quantity A^}(x,p) in expression 3.4.7 is taken from the one loop 
covariant gauge calculation:

(x,p) + A^(x,p),

ZA = Zo = 1 + £ ^'s'C^z^,

the right-hand side are

O 7n-i

+ ^t-5

I I [ 5x - 2 - 2x2 + |«(l-x) ] + 

~ 5°^'

where the two terms on 
respectively.

Our object is to calculate the second order quantities Z^m) and Z^m\ which 
render the total expression finite at second order in the coupling constant a,. The 
expansion of such operator renormalisation constants can be found in eq. 3.2.15. In 
order to achieve the correct expressions for these renormalisation constants, it is 
necessary to express the lower order contributions to the 1PI Green’s function in 
renormalised quantities. In order to do this we need the following renormalisation 
constants

Z.-l + g(g)W<’.

nl-

m) = Ca [ + di “ 
l in m 4- 2.

(p)).

The first order contributions to the quantities Z^ and ZUK are determined by the 
pole terms e-1 belonging to the O' and 20^ structures, respectively. Note the pole 
terms proportional to cancel in the sum of the two expressions B$ and C$ 
above. This is equivalent to the fact that these new operators do not influence the 
double pole structure of the physical contribution to the two loop calculation (cf. eq. 
3.4.5).

The pole terms proportional to 2O2U in eqs. 3.4.9 and 3.4.10 are elements of the 
anomalous dimension matrix. We will indicate these with indices a and o>, originating 
from the alien and the ghost operators, respectively. They are given by

1
m + 2

1
m + 2



(3.4.16)

(3.4.17)

and

(i)

(3.4.19)

-8(l-x);’-^(i-x)], (3.4.20)

(3.4.21)

-3(l-x);'-f|d(l-x)], (3.4.22)
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4”

— |x + 2x

-T-t(1-q) + {(1-°)2] ? (3-4.18)

are given for general a, the renormalised 
gauge fixing parameter. Note that the double pole term of Z%} (denoted by Z^ [c*2]) 
can be expressed in lower order quantities through application of the renormalisation 
group equations:

= 2? ((7°) + 2^o7x + T°)

Furthermore, we will need the renormalisation constants of the operators. These 
factors can be inferred from eqs. 3.2.47, 3.4.9 and 3.4.10, where the £-1 terms repre­
sent the first order renormalisations of the gluon operator (proportional to Ojll/(p)) 
and the alien operator (proportional to 2O^I/(p)). The ghost operator has the same 
renormalisation constant as the alien operator. We will consider these quantities in 
the z-language, i.e. at the level of A$(x,p). This will lead to contributions which 
are convolutions of one loop results (like the complete expression 3.2.47), instead 
of simple multiplications. The inserted operator renormalisation constants have the 
following forms

= | [ 16 + 8x2 - 8x - 8x

_25,
3 +

where the constants Z9, Z& and ZQ represent the coupling constant, the wave function 
and the gauge parameter renormalisation constants, respectively. Notice that we 
have factorised the renormalised coupling constant a„ the spherical factor Se (see 
eq. 3.2.11) and the universal colour factor CA as usual. The coefficients which are 
relevant for our calculation are given by

^’=[¥]h4

For completeness the above expressions

^) = Z<,)=[-^-(l-a)]U7»l

^)(x) = ^>(x) = l[2x-1-2],

^>(x) = |[l+x2



(3.4.23)12

(3.4.24)

- ® [ 42 - (- 4” ) ® - Z™ ® B<°2 ]

(3.4.25)

(3.4.26)

-4

(1— x) 1 ] In x ln(l — x) — 8 [ 4 + 2x2 — (1— x) 1 — (1+x) 1 ] £(2)— x

57

.M<2>

= /Idxxm-1Z<,'>(x).
Jo

From the above it follows that the renormalised second order contribution to the 
Green’s function, A4{/J(x,p), given in eq. 3.4.7, can be expressed in the following way

= A™ + [ 2Z(‘> + Z<‘> + Z<l)a^ ] 4V - Z™ ® C™

- Z™ ® [ + Z™ - Z™ ) ® B™ ]

^.’(x) = l[|x-l-

where the connection between the x-dependent and the m-dependent quantities is 
as follows

- | [ 88 - 10x2 + 73x + 28x

+ [ Z™ - Z™ ] ® X<°J - Z<2> ® B^

where I the Z-factors given in eqs. 3.4.16-3.4.23 and left the x-dependences 
out. The . "evolution operator ® is defined by

(/®5)(x)= [ dxx [ dx28(x - xix2)/(xi)p(x2), 
Jo Jo

where f and g are arbitrary functions. In the expression 3.4.25 there are 3 unknown 
parts. Firstly, the contribution of all 1PI two loop graphs that is denoted by -4j,2>(x,p), 
which was also defined in eq. 3.4.7. Secondly, the second order of the gluon operator 
renormalisation Z^(x), which is the central object of our calculation. Thirdly, the 
renormalisation constant Z^(x).

First, we give the result of all the 1PI two loop diagrams which are shown in 
fig. 3.8. The Feynman rules and a general description of the calculation of two loop 
integrals are given in appendices 3A and 30, respectively. In the Feynman gauge we 
find the following result

= (?")'({ |[[W)+20<(3)-
[ 16x — 6x2 + 4x-1 + 5(1—x)-1 + (1+x)-1 ] In2 x — 16

— 34(1—x) 1 ] In x + 48 J x — 2 — x2 + x

^]«(l-x)
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Fig. 3.8. The 25 two loop 1PI diagrams corresponding to the gluon operator 
which contribute to ^4jS(x,p). The numbers indicate the statistical factors 

of the diagrams.

+ (1— x) 1 ] ln2(l— z) — 16 [ 2 + x2 + x 4- x ' —(14-z) 1 ] lnzln(l + x) 

+ | [ 15x2 - 16 - 7x - 15x-1 + 17(1—x)-1 ] In(l-x)

[ 1 + x ] Lij(l—x) — 16 [ 2 + x2 + x + x-1 — (1+x)-1 ] Lii(—x) 

+ | + ^ + ^x-^x

2
m. iOOOl

2
iqdopoccq)

lOOOOQOOOOt1000000000011000000000001

—2—2—2

'00D01 uOOCl



X

— 56x

| In x ln( 1 — x)+ 7x

] In x ln(l + x) 4- [ + 4x +

j ln(l — x)

] Li2(-x)

5 + 6x

(3.4.27)

P^P,'^(^,P) = 0, (3.4.28)

P^P^MjS(x,p) = 0. (3.4.29)
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+ (1 -x)"1 ] ln(l—x) - ^ + 56x2 - ^x

] } O>„(p)

1 
+ “J

1 + - 
e

given in eqs. 3.2.17-3.2.19. Notice that the tensor O*„ is absent, 
one loop calculations, this is due to’t Hooft’s WT identity 3.2.26

1 ] Li2(l—x) + 4 [ 1 + x 

?[M
] ln(l —x) — 12 + |x2 — 8x+

] In x

] }o’,(p)).

— 4x ] ln(l — x)

a property that should be maintained at the renormalised level:

+ (1—x) 1 ] Inx

] In x

_l|4 + 248i2_l|0l + 6l-1joUp)

y + 7x-1 ] In2 x + 2 [ 15 — 4x

1 + x-1 ] f(2) + 2 [ 14 - 3x

i 1 — x 1 ] ln2(l —x) + [ |x

21 — 32^(2) ] 5(1 —x) — 32 [ 3x

+ 22 [ 1 - x

The tensors O'^, are 
As in the case of the 
that states

The WT identity 3.2.51 relates the coefficient of to the set of all two loop 
graphs, which have external ghost fields and an amputated ghost vertex in them (cf. 
fig. 3.3). As was already remarked in section 3.2 below eq. 3.2.51, this WT identity 
only holds for connected graphs. Therefore, in order to check the equality one has 
to take into account the one loop graphs with an external self-energy insertion. We 
have calculated the ghost diagrams, and the contribution of the alien operator in eq. 
3.4.27 is in agreement with their expressions.

• |x2-^x+^x

+ T(l-x)

[ — 8 [ 1 + 16x ] In x — 16

 164
3

<•{;[[
+ i i + x

3 X
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3 x

3 x

+ ?[
+ 64 [ x — 2 — x2 + x

•2 — 4 — 8x +



(3.4.30)

(-p2/m2)'/2 »

(3.4.31)

= 1 +

(3.4.32)
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cancel, i.e. divergences 
of all contributions to 

. This part of the second order

+ Zi* ® [ + z- + C’ - ZA} ] ® = 42) ® A™

-z^ ® w k2] - 2<i> ® s'? k2] - ® c‘i> k2] •

= [ dx x' 
Jo

£.7^
4rr e

The first term on the right-hand side in the above expression can be straightforwardly 
deduced from eq. 3.4.18, whereas the remaining terms in the last line denote the 
double pole parts of the convolutions, which can be found in eqs. 3D.1, 3D.2 and 
3D.3.

It has now become straightforward to determine the remaining unknown parts of 
expression eq. 3.4.25, which are given by Z^^A^ and Z^^B^. From the finiteness 
of it follows that the renormalisation matrix elements Zfg (gluon-gluon
transition) and Zg, (gluon-alien transition) can be written as follows:

‘<1-> + sz«M+(ta)’z«w]

,O,(™) 
- +

[ 2Z<‘> + Z<‘> + z"a± - ZW ] ® X(.) _ Z(i) ® B(i? - Z$ ® C™

The explicit expression can be found in appendix 3D, in which we also present the 
non-trivial convolutions of the above expression separately. We observ ■ that the dou­
ble poles e-2 of eq. 3D.4 and the ones of expression 3.4.27 are related factor —2 
and thus, the overlapping divergences are cancelled against each other. . thermore, 
the contributions of the form O2„ disappear in the sum of the two h :aphs and
the above convolutions. This is in accordance with the non-renormal ty of such
an operator.

The part of A4j,2J(x,p) (see eq. 3.4.25) that does not depend on 
given by

Furthermore, we observe that the term proportional to O2„ has a single pole 
term e-1 only. This term will vanish due to coupling constant and gauge parameter 
renormalisation.

In order to check whether the overlapping divergences 
of the form e-1 ln(—p2/p2), we have considered the sum 
■Mj,5(z,p), which are proportional to (—p2/p2)*^2 
finite 1PI Green’s function is equal to

d
da

i be found in appendix 3D, in which



and

(3.4.33)

(3.4.34)dx x'

-8 X + X

— X — X

and

Inx

+

(3.4.35)

7^(m) = 1653(m - 1) - 32S1,2(m - 1) - 32521I(m - 1) (3.4.36)
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dx x'

a. 7^
4?r e

— f dx x 
Jo

■ [ 1 + X"1

+ 2C(2) ] + | [ 25 + 44x2 - llx

+ 2<(2) ] - 8

,04m)

| y In2 x + [ f x2 — 18 — 4x + 4x 1 ]

] [ 4 Li2(—x) + 4 In x ln(l +x) — In2 x + 2f (2) ]

— 32 [ 1 + x ]In2 x

(1 — x) 1 ] [ 4 Inx ln( 1 — x) — In2 x 

ax + l|0 + ^x-§j§(l-x)-'}

+ 3

/ zv \ 2 r>vO.("0
(#) [2/3°"75 +7«m)+7“(m)+7°*m) 1 

[sW + (s)’zM
The structure of the double pole terms follows from the renormalisation group equa­
tions. The lowest order contribution to the anomalous dimension of the gluon opera­
tor, 7^m\ can be found in eq. 3.2.37, whereas the lowest order anomalous dimensions 
of the gluon-alien 7,^"’’, the alien-alien 7^m’ and the ghost-alien 7°»m’ transitions 
can be found in eqs. 3.2.49, 3.4.11 and 3.4.12, respectively. The x-dependent renor­
malisation constants Z^(x) and Z^(x) were given in eqs. 3.4.20 and 3.4.21, respec­
tively.

F ■ second order coefficients of the anomalous dimensions can be extracted
from nted expressions. They are given by

/g'dx x”-1 { - [ y + 24f(3) ] tf(l -x)

(1 +x)-1 ] [4 Li2(—x) + 4 In x ln(l+x) — In2 x

+ 1 - x ] [ 4 In x ln(l —x) — 21n2 x — 8 Li2(l —x) + 10<(2)

- | ln2(l -x) - f ln( 1 — x) ] - % - f x2 + 3x + lOx’1 } .

The O(o2) contribution to the anomalous dimension of the gluon operator, is 
in agreement with the result of the calculation of Furmanski and Petronzio [5].

If we perform the x-integration explicitly, we get the anomalous dimensions in 
the m-language. The results are as follows:

:2 — 18 — 4x + 4x

436
9



+

-1)

] + 8C(3)]
and

+

(3.4.37)

follows

(3.4.38)S„, («),

(3.4.39)Sn,...- (0.

(3.4.40)

(3.4.41)

be expressed in these

= o. (3.4.42)
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1 
m + 2

It is a consequence of conservation of energy-momentum, as has already been men­
tioned in section 3.2 (cf. eq. 3.2.38).

[ 2Sj(m —

1
m(m - 1)

-Si(m-1)[ __ 2_
(m — 1

__ 8_
3(m + 2;

where aj,..., ak can have tildes or not. The Riemann zeta’s can 
sums too: £(n) = Sn(oo).

Note the second moment of the anomalous dimension of the gluon operator re­
mains zero at this order, i.e.

m—1 -I

..<■»-» - 
1=1 1

m—1 i

5„(m — 1) =

*(■»-» . "ftg,

(m + I)3

+ -^-T- 
tn — 1
4

(m + 1)2 “

1) + C(2)].

-1 + _1__
m m + 1

64 a,,Q, 116 104
T-8«3)-^-w-

+ -^--
m + 2

ySi(m - 1) +

_4__
(">-l)2

20
9(m + 2)

-2—1m + 2 J
192
m3

64
(m + 2)3

+ 32[S2(m-l)-l<(2) + l] [-2-j.

+ Si(m - 1) [ 4-16f(2) ] -

436 8 32 24 208
9(m + 1) 3(m + I)2 (m + I)3 + m + 2 “ 3(m + 2)2

+ (-l)m [ 16S3(m - 1) - 32S1.j(m - 1) - 16<(2)Si(m 

+ 32[S5(m-l) + i((2)][_L--l + ^_
1 J 1 m — 1 m m -f- 1

1

yS2(m - 1) -

I)2 + m2 1
_ 97+J4_+20+^_ + 

9m 3m2 m3 m + 1
_ 2(—l)m

m(m — 1)

In these formulas the functions S are defined recursively as

[ 2^?(m ~ 1) ~
_ £
(m-

. 20
m3



3.5 Discussion and conclusions
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In this chapti 
appeared to be 
which can 
this section.

Already at the level of one loop, the renormalisation of the gluon operator exhibits 
some peculiarities. In the axial gauge new operators appear, which are proportional 
to (A n)' with i > 0. However, as the factor An can never appear in the numerator, 
the renormalisation matrix of the complete set of operators has an upper triangular 
form. This means that a counter term proportional to (A n)' never can give rise to 
an operator with .he factor (A n)J, where j < i. Therefore, the additional operators 
cannot aff physical anomalous dimension. One can circumvent the whole item
of new op. in this gauge by choosing n a A. This is also the gauge in which
Furmansk: ind T tronzio [5] performed their calculations. The most severe problems 
of the latte: gauge are its non-renormalisability (by power counting) and the presence 
of gauge singularities [8]. We observed that these pitfalls do not influence the lowest 
order calculation of the anomalous dimension. Therefore, it could not be excluded 
that the two loop result of Furmanski and Petronzio is right.

The one loop covariant gauge calculation is even more interesting. Here one cannot 
circumvent the introduction of new operators in the procedure of the renormalisa­
tion of the gluon operator. It appeared that one has to introduce a new operator 
in the Lagrangian in order to cancel divergences of the Green’s function To,. This 
is analogue to what happened in the axial gauge, but in the latter case one could 
choose n in such a way, that the effect disappears. In the covariant gauge this is not 
possible! The calculation of a single Green’s function yields already two renormalisa­
tion constants, one of which cannot belong to the physical operator. We have called 
the other one the alien operator. The previous remarks also indicate the difference 
with genuine operator mixing. To determine the renormalisation matrix in the lat­
ter case one should calculate as many Green’s functions as there are entries in the 
renormalisation matrix.

It is wrong to consider the renormalisation of the gluon operator only, if one wants 
to calculate Zu. One also needs to compute the renormalisation of the other opera­
tors in the Lagrangian, since these operators yield counter terms which have the same 
structure as the gluon operator. Moreover, it is not sufficient to know the counter 
term of the lowest order alien operator to perform renormalisation at second order.

er we have described the renormalisation of the gluon operator. It 
a non-trivial problem that involves many steps and considerations, 

go wrong or which are easily overlooked. We will discuss these items in
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ant of the 
.alently, it

The residual gauge invariance (BRST invariance) of the action after gauge fixing is a 
property that we do not want to spoil during renormalisation. Therefore, the intro­
duction of yet another operator in the Lagrangian, the ghost operator, is inevitable. 
The same symmetry property also accounts for the form of the higher order contri­
butions to the alien and the ghost operators. Only if these structures are included up 
to <9(^3) the renormalisation procedure becomes sensible. The construction of the 
higher order operator terms was described in section 3.3.

Floratos, Lacaze and Kounnas [6] were probably not aware of these complications, 
or they were misled by the proposition of Joglekar and Lee [3], which implied the pos­
sible choice of a base of operators as such, that ‘mixing’ of the non-physical operators 
with the physical one can be ignored. This proposition does not imp'.- - hat one can 
forget about all other operators in the Lagrangian. It just states that possible to 
introduce a linear combination of the gluon, alien and ghost operate/ ch is mul­
tiplicatively renormalised. Also Dixon and Taylor [2] consider the pr of mixing.
As far as we understand, they only claim that the renormalisation 
alien operator is not relevant for the Callan-Symanzik equation, or, 
does not appear in the operator product expansion. This can be expla- as follows: 
if the 1PI Green’s function is changed into a physical matrix element by putting ex­
ternal legs on shell and contracting them with physical polarisation vectors, the alien 
operator will totally disappear.

We want to criticise the work of Floratos et al. on some more subjects. As we 
deduce from the description of their calculation in [4, 6], they included the counter 
terms by subtracting divergent subintegrals from the two loop integrals. This is a 
very risky procedure, because the would-be consistency check on the cancellation of 
overlapping divergences has implicitly been fulfilled. Moreover, their modified loop in­
tegrals would render every theory finite, renormalisable as well as non-renormalisable 
ones. However, it turns out that the difference between their and our result cannot 
be explained only by the fact that they ignored the contributions of the alien and 
ghost operators to the anomalous dimension. This consolidates the suspicion of their 
method to determine the integrals. The last remark we want to make is about the 
renormalisation of the gauge parameter. In the Feynman gauge the inclusion of this 
effect can easily be forgotten. The Landau gauge (a = 0) is the only case where it 
can really be ignored.

We have performed a successful calculation of the two loop anomalous dimension 
of the gluon operator in the Feynman gauge. The determination of the contributions 
is far from trivial and the renormalisation procedure is one of the most involved that



Appendices

3A Feynman rules

(3A.1)

(3A.2)

(3A.3)

(3A.4)
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the glue
operate:
Drell [12'.

we know of. Nevertheless, the lightlike axial gauge result of FXirmanski and Petronzio 
is now reproduced in a covariant gauge. The latter is a more reliable gauge, because it 
is shown to be renormalisable. Furthermore, the gauge singularities can be suppressed 
by choosing the gauge parameter equal to one, i.e. the Feynman gauge. Therefore, 
the problem of the right anomalous dimension of the gluon operator is solved by our 
calculation.

' n2p‘kpu — ap1n‘‘n1' \ 
J' 

have the gauge fixing term

choose to be lightlike, i.e. n2 = 0. This simplifies 
complicated term of the propagator disappears. The 

n and a)

n^p1' + 
np

In the general covariant gauge, where we 1

Za
the propagator is expressed by

i6ab^T(p) = -r

3A.1 I’he gluon propagator

The gluon propagator is used in two different gauges. In the axial gauge we have the 
gauge fixing term

Za
with a = 0. Additionally, one can
the calculation, because one
propagator has the form (for general 

i6ab -g^ +

This appc; di -ill contain the most important Feynman rules that are used in the 
calculate ,-rator matrix elements. It is divided into four parts; subsequently, 

:utor, the vertices, the gluon operator and the new alien and ghost 
ibed. Metric and related conventions are according to Bjorken and 

: menta are incoming.

\P“P\ 
-g •

Several choices for a have special names: a = 0 is called the Landau gauge, a = 1
the Feynman gauge, a = 3 the Yennie gauge and a = oo the unitary gauge.



(3A.5)

(3A.6)

(3A.8)^OgRp).o;i(p,-p) =
where

(3A.9)

(3A.10)p^’Cp) = o.
The 3-leg vertex is given by

66

0™(p) = (A-p)”*Ojv(p)
= (Ap)m-2 [ gMU(Ap)2 - (pMA„ + AMp,)A-p + p2 AMA„ ] .

This function obeys the equality (cf. eq. 3.2.24)

iven in eq.

The last and most simple vertex is the ghost-gluon vertex, which is . by

(3A.7)

3A.2 Vertices in QCD
In the calculation of Green’s functions one encounters three types of vertices. We will 
give their expressions here and use the convention that all momenta are incoming.

The first vertex is the 3-gluon vertex. It is given by

V^p, <?>fc) = [ (9 - + (*•' - p)„gx„ + (p - q)x9^ ] •

Secondly, we have the 4-gluon vertex. Its expression has the following form

V££(p,9,M) = -»S2 [ fabcfcd‘^x9^-9^9.x)

+ /“'/“'(SppSa. - g^g.x) + fadcfb"{9^9x<, - g.xg^ ] •

where the third argument of V°bc(p, q, k) represents the outgoing gho1 and the first 
argument the gluon field. Remember that every ghost loop requires an additional 

factor -1.

3A.3 The gluon operator
The gluon operator, which is given by eq. 3.1.3, gives rise to vertices with 2 legs up 
to vertices with m + 2 legs. The first three Feynman rules for such vertices are given 
here. The operator is contracted with the current given in eq. 3.2.6.

The vertex with two legs is proportional to the structure O^„(p) gi
3.2.17. It is given by

1 + (—l)m
2



F*O<&(p,q,k\ (3A.11)

(3A.12)

(3A.13)

(3A.14)

+

(3A.15)+

follows

67

1 + (-l)m
2

— A-sp^A,, — A-pspAa ]

(A-jb +A sy-^A-ay}

p<-»g, k*->s I
Awa J

-g^(A-fc + A-s)"*’2
m—3

A • 5 gpa ] £(A-fc + A-sHA-s)”-3 
i=0
m—3

- [p^A^-A-pg^l ^(-A-pHA-fc + A-ap 
t=0

[ A-p A-sgpa + p s AMAa

x E t(-A p)m 
1=0 j=0

k*->3
A«-+<7

P

This fund

poy
At last, wt

where

°m?Av(P> 9- s) = A„Aj | 

+ [a,A,

■q->k-»p
->X->p

ed to the lowest order function by

= O?a’(9) - O$(k).

4-leg vertex denoted by

o^i >,5. ) = g2* + (~-r {f^'o‘:Up,9,m)
_ k, q, a) + FJV6“0^a(p, 9, V } ,

O^a(p>9>*) = ~ig

where

O*\(p,q,k)= [(Au9am - AAgM1,)A p + A^p,Aa - px&„) ] (A p)m 

+ Ap [ A pg)tAu + A-gp„AM - A pA-gg^ - p-g AUA„ ]

m—3

x E(-A p)i(A-9)'"-S-<
i=0

p-»A:->g->p 1 

p—>A—»iz—>p J

p<-+g 
pwiz

The function is coupled to the function belonging to the 3-leg vertex as 

P*OIX(P, 9, k, a) = 0™,(-k - a, k, a) - 0^(9, k, a). (3A.16)

The sums in these Feynman rules can be simplified as follows



(3A.17)

(3A.18)+ +

(3A.19)

be deduced

(3A.20)

-3(-Ajt)<(A-p)m

(3A.21)+
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Note the 
disappears for

o loop level, 
aly contains 

be calculated from expression 3.3.27. The i order form 
one loop calculation and is also traceable ii; r.c Lagrangian

Bm-2
B-A

1
A — B

1
B-A

-3(-A-p)i(A-g)"'-3-'

Am~2 
A-B +

p->k^,q->p 
p—*X—>i/—>p

p—*q—*k—»p
p-*v-*X-*p

The actual factors in this expression follow from g,- (see eq. 3.3.32).
Secondly, we need the first two orders of the ghost operator (eq. 3.3.28). The 

lowest order vertex with two ghost legs is given by

3A.4 The alien and the ghost operator

This section will contain the Feynman rules, which are used in the ition of the 
counter terms to the 1PI Green’s function of the gluon operator at '

Firstly, we need the first two orders of the alien operator (wh 
gluon fields), that can 
can be deduced from the 
of eq. 3.3.26. It is given by

o;i(p,-P) = 2«»i(A-prot(p).
where the tensor structure O3„(p) is given in eq. 3.2.19.

The Feynman rule for the alien operator vertex with three legs can 
too, and has the form

Cft(p, 9, *) = 9, *),
where

O^x(p,q,k) = [ A„Ap(gA -pA) + AmAa(p„ - fcp) + j,»A,(A-t - Ag) ] 
m—3

x (A-p)"-2 - |apAa(AmP2 - p„Ap) E [ (-A-g)’(A-fc)"-3-

im—3—t |
m—3 1 m—3

E , E b*c”-3-’i=o n — /i ,_0
2Jm—2 (Jm~

“ (A-B)(A-C) (B-A)(B-C) + (C —A)(C —B)’

sums are completely symmetric in all their arguments. The single sum 
m = 2, while the double sum gives zero for m = 2,3.

m—3

y*. A’Bm-3-
t=0

and
m—4 •

52 E A2Bi'1Cm 
»=0 _j=0



(3A.23)

] . (3A.24)

3B One

The case n2 = 03B.1

(3B.1)

(3B.2)t.'h ~ Io0-r ~
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The last argument of the expression O^(p, q, k) corresponds to the outgoing ghost 
field, whereas the first argument represents the gluon field.

+ i(Ag-3A*)(A.g)"
m—3

O™(P,q,k) = A„[i(A.fc)'

+ {(AT- - A-?)(Ap)”-2 - |(A.Jt)2'g’(A.^(-A-9)"*-3-i

integrals for the operator Green’s functions

In this app. ■ will present some useful formulae for calculating the Green’s 
functions at one loop in two gauges, the axial and the covariant one. Only axial 
gauge type integrals are given, because the covariant gauge types follow from these 
by taking special values for some parameters. The loop integrals are presented for 
two cases. Firstly, we will consider the case of a lightlike axial gauge, n2 = 0. The 
corresponding integrals can easily be calculated exactly. Secondly, we will discuss 
some aspects of integrals which appear in the case of the general axial gauge fixing, 
i.e. n2 0 0.

The UV divergences that determine the anomalous dimension, are regulated by n- 
dimensional integration, where n = 4 + e. Other divergences, like gauge singularities 
and infrared infinities, are regulated by mass parameters whenever necessary.

The most general scalar integral one should consider is given by

= /■_£*_____________(A-tr___________
alh J (2%)n (k2 + Ap2)°((p - it)2 + Xp^n-k + SnPy’ 

where we introduced a regulator A for the infrared and collinear region of the loop 
momentum k and a regulator 6 for the gauge singularities (which only show up in 
the case n2 = 0). For n2 = 0, one can show for all a, ft, 7 and A/6 = 0

O°b(p, -p) = -6ak(&-p)m, (3A.22)

while the first order vertex with two ghost legs and a gluon leg is given by

Oabc(p,q.k) = igf^O^(p,q,k),

where



= i (3B.3)(n-p) 1

o-ff+i

i = 0
(3B.4)

i>0 ’

3B.2
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(3B.5)

(3B.6)

extra scale. The 
as a regulator.

r(7 + «) 
r(7)

The case n

The complete calculation of the general integral 3B.1 is tedious. For instance, the 
parameter integral that remains after the loop momentum integration, contains in 
the case of a term, which is quadratic in two integration variables. However, if 
one only wants to know the UV singular behaviour of the integrals, the situation is 
more prospective. After projection of the integrals with jtM1 ... in the numerator 
onto scalar integrals, one can show by power counting that 7^ is UV finite.

To find the UV divergences of the integrals one should be very careful. Not 
only the T-functions coming from the loop momentum integration give rise to possible

This result holds irrespective of additional inner products in the numerator, because 
it is deduced from the absence of a mass scale. In all other cases we can use the 
following expression

particularly
we do not 

•>e removed

+ r(7 + »)
r(a + 0-2) r(7)

— x) + A)’-'

i

m 

xE 
i=0

x [ dxxff~ 
Jo

If one substitutes

In the integrals of the axial gauge type we have now n2 to provide an 
regulators A and <5 are left out here, because n2 serves automatically 
It turns out that in this case

1

11(7 + 7-1)

the formula is valid for all 7 (including 7 < 0). The case nM oc 
convenient, because then only the first term of the sum contribv 
make this choice, the factors m... (m — i — 1) from the binomial 
by partial integration in the integral over x. The integrals, which. ;h< up in the 
covariant gauge calculation, are determined by putting 7 equal to zero.

= 0,
/ 0-

(l-z)“-«(x + 5)



X

(3B.7)

B(a,l3) (3B.8)

3C T ' : . p contributions to the operator Green’s function

(3C.1)

(3C.2)

(3C.3)

symbolic manipulation programme written by J A M. Vermaseren (NIKHEF-H,

71

can give 
offset e, w’

where c

it is straightforward to show that only 3 possible combinations of such matrices can 
occur in the calculation, i.e.

= r(q)IV)
I’(a + /?) ’

•al UV poles. This becomes clear if one considers the sign of the 
ears in the T-functions.

6FORM is a 
Amsterdam).

4np\
J

(1 - z)cp-y^n-p- (■

c-W+l+« e
B(2d — c — 1 — £,c — d 4- 1 + —),

UV divergences, but also the remaining integrals over Feynman parameters can cause 
UV poles. This feature becomes apparent in the following parameter integral, which 
occurs after application of the Feynman trick and performing the loop momentum 
integration,

In this appendix we want to give a general treatment of the two loop calculation 
needed to obtain the second order contribution to the anomalous dimension (see 
section 3.4). All the consecutive steps in the calculation that are described here, have 
been programmed in FORM, a computer language allowing algebraic manipulations6.

The diagrams that contribute are given in figure 3.8 and the Feynman rules that 
serve as building blocks can be found in appendix 3A.

The colour structure (due to the gauge group SU(N)) is rather trivial. If we 
introduce matrices C“ in the following way

f'dx
Jo

\ 4 J V
and d are integers, and the B-function, which is defined as

fabc =



o‘

(3C.6)

(3C.9)
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(3C.10)

(3C.H)

(3C.7)

(3C.8)

(3C.4) 

amongst others the relation

a, b = 0,1,...,m, 

«,J = 0,1,2.

The Lorentz structure of the diagrams can be projected onto the 4 combinations 
given in eqs. 3.2.17-3.2.20. The projection operators P^, can be easily found by 

solving the equation

P^O”"' =

on a certain basis (e.g. the themselves), which reveals

= ^2°-’ (3C‘5)

Application of these projections on a diagram gives us its contribution in terms of 
scalar integrals. Parametrising the integrals in a suitable way, the scalar integrals 
have the general form

<Pk2 ^■ki)a(/S.-k2)l'(p-k2)\k2-k2)j
J (2%)" (2rr)" k^kj^p - krf^p - k2)2S(k2 - fc2)2e’ 

where

The parameters a, 0,7, S and e are non-negative, except when 5 = C in that case 
a might be smaller than zero. The exponents i and j cannot be unequal to zero at 
the same time (because the integral is zero in that case). The factors A-lj and k-k2 
can occur to any power, because they occur in the sums of the Feynman rules in a 
complicated way (see appendix 3A, eqs. 3A.17 and 3A.18).

The first step in calculating these integrals consists of the elimination of the factors 
p k2 and k\-k2 in the numerator when 6 = 0 or e = 0, respectively. A convenient 
method to do this is given by the Passarino-Veltman reduction in n dimensions.

Consider the case where i > 0. The integral with i. inner products p-k2 can be 
written as

r cPk, ^■k1)aplll...pIH r <Pk2 (A-kJkS'...k2>“ ------
J (2*)" k^p-k^ J (2%)" ^(fcj-fcj)2'

and the only ‘external’ momenta with respect to the ^-integration are an<^ 
The easiest way to obtain the fc2-integral is by projecting onto all possible pi .. • Pi 
structures with the aid of orthogonal projective momenta [13], e.g.

Pi" = V,

P2“ =
*1

and the projection operator, which projects onto the metric tensor,



(3C.12)

These quantities satisfy

(P'fcz)2 (3C.16)+
(3C.17)

(3C.18)+

with the general integrals

^a/3-,00 — I a 00 to — IcffOOr. = laOiSO = laO-fi. = I00-^80 — Io0OSc — loOytr ~ O' (30.20)

(3C.21)4>0-r5< = 0(1), if a,/3,7,5,e> 0.

However, in appendix 4C

7It will appear that in the
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The integrals, which have 5 different denominators, 

considered here. So we have

(3C.13)

(3C.14)

(3C.15)

n - 2 
(pP2)2(k2-P2y 

P24
■ Pi)(k2P>) 

Pi2

we will give a method to determine these integrals too.

case of the general covariant gauge one also needs to replace (p-ij)3-

n — 2
P2“PS 

P22
PSPS

Pi2

>-+

are UV finite and will not be

Pi-P, = 

PSP„ = 0, 

P^P^ = n-2.

rated. _ f <Pk' dnk2 (A t1)°(A t;)t(A p-A J:ir(Ap-A-t2),'(A-t1-A.t2)e ]<n
alh6c (2%)" (2jr)" t.^^fp-tO^tp-^)74^-^)2' ’1 yJ

where we have introduced the parameters c, d and e for convenience, because if one 

applies the equalities given in eqs. 3A.17 and 3A.18, the corresponding combinations 

of inner products can occur with a power m — 2 in the numerator, or in the denomina­

tor with a single power. Irrespective of their numerators, we know that the following 
integrals are zero due to the absence of a mass scale:

It follows that we can replace the inner products by7

(p-PS\k2-PS)2 
PS

2(pP1')(pP2)(k2Pl)(k2-P2')
Pi2 P22

(pP2)(k2P2)
P22

All the inner • is, present in the integral after this projection, can be written 

in terms of propagators. In the case of the ki ■ k2 terms, the role of p and k2 is 

interchanged.

The operation leaves us



(3C.22)

(3C.23)

y' (3C.24)

(3C.25)

(3C.26)
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>

Jodx Ldy^ ~ xyY"x°(l ~ - y)‘ =
f'dx' (x')m+/J+4+1(l - x'f

Jo

x /’.//(y'Al-/)4(1-xvr^-4-1.

from eq.
can be
y and

z' = xy,
_ *(i - y)

1 - xy
in terms of which the integrals have the following form

/ dx [ dy (zy)’nzQ(l - z)V(l - y)‘ =
Jo Jo

[1dx'(x')m^^-x')0+6+1
Jo

X Jo'dy'(y')0(l-y')S(l-(l-x')y’y

J dxz*+l+e+n_“_<,_'-1(l  z)c+^n—T

There are only two different integrals left, which we can write in terms of Feynman 
parameter integrals in the following way

« = -^(-p2)e(p2)<’a’/’’W(A.p)<‘+l+c+d+'x

r(a + 7 - j) £(fl + 6 - a) - xY+^n-
r(Q)r(7) r(/9)r(6) Jodxx (1 )

x l\yyk+^-l3-\l - y)d+in-f-\x - j)‘,

i+6+c+d+e« = -(^jn(-p2),(p2)4"“’*’’1“(A-pr 

r(a + ^ + 7 + e-n) T()9 + «-a) 
r(a + 0 + £-5)r(7) r(j8)r(«) 
x ^1dyy6+5n-fl-1(l - y)'+rn—1(l - xy)d,

where the UV singularities are already visible in the T-functions. It i
3C.23 that the case a < 0, 6 = 0 is not exceptional. The parameter i Is
brought into a standard form by the simple transformations z —> 1 - <-<
y —♦ 1 — y and the more complicated transformations in the following : c. ;es.

• When a factor (zy)m or (1 — zy)m is present, one can introduce the following 
variables



0* - y
(3C.27)

x — y

(3C.28)y' =

a

(3C.29)

such, that the
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-:'(-l)m(z')rn+'3

As a consequence, the general form of the parameter integrals is as 
parameter m only occurs in the z-integral.

The next and last step of the calculation of the loop integrals consists of explicit 
integration over the Feynman parameter y and, if xm is absent, integration over x. 
One should take care of the fact that, in order to obtain the correct behaviour for 
x = 1, the factors (1 — z)-1+ae must be treated exactly. This means that the y- 
integration should neither produce ln’(l — x) terms nor any other terms which are 
singular near x = 1. Therefore, the ^/-integration is described here for those cases, 
which cause trouble, if they are not given special care.

dy' (y'fd - //(i - (i - *')*')’(i + 

(1 - x')“+i+1

• In the case of a factor (x — y)m, the integral can be split up into two parts, 
depending on x — y > 0 or x — y < 0. The following transformations bring the 
two parts into the standard form

: x' = x - y,

y' = —,
1 - x + y

0 : x' = y — x,
1 ~ V

1 - x + y
The integral becomes, in terms of these variables, 

f'dx C'dy (x - y)mx°(l - x)V(l - !// =
Jo Jo

(x')m+a(l -

• Factors 1 — xy in the denominator. Analytic continuation yields the following 
result

Jo dyy°(l -y/(l - xyp (7 =-1,-2,...)

 7,^ + 7 + !)
B(—a — /? — 7 — l,a + /3 + 7 + 2)

X Jo'dy y“(l - y)-“-^-2(l - (1 - x)yf

X ; dy'(y')\l-yT(l-(l-x')yT(
./o \

1 - x‘
x'



B^+1,-^-7-1)

(3C.30)

(1 - y)‘’(l - ( )y)

(3C.31)

(x - 1)“' = (1 - x)“ (3C.32)

(3C.33)(*-»)
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(3C.34)

(3C.35)

(3C.36)

B(1 + ae, 1 — ae) 
B(1 + 2as,l — 2ae)

iirae
B(l + ae, 1 — ae)

can be treated by applying recursive relations to them.

• A factor x — y in the denominator. Analytic continuation of the 1 p. rgeometric 
function yields the following equality

[ <lyy°^-y)0(.x-y')~' 
Jo

= B(l-iM)
B(-a - P,a + P + 1)

+ B(-P,P+\)xa(x-\)0.

[ <W Jo

x F(a,7+ l;0 + 7 + 2;l -z).

(1 - z)^+1

The second term, which contains the hypergeometric function F [14], can be 
expressed in powers of x and 1 — x. The first term results in functions, which 
are regular near x = 1. If the x integration must be carried out too (so if xm is 
absent), one should also avoid x~l terms (the functions from the first term of eq. 
3C.30 are generally not regular near x = 0). This can be obtained by suitable 
transformations x w y or x —* 1 — x before applying the above transformations.

where 6 — 0,1,2,..., one can prove the following properties, which solve all 
cases

v=L'dx - *)(i - s/)]4-1

Ii’0

IS03

= 76“_+21’/5 + B(a + «-l,^)B(a,/3),

= 0.

The second part of this expression has an imaginary part, which we do not 
consider, because we only need the principal value of the integral. It means 
that we drop the imaginary part of the analytic continuation of (x — 1)“

The integrals without xm 
If we define



3D Convolutions

- (1-®)•?s + 23x

— x

+ 32(1—x)

] In(l-x)+ 144x

-8+

- 16

-32

(3D.1)
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-1

+ 16 ; 3x - x2 + x

+ 16[l+8x]lnx + ^-244x2 + ^x + ^x 

h- 
[41-

i [ 3 — x~

1-

y — yC(2) — 32^(3) ] 5(1—x)

1 + (1—x)-1 ] Inx2 + 64 [1 + x ] In xln(l — x) + | [46 

-1 — 11(1—x)-1 ] lnx + 48 [ 2 + x2 — x

— 11(1—x)-1 ] ln(l—x)

]
1

—x)2 + | [ 4 - 21x2 + 13x + 21x
+ 64 [ 1 + x ] Li2(l-x)-^-*|±x2-fx + =^x

[[64<(2)-f
+ 128 [2 + x2 -x-

-^(l-x)

2x2 + 6x + 23x 1 j In x + |

1 ] Lij(l-x) + 16 [ 1 -x

?[
+ ^y - yx2 + 16x - ^yx

The tensor O^(p) is absent in this expression, which could be expected, because the 
tensor structure of the expression is determined by -4^(2:, p), which should obey the

In this section we will present some useful convolutions of first order results which 
are needed in order to determine the second order gluon operator renormalisation 
constant.

The convolution of the first order gluon operator renormalisation constant, given 
in eq. 3.4.20, and the complete first order result which can be inferred from eqs. 3.2.44 
and 3.2.45, is the most difficult one to calculate. In the Feynman gauge the result is 
as follows

] 6(1— x) + 64 [ 3z — z2 + z 1 

z-1 — (1—z)-1 j ln(l — x) — y 

r1 ] }o;,(P) + j[i6(i + 4.’-ta

] In x2 — 32 In x ln(l — x) — 16 [ 1 — x-1 j ln2(l—x) 

[ 7 — 2x2 + 6x — llx-1 [ ln(l— x) 

'* ] C(2) + 8 - yx2 + yx

] Inx — 32 [ 1 — x-1 ] ln(l — x) 

] } O2„(p) ) .

256 ■

, 152
3

400
9

■* + (1-x)"1 ] Inx

 144x2 + ^x



+

Inx —

(3D.2)

and

— 2x+

In x+

+
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] ln(l — x) + 2 [ 5 — x

[8[l+x-]
] }oj„(p) + | [-lnx + 1-x

1 
e

] In x2 + 4 J 1 + x~

] ln2(l—x) + [ 11 — |x2 +

] Li2(l—x)

12 [ 1 -x-'

- KIn x + [ x — 1 

-^[2+3*:

I ot(p)
-K +

|z-' ] In(l-x) + | + |x2 - lx - jx"1 ]

~ I1’’ ] } °Up) + ^ [ - 2 - |x2 + 2x + |x"’ j
| — pnx2 + 21nx ln(l — x) + 2 Li2(l — x) — [3-

+ [ 2 + |x2 - |x + ] ln(l -x) -H-l^ + ^x-x-

i [ 4 In x + y + jx2 - 5x ] | 0^(p) + “ [ In x - 1 + x

In these expressions we used the Feynman gauge expressions, which can be found in 
eqs. 3.4.9, 3.4.10 and 3.4.21. In this case the tensor O*^ only vanishes in the sum of 
the two contributions. Further, the double pole e-2 that belongs to the structure 0'^ 
does not receive any contribution from the sum of the alien and ghost graphs. As 
a result of this fact, the overlapping divergences of A4j,2J(x,p) (see eq. 3.4.25) which

]+?
-2x- yx

-1 ] (3D.3)

] Ot(P) ) •

f- r — 6 —

WT identity 3.2.26.
The two convolutions, which arise from the one loop renormalisation of the alien 

and the ghost operator, lead to the following expressions:

= ({Hu*2-4-’-8*
] ln( 1 -x) + y - |x2 + lx - i|2x

[ — 8 In x + 10 + |x2

] In x ln(l —x) — 6

|x + 8x-1 ] In x +

9 ,5 2 4!
“2 + 91 "T

] In(l-x) - 15 - jx2

] O^(P) )

1 ] Inx + [ 1 + ji5 

[ 2 + |x2 - 2x

1 ] Opp(p)

[ 1 - x’1 ] C(2)

ix2 3X

I-‘]

-x-|x

-1x-1]}oUp) +

3 [ 1 - x"1

. 23 .
+ -6-1

1
+ ?
+ yx



I'

— 6x

- 19

-44 1 -x

(3D.4)-4
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+ f(l-x)-1

are proportional to O*„(p)t would also cancel in the case one leaves out the last two 
lines of the Lagrangian 3.3.26. The cancellation of these divergent terms, which are 
of the form e-1 ln(— p2/p2), is indispensable in order to be able to renormalise the 
gluon operator. Nevertheless, the renormalisability of the alien operator does depend 
on the inclusion of the two convolutions, given in eqs. 3D.2 and 3D.3.

Finally, we give the complete explicit contribution to the finite 1PI Green’s func­
tion which is used in order to check whether the overlapping divergences cancel. In 
the Feynman gauge it is given by

+ 48 [ 2 -1--

4-16 ; 3x — x2 4- x-1

— 34(1 — x)“1 ] In x 4-

+ A _ ZU) ] ® ® = (-^

1 + x ] lnxln(l — x)

1 + x ] Li2(l-x)

[4 — 21x2 + 13x + 21x-1 - 11 (1 — x)—1 ] ln( 1 — x)

+ ^[[64C(2)-42]6(l-x) 
]lnx+128[2 + x2 — x-1 — (1 —x)-1

- U2x2 + f x+ 112x-’ - 5|8(l-x)-* ] } O^(p) 

-4x]ln(l-x) + ifi-^x2 + ^x 

] In x ln(l — x) — [ 5 + 6x-1 ] In x2

1 ] Li2(l —x) + 10 [ 1 — x-1 ] <(2) 

j ln(l —x)

-1 ] In(l-x)

+ i+ 3

[2Z^ + Z^

x ( { J [[52 - ipc(2) _ 32f(3) ] 5(1 -x) + 64 [

x — x-1 — (1—x)-1 ] ln2(l —x) + 64 [

+ (l-x)-‘ ] lnx2 + | [ 113 + 34x2 + 62x + 28x

8
3

3 - - T* + TFX

+ 64 [ 3x — x2 + x-1 + (1 —x)

-x]ln(l-x)+if2

+ - [ 8 [ 1 + 16x j In x + 16 [ 1 + 4x2

]0t(p) + {J[-2[13-2x-
] ln2(l — x) — 2 [ 18 — 7x

] In x + | [ 3x — 1 — x2 — x

I4[

I [ 1 - X 

[ 2x2 — 41 — 6x — llx-1 j

[ 5 + 6x-1 ] In x + 24 — yx2 + 16x — ^x104
3
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Chapter 4

The Drell-Yan K-factor

4.1 Introdu i

81

The theoretical • lion for perturbative strong interaction corrections to the 
parton model [F heir summation by renormalisation group techniques in the 
framework of Q( . d to a wealth of radiative corrections to numerous processes 
(for a review sec [2]). The most interesting outcome of these calculations was that 
some of the corrections turned out to be rather large. This can mainly be attributed 
to the considerable size of the running coupling constant a,(7?2), which decreases 
slowly as grows. Because of these large corrections one can question the predictive 
power of perturbative QCD. However, experiments show that there is a considerable 
discrepancy between the predictions of the Born approximation and the experimental 
data. Nowadays, it is commonly accepted that the ratio between the measured cross 
section and the Born approximation, generally called JV—factor, can be explained by 
including the higher order corrections. For most processes only first order corrections 
have been calculated. They give a reasonable agreement with the experimental data. 
Nevertheless, corrections beyond the order a9 are needed for practical as well as for 
theoretical reasons.

The practical reason is that the statistics in the ongoing and future experiments 
will improve so that the higher order corrections might become noticeable. This is 
expected because the size of the various K— and /^-factors can become rather large. 
It is also interesting to see how the 7C-factors will behave at very large energies, which 
are characteristic for future accelerators, like LHC and SSC. Here we expect processes 
with gluons in the initial state to play a very important role. From the theoretical 
point of view higher order corrections are interesting because we can learn something 
about the behaviour of the perturbation series, in particular about its convergence.
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The first successful description of massive lepton pair production in the context 
of the parton model (lowest order QCD) was given by Drell and Yan [6]. Later 
on, this production mechanism, called Drell-Yan (DY) after their inventors, was 
supplemented by perturbative QCD. Using renormalisation group methods and the 
mass factorisation theorem, for which an all order proof exists [7], one can compute

One also wants to know by which terms the series is dominated. An example of such 
a striking term is the soft gluon part of the K-factor, which is present in reactions 
with one or more gluons in the final state. Knowledge about these dominant parts 
can provide us with useful information about which techniques are needed for their 
resummation. Another possibility to improve the perturbation series is the choice of 
a suitable mass factorisation and renormalisation scale. These scales can for instance 
be determined in the optimised perturbation theory. Examples are the principle 
of minimal sensitivity (PMS) [3] and the method of fastest asymptotic convergence 
(FAC) [4]. The drawback of these approaches is that they are based on extrapolations 
of the lowest order terms, ignoring the effects coming from higher order corrections. 
Moreover, we expect that cross sections, calculated in higher order of a,, will be less 
sensitive to variations in the factorisation and renormalisation scales tha-. : lowest 
order ones.

In this chapter we will present the full order a? correction to inclusive e lep­
ton pair production (Drell-Yan process). The first experiment to study action 
was carried out by the Columbia-BNL group [5] in 1970. From that ti wards
this process called the attention of many experimentalists as well as thee: in ele­
mentary particle physics. Before the pp collider at CERN became operational in the 
beginning of the eighties all experiments were of the fixed target type. One of the 
aims was to study the structure of hadrons. When the Drell-Yan reaction takes place 
at relatively low energies (y/S < 20 GeV) the hadrons are probed by a highly virtual 
timelike photon, which is experimentally observed through its decay into a massive 
lepton pair. Therefore, this process is complementary to deep inelastic lepton-proton 
scattering where the exchanged photon is spacelike. An advantage of massive lepton 
pair production is that it allows us to study the structure of unstable particles, like 
pions or kaons. This is not possible in deep inelastic lepton-hadron scattering where 
the target particles (like the proton or the bound neutron) have to be stable. On the 
other hand the latter process provides us with much better statistics. Both reactions 
belong to the class of the so-called hard processes, which means that at increasing 
energies all kinematical variables get large while their ratios stay fixed. In such a 
case one can apply the methods of perturbative QCD.
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However, note that in the last two cases no mass factorisation is involved, hence, 
these quantities only depend on the chosen scheme for the strong coupling constant. 
Therefore, one can study their dependence on the renormalisation scale only. In deep 
inelastic lepton-hadron scattering and the DY process we also have to perform mass 
factorisation rendering the Wilson coefficient dependent on two separate scales. In 
this way the DY K-factor provides us with a beautiful opportunity to investigate the 
dependence on the mass factorisation as well as on the renormalisation scale. Finally, 
notice that in order to obtain the order a, correction to the K-factor, we need the 
two loop corrected splitting functions to remove the collinear divergences from the

QCD corrections to this process. Between 1978 and 1980 the first order at corrections 
were performed by many groups [8]—[13]. At the same time (1979) the NA3 group [14] 
found a discrepancy between the data and the zeroth order parton model, a result 
which was confirmed by other fixed target experiments (for a review see [15])- Later 
on a second confirmation came from the pp colliders at CERN and FERMILAB [16]. 
At the energies of these machines, exceeding those of fixed target experiments by 
two orders of magnitude, the lepton pair is produced through the W- and Z-bosons. 
Comparison of the data with the theory revealed that the discrepancy, generally 
represented by the so-called experimental K-factor, could be rather well explained 
by the existing order a, corrections. In spite of this success one might question the 
reliability of perturbs ; theory, as the corrections turned out to be rather large 
(~ 70% at fixed \ergies and ~ 30% for the SppS). Therefore, higher order
corrections are n» to put the order aa predictions on a firmer ground.

Unlike other . o cesses the DY reaction seems to be one of the few cases 
where the calcul. he order a, corrections is feasible, a property it shares with
deep inelastic 1c -.dron scattering. This is because the maximum number of 
particles appearing in the final state of the parton subprocesses, which contribute to 
these two reactions does not exceed three. Notice that the most complicated parts 
of these calculations are the many body phase space integrals. If there are more 
than three particles in the final state the number of these integrals as well as their 
complexity get completely out of control. In the case of collinear finite processes 
like R, defined in the reaction e+ + e” —♦ ‘X’, the situation is a little better. The 
optical theorem, which relates this quantity to the absorptive part of a two point 
function, makes it even possible to calculate its radiative corrections up to order a, 
[17]. Another example is the order a? correction to the two jet cross section of the 
same process [18] although here the used methods resemble those used in the DY 
calculation.



The Drell-Yan deep inelastic scattering proces'4.2

The DY formalism and first order corrections4.2.1

Hi + H2 - V+ ‘X’
(4.2.1)

fl + ^2,

(4-2.2)

be
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Massive lepton pair production in hadronic collisions proceeds through the following 
reaction

— = t<xv(Q2,Mv2} Wv(r,Q2},

where V is one of the vector bosons of the standard model (7, Z or W), which subse­
quently decays into a lepton pair (fi./j). The symbol ‘X’ denotes any inclusive final 
hadronic state allowed by conservation of quantum numbers. The colour averaged 
inclusive cross section is given by

dav
dQ2

where r — Q2/S. The quantity av is the pointlike cross section (see eqs. 4A. 1-4A.3). 
The variables y/S and y/Q’1 stand for the C.M. energy of the incoming hadrons Hi, 
H2 and the invariant mass of the dilepton pair, respectively. The hadronic structure 
function is represented by Wv(r, Q2}. According to the DY mechanism it can 
written as

parton cross sections. This is the first time that the higher order splitting functions 
show up in a perturbative calculation.

This chapter will be organised as follows. In section 4.2 we present the results 
of the complete order a2 correction to the DY /^-factor, which is calculated in the 
MS scheme. The latter refers to coupling constant renormalisation as well as mass 
factorisation. In particular we have included the contribution of the hard gluon 
radiation to the qq process and the order a, correction to the qg reaction, which 
were not presented previously. In section 4.3 we discuss the effect of the higher order 
corrections on heavy vector boson production at current and future accelerators. The 
long expressions for the hadronic structure function and the DY correction terms, 
not presented in section 4.2, can be found in appendices 4A and 4B, respectively. A 
partial but powerful check on the DY correction terms will be presentee appendix 
4C.

Wv(r,Q2) = [ dxt [ dx2 [ dx 6(r - xxtx2)
Jo Jo Jo



(4.2.3)

(4.2.4)

(4.2.5)

where W.j is determined by the parton subprocess

(4.2.6)« + j -> V + ‘X’
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x /JD,>'(x1,x2, A/2) A„(x,Q2, Af2).

can be obtained from the DY partonic structure 
factorisation

and rtl represents the transition function (parton i —» parton k). In eq. 4.2.5 we 
assume that coupling constant renormalisation has already been performed (cf. eq. 
2.3.16). Like the DY correction term presented in eq. 4.2.4 the quantities W and 
r can be expanded in a power series in the renormalised coupling constant a,(R2) 
and therefore implicitly depend on the chosen renormalisation scale R. The collinear

The functions PD^(x2, X2, A/2) stand for the usual combination of parton distribution 
functions, which depend on the mass factorisation scale M. The indices i and j refer 
to the type of the incoming partons. Furthermore, the PD^ contain all the informa­
tion on the coupling of the quarks to the vector bosons, such as the quark charges, 
the Weinberg angle 6w and the Cabibbo angle 6c (the other angles and phases of 
the Kobayashi-Maskawa (KM) matrix are neglected). The explicit way in which the 
functions PD^ combine with the correction terms A,y is given in eq. 4A.21. Notice 
that the parton distribution functions not only depend on the mass factorisation scale 
Af, but also on the renormalisation scale R, because the calculation of their scale de­
pendence originates from operator renormalisation (= mass factorisation) as well as 
from coupling co:.;-,1..: r-t renormalisation. However, in the existing parametrisations 
of the parton di: .ion functions the two scales M and R are always set to be
equal. Also the correction term Aj2(x, Q2, Af2) (Wilson coefficient) depends on
both scales. Th . be seen by expanding the DY correction term in a power series
in the running coupling constant a,)/?2)

A0(x, Q2, Af2) = £ <(fi2)A,'">(x, Q\ M2, R2). 
n=0

When aJ(7?2) is expanded in a power series in a3(Af2) the explicit /?-dependence in 
eq. 4.2.4 drops out.

The DY correction term A,y 
function W.j through mass

W,.(z,Q2, Af2,e) = V [ dxx [ dx2 [ dx <5(z - XX1X2) 
Jo Jo Jo

x r^x,, Af2,e)r(j(i2, M2,e)Akl(x,Q2, M2),



Fig. 4.1. The Born contribution to the subprocess q + q V.

figure Drell-Yan subprocesses

4.1 Vq + q -

Q1-

(one loop correction)

Table 4.1. List of Drell Yan processes up to <9(aJ).

W™ = «(l-x). (4.2.7)
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In zeroth order in a, the only parton subprocess is given by quark-antiquark (qq) 
annihilation (see fig. 4.1) and the resulting expression for kV is given by

4.4
4.5
4.6
4.5
4.6

4.7,4.8
4.8,4.9

4.6

4.2
4.3
4.3

(two loop correction)
(one loop correction)

q + q -» V
q + q - V + g 

q(q) + g -» V + q(q)

v + q(q)
v + q(q) + g
V + q + q
v + q(q) + q(q)
V + q + q

(one loop cor

divergences present in kV and T are handled using dimensional regularisation and 
manifest themselves as pole terms of the type e-' (e = n — 4).

The parton subprocesses contributing to the DY cross section up to second order 
in a, are listed in table 4.1.

q + q — V
q + q - V + g
q + q -> V + g + g

q(q) + g -»
q(q) + g -»

q + q -
q(q) + q(q) —

g + g —



V.Fig. 4.2. The one loop correction to the process q + q

oooooddd’’->->

oooooooo >

(4.2.8)

(4.2.9)

(4.2.10)

(4.2.11)+ O(aJ(/?2)) •
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V + g. The graphs 
i be obtained from

where Sc is defined by

S‘ =eXp{| t

q.  

4tt 4rr

Fig. 4.3. D ontributing to the subprocess q + q —* 1
correspond) . e subprocess q(q) + g —► V + q(q) can 
those presc -is figure via crossing.

The first order conections, calculated using dimensional regularisation, can be 
found in [8, 12]. The order a3 correction to the qq process receives contributions from 
virtual (fig. 4.2) as well as real gluon (fig. 4.3) graphs. Further the qg subprocess 
(fig. 4.3), showing up for the first time in this order, has to be computed too. The 
partonic structure functions can be expressed in the following form

and

7E — ln4?r ] J .

Here d3 stands for the unrenormalised strong coupling constant. It is related to the 
renormalised running coupling constant a3(R2) in the following way

q,(#)2fl>5.
4tt e *



+
(4.2.20)

= Tt

+ |(1 — 7x2 + 6x) In (4.2.21)

The functions w°- and
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— 22
) - 3<(2) ]

— 3 + lx2 — 4x

(4.2.13)

(4.2.14)

= a'^M2 = <?2),

= A^M^Q2),

(4.2.12) 

as the renormalisation 
given by the Altarelli-Parisi

(4.2.15)

-2 + x — x2 + -|^d(l—x)] — |n/6(l ~x). (4.2.16) 

be found in appendix 4B 4B.5). The

p°
qq

= 4CF

’"q*

Wqq

The constant 0q is the lowest order coefficient of the ^-function, equal to

A> = %CA - jny.

In the following we will denote a,(R2) by a, and refer to R 
scale. The residues of the collinear divergences are 
splitting functions P," [19]. In lowest order they are

= 4Cf[2T>0(x)-1-x + 1«(1-x)],

= 87}[(1-x)2 + x2],

(1 -x)2 + 1
X

= 8CA [ V0(x) + x

The definition of the distribution P,(z) can 
SU(N) Casimir operators are given by

CA = N, CF = (4.2.17)

where N is the number of colours. The number of flavours is indie; . by nj and 
Tj (= |) is the normalisation corresponding to the fundamental repi iation. For 
completeness we have also presented P°q and P°f since they will be needed later on. 
The calculation of the non-pole terms in eqs. 4.2.8 and 4.2.9 yields the expressions

= A^(M2 = Q2), (4.2.18)

= A<£)(M2 = Q2), (4.2.19)

= CF { 8T>2(x) - 6C(2)7?o(x) + (1 + x) [ - 4 ln2(l-x) + 3<(2) ]

*+ * [ — 4 In xln(l — x) + In2 x j +4(1 — x)

+ 4(1—x) [ 16 — yf(2) ] },
(I-*)2

X

(I-*)2
X

Th- _/qq ouJ are equal to the DY correction terms Aqq and A^ (see 
eqs. 4B.2 and 4B.17, respectively) provided the latter are calculated in the MS mass 
factorisation scheme. The e-parts wqq and wqg are also given, as we will need them 
for the order aj calculations.



Fig. 4.4. The two loop corrections to the process q + <1 —* V.

4.2.2 Secor ( corrections

a.

b.

c.

89

L

In second order < t.ie set of possible parton-parton reactions is completed by the 
qq and gg subp) This exhausts all possible combinations of i and j in W,y.
A part of them has a,-ready been presented in the literature. The first calculation 
was done for the qq process [20] (see figs. 4.8 and 4.9). Its results also hold for 
the qq scattering subprocess where a gluon is exchanged between the quark and 
the antiquark line. Thereafter, the soft and virtual gluon contributions from the qq 
process with two gluons or a quark pair in the final state were determined [21]—[24] 
(see figs. 4.4, 4.5, 4.6 and 4.7). Finally, we recently finished the computation of the gg 
subprocess [25] (see fig. 4.6). All calculations mentioned above have been performed 
in the DIS mass factorisation scheme. However, the results can easily be transformed 
to the MS scheme. The latter procedure only requires the knowledge of the DY 
partonic cross sections, whereas in the DIS scheme one also has to calculate the deep 
inelastic partonic structure functions. In both schemes the following reactions were 
missing until now:

the hard gluon contribution to the qq subprocess (figs. 4.5, 4.6 and 4.7),

the order a, correction to the qg subprocess (figs. 4.6 and 4.7) and

all possible interference terms between the various qq —* qqV subprocesses (figs. 
4.7, 4.8 and 4.9).

In order to complete the a? correction to the DY process we include these missing 
pieces, which is the main goal of this chapter. The calculation of the subprocesses

I
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r-> g
g
c>

Fig. 4.5. The one loop corrections to the process q + q —» V + g. The diagrams 
corresponding to the one loop correction to the subprocess q(q) + g —» V+q(q) 
can be obtained via crossing.

listed in table 4.1 can be outlined as follows. While computing the cross sections 
corresponding to the graphs in figs. 4.1-4.9 one encounters three types of singulari­
ties, i.e. ultraviolet (UV), infrared (IR) and collinear/mass singularities. They are all 
dealt with using the technique of dimensional regularisation. According to the Bloch- 
Nordsieck theorem (26], which holds for massless quarks only [27], the IR divergences 
are cancelled in the sum of virtual and radiative gluon graphs. The UV divergences 
are removed by the renormalisation of the strong coupling constant, which is per­
formed in the MS scheme. Since we consider an inclusive reaction only, there are 
no final state collinear divergences left as stated by the Kinoshita-Lee-Nauenberg 
(KLN) theorem [28]. The initial state collinear divergences are extracted from the 
cross section by absorbing them into the parton distribution functions, for which 
we choose the MS scheme, too. The mass factorisation in the DIS scheme requires 
the computation of the partonic deep inelastic structure functions for the Vq and 
Vg subprocesses. The calculation of these structure functions is of ame level 
of complexity as the one encountered in the DY process and will t1 e not be 
considered here.



(4.2.22)+ arV7s),Vq.q. :

1.

2.

3.
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Two fermio 
vertices of 
and FF in f.

manifestly collinearly finite the trace 
case the vector-vector (vrv,) and the 
are in general not equal to each other.

tree types of matrix elements:

One fermion trace matrix elements, where the fermion trace contains two ver­
tices of the form given in eq. 4.2.22. Matrix elements of this type appear in the 
computation of the graphs in figs. 4.1-4.6 and in the interference terms AC, 
AD, BC, BD. Ch OF, DE and DF in figs. 4.7-1.9.

matrix elements, where one of the traces contains both 
(4.2.22). They appear in the terms AA, BB, CU, DD, EE

4.9.

we distinguish thi

The calculation of the squared amplitudes wets performed in n dimensions using 
the algebraic manipulation programmes REDUCE1, SCHOONSCHIP2 and FORM . 
Since we also compute W- and Z-production we had to deal with the 75-matrix, 
which cannot be trivially extended to n dimensions. Following the procedure dis­
cussed in [29] we can distinguish the following types of trace structures. Defining the 
general electroweak vector boson quark coupling Vqq by

After having computed the traces we have to integrate the matrix elements over 
all internal loop and final state momenta, which is the most difficult part of the 
calculation. In this chapter we take all partons to be massless. The case of massive

^.C. Hearn, ‘Reduce User’s Manual’, The Rand corporation, Santa Monica, CA, 1985.
2SCHOONSCHIP is an algebraic manipulation programme written by M. Veltman, see 

H. Strubbe, Comput. Phys. Comm. 8 (1974), 1.
3FORM (version 1.0) is a symbolic manipulation programme written by J.A.M. Vermaseren 

(NIKHEF-H, Amsterdam).

Two fermion ira- . matrix elements, in which each trace contains one vertex of 
the type given above. Contributions of these type originate from the combina­
tions AB, CD and EF in figs. 4.7-4.9.

Traces of types 1 and 2 can be performed by anticommuting the 75 with all Dirac 
matrices 7^ so that the matrix element is proportional to the one obtained for a 
virtual photon (V = 7) multiplied by vr2 + ar2. Traces of type 3 have to be dealt 
with more care. However, since the partonic structure functions W corresponding 
to the combinations mentioned in item 3 are 
can be calculated in four dimensions. In this 
axial-axial (ara3) parts of the matrix element
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Fig. 4.7. Annihilation graphs contributing to the subprocess q + q—>V + q + q.
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Fig. 4.6. Diagrams contributing to the subprocess q + IJ —» V + g ' g- The 
graphs corresponding to the subprocess q(q)+g —> V+q(q)+g can b< obtained 
from those presented in this figure via crossing. By crossing two p lines
one can obtain the diagrams corresponding to the subprocess g+g q+q-

quarks (e.g. when heavy flavours are produced in the final state) will be discussed at 
the end section 4.2.3. Even if the partons are massless the integrals are very numerous 
and far from trivial. This in particular holds for the two loop integrals appearing in 
the quark form factor (fig. 4.4) and the three body phase space integrals showing 
up in the calculation of the graphs in figs. 4.6-4.9. Some of them even have to be 
expanded up to order e*.

B
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I"-3 \M |2, (4.2.23)

Fig. 4.8. Gluon exchange graphs contributing to the subprocesses 
q + q-*V + q + q and q + q—► V + q + q.

h-2 K de (sin oy 
Jo

Starting with the two loop graphs in fig. 4.4 we had to evaluate 107 different types 
of scalar integrals [30]. Note that they are not linearly independent. The irreducible 
set contains 36 elements only and can be found in [31]. Apart from one misprint in 
the scalar integral corresponding to diagram 4C in the appendix of [31], we agree 
with their result. The final result for the quark form factor is presented in eq. 2.49 
of [21] (see also appendix A of [23]). This result agrees with the one quoted in [18]. 
Finally, we would like to comment on the vertex graph in fig. 4.4 containing the 
triangle fermion loop. This graph only contributes in the case of Z-production with 
massive quarks in the loop. Notice that one always has to sum over all flavours in a 
quark family in order to cancel the anomaly arising from this type of graph.

The two body phase space integrals emerging from fig. 4.5 constitute the easiest 
part of the calculation. They can be expressed in the following way

where s is the C.M. energy of the incoming partons and 0 is the angle between one 
of the incoming partons and the outgoing one. The amplitude |At |2 contains all one 
loop integrals. The scalar loop integrals can be found in appendix F of [24]. It turned 
out that we had to evaluate 89 integrals of the kind in eq. 4.2.23, which however do 
not form an independent set. Distinguishing them in soft (singular at s = Q2) and 
hard (regular at s = Q2) gluon integrals we count 8 and 81, respectively. Again

3

2
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|n-2 (4.2.24)

(4.2.25)
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Fig. 4.9. Gluon exchange graphs contributing to the subprocess
q + q-»V + q + q with identical quarks in the initial and/or final st ate.

jt.j) = rde rd<t> 
Jo Jo

the graph containing the fermion loop in fig. 4.5 only contributes in the case of Z- 
production with a massive quark loop. Like for the two loop diagram of fig- 4.4 one 
has to sum over the members of a quark family in order to cancel the anomaly.

The most difficult and laborious part of the calculation is due to the purely ra­
diative subprocesses given in figs. 4.6-4.9, which contain 3 particles in the final state. 
They involve the calculation of the three body phase space integrals of the form

1 s’-i"
(4x)n T(n — 3)

x / At?’/*.

This expression has been derived in the C.M. frame of the incoming partons, where 
s, denotes the invariant mass of the vector boson combined with one of the final 
state partons i. In many cases it is more convenient to evaluate the three particle 
phase space integrals in other Lorentz frames, like the C.M. frame of the two outgoing 
partons [21, 23, 24, 32] or the C.M. frame of the vector boson and one of the outgoing 
partons [33]. In order to perform the angular integrations the matrix element |A<|2 
has to be decomposed in such a way that only two factors contain the angular variables 
9 and <j>. The angular integrals are of the form

__________ (sin0)n~3(sin<ft)'‘-4__________  
(a + 6cos0)‘(A + B cos 9 + C sin 9 cos <t>¥ ’

y d8 y d<f> (sin 0)n~3 (sin <t>)n 4 j 1dsi 

ds2 [(sisj - sQ2)(s + Q2 - S! - s2)]

2



(4.2.26)

(4.2.27)

(4.2.28)

(4.2.29)
qq

(4.2.30)

95

■

pNS
1 qq

2^(^q ® - 2A<) + ^’NS ] ,

27Pqq ]>

^®^q + ^qqS].rs qq

- r«’*+s(z
+(W)‘I 

rs _ rS =(£)’(£)•[

= MW)'i

where a, 6, A, B and C are functions of the kinematical invariants s, Q2, Si and -sj- 
These integrals can be found in appendix C of [34]. For n = 4+e and either a2 / b2 or 
A2 / B2 4- C2 the expressions are very cumbersome, let alone when both a2 b2 and 
A2 B2 + C2. Fortunately the latter case can be avoided by choosing an appropriate 
frame. The partial fractioning of |A4|2 leads to 217 three body phase space integrals 
each of them containing four integration variables. We did not bother to see how 
they could be reduced to a linearly independent set. Among these integrals only 10 
were of the soft gluon type (singular at s = Q2); they can be found in appendix G of 
[24]. Some other 3-body phase space integrals are listed in appendix A of [25].

4.2.3 Mass factorisation in the MS scheme

The partonic structure functions W.j calculated up to second order in at can be 
divided into two ci- st The first class originates from the matrix elements corre­
sponding to types mentioned below eq. 4.2.22. It contains all which have
collinear diverges the second class belong all partonic structure functions,
which are collinearly ; lite (type 3 and some of type 1). In order to perform the 
mass factorisation according to eq. 4.2.5 for the Wij (class I) we need the transition 
functions F,j. These functions describe the transition of a parton j into a parton i. 
The qq and qq transition functions are divided into a non-singlet (NS) and a singlet 
(S) part in the following way

Tqrq. = 6r. + 1^,.,

Tqrq, = 6r. + 1^,

where the indices r and s refer to the flavour of the (anti)quark. As the expressions 
for the transition functions do not explicitly depend on the flavours, we will suppress 
the flavour indices from now on. In the MS mass factorisation scheme the r,j can be 
expressed in terms of the Altarelli-Parisi splitting functions as follows

*‘l^]
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17 
3 + yf(2) - 24<(3) ]

,0 1 > M J ’

factorisation scale. To obtain the above exprc. -'ions in terms 
has to perform cc .3 constant 

cions Tqq 
□volution

In x x

— rs- 1 Qqrs- x qq

r«
where M is the

+ ^®^-2/W*) + £Pi].

8 1 + x2
3 1-

x } + CF2 { 6(1—x) [ 3 - 24((2) + 48<(3) ] 
2

— lnxln(l — x) — 4(1 + x) In2 x — 8(2x + 3(1 — x)-1) Inx 
1 — X

- 40(1 - x)} + CxCF{ 6(1-x)[

+ (^ - 16C(2))7>o(x) + 41±^- In2 x + 8(1 + x)f(2)

- |(5 + 5x - 22(1 -x)-1) In x + |(53 - 187x) |,

P^s = 8CfTj { - 2(1 + x) In2 x + (2 + lOx + yx2) In x

^x-*-4 + 12x-^x2},

-

mass
of the renormalised coupling constant a,(ft2), one
renormalisation (see eq. 4.2.11). Notice that at O(a]) the transition 
and are equal, which is not necessarily true at higher orders.
symbol ® is defined by

(/®j)(x)=/ dxj f dx26(x - Xiij)/(x1)j(x2). (4.2.35)
Jo Jo

The lowest order Altarelli-Parisi splitting functions have already been listed in eqs. 
(4.2.13)—(4.2.16) and the expression for f)0 can be found in eq. 4.2.12. In the next- 
to-leading order we need P^ and the singlet (S) as well as the non-singlet (NS) part 
of P^. They can be obtained from eqs. 16 and 17 in [35] (see also [36]—[39]). Since 
we use a little different notation we will list them here below

= n,CF { 6(1 -x) [ - | - yC(2) ] - ^Co(x) -

_8 ,88
9 + 9



- 14 + 29x - 20x2

(4.2.39)

(4.2.40)
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[ In2 x - 4 In x ln(l +x) - 4 Lij(-x) - 2<(2) ]

x) }, (4.2.38)

P'

= 8Cf(Cf - ±CA) {

+ 2(1 + x) In x + 4(1 —

8Cf7}{ 2(1 -2x + 2x2) [ 21nxln(l-x) + 2f(2) - In’(l-x) ]

- (1 — 2x + 4x2) In2 x — 8x(l — x) ln(l — x) — (3 — 4x + 8x2) In x

} - 8CaTj | - (1 + 2x + 2x2) [ In2 x — 4 In x ln(l—x)

- 4 Li2(-x) - 2<(2) ] + (1 - 2x + 2xJ) [ 2 ln2(l-x) - 2<(2) ]

+ (3 + 6x -j- 2: ) In2 x + 8x(l — x) ln( 1 — x) — |(3 + 24x + 44x2) In x

- |(20x F 225x - 218x2) }

The relation betwe . . anomalous dimension of the composite operators denoted 
by 7}P) and the splr unctions P.j is given through a Mellin transformation

^i(m) = -Jodxxm~'p^x')-
In the literature the expressions 7^NS + (-l)m7qq“ stand for the non-singlet anomalous 
dimension. The singlet anomalous dimensions we need for our calculation are given by 
7qqNS + (~l)m7qq~ + 7qqS and 7<Jg, respectively. The reason that the splitting functions 

in eqs. 4.2.30-4.2.32 are multiplied by an extra factor | can be attributed to the 
fact that the corresponding anomalous dimensions 7^ receive contributions from the 
quark as well as the antiquark. The same applies to Pqqs in eqs. 4.2.30 and 4.2.31. 
Notice that the splitting functions P£q and P£& are only needed up to first order in 
at since the vector boson V does not couple directly to the gluon.

For the mass factorisation of it is convenient to split Wqq, VVqq, Aqq and Aqq 
into non-singlet and singlet parts as has been done for the transition functions (see 
eqs. 4.2.26 and 4.2.27). Then the mass singular partonic structure functions can be 
classified as

1. Wq|bNS, which gets contributions from the graphs in figs. 4.4, 4.5, 4.6 and AA, 
AC and AD in figs. 4.7 and 4.8.

2. It receives contributions from CC and DD in fig. 4.8. Likewise W^’s, 

which is determined by CU, DD, EE and FF in figs. 4.8 and 4.9.
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+ r^r„A,

®w“5-2/30w“g] + 2Pq°q

^’■S = w^s

= r^A*, + r^r|qA^s + a^ + rgqrqN| Aqg +
- (c)’s;(?y {2?^ ® +;1 +** ® "■

+ 2Pg°q®< + w^},

w£> = 2rqgrqgA^qs + 2rqgr„Aqt + 2rqgrggAiig + rM

+ 2P^®< + wif}.

Aqg

qq

TggAgg

® P°q - 2/30Pq°q ] (4-2.41)

®w8q-2/30< «<S}’

3. WW’NS, which receives its contributions from CE and DF (see figs. 4.8 and 4.9).

4. W^'. It gets contributions from the graphs in figs. 4.5 and 4.6.

5. which receives contributions from the graphs in fig. 4.6.

Since the partonic structure functions Wtj satisfy the mass factorisation theorem, the 
unrenormalised and mass singular expressions can be written as follows (where S, is 

defined in eq. 4.2.10)

WP).Ns = rNSrNS^S

+|[^NS + 2P°q

W(2),NS = r^r^sA^ + r^r5qA^ + rqqr”qs

+”“’b

‘qg

+ H 4Pi - 2A)W« + -A ® + + P«) ® < ]
- 2/30w^ + |P^ ® wqq + (Pqq + Pg°g) ® w“r + w'qg | ,



(4.2.46)

(4.2.47)•'J = 2A

w‘iNS = 2A(2> (4.2.48)

(4.2.49)

(4.2.50). J(M2 = Q2).
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q^CE1

™(M2 = Q2,R2 = Q2),

In the above equations aa is the unrenormalised strong coupling constant, which 
to be renormalised using the relation in eq. 4.2.11. The UV divergences are due 
the loop diagrams appearing in the calculation of an<^ ^ot’ce
gg subprocess can be made finite by using the lowest order splitting function o y
The various non-pole terms are equal to

(£)’
(£)

(S)
(£)’<
feR

The expressions foi correction terms calculated in the MS scheme, can
be found in append5 le eqs. 4B.7, 4B.21, 4B.24, 4B.18 and 4B.28, respectively).

The remaining contr i itions to W,j (class II), which are not collinearly divergent, 
do not need mass factorisation. They originate from the combinations of the graphs 
BB, BC, BD, CD, CF, DE and EF in figs. 4.7-4.9. In the case of Z-production also 
the combination AB contributes. It vanishes if one sums over all flavours in one family 
unless the final state quarks are massive. This situation is akin to the virtual graphs 
in figs. 4.4 and 4.5 except that here no anomaly term appears. The class II partonic 
structure functions W.j are equal to the DY correction terms (see appendix 4B), 
which implies that they are scheme independent at least up to order a$.

Summarising the content of this section we conclude that the calculation of the 
order aj correction to the inclusive DY cross section has been completed now in 
the MS scheme. As already has been mentioned in the previous section there is 
another popular scheme to present the correction terms to various QCD processes, 
i.e. the DIS scheme. In our case this requires the calculation of the deep inelastic 
partonic structure functions and ^g2\ which is as laborious as the calculation 
of the DY structure functions Wy. A part of this work has already been published 
in the literature. The soft plus virtual gluon part of 7\J2^ is given in [23]. The part 
of pW dUe to the DIS counterparts of the diagrams A in fig. 4.7 can be found in 
[24]. Ten years ago the contribution to corresponding to the graphs obtained 
by crossing the diagrams in figs. 4.8 and 4.9 were calculated in [20]. Left over are 
the hard gluon part of coming from the diagrams found by crossing the vector

w^NS = A<2)(M2 = q2,r2 = Q2),

= 2A<2>c5(M2 = Q2),

(M2 = (?2),
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In this section we will show results for vector boson production and compare them 
with the most recent data from the UA2 and CDF experiments. The total inclusive 
cross section is given by (see eq. 4.2.2)

<7tolJ(S) = JdQ2 T <zv(Q3, My') Wv(t, Q2).

boson and a quark in figs. 4.5 and 4.6 and the full order a2 contribution to ^g2^- 
The graphs for the latter can be found by appropriate crossings in figs. 4.5 and 
4.6. Their calculation will be presented in the near future. In principle we also 
need the three loop contribution to the anomalous dimensions 7^ in eq. 4.2.40. The 
coefficients of the perturbative expansion in the running coupling constant a3(Q2) 
the renormalisation group improved Wilson coefficient are only scheme independent 
if as well as 7,*+1 are known (see [36, 40]).

Finally, we want to comment on heavy flavour production in the DY process. In 
this chapter we assume all heavy flavours to be massless. This in particular is a 
crude assumption for top quark production. A part of this problem is investigated 
in [41] where the contributions due to triangle graphs of figs. 4.4 and 4.5 have been 
calculated in the case of heavy quarks. The calculation reveals a corre ion of 0.025% 
for qq —> Zg and 0.005% for qg —♦ Zq at CERN collider energies com . 'in the last 
graph of fig. 4.5. The contribution of the two loop triangle graph in . is larger 
and amounts to 0.73% at most. These corrections become even sir at larger 
energies. They never exceed the contributions coming from the smai ubprocess 
calculated above (qq scattering) and can therefore be completely neglected. Still 
missing are the production mechanisms q + q —> Q + Q + V due to graphs A and B 
in fig. 4.7 and g + g—* Q + £} + V in fig. 4.6. Their contributions will have to be 
calculated, but we expect that they are small.

The pointlike cross section av(Q2,My2) for V = 7, Z, W is explicitly given in eqs. 
4A.1-4A.3. The hadronic structure function Wy(r, Q2) can be obtained from eq. 4.2.3 
by combining the various combinations of the parton distribution functions indicated 
by PD^j with the DY correction terms Ay discussed in the previous section. The 
explicit expression can be found in eq. 4A.21. For our subsequent discussions it is 
convenient to rewrite Wy in the following way



(4.3.2)

(4.3.3)
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WV(r,Q2) = 12
w ■’■' x x

where 4>,j denotes the parton flux, which is defined by

®0'(x,M2) = PDY(y,-,M2).
J* y y

At high energies the total cross section is dominated by W- and Z—production. Since 
the widths of these vector bosons are small compared to their masses, the integral in 
eq. 4.3.1 can be performed using the narrow width approximation. The integration 
becomes trivial and its result for crtotai is given by the expressions in eqs. 4A. 10 and 
4A.11.

We will now present the DY cross section and its K-factor for both pp and pp 
collisions at the current and future high energy colliders. The C.M. energies under 
consideration are x/S = .63 TeV (SppS), x/S = 1.8 TeV (Tevatron), x/S = 16 TeV 
(LHC) and x/S = 40 TeV (SSC). For the electroweak parameters we take the following 
values : = 91 GeV, ■ /w = 80 GeV, GF = 1.166 • 10"5 GeV"2 (Fermi constant),
sin20py = 0.227 and. sin? '?c — 0.05. Further we assume the top quark to be heavier 
than the W. For the running coupling constant, determined in the MS scheme, we 
adopt the expression in eq. 10 of [42], which is corrected up to two loops with the heavy 
flavour thresholds included. The number of flavours ny is chosen to be five and the 
QCD scale parameter A is given below. Since the DY correction terms are calculated 
in the MS scheme we need the parton distribution functions in the same scheme. Here 
we have taken the HMRS parametrisations [43, 44], which are indicated by HMRSE+, 
HMRSE, HMRSE- (A = 100 MeV) and HMRSB (A = 190 MeV). Furthermore, to 
make a comparison of the various independent parametrisation sets we also used 
the parton distribution functions given in tables 12 and 14 of [45], which we will 
refer to as MTE (A = 155 MeV) and MTB (A = 194 MeV), respectively. Unless 
stated otherwise, all results are obtained using the HMRSB parametrisation. The 
renormalisation scale R is always taken to be equal to the mass factorisation scale 
Af (see the comment above eq. 4.2.4), for which we have chosen the canonical value 

Since the total cross section is calculated in the narrow width approximation 
this implies that M = My (vector boson mass). The dependence of the cross section 
on the chosen mass factorisation scale will be discussed at the end of this section. All 
numerical results in this chapter are produced by our Fortran programme ZWPROD.

For the discussion of the various contributions to the Drell-Yan correction term 
it is convenient to introduce the /V-factor. In this chapter the theoretical If—factor 
is defined as follows



(4.3.4)

K(n) (4.3.5)

the O(a") correction to the hadronic structure

(4.3.6)

ith the1.

2.

3.

4.
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What is the relative contribution of the four different subprocess qg, qq 
and gg to the O(a7) part of the DY cross section?

How does the cross section depend 
the parton distribution functions?

on the various parametrisations chosen for

The same type of questions can also be raised in the case of other processes, like heavy 
flavour production [34, 46, 47], direct photon production [48] or jet production [49]. 
Note that the answers to the first question and to a lesser extent to the second and 
third one very heavily depend on the chosen renormalisation and mass factorisation 
schemes (we use the MS scheme) and the scales R and M. A change of schemes at a 
fixed value for M and R alters the coefficients in the perturbation series of the Wilson 
coefficient. The same happens if in a given scheme M or R is varied. This leads to 
an increase or decrease of the higher order corrections with respect to the lower order 
ones. It also entails a redistribution of the contributions, coming from the various 
production mechanisms, to the Wilson coefficient. Therefore, an investigation of the 
problems 1, 2 and 3 only makes sense if the schemes and scales are specified. In 
this chapter we have chosen the MS scheme and have taken R = M = Mv, unless 
mentioned otherwise.

n=0

where is the <9(o") contribution to the K-factor, which is given by 

W(n)(T,Q2) <z(")
“ w(°)(t,qj) “

The functions >yW(r, Q7) and are
function Wy(r, Q2) and cross section, respectively. They originate from the (9(o?)
contribution to Ay in eq. 4.2.4. The order a* corrected K-factor is defined by

How does the cross section depend on the different choices made for the fac­
torisation scale M and the renormalisation scale R?

Ki = £ /<("> =
CTo

where <z, is the O(aj) corrected DY cross section and <r0 the Born con: ■». ion.
In the discussion of the results we will try to answer the following < ns:

How large is the O(a2) contribution to the K-factor (/C<2>) comp 
O(a.) one (/<<”)?
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Fig. 4.10. The /("-factor for W+ 4- W~ -production at a pp collider (left) and 
a pp collider (right) (see eqs. 4.3.5 and 4.3.6), plotted as a function of y/S (in 
TeV). The numbering is as follows: 1: Ki; 2: Kf, 3: K^; 4: K^.

I contributions to the K-factor
Starting with W-production at pp colliders we show in fig. 4.10 the O(a,) and O(or2) 
corrections to the DY K-factor for 0.5 TeV < y/S < 50 TeV. Here the K-factor 
originates from eqs. 4.3.5 and 4.3.6 where the total cross section stands for the sum 
of production of W+ and W-. The figure reveals that the O(a2) contribution to 
the K-factor, i.e. K*2), gets negative for y/S > 2.7 TeV, which implies Kj < 
for high energies. Moreover, is much smaller than so that the first order 
corrected cross section Oj is hardly modified over the whole energy range. The same 
phenomenon is also observed for pp collisions where < 0 for y/S > 2.0 TeV 
(see fig. 4.10). The same behaviour of the K-factor is also observed when other

parametrisations of the parton distribution functions are used, like HMRSE, MTE 
or MTB. The property that gets negative at very large energies can be wholly 
attributed to the qg subprocess. Notice that the latter leads to a negative correction 
over the whole energy range, hence, the positive contribution of the qq subprocess 
is always compensated (see fig. 4.11). Remember that the O(a,) part of the qg 
subprocess is negative too, but in this case its absolute value is always smaller than 
the one computed for the qq reaction at the same order of a9.

The separate contributions to the K-factor coming from the four subprocesses 
are shown in fig. 4.11. From this figure we infer that the /f—factor is dominated 
by the qq and qg subprocesses. A striking result of our calculations is the small 
contribution of gg fusion to the /<-factor, in particular when we compare it to the
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i

(4.3.7)

(4.3.8)

(4.3.9)

(4.3.10)
(a > 0), 

(6 > 0).

+ 6,ln‘(l — x) + c6(l —x) + d, 
a,ln'(l — x) + b, 

(1 -x)“ln2(l-x), 
(l-x)‘ln2(l-x),

A,,

Aqq

qg process. At first sight this might be unexpected since the num : evaluation of 
both reactions involves the gluon distribution function, which steeply rises at small 
x. As has been shown in [25], the relative size of the contributions coming from the 
four subprocesses can be understood as follows. The parton flux (see eq. 4.3.3) 
steeply rises as x —+ 0, whereas it sharply decreases for x —♦ 1. This implies that 
x ~ r is the relevant integration region in eq. 4.3.2. Therefore, the cross section will 
heavily depend on the behaviour of A,j(r/x, Q2, M2) near x = r. The functional 
form of A,j(x, Q2, Af2) near x = 1 for the various subprocesses is given in appendix 

lave like (see eqs. 4B.29-4B.46)

The vanishing of the last two correction terms near x = 1 is caused by the absence 
of gluons in the final state. In that case the three body phase space integrals do 
not contribute at the boundary of phase space. Now one can understand why the 
contributions from qq and gg are small compared to those from qq and qg. The 
Drell-Yan correction term AK tends to suppress the fast rise of the gg flux, whereas 
Aqg enhances the behaviour of the qg flux. However, notice that the suppression of

0.5 2.5 5.0 25 50

Fig. 4.11. The various contributions to the -factor for W+ + W~ -production 
at a pp collider (left) and a pp collider (right) (see eq. 4.3.5), function 
of (in TeV). The numbering is as follows: 1: Aq^; 2: -A

5: 6: K™.

0.5 2.5 5.0
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0.15 \

0.10 ••■■S

the DY correction term near x = 1 is more and more compensated at higher energies, 
due to the faster growth of the gg flux relative to the other fluxes, as can be seen in 
fig. 4.11.

0.05 ■

-0.05 L-

We also want to comment on the contributions coming from the distributions 
^■(x) and <5(1— x) in eq. 4.3.7. The coefficients of these functions can be determined 
by a soft gluon approximation, which means that only the contributions coming from 
soft and virtual gluons are taken into account. As is known from the literature, in 
the DIS scheme (with M = R — My) the dominant part of the K-factor can be 
attributed to the soft/virtual piece of the Drell-Yan correction terms (see table 4.2). 
However, in the MS scheme (also with M = R= My) this is no longer true. This can 
be seen in fig. 4.12, where we have split the contribution to ftqq.NS *n*;o a soft/virtual 
(/<W’S+V) an(j a }lar(j (/<y,H) part, as described in appendix 4B (see below eq. 4B.7). 

From this figure we infer that in MS the hard part is much larger than the soft/virtual 
piece. Moreover, in the DIS scheme the main contribution to K^’S+V can be traced 

back to the <5(1 — x) function. In the MS scheme, however, the ©,(x) dominate the 
S + V-part. The above discussion implies that the exponentiation of the soft/virtual 
gluon contribution only makes sense in the DIS scheme. These observations illustrate 
very nicely that the answer to the question, which reaction or production mechanism 
is dominant, depends very much on the chosen schemes and scales.

As a further illustration of this fact we have made a comparison between the MS

Fig. 4.12. The soft-(-virtual (5 + V) and hard (Zf) gluon part of for 
+ I4'~-production at a pp collider (left) and a pp collider (right) (see eq. 

4.3.5), as a function of y/S (in TeV). The numbering is as follows: 1: K^’S+V; 
2: K™’S+V ■ 4- K™’H.qq ’ qq * qq
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298.

1.16
3.41
4.57

-1.57
3.00
19.0

42.7
-7.8
34.9

-15.5
19.4

138.

14.1 
?.? 
?.? 
?.?
1.1 
1.0 
?.?

-1.8
21.5
19.7

-33.5
4.4
1.0

-8.4

0.59 
?.? 
?.?
?.?
0.0006
0.0013 
?.?

1.87 
?.? 
?.?
?.?
0.020
0.025 
?.?

30.8

?.?
?.?
3.6
2.6 
?.?

W+ + W -production (nb) 
Tevatron

CTS~ I DIS
SSC

MS | DIS
LHC

MS | DIS
Born 
qq 
0(0 
qq, S + V 
qq, n 
qq, total 
qg 
<z(»
<D_______
Q(O 
qq, S + V 
qq, H 
qq, total 
qg 
gg 
qq + qq 
<z<2)

SppS 
MS I DIS

and DIS scheme results in table 4.2. For the DIS parton distribution function we 
have chosen the one given in table 13 of [45] (A = 194 MeV), which is the DIS scheme 
counterpart of MTB. Notice that the Born cross section for MS is always slightly 
larger than the one obtained in the DIS scheme. Although the (9(a3) contributions 
to the soft/virtual and hard gluon parts depend heavily on the chosen scheme, the 
total qq result is hardly affected by this choice. For the O(a9) qg subprocess this 
dependence is stronger and we find that the MS result is always more negative than 
the one obtained for DIS. Contrary to the Born cross section we find that the (9(o>) 
corrected cross section in DIS is slightly larger than in MS. From table 4.2 we infer 
that the difference is about 5%. In the DIS scheme the second order contribution 
to the K-factor from the hard gluon part of the qq subprocess is only partially 
known and no O(a^) result exists for the qg process. Therefore, we have put in table

Table 4.2. Comparison of MS and DIS scheme results at SppS, Tevatron, 
LHC and SSC. In both sets of results we used the MTB parton densities 
parametrisations.
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as well as at pp colliders, 
tables for this case.

4.3.3 Th ell cts of parton distribution parametrisations

The size of the various contributions to the DY cross section depends very heavily on 
the specific set of parton distribution functions. These functions are mainly extracted 
from the data in deep inelastic lepton hadron scattering, which have been taken for 
x > 0.01. However, vector boson production at future high energy colliders require 
the knowledge of the parton densities at x ~ My/For LHC and SSC this implies 
z ~ 6 ■ 10~3 and x ~ 3 • 10“3, respectively. A recent analysis [50] has shown that W- 
and Z-production at these future colliders even probes sea quarks ati~ lOAfy /S', 
which is about 5 • 10“5 for SSC. Therefore, one has to extrapolate these densities to 
z-regions, which were not accessible to the deep inelastic experiments carried out 
up to now. In the future this situation will probably improve, when the HERA 
machine is put into operation. Moreover, there is some theoretical uncertainty how 
to parametrise the gluon distribution function at Q2 = Qq. One often assumes that 
xG(z,Q2) —» constant, for x —► 0. However, there are some theoretical reasons to 
believe that a more correct behaviour for small x would be xG(x,Qq) —♦ 1/y/x [51]. 
Notice that such a change of the parametrisation of the gluon at Qq will also strongly 
influence the small x behaviour of the sea quarks at higher Q2, because the sea quarks 
are coupled to the gluons through the Altarelli-Parisi evolution equations. This 
implies that at high energies considerable differences in the size of the DY cross section 
can be expected, even at the Born level, if one changes the x —► 0 behaviour of the 
gluon at Qq. To incorporate this kind of uncertainties in our predictions for the W- 
and Z-production rates we have taken a wide range of different parametrisations. The 
HMRSE and HMRSB parametrisations [43] correspond with a zG(z,Qo) * constant

4.2 a question mark in the entries corresponding to these subprocesses. At second 
order we find that the numerical results for those DY correction terms, which are 
known for both the DIS and the MS scheme, depend considerably on the chosen 
mass factorisation procedure. Furthermore, assuming that the scheme dependence 
of is comparable to that of a(1), we find that in the DIS scheme only for the 
SppS (>/S = 0.63 TeV) one can approximate the second order contribution to the 
cross section by the soft/virtual part of the qq subprocess. At higher energies this 
approximation seems to become very bad. In order to make a full comparison between 
both schemes the calculation of the still missing contributions in DIS (i.e. the hard 
gluon part of qq and qg) will be necessary.

The same discussion applies for Z-production at pp 
therefore we will not give separate figures nor
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Born
O(o.)
O(oi)

Born
O(a.) 
o(°D
Born 
0(0.)

14.7
17.0
17.1

49.3
53.7
52.7

85.1
91.7
90.6

5.51
6.81
7.06

151.
161.
157.

15.1
17.6
17.7

75.8
81.9
79.5

104.
114.
110.

225.
244.
236.

5.03
6.41
6.72

MTE 

0.114

114.
128.
126.

257.
288.
284.

15.5
18.3
18.5 |

4.84
6.13
6.41

I 16.0
i 19.0

19.2

120.
132.
129.

262.
287.
278.

4.93
6.29
6.61

HMRSE+ 

0.107
HMRSB

0.117
MTB 

0.118
HMRSE- 

0.107

behaviour for x - 0. The HMRSE+ and HMRSE- behave like and 1/^ for x - 0 
and are referred to as the valence-like and singular gluon distribution functions in 
[50]. For the parametrisation of the gluon densities in the case of MTE and MTB one 
even has included a logarithmic dependence on x, viz. xG(x,Qq) —> x“(—In x)13 for 

x —» 0, with a and 0 some negative exponents (see tables 12 and 14 of [45]).

The total cross sections for W-production are displayed in table 4.3 for V~S = 0.63 
TeV (SppS), VS = 1.8 TeV (Tevatron), VS = 16 TeV (LHC) and VS = 40 TeV 
(SSC). From this table we infer that the <9(a^) correction is much smaller than the 
O(a,) one. Moreover, the cross sections obtained with the different parton densities 
differ from each other by at least the same order of magnitude as the second order 
correction. Although at .SppS and Tevatron the results for the various parton distri­
butions do not differ very much, these discrepancies do not allow to discern clearly 
the O(a’) corrections. This situation becomes worse at LHC and SSC, where it even 
might become difficult to identify the first order corrections. For these colliders this 
is mainly due to the uncertainties present in the small x behaviour of the parton 
distribution functions. Unless these uncertainties are reduced, it will not be possible

Born 
O(a.)

Table 4.3. The total cross section for W-production at SppS, Tevatron, LHC and SSC.

HMRSE

0.107
SppS (^S = 0.63 TeVj

5.31
6.60
6.86

14.7
17.1
17.3

LHC (VS = 16 TeV)
112.
122.
118.

SSC (VS = 40 TeV)
303.
324.
313.

5.20
6.48
6.74

Tevatron (VS = 1.8 TeV)
15.8
18.7
18.9



Qj(Afz)

section for Z-production at SppS, Tevatron, LHC and SSC.

109

Born
O(«.)

Born
O(Qj)

Born 
O(a.) 
O(o.2)

27.5
29.6
29.3

15.8
17.2
16.9

4.62
5.38
5.44

1.66
2.06
2.14

47.4
50.6
49.4

23.5
25.4
24.8

4.52
5.30
5.37

69.8
75.7
73.6

31.7
34.9
33.9

1.54
1.96
2.06

79.2
88.7
87.9

34.6
38.9
38.5

4.74
5.64
5.74

1.60
2.02
2.12

80.7
88.2
86.0

36.2
40.1
39.1

4.86
5.81
5.92

1.55
1.98
2.09

HMRSE+ 

0.105
HMRSE- 

0.105
HMRSB 

0.115
MTE 

0.112
MTB 

0.115

Born
O(a.)

Table 4.4. The total cross

to learn much about QCD corrections at the future colliders by studying W- and 
Z-production. In table 4.4 we have listed our results for Z-production. Roughly the 
same comments apply here as for W-production. However, note the slightly improved 
possibility to see O(aJ) corrections in the case of Z-production at \/S = 0.63 TeV. 
The reason for this improvement can be attributed to the dominant contribution of 
the valence uu channel in Z-production, whereas the W cross section is mainly deter­
mined by the valence ud and ud subprocesses. It seems that the mutual agreement of 
the various parton densities for the valence u quark is better than for the valence d 
quark. Summarising the above we can state that the uncertainty in the cross sections 
can be estimated to be about 10% for SppS and Tevatron and 150% and 250% for 
LHC and SSC, respectively.

To get a better impression of the size of the corrections we give in table 4.5 
the first and second order /(-factors for W- and Z-production. Notice that for the 
/(-factor a large part of the uncertainty due to the various parametrisations of the 
parton densities drops out. In this case the main reason for the discrepancies can be 
traced back to the different values for a,. Only at very high energies the /(-factors

4.66
5.45
5.51

LHC = 16 TeV)
33.1
35.8
34.9

SSC (y/S = 40 TeV)
89.5
95.9
93.1

HMRSE

0.105
SppS (v/S = 0.63 TeV)

1.61
2.00
2.08

1.58
1.97
2.06

Tevatron ('/S = 1.8 TeV)
4.79
5.69
5.78
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HMRSE 

0.107(5) 
”1.24(5) 
1.29(30) 

”1.16(7) 
1.17(8) 
L08 
1.05
L07 
1.04

HMRSB 

0.117(5) 
1.27(8) 
1.34 
1.18(9) 
1.19(21) 
TTo 
1.06(7) 
To8 
1.05

A-,

Kt

K, 
K2 
A'. 
A'2

MTE 

0.114(2) 
T27 
1.32 
1.18(9) 
1.20(1) 

7713 
1.11 
1.12 
1.11

a.
SppS

HMRSE+ 

0.107(5) 
L24~ 
1.28(9) 
1.16(7) 
1.17(8) 

To9 
1.07 
T08 
1.07

Table 4.5. A'-factors for W-production i.'. 
The numbers between brackets denote how 
case of Z-production. They replace the last

HMRSE- 

0.107(5) 
T25 
1.30 
1.16(7) 
1.17(9) 
L08 
1.05
L07 
1.03(4)

start depending on I’ . — - —
through the variation of the s' ->o... ........................................... •
radiative corrections it is better to look at the A'-factor than at the 
TS ■ ’ • - -

the specific choice of the parton distribution function, mainly 
size of the qg contribution. Therefore, while studying

—-— — .»«, uua.11 au uue cross section.
From this table one can also observe that the JC-factors are roughly the same for W- 
and Z-production. This implies that the ratio

r _ Q'ty B(W —»
~ az B(Z -> £+£-)

is hardly affected by QCD corrections.
For VS = 0.63 TeV and 1.8 TeV (CERN and FNAL) we compare our predictions 

with the measurements by the UA1 [52], UA2 [53] and CDF [54, 55] collaborations 
(see tables 4.6, 4.7 and 4.8). In particular we are interested in the decay channels

* ^vi and Z —♦ t~ for t = e or € = /t. In this case we have to multiply 
the total cross sections in tables 4.3 and 4.4 by the branching ratios B(W —» fv() 
and B(Z —> £+£“), respectively. Starting with the CERN collider we find that the 
central values of the UA1 results for W- and Z-production [52], which were obtained 
in the muon channel only, are well below our second order predictions. However, due 
to the large statistical and systematic errors all our approximations are compatible 
with their data. In case of UA2 [53] we find that for Z-production the second order 

cross sections are in very good agreement with the experimental values, although the 
first order corrected ones can accommodate the data rather well, too. However, for 
W-production the theoretical predictions at O(oj) lie systematically above the UA2

MTB 

0.118(5) 
T28 
1.34(5) 
1.19(20) 
1.20(2) 
Tii 
1.07(8) 
L09 
1.06(7)

at SppS, Tevatron, LHC and SSC. 
the A'-factors are altered in the 
1 or 2 digits.
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0.156
0.182
0.185

53.8
67.0
69.8

0.152
0.178
0.180

1.61
1.87
1.88

567.
706.
735.

0.160
0.191
0.194

549.
699.
733.

0.159
0.189
0.192

1.69
1.99
2.02

53.4
67.8
71.0

528.
668.
699.

0.163
0.195
0.198

51.8
66.4
69.9

538.
686.
720.

1.74
2.07
2.10

UA1
UA2
Born

O(«.)
O(a*)
UA1
UA2
Born

1+ t~) = '
52.9
66.1
68.9

CDF 
Born

CDF 
Born 
O(a.)

data, but this discrepancy is not dramatical. For the Tevatron collider [54] the Born 
approximation as well as the higher order results agree with the data due to the large 
systematic errors in the CDF experiment.

For completeness we give in table 4.8 the values for the ratio R, defined in eq. 
4.3.11. As mentioned above the QCD corrections do not change the value of R very 
much. The theoretical values of R for SppS tend to be larger than the result obtained

HMRSEf | HMRSE

gW

1.65
1.91
1.93

<zZB(Z
55.4
68.9
71.6

Table 4.6. The quantities <zw
We have used B(W -» ti/() = 0.109 and B(Z -> l+l~) = 3.35-10 
values for a,(My) can be found in tables 4.3 and 4.4.

| MTB

Table 4.7. The quantities <rw ■ B and az ■ B for Tevatron [54] (-/S = 1.8 TeV).
We have used Z?(W —» evc) = 0.109 and B(Z —» e+e~) 
values for a,(My) can be found in tables 4.3 and 4.4.

■ B and az ■ B for SppS [53] (>/S = 0.63 TeV).
. The

1.60
1.86
1.87

az B(Z -> e+ e~) = 0.197 ± 0.012 ± 0.032 nb
0.155
0.180
0.182

600.
743.
770.

<7Z B(Z ->/-*•<-) = 5W: 7.8 ± 8.4 pb
70.4 ± 5.5 ± 4.0 pb

i 51.4
65.8

I 69.2

| HMRSE- | IIMRSB | MTE 

e^) = 2.06 ± 0.04 ±0.34~nb
1.73
2.04
2.06

HMRSE+ | HMRSE | HMRSE- | HMRSB | MTE | MTB 

ffw B( W —» tat) = 609 ± 41 ± 94 pb 
gw f?(W ty,) = 660 ± 15 ± 37 pb 

579. 
720. 
748.
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10.8
10.8
10.8

10.4
10.3
10.3

10.6
10.5
10.5

10.7
10.6
10.6

10.8
10.7
10.6

10.6
10.6
10.5

9.9
9.9
9.9

10.4
10.3
10.3

10.7
10.6
10.6

UA1 
UA2 
Born 
O(a.)
Q(°D
CDF 
Born 
O(a.) 
O(o?)

Summarising the discussion above we conclude that the current experiments car­
ried out at the SppS and Tevatron do not allow us to distinguish between O(o») 
and O(orJ) corrected cross sections. This is due to the large systematic errors in the 
existing data, the uncertainty in the parton distribution functions and the fact that 
the second order correction is smaller than has originally been expected from the 
result obtained by the O(a,) calculation. Unless the higher order corrections beyond 
the O(a?) turn out to be very large, the convergence of the perturbation series does 
not seem to be a problem for W- and Z-production at the current and future hadron 
colliders. Therefore, we are now able to give a firm prediction for the total cross sec­
tion; the main limitations to our predictions are set by the uncertainty in the parton 
distribution functions.

by UA2 [53]. This was to be expected, because our results for <7w • B were also larger 
than the cross section found by the UA2 collaboration. The agreement is better with 
the UA1 value of R [52], but in this case the experimental errors in R are rather 
large. For Tevatron we find good agreement with the measurement by CDF [55]. In 
this case one can observe that by studying the ratio R instead of the separate W- 
and Z-production rates, as advocated in the literature, the uncertainty due to the 
choice of the parton distribution functions is reduced. However, this does not apply 
to the results given for CERN. In this case the spread in the values obtained for the 
ratio R and the cross sections are of the same order of magnitude.

HMRSE+ I HMRSE | HMRSE- | HMRSB

11 ± 0-8~
MTE | MTB

Table 4.8. The ratio R (see eq. 4.3.11) for SppS [53] (vCS = 0.63 TeV) and 
Tevatron [55] (v/S = 1.8 TeV).

10.8
10.7
10.7

R = 10.2 ±0.8 ±0.4
10.6
10.5
10.4

R = 10.4t_______
R = 9.38tg;g ± 0.25

10.7
10.7
10.7



4.3.4 The effects of the mass factorisation scale

113

Finally, we want to investigate the dependence of the DY cross section on the chosen 
mass factorisation scale M. In a previous paper [25] we studied the variations of 
the cross sections when the mass factorisation scale M is varied independently of the 
renormalisation scale R. This we will not do in this chapter as there is no distinction 
between these two scales in the current parton distribution functions. Moreover, the 
dependence of the cross section on M is much larger than on R, because the Born 
approximation does not depend on the coupling constant a,. This is contrary to what 
one observes in pure hadronic cross sections, like heavy flavour production [34, 46, 47] 
or dijet production [49], where the Born cross sections do depend on a, and therefore 
are much more sensitive to the choice of R. In principle physical (experimentally ob­
servable) qiu itities, like the hadronic structure function Wy(r, Q2) (eq. 4.2.3), should 
be scale <! pendent. However, the theoretical result for Wv(r, Q2) does depend on 
the chos .ile. This can be attributed to the fact that the logarithmic terms of 
the type 1 i(<J2/M2) (see appendix 4B) in the Wilson coefficient A,y(x, Q2, M2) are 
only calculated up to finite orders of a,, whereas they are resummed in all orders 
for the parton densities using renormalisation group methods. This introduces the 
problem of choosing an appropriate scale. There are many discussions in the litera­
ture concerning the choice of the right scale. Some groups prefer PMS [3], whereas 
other physicists advocate FAC [4]. Another possibility is to vary the scale between 
some canonical values in order to give an estimate for the theoretical error. The best 
solution to the problem would be to show that the resulting expressions exhibit a 
very small variation under a wide range of scale choices. This might be achieved 
provided the QCD corrections can be computed beyond the leading order in a,. The 
Drell-Yan and deep inelastic lepton-hadron cross sections are good candidates for 
satisfying this condition, since their Born cross sections are independent of a, and 
the radiative corrections can be computed up to O(aJ).

Using the HMRSB structure functions we have plotted the DY cross section for 
the production of W+ plus W~ in the range 10 GeV < M < 1000 GeV. Starting with 
the SppS (y/S = 0.63 TeV, see fig. 4.13), we observe a considerable improvement in 
the scale independence of the cross section <7w when it is computed in higher order 
in a,. Note the maximum at M — 40 GeV in <r2 (PMS point), which is not present 
in the lower order results <7q and As has been mentioned before the difference
between <7i and depends on the chosen scale although it never becomes very large 
(< 0.6 nb). Finally, the difference max<zj — minaj in the range 10 < M < 1000 
GeV is about 0.4 nb, which can be considered as a theoretical uncertainty of our
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calculation due to the uncertainty in the scale. The same features are also observed 
for W-production at the Tevatron (\/S = 1.8 TeV , see fig. 4.13) although here the 
difference between the <7) and a2 is extremely small. The PMS point is at M = 200 
GeV, where a2 exhibits a minimum and max<r2 — min<z2 ~ 0.3 nb. Notice that at 
both energies a2 — <rj becomes zero at a certain M, whereas <7, — cr0 / 0 (i = 1,2) 
over the whole range of scales.

When we study the DY process at higher energies, like y/~S = 16 TeV (LHC, fig- 
4.13) or y/S = 40 TeV (SSC, fig. 4.13), we find that some of the properties of the 
higher order a, corrected cross sections change when compared to those obtained for 
y/S < 2 TeV. First, we observe that the scale dependence is much stronger at these

Fig. 4.13. Mass factorization scale (Af) dependence of <7w++iy- for 5ppS 
{y/S = 0.63 TeV), Tevatron (y/S = 1.8 TeV), LHC (y/S = 16 TeV) and SSC 
(%/S = 40 TeV). The total cross section (in nb) is plotted as a function of M 
(in GeV). The numbering is as follows: 1: Born; 2: <9(a,); 3: O(a2).
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So
Si

So
Si
S^

So
Si
s2
So
Si
s2

HMRSE+ 

0.31(6) 
0.17(8) 
0.03(4) 

0.26(17) 
0.04(6) 
0.03 

1.44(37) 
0.38(6) 
0.16(3) 

1.77(2) 
0.50(49) 
0.17(1)

HMRSB 

0.41(6) 
0.23(4) 
0.06 

0.19(1) 
0.07(9) 
0.02(1) 

1.26(1) 
0.34(1) 
0.13 

1.54(0) 
0.45(4) 
0.15(3)

MTE

0.38(42)
0.20(1)
0.03(4)

0.27(18)
0.07(4)
0.12(0)

1.27(2)
0.60(56)
0.33(1)

1.53(49)
0.78(5)
0.43(1)

maxcr, — miner,

HMRSE 

0.34(8) 
0.18(9) 
0.04 

0.22(14) 
0.05(7) 
0.02(1) 

1.30(25) 
0.32(0) 
0.14(2) 

1.60(56) 
0.42 
0.16(2)

HMRSE- 

0.35(8) 
0.18(9) 
0.04 

0.19(1) 
0.05(7) 
0.02(1) 

1.08(4) 
0.24(2) 
0.08(9) 

1.24(2) 
0.28 
0.10(09)

MTB

0.42(8)
0.23(5)
0.06(7)

0.17(09)
0.06(11)
0.01(2)

1.12(06)
0.27(3) 
0.15

1.39(5)
0.38(6)
0.19(7)

where (<z,) is the average value of <z,. In this table one can observe that the scale 

dependence is roughly the same for all parton distribution functions, except for MTE. 

In the case of MTE we find at LHC and SSC that the inclusion of the higher order 

corrections does not improve the scale independence as much as in the case of the 

other parton densities. Also notice the rather large value of S2 at Tevatron for MTE. 
From the values of S2 one can conclude that the O(aJ) corrected DY cross section

Table 4.9. Scale dependence of the cross section for W-production at SppS, 
Tevatron, LIIC and SSC (see eq. 4.3.12). The numbers between brackets 
denote the scale dependences of Z-production. They replace the last 1 of 2 
digits.

energies. Secondly, the extremum in <z2 (PMS point) has disappeared, but now there 

is a value for M where either <Zi or <z2 becomes equal to op (FAC point). Notice that 

<r2 = cr0 near M = 100 GeV for LHC as well as SSC energies. The difference between 
the maximum and minimum value for a2 equals 15 nb at y/S = 16 TeV and 35 nb 

at y/S = 40 TeV. The same features discussed for W-production also show up for 

Z-production, therefore we will not present any figures in this case. In table 4.9 we 

give the variation of the cross section for the various parton distribution functions 

when the mass factorisation scale is chosen in the range 10 GeV < M < 1000 GeV. 

This variation is expressed by the quantity S, defined by
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ignorance about their small 
predictions are just due to

Summarising the content of this chapter, we have presented the full <9(aJ) correction 
to the /<-factor, which is calculated in the MS scheme. To this end the partonic 
structure functions (see eqs. 4.2.41-4.2.45) had to be calculated to the second 
order in a,. One then encounters new collinear divergences, which have not appeared 
in any calculation performed until now. To remove these singularities by mass factori­
sation one needs for the first time the O(o2) corrected splitting functions calculated 
in [35, 36, 37, 38, 39]. The calculation reveals that the dominant parton subprocesses 
are given by the qq (nonsinglet) and qg reactions. This holds for the C?(as) as well as 
for the O(orJ) correction provided the results are presented for M = R = Mv- Further 
the qg contribution to as well as to (the O(a,) and C?(a2) corrections to 
the DY K-factor, respectively) is negative. For K® it even overwhelms the positive 
contribution due to the qq subprocess when \/S > 3 TeV. For this reason the O(aJ) 
part of the /{"-factor is much smaller than the O(a,) contribution, contrary to what 
we have observed in a previous paper [25], where the /{"-factor has been calculated 
in the DIS scheme. However, in the latter scheme the O(a2) corrections due to the 
qg subprocess and the hard gluon part of the qq reaction have not been included yet. 
Notice that all these comparisons only make sense when the renormalisation scale R 
and the factorisation scale M are specified. The factorisation scale dependence of 
the DY cross section has been investigated and we found a considerable improvement 
by including the O(a2) correction. Finally, we have seen that the DY cross section 
heavily depends on the chosen parametrisation for the parton distribution functions. 
A large part of this dependence can be attributed to our 
x behaviour. The main theoretical uncertainties in our

depends much less on the scale than on the chosen set of parton distribution functions. 
Therefore, an important outcome of the O(aJ) computation is that the dependence of 
the production rates on the scale choice is considerably reduced. The main theoretical 
uncertainty can now be attributed to the variations in the cross sections when different 
parametrisations of the parton distribution functions are used. This is especially clear 
for the future hadron colliders, the LHC and the SSC. At these colliders the parton 
distribution functions are probed at very small x-values, for which our knowledge of 
these distribution functions is not very good yet. In particular we want to mention 
once more the sizable, negative contribution of the qg subprocess to both the first 
and second order corrections. At very high energies this subprocess is particularly 
sensitive to the behaviour of the input gluon distribution function at small x-values.



Appendices

4A Basic formulae for the Drell-Yan process

(4A.1)

(4A.2)

and

(4A.3)<7W(Q2,Mw2) = 3

(4A.4)

(4A.5)Fz—« —

and

(4A.6)r,
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In the 
narrow

, aMvi
~ 12sin20w’

case of W- and Z-production the total cross section can be obtained using the 
width approximation in the integrand of eq. 4.3.1, i.e.

this phenomenon. To complete the study of the DY process it is still necessary to 
compute the correction term in the DIS scheme in view of the parton densities given 
in that scheme. Moreover, one also has to investigate the effect of heavy flavour 
production (massive quarks in the final state). Both calculations will undoubtedly 
be presented in the near future.

ill present the basic notations and some formulae needed for 
cross section. The pointlike cross sections ov(Q2,Mv2) 

equal to

In this appendix we wi 
the calculation of the DY 
defined in eq. 4.2.2 are

'' ' > 3Q< N'

yra_____ 1_________fw—_______
2MW sin2 6W N (Q2 - Afw2)2 + Mw2rw

For completeness we also give the formula for the 7-Z interference

_ ra1 1 — 4 sin2 6w 1 1 _____(Q2 — Mz2)_____
6 sin2 Siv cos2 /V (J2 _ A/z2)2 + A/z2rz2

In these formulae Tz and Tw denote the total width of the Z- and W-boson, re­
spectively, (sum over all decay channels) and N = 3. The partial widths due to the 
leptonic decay of the Z and W are given by

aMz (1 + (1 — 4 sin2 #w)2) 

48 sin2 Sw cos2 &w

(2\ 7TO 1 Fz_;/

Z 4Mzsin20lvcos20wAr(Q2_ Afz2)2 + A/Z2FZ2



W - My2). (4A.7)

(4A.8)av—iih = oy B(V —> ^i€2)>

(4A.9)=B(V

(4A.10)<7z =

(4A.11)<7W =

(4A.12)Gp,

<1 = 0,

<>3 = 0,
(4A.13)aj = -l,

7i>
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sin2 9w =

”3 = 5>

ir2a 1 1
4 sin2 Ow cos2 9w N S

_________ 1_________
(Q2 - My2)2 + Afv2rv2

We then find

MyVy

-Wz

are given

we have put

where B(V —» l\ti) stands for the branching ratio

ry_r,rI
Tv ’

and the total rates ay (sum over all leptonic and hadronic decay channels) 
by

^,MZ2),

ir2a 1 1
2 sin2 6w N S

Notice that all particles into which the vector bosons decay are taken to be massless. 
Since the electroweak radiative corrections to sin2 Ow are not neg’.i; ible is better 
to replace sin2 6w appearing in the denominators of the above exp; . - by

y/2Mw2
ra

where Gp = 1.166 ■ 10-5GeV-2 (Fermi constant). In the numerators 
sin2 0W = 0.227.

Combining the various parton densities denoted by PD^ with the correspond­
ing DY correction terms in eq. 4.2.3, we can construct a compact formula for 
lVv(r, Q2). Before giving its expression let us first fix the notations. The coefficients 
v? and in eq. 4A.21 are related to the vector and axial couplings of the vector 
boson V to the quarks (see eq. 4.2.22). For the up and down type quarks they are 
equal to

vd = “5>

vj = 1 - fsin2^,

vj =-1 + jsin’Sw, a3 = l,

,,w  ,,W — 1 _w  _w 
Vu - Vd - To’ u d ”



(4A.14)C“(q*,ql) = C,f(qt,q,) =

and

(4A.15)Cif(qt, q() =

(4A.16)C“(qt,q() =

(4A.17)cif(q*,q() =

and

(4A.18)Cff(q*,q,) =

(4A.19)COS 0C,

(4A.20)—Vcd = sin 0c,
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VUB =

For the W± they are

|2 if eqjt + = ±1
else

1 if qt = qi 
0 else

|2 if eqi = ±1 + 
else

= VaV„a

IVqtm 

0

lvq*qi 

0

lvq*q<

0

For the antiquarks the values for v, and a, are the same as for the quarks. Further 
we introduce three 2nz x 2nz matrices C“, Cu and Cn. These matrices contain the 
information of the coupling of the respective quark flavours to the vector bosons. The 
indices i and f stand for initial and final; the combination in which they occur with 
the C indicate the orientation of the quark line to which the vector boson is coupled. 
For the 7 and the Z they are defined by

1 if q* = q/
0 else

with sin2 0C = 0.05. The remaining matrix elements are put equal to zero. Using 
the convention that e.g. qu = q5 = the up quark density, and q„ = qq = the anti-up 
quark density, the hadronic structure function can be written as

WV(r, Q2) = J dxi j dx? J dx6(r — xx

x{ £ [c“(qr,q,)(v2 + a2)Aqq(z)
1 r,.6Q,Q L

|2 if eqjt + ev = T1
else

where q* and q, stand for the (anti)quarks and eqjfc is the charge of q*. The sym­
bol Vqjtq; denotes the Kobayashi-Maskawa KM matrix, which in our calculation is 

approximated by



(4A.21)

(4A.22)

(4A.23)

(4A.24)

(4A.25)
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i

+ : 
r.»eQ,Q

+ *,. E^.^ + aDA^^x)
fcjeq

+ 6r. E_ (<>'(qr, q*) + ca(qr, q*)) (v2 + a})A<2_> Bg(x)
teq.q

+ ^r. E C^Cqt.q*) (v-v‘A^s(x) + aratA^2)^g(x)) j qr(xi)q,(xJ)

+ E_C'f(q'->q‘)(v? + ar)Aq,(x) (qr(x1)g(x2) + qr(x2)g(xj) ) 
r,*€Q,Q

E [ E (C"(qr,q*)(vr2 + a;) + Cif(q.1qt)(v.2 + aJ))A;
7x L 7s

;(*)) j q,(ii)q.(x2)

+ .
r,»eq.q 1 teq.q

+ Cif(qr,qr) (v,v,A^cE(x) + ara.A^<l

E_ [ (Cif(qr,q,)(v2 + a2) + Cif(q.,qr)(v2 + a2))

+ &r, E_Ci,(q>-,qi)(v2 + a2)A^cp(x) 1 q^x^q^xj) 

*«q,q

+ E c4f(9*.q;)(vi + al)A^)(x)g(x1)g(x2) },
*,/eq J

where

Aqq(x) = 6(1 —x) + A<9(x) + A<^NS(x),

A„(x) = Ai>(x) + AP’(x)

and the sets Q and Q are given by

Q = {u,d,s,c},

Q = {u,d,s,c}.

Furthermore, the scale to be used in the parton distribution functions is the mass 
factorisation scale M. The DY correction terms A.j can be found in appendix 4B. 
They are listed in the same order as they appear in eq. 4A.21. For the 7-Z interference 
the right combinations of the parton distributions can be found by taking the photon 
formula and making the following replacements

v2 —♦

vrv. —♦ | ( .

‘:’c5(-)



r0

(4A.26)

4B Drell-Yan correction terms

2. (anti)quark-gluon,

3. the quark-antiquark (singlet) and non-identical quark-quark,

4. the identical quark-quark and

(4B.1)
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if) = $(r, M2) 

ln’(l — x) 
1 — x

Finally, we want to comment on the treatment of the distributions 7?,(x) when they 
appear in the convolution integral in eq. 4.3.2. In that case one should use the relation

rdx /:d( =4>(t’ ^in;xr)
+ J'dx { M2) - $(r, M2) }

Notice that the convolution integral does not depend on the IR cutoff 6.

5. gluon-gluon.

Before presenting the results of the above mentioned Drell-Yan correction terms, we 
want to make two remarks. Firstly, in the expressions below the scale in the running 
coupling constant a, is always taken to be the renormalisation scale R. Secondly, for 
the interference terms, we use the convention that AC = AC* + CAf, etc.

In this appendix we will present the explicit expressions for the DY correction terms 
the calculation of which is outlined in section 4.2. In order to make the presen­

tation sell <.ined we also give the lowest order contributions, which were already 
calculate.! ,e literature [8]—[13]. We distinguish the following contributions to 
A.y:

1. qua?.' e tiquark (non-singlet),

4B.1 The quark-antiquark contributions (non-singlet)

The lowest order contribution originating from the Born graph in fig. 4.1 is given by

4$ = 5(l-x).

The O(a,) correction to the qq subprocess, which receives contributions from the 
graphs in figs. 4.2 and 4.3 has been calculated in the literature [8]—[13]. Choosing 
the MS scheme the expression for can be very easily obtained using dimensional



A(1->'S+V = £. 
qq 4ttF

(4B.3)

(4B.5)+ 0(1-6-z)

(4B.7)
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R2
M2

| 6(1 —z) j 6 In 

+8r>0(x)ln +162>,(z) }

as the theoretical point of view it

(g)+8C(2)-l6]

regularisation [8, 12]. From the numerical as well 
is convenient to divide it into two pieces, viz.

A<L>(z) = A^(I) + A^(z), (4B.2)

where the S + V-part can be obtained by doing the calculation in a soft gluon 
approximation (z —♦ 1), which means that one only takes the contributions from the 
soft and virtual gluons into account. To obtain the remaining piece, denoted by H, 
one has to perform an exact computation. The expressions for A^,S+V and 
are

= Ar+V + A^ + A^ + A«AI

4~

+ 2Aq5,AC

and
= ^CF{-4(l+z)ln (^-8(l+z)ln(l-z)-4^ n z } . (4B.4) 

The distribution 'Di(x) is defined by

7?,(z) = 6(l-z)J^l + 0(1 — 6— z)^1-^
(i + 1) 1 — z

The parameter 6 is introduced in order to distinguish between the soft (5) (z > 1 — 6) 
and hard (//) (z < 1 — 6) gluon regions in the phase space integrals, which have to 
be performed for the contributions from fig. 4.3. The In 6 terms arise when the factor 
(1 — z)~1+e appearing in these integrals is replaced by the distribution

(1 - z)"1+* — “6'6(1 —z) + (1 - z)-1+‘0(l—z—6). (4B.6)

In the literature the In 6 terms are very often omitted and the distributions 77,(z) are 
then denoted by (ln'(l— z)/(l — z)) + , see e.g. [8]. Note that the coefficient of 6(1—z) 
in eq. 4B.3 also receives contributions from the virtual gluon graph depicted in fig. 
4.2.

The second order correction to the non-singlet part of Aqq is determined by the 
diagrams in figs. 4.4-4.9 and the interference between the graphs in figs. 4.7 and 4.8. 
It can be split into two parts. The first piece is related through mass factorisation 
to the collinearly singular part of the partonic structure function Wqq and will be 
denoted by

A(2).Ns
qq

1 + z?
1 — z



(4B.8)+

123

9L
M224<(3) ] In -llln2

[ 18 - 32<(2) ] In2 (g)

- 70<(2) - 60«3) + 41 ]

+ 8C(3)-^C(2) + i|Z]}

™ - 16«2))I>0(x)

+ Cf2

A,

where /30 represents the lowest order coefficient of the ^-function (eq. 4.2.12) and 
is given in eq. 4B.2. The symbols M and R stand for the mass factorisation 

and renormalisation scales, respectively. The appearance of the /?o~term in eq. 4B.7 
is a remnant of the fact that the calculation of this part involves coupling constant 
renormalisation to remove the UV divergences.

The second piece consists of the DY correction terms A^?B^, A^0_ = A^B^, 
AUand A^'^g originating from those parts of the parton structure function Wqq, 

which are collinearly finite and therefore do not need mass factorisation.
First, we will discuss the contributions in eq. 4B.7. As in the case of the first order 

calculation a part of A^'NS can be obtained by a soft gluon approximation [23]. This 
piece we have again denoted by S+ V. For the remaining Drell-Yan correction terms 
in eq. 4B.7 an exact calculation is necessary. The contributions to A^,S+V come 
from the wo loop virtual graphs in fig. 4.4, the soft gluon radiative corrections due 
to figs. 4 4.6 and soft quark pair production due to diagrams A in fig. 4.7. The
expression his part is equal to

<(2)2 + ^C(2) + 28<(3) -

193 
3

- y<(2)2 + ^<(2) + 28<(3) - iff5 ]

+ [ 24£(2) + 176<(3) - 93 ] In + |<(2)2

+ nzCF[ 2 In2 -^ln

+ CACF [ - y©o(x) In2 + [ (

- ^(x) ] In - ^©2(x) + [ ^ - 32<(2) ] ©j(x) + [ 56<(3)

+ ™C(2) - ] ©o(x) ] + CF2 [ [ 64©,(x) + 48P0(x) ] In2 (g)

+ [ 192©2(x) + 96P,(x) - (128 + 64C(2))D0(x) ] In 

+ 128©s(x) - (128f(2) + 256)©,(x) + 256<)(3)©o(x) ] 

+ n!CF [ 5Z>o(*)ln2 + [ y©i(x) - y©o(z) ] In (^5)

f ©2(z) - ^©,(x) + (> - f «2))©o(x) ] .



(4B.9)

2

+
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1 — x

1 — x

L±^[-32S1>2(i-®) 
1 x L

— 8 Li3(l — x) — 24 Li2( 1 — x) Inx + 24 Li2(l —x) ln(l — x) — 12 In3 x

+ 64£(2) Inx + 72 In2 xln(l—x) — 1241n2(l —x)lnx + 561nx ]

+ (1 - x) [ 64((2) - 64 ln2(l — x) ] + (1 + x) [ In3 x - 64 ln3(l-x)

and

aS,'>-(£)’«’’{H6 
-S(5 + .)]ln’(^) + [

The hard gluon contribution from figs. 4.5 and 4.6 are denoted by A^’Ca and F> 
where the superscripts Cx and Cp refer to the two colour structures. The expressions 
for these quantities are

^'CA = (£)2QCF
+ [t=tI
— 6 In x

inx + 8(1 + x) [ Inx — 4 ln(l —x) ]

[ 16 Li2(l —x) + 24 In2 x -24 Inx

- 112 In x ln(l -x) ] + (1 + x) [ 32 Li2(l -x) + 32£(2) - 12 In2 x 

4-321n x ln(l —x) — 96 ln2(l —x) j + 8(15 + 2x) + 16(2 - 3x)lnx

- 16(7 - x)ln(l-x) ] In

{f(l + x)ln2 (JL)
- 8 Li2(l -x) + In x ] + (1 + x) [ 8<(2) + f ln(l - x)

] - |(19 + 124x) ] In (g) + [ - 4 S,.2(l -x)

- 12Li3(l-x) + | Li2(l-x) + 8Li2(l —x)lnx - 8Li2(l-x)ln(l-x)

+ 8C(2)lnx- ^ln2x- i211nx + i|21nxln(l-x)]

+ (1 + x) [ 16S,.2(l-x) - 12 Li3(l-x) - 28C(3) + 8 Li2(l - ;i(l -z)

+ 16f(2)ln(l -x) + ^ln2(l-x)] - |(7 + x) Li2(l-x)

- |(19 + 25x)((2) + |(23 - 25x) In2 x - 4(3 - x) In x ln(l -x)

- |(26 - 57x) In x - |(38 + 239x) In(l-x) - + ^x j2278
27



A(2) In x

+

+
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- 40 Li3( 1 -x) + 48 Li2(l-x) ln(l -x) - 32f(2) In x + 16 Sll2(l -x) 

+ 64<(2) ln(l—x) - 128C(3) - 24 In2 x ln( 1 -x) + 32 ln2(l -x) In x ]

(47 — 103)}. (4B.11)

corresponding to the combinations AC and

4 In2 x

■qq’.A* - (£) "/Cf { - |(! + *)ln2 (+ [ 

V (1 + x)ln(l-x)- |(1 - llx) jin

l±±-[-8Li2(l-x)

[ 16 Li3(l —x) - 36 Si,2(l -x) + | In3 x - 12 Li2(l -x) In x

A(2) - 
qq. AC

-4 In2

~ Aq5,AD

x — 6 Inx ] —14(1+x) In x — 4(8 —

1 — x

- 16 Li2(l -x) ln( 1 —x) - 6 Li2(l-x) + ^ In2 x - 8 In2 x ln(l-x)

+ 12 In X - 12 In x ln( 1 -x) j + (1 + x) [ - 8 Li3(l-x) - 26 Lij(l-x)

+ 4 Li2(l -x) In x + j ln3x + y In2 x - 28 lnxln(l -x) ]

+ 2(22 - 9x) In x - 8(8 - 7x) ln(l -x) + 2(47 - 39x) } . (4B.12)

Notice that for V = 7 and Z both the AC and AD interference terms always con­
tribute, whereas for W-production only one of the two gives a contribution. This is

+ 8(3 - 2x) Li2(l — x) - 16(2 - x)In2 x + 16(7 - 6x) In xln(l -x)

- 8(4 - 13x) In x + 4(64 + 3x) ln( 1 -x) - 24(3 - 2x) }. (4B.10)

The functions Lin(x) and S„,p(x) denote the polylogarithms and can be found in [56).
The hard part of quark pair production due to the diagrams A in fig. 4.7 is equal 

to

 161 + x2 
3 1 — x

1 + x2 r 
l-x [

2(1 —x) + y Inx — y lnxln(l —x) j + (1 + x) [ j Li2(l —x)

-I- ^<(2) - ln2(l -x) + | In2 x ] - ^(1 - llx) ln(l -x)

+ |(2 — 3x) In x +

Finally, we have the interference terms
AD in figs. 4.7 and 4.8. For them we find

= (£)



D, is

(4B.13)

and

+ 24 Li2(—x)lnx — 48Li2(—x)ln(l+x) + 12£(2) — 24^(2) In.'

+ 8£(2) Inx + 20In2 x ln(l +x) — 24 ln2(l+x) In x + 24 In x In' 1 + x) ]

(4B.14)

(4B.15)

(4B.16)
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figs. 4.7 and 4.8)

= (^) CF { C1 + z)2 [ “ T Li2(-x) - y<(2) + | In2 xA(2)
qq.BE

— ^lnxln(H-x)] + |(3 + 3x2 + 4x) In x +

A*aB

It is clear from eq. 4B.15 that this interference term does not contribute for V = 7- 
It doesn’t give a contribution to W-production, either, because the diagrams A and

A(2> - 
qq.BD

A<2) _
qq.BC -

due to the fact that for W-production only one of the sets of diagrams, C or 
possible for a fixed choice of the initial and final state quark flavours.

The remaining parts of qq scattering are free of mass singularities. Therefore, they 
do not need mass factorisation, which implies that their contributions are scheme and 
scale independent. The contributions originating from the diagrams B in fig. 4.7 and 
the interference terms BC and BD (see figs. 4.7 and 4.8) are

3

= (Cf - |CA) { (1 + X2 + 3x) [ 32 S, .1- x)

+ 16 Li2(l — x) In x ] + (1 + x)2 [ - 48Si,2(—x) - 8Li3(-x) -

+ 36(1 — x2) Li2(l — x) + |(1 + x2 + 4x) In3 x + 4(9 + llx) In x

- 2(—6 + 15x2 + 8x) In2 x - 2(-27 + 13x2 + 14x) J .

The comment made for the interference terms AC and AD below eq. 4B.12 also 
applies to BC and BD.

The matrix element corresponding to the interference term AB (fig. 4.7) involves 
the product of two fermion traces, each containing a vertex of the form 7M(v + «7s)- 
Therefore, it is a type-3 matrix element, described below eq. 4.2.22 and we have to 
distinguish between the vector-vector and axial-axial parts, which we will denote by 

AqSj AB an<i Aqq ab’ resPective|y- The first part is zero due to Furry’s theorem

a(-,ab = (>’ 
qq. AB

whereas the axial-axial contribution is given by

-(SM 161--— ■ Inx 4- 32xln x + 16(3 — x) } .



4B.2

(4B.17)
xM2

(4B.18)

2

‘qg

- 16(1 + 2x2 - x)<(2) + 8(1 - 2x2 + lOx) In x ln(l-x)

In
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+ 12(1 + 2x2 — 2x)ln2(l —x) + |(9 - 71x2 + 54x + 8x ^Infl-x)

Qfl 
Af2 J

The (anti)quark-gluon contribution
At (9(a3) the qg subprocess shows up for the first time. The Dreli-Yan correction 
term for this reaction has been calculated in [8, 12] and it is given by

Tj | 2(1 + 2x2 - 2x) In + 1 — 7x2 + 6x |.

l + x\ 
1-x)

- 16 Li3 (•

A^'CA = &)2CaTj { [4(1 +4*)lnz + 4(l + 2x2 — 2x) ln(l —x) 

+ j(3 - 31x2 + 24x + 4x ) ] In2 + [ (1 + 2x2 + 2x) [ - 8 Li,(-x)

— 8 In x ln(l+x) j — 8(1 + 3x) In2 x + 8(3 + 2x2 + 6x) Li2(l — x)

A<’>
<1S

+ 4(3 + 28x2 — 2x) In x — 4- -^^x2 — |x + ^x 1 j

+ (1 + 4x2 + 5x) [ 8 Lij(—x) + 8 Inx ln(l + x) j 

+ (1 + 2x2 + 2x) [ - 8 Li3(—x) + 16 Li3 Qdg)

B can never have the same initial state quarks due to charge conservation. For Z- 
production the contribution from eq. 4B.15 vanishes by taking complete families of 
quarks into account.

With the correction terms mentioned above we have exhausted all contributions 
to Aqq except those belonging to the singlet part. Since the latter are equal to the 
corrections Aqq calculated for the non-identical quark-quark scattering process, we 
will present them there.

4tf

The second order part of Aqg receives contributions from the graphs in figs. 4.5 and 
4.6 and can be written as

+^'CF+g A, 1” (S) •
The calculation of A^ requires both mass factorisation and renormalisation. The 
latter gives rise to the P0-letm in eq. 4B.18. The two parts A^,C/1 and A^'Cf are 

equal to



' X

X

(4B.19)

and

2
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= ^yCFT/| [ 12(1 + 2xJ — 2x) ln(l—x) — 6(1 + 4x2 — 2x) Inx 

-3(l-4x)]ln2 + [(l+2x2-2x)[-8f(2) + 361n2(l-x)]

— 48x2 Li2(l — x) + 8(1 + 4x2 — 2x) In2 x + 2(5 + 46x2 — 40x) In x

- 8(5 + 16x2 - lOx) In x ln(l-x) - 4(8 + 23x2 - 34x) ln(l - x)

+ 2(12 + Ux2 - 34x) ] In + (-1 + 3x2 + 2x) [ - 16 Li2(-x)

- 16 In x ln(l +x) ] + (1 + 2x2 - 2x) [ 32 Li3(-x) + 100{(3)

- 16 Li2(-x) In x - 16((2) ln(l -x) + ln3(l -x) ]

- 4(11 + 34x2 - 22x) S1>2(1—x) + 4(-l + 18x2 + 2x) Li3(l-x)

+ 16 Lij(—x)lnx — 16 Li2(—x) ln(l — x) + 12 In2 x ln(l+x)

- 161nx In(l —x) ln(l +x) j + 8(9 + 4x2 + 16x) Si,2(l—x)

- 4(15 + 12x2 + 34x) Li3( 1-x) - 4(1 + 2x2 + 4x)C(3)

+ 8(7 — 2x)x Lij(l —x)ln x + 8(7 + 5x2 + lOx) Li2(l —x) ln(l — x)

+ |(33 + 44x2 + 9Ox + 16x-1) Li2(l -x) - 16(5 - 2x)xC(2) In x

- 32(1 + 2x2 - x)<(2) In(l-x) + |(15 + 107x2 - 84x - 8x"’)C(2)

+ |(9 + 20x)ln3x + ^(1 + 2x2 - 2x)ln3(l-x) - (5 + ^x2) In2 x

- 4(3 - 2x2 + 14x) In2 x ln(l -x) + 4(1 - 6x2 + 22x) ln2(l -

+ |(6 - 77x2 + 63x + 8x-1) ln2(l —x) - |(-354 + 457x2 +

+ 20(1 + 13x2 - 2x) In x In(l-x) + ^ + ^x2 - ^x +

+ |(—210 + 74x2 + 75x + 88x-1)ln(l—x) |



+ 4(1 - 2z) Li,(l-x) In x - 4(3 + 26z2 - 6z) Lia(l-x) ln(l -z)

- 6(7 + 22z2 - 14z) ln2( 1 — x) Inx - 2(23 + 63z2 - 80z) ln2( 1 -z)

+ 2(38 + 88z2 - 147z) ln(l -z) - (4B.20)
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factorisation. In this case the contributions 
given by

+ 2(3 + 40z2 -28z)Lia(l-z) + 24(l +4za-2z)C(2)lnz

+ 4(5 - 12z2 + 2z)<(2) - 5(17 4- 52z2 - 34z) In3 z

+ 8(3 + 10z2 — 6z) In2 z ln( 1 — z) — |(35 + 4z2 — 68z) In2 z

The non-identical quark-quark contributions

The reaction represented by the diagrams in fig. 4.8 describe quark-antiquark as 
well as quark-quark scattering (without identical quarks). The contribution to the 
DY correction term can be split into two parts. The first part, represented by the 
combinations CU and DD, needs mass 
for qq, qq and qq are all equal and are

4-4(13 + 48z2 - 50z) In z ln(l -z) - (59 4 174z2 - 245z) In z

- ^z2 4 233z |.

<2> 
qq. DD

2

Notice th. nee of the functions 5(1—z) and P,(z) in Aqg, which were present
in the exp a for Aqq. Although the second order contribution corresponds to
graphs wi .non in the final state, these singular functions do not show up since 
the lowest term A*D js integrable in z = 1.

> _ _ API _ _ A W _ _ AP) _ A<2) _ = A'2’ - = 
qq.CC qq, DD qq.CC qq.DD qq.CC qq.DD

(~)2CfTj { [ 4(1 + z)lnz + j(3 - 4z2 - 3z + 4Z"1) ] In2

,4 [ (1 + z) [ 16 Lij(l —z) — 8 In2 z 4 16 In z ln(l —z) ]

4 4(3 + 4z2 4 6z) In z + |(3 — 4z2 — 3z 4 4z-1) ln(l —z)

- |(39 + 22z2 - 39z - 22z-1) ] In

+ (3 - 4z2 - 3z 4 4z-*) [ | ln2(l -z) - |<(2) ] + (1 + z) [ 48 Sw(l -z)



+ 15x + 16x-1) Li2(l — x) + 8(3 + 4x2 + 6x) In x ln(l — x)

(4B.21)

(4B.22)

and
2

A(2).<A(2M

— 96L12(—x)ln(l+x)lnx ] + (1 + x) [ 16 Li2(—x) + 161nxln(l + x)
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+ 32(2x + 5x-1) Li3(—x) In x 4- 8(10 + x)((2) In x + 8(5 — 4x) Li2( 1 — x)

— 52x In2 x — 16(5 + 4x) In x — 160(1 — x) |

a<2>’v - a<2>'v - A<2>-v - (a,\2r T I 19 j. 
Aq5,CD - -A«.cd - -A55,c5 - V47J CfT> V2 +

— 96 Si,2(—x) — 481n2(l +x) In x — 48£(2) ln(l + x) + 40 In2 x In(1 +x)

— 24(x — 6 + 4x 1 )C(3) + 8(10 — x) Li2( 1 — x) In x

x + 2x ’) i 32 81,2(1—z)

- 32 Li3(l — x) + 8 Lij(l -x) In x + 32 Lij( 1 -x) ln( 1 -x) - 16<(2) In x

— 96Li2(—x)ln(l+x) j + (1 + x) [ 80 Li2(—x) + 80 Inxln(l+x)

+ 40f(2) ] + 8(3x - 6 + 4x-1) Li3(l—x) - 16(3x - 10 + 10x"’) Li3(-x)

— yr In3 x

+ 6 In3 x - 16 In2 x In(l-x) + 16 ln2(l -x) In x ] + |(39 + 8x2

^,cd = ^).cd = ^.cd= (£) CFT/{(2 + x)[32S1.2(l-z)

- 96 Si,2(-z) - 48 ln2(l +x) - 48£(2) ln(l +x) + 40 In2 x ln(l+x)

- |(3 + 8x2 + 15x) In2 x - |(39 + 22x2 - 39x - 22x"*) In(l-x)

+ |(345 + 20x2 - 48x) In x + ^ + ^x2 - ^x + ^x"1 } .

The second part, which is collinearly finite, consists of the interference between the 
graphs C and D in fig. 4.8. The matrix element is of type 3 (see below eq. 4.2.22), 
therefore we have to distinguish between the vector-vector (V) and ' axialvector- 
axialvector (A) terms, which are represented by A^2,’pB and A^2" pectively. 
The contributions to V and A are not equal to each other, like in tl case (see
eqs. 4B.15 and 4B.16). Further notice the relative minus sign betv. ■ qq and
the qq (qq) in the V-part. The expressions for these interference tei • '

2



+ 8f(2) ] + 8(2 - x) Li3(l—x) - 16(6 - 5x) Li3(-x) - 24(2 - 3x)((3)

(4B.23)
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• Identical quarks in the final state. Now only the combinations C and E, or D 
and F, give contributions. Moreover, in this case there is a statistical factor |.

For the expression of the hadronic structure function (see eq. 4A.21) it turned out to 
be convenient to use the statistical factors of the W-production case. Therefore, a 
statistical factor | is included in the results for CE and DF, but this is not the case 
for CF and DE.

• Identical quarks in the initial state. In this case the contribution comes from 
either the graphs C and F, or D and E, and there is no statistical factor.

identical (anti)quark-(anti)quark contributions

In case inert .re identical quarks in the initial and/or final state, we have in addition 
to the graph.; in fig. 4.8 also the ones in fig. 4.9. As the results for EE, FF and EF 
are equal to those for CC, DD and CD (of course one has to implement the right 
statistical factors), we will not discuss them here (see the section on non-identical 
quark-quark scattering). The new contributions come from the interference terms 
CE, CF, DE and DF. Before giving the results let us explain in some detail how we 
have taken care of the statistical factors in our calculations.

In case of V = 7 or Z all four sets of diagrams C, D, E and F contribute and 
we have a statistical factor |. However, in the case of V = W we have to distin­
guish between two cases (recall that for W-production the diagrams C and D cannot 
contribute simultaneously):

+ 8 Li2(l-x) + 8(2 + 3x) Li2(l -x) In x + 8(2 + 5x)<(2) In x

+ 128 Li2(—x)lnx — yxln3x — 4xln2x — 16 In x — 32(1 — x) J .

Finally, we want to remark that in case of W-production only one of the two sets 
of diagrams contributes (C or D, depending on the quark flavours in the initial and 
final state). This implies that for W-production there is no contribution from the 
interference term CD.

The calculation of the expressions in this and the next section can be performed 
in the oil si: I regularisation scheme. This is done in appendix 4C. We agree with 
the resu Schellekens and van Neerven in [20].



+
13

(4B.25)
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1 + z 
1 — x

1 + x

+ 32 Li3

qq.DF

[ 4 In2 x - 8<(2)

= A.<”

) —4^(3) + 24 Li2(l—x)lnx

+ 32 Lij(—x) In x — 32 Li2(—x) ln(l — x) — 16 Li2(—x) ln(l+x)

+ 12£(2) Inx — 16£(2) ln(l—x) — 8£(2) ln(l+x) — | In3 x

+ 8 In2 x ln(l— x) + 28 In2 x ln(l + x) — 81n2(l +x) In x

— 321nxln(l —x)ln(l + x) ] + (1 — x) [ — 16Si,2(—x) + 8Li3(—x)

+ 8<(3) - 16 Li2(-x) ln(l+x) + 4((2) In x - 8<(2) ln(l + x) - | In3 x

+ 4 In2 xln(l+x) — 81n*(l + x)ln x + 321n(l — x) — 34 ]

+ (1 + x) [ 8Li2(—x) + 4((2) + 161nxln(l— x) + 81nx ln(l+x) ]

+ 8(3 + x) Li2(l — x) — 4(1 + 3x) In2 x — 2(9 — 7x) Inx } . (4B.24)

The expression for the interference terms CF and DE is

= (£)

Apart from the statistical factors there is another difference between CE (DF) 
and CF (DE). The first contains collinear divergences and needs mass factorisation, 
whereas the latter is free of mass singularities.

The correction corresponding to the interferences CE and DF is equal to

a<2> - A<2> - A<2> - A(2)aqq,CE - nqq.DF “ ^qq.CE “ <. ..

(£) [ttv
— 16 Li2(—x) — 16 Inx ln(l+x) ] + 8(1 + x) In x + 16(1 — x)j In

[ 32 Si,2(l-x) - 16 S112(-x) - 32 Li3( 1 -x) - 8 Li3(-x) 

(t^)-32l«

A(i) - A(2) _-a<2> =a(2)
qq.CF ~ qq.DE qq.CF qq, DE

(1 - x)2 [ 16Li3(l-x) - 16 S1>2(1 -x) - 24 Li2(l-x) - 16 Li2(l-x) In x

- f ln3x - 121n2x] - 4(7 - 6x) Inx - 2(15 + 13x2 - 28x) |.

Notice that the above expression is scheme and scale independent.

qq.DE


4B.5

(4B.26)

TV3

(4B.27)

factorisation in the
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— 8 ln3(l — x) Inx ] + (1 + x) [ 8 Li2(—x) + 8 In x In(l + x) ]

+ (1 + x)2 [ - 16S1|2(—x) - 16 Li2(—x) ln(l+ x) — 8<((2) ln(l+ x)

+ 12 In3 x ln( 1 + x) - 8 ln3(l +x) In x ] - 8(1 + 7x2 + lOx) S112(l -x)

+ 7 — 67x2 + 60x

| (1+ x)3 [ 16 S1,2(-x) + 24 Li3(-x) + 16<(3)

The CV-contribution contains collinear singularities. After mass 
MS scheme we find

a(2)^ ss

= { J - 2(1 + 4x3 + 4x)lnx - 4(1 - 3x2 + 2x) j In3

+ J (1 + 4x3 + 4x) [ — 8 Li2(l—x) + 2In3 x — 81nx ln(l — x) ] 

+ 2(1 — 4x2 + 8x) In x — 16(1 — 3x2 + 2x) ln(l—x)

] In (S) + (1 + 4x2 + 4x) [ 16 Li3(l—x)

— 4 Li2(l — x) In x — 16 Li2(l—x) ln(l — x) + 4 In3 x ln(l —x)

The gluon-gluon contribution

The diagrams for the gluon-gluon subprocess can be obtained from the quark- 
antiquark annihilation graphs in fig. 4.6 via crossing. This subprocess shows up 
for the first time at O(a2). We have divided its Drell-Yan correction term into two 
parts, i.e.

= 'Ca + A£’'Cr.
The C\-contribution is collinearly finite and is therefore scheme and scale indepen­
dent. It is given by 

= ______
\4?r/ N1 - 1

+ .- Li2(—x) — 24 Li2(—x) In x + 16 Li2(—x) ln(l +x) + 8£(2) ln(l + x)

(2) — 12 In2 x ln(l +x) + 81n2(l + x) Inx + y Inx ln(l+x) ]

- 8(1 - x)2 Si,2( 1 *—x) + j(-2 + 25x3 + 2x) In2 x

- |(6 + 75x2 + 38x) Inx - ^ + ^x2 - 48x



- 8(1 - x2 + 2z) Li3(-x) - 4(1 - 2x2 + 2x)<(3)

+ 4(3 + 10z2 + 10x)C(2) In x + 4(5 - 12z2 + 9x)<(2)

— 16(1 — 3x2 + 2x) ln2(l— x) + 4(1 — 4z2 + 8z) In x ln(l — x)

(4B.28)

(m*) + 8 } ’ (4B.29)

(4B.30)

3
] ln2(l—x)

ln(l — x)+

(4B.31)
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- (23 - 105x2 + 64x) In x + 2(7 - 67x2 + 60x) ln(l -x)

- 2(16 - 49x2 + 33x) | .

CaCf

is. 4.3.7- 
iis limit

Before finishing this appendix it is also useful, in view of the discuss! 
4.3.10, to present the behaviour of A,j(x, Q2, M2) in the limit x —> 
the expressions in eqs. 4B.2-4B.28 become

— 4(5 — 14x2 + 4x) Li2(l — x) + 8(2 + x2 + 4x) Lij(—x) In x

— |(3 + 8x2 + 8x) In3 x — 2(3 + 4x2 + 7z) in2 x

1281n3(l —x) — [ 192 In | | - 248

[ 128 In (g) - 64 In2 (g) + 128f(2) + 316 ] 

-i6in2(S)+i64<(2)+2i6iin(S)
- 256<(3) - 128((2) - 152 } ,

(£)Cf{ -161n(l-x)-81n

qq

r 176
I 3 M2 )

- 56f(3) - ^<(2) + 4F } >

{ ipln2(l-^) +

+ 32C(2)-^]ln(l-

4B.6 The DY correction terms in the limit x —> 1



(4B.34)

(4B.35)

(4B.36)

(4B.37)

(4B.40)
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M2

V 
M2

I ¥'-(£) -“1 >-(■->
(4B.32)

+ 12 J, (4B.33)

lim4(2> F
x—»1 qq,cc

+ [81n

+ i2,"’(S)

= (^) - Tl°’(I-*>

“3^ ■ (S)’c' (* - lc-) {(£)

*(s)
- (s)’» (a--Ja)

lim A(1J - 
x—♦! qq»AA

-fin2

lim A(!? ■■

= (S) { T ln3(1-X) + 12ln (S) ’n2(1~l) 
4-12C(2)]ln (g)

(4B.38)

-L 176 1„ + -g-ln

= (5)2^ { +t36in (S) -121ln2(1-z)
-16f(2)-42]ln(l-x) + 91n2^Q

+ 76((3) + 12<(2) - 10 |, (4B.39)

hu; aUbb

l^^BC

lim A(2’ ^ 
x—•< qq; AB

lim A; -' —

^^'CF

+ [1211)2 (£)+i2inl
-[8C(2) + 22]ln^

= (g)2CFTz{8(l-x)ln2(l-x)

~16] C1-I)ln(1-a:)
-8|n -8f(2) + 18 ] (1 -x) } ,

lim A. .’?'04

+ I 411)2 (S) -2K(2) + 6]ln(l-x)+[

+ 2<(2) - 4 } ,



(4B.41)

3
lim A(2_>'< 
x—»1 qq>CD (4B.42)

(4B.43)

2
(4B.44)

(4B.45)

and

x)} (4B.46)+
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4C Off-shell regularised operator matrix elements and a recal­
culation of the quark-quark Drell-Yan correction terms

- (s)c-r-1 ’(1-

“34£<»-(5) <»(<»-toll

= (jir ) Cf ^Cf ~ { 2(J ~ z) + ff1 ~ x)5 M1 -x)

(£)<>-»•}•

limA^ = 
“ \4x/

= (^) | 8(1-x)ln’(l-x)

+ [81n(S) -16](l-x)ln(l-x)

I21"2 (S)~81n (S)-8^2^16^1-
From the list above we infer that all corrections A,j(z, Q2, Af2) get zero in the limit 
x —♦ 1, except for the non-singlet qq contribution in eqs. 4B.2 and 4B.7 and the qg 
correction terms in eqs. 4B.17 and 4B.18. This explains why the bulk of the /<-factor 
can be attributed to these two contributions.

2
N2 — 1

+ jin

lim 
x—♦! CD

In this appendix three subjects will be discussed. First, we will describe a method 
to calculate operator matrix elements beyond the pole terms, in contrast to what is 
done in chapter 3. Such an effort is needed in case one wants to calculate splitting 
functions, c.q. anomalous dimensions, within the off-shell regularisation procedure. 
Subsequently, we present the results of two splitting functions in this regularisation 
scheme. These are needed to factorise mass singularities out of partonic cross sections 
which were presented in the literature. Thirdly, these splitting functions will be used

y(i-*)3b

limA£)^



(4C.1)

(4C.2)Af(A-fci,A-jfc2) =

(4C.3)0

i + n — 2e — a — 7 + a + 7x

therefore yielding
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(fc1-fc2)>‘(A-fc1-A-fc2)7(A-fc2)
,2e

4C.1 Calculation of regular two loop self-energy integrals

The calculation of operator matrix elements up to constant terms differs from the 
calculation of the pole terms in two ways. The first difference is not so dramatical: 
all integrals and expansions must be carried out one order further in e. Secondly, one 
has to calculate those integrals which are finite. The latter step involves a simple, 
but smart ingredient. The finite integrals are of the form (cf. eq. 3C.21)

r dnkt dnk2
" ' : J (2^)" (2^)"k^kj^p - kj\p - kj“(k2 - kJ21'

where .meters a,..., e are larger than zero and N(A kt, A-fcj) is the numerator 
of the ini '.;' ?.!. One can easily show that these integrals never occur in diagrams which 
involve an operator vertex with 4 legs. As a result, the numerator only contains single 
sums of the form 3A.17 and no double sums of the form 3A.18. Using this fact and 
performing suitable transformations k2 —tp—ki,k2—tp—k2 and k} «-» k2 on the 
integration variables, the numerator can be brought into one of the following forms

’ (A jfe2)’(A p-A fcjXfA-fcj - A-fc2)‘

. (A41)"-’(A<1(AtI-A-*J)i

where i,j,k = —1,0,1,.... The parameter m is coming from the operator (cf. eqs. 
3.1.1-3.1.3). To give an expression for these integrals, we consider the following 
identity

to recalculate the Drell-Yan correction terms due to the singlet non-identical quark­
quark and the non-singlet identical quark-quark subprocesses, which were calculated 
by off-shell regularisation, as an independent check on the results found in appendix 
4B. In order to be able to compare the correction terms, we take Schellekens* results 
[20], which were calculated in an off-shell scheme, and perform mass factorisation in 
the MS scheme.

f (Pkt d"k2 d
J (2ir)n (2x)n dkf 1 k^kj^p - - kj2>(k2 - kJ

r d^kt d"k2_______(A ki-A-kJf^ kJ
J (2r)n (2x’)n kj’kj’tp - k^(p - kjt((k2 - fc2)2'

k22 - (*, - kJ , (p-kJ-^-kJ 
J 7 (p-fci)’



(4C.4)X

= (m-2) ((At.)” -A^CAI-,)”*-3).(fci - k2y (4C.5)
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4C.2 The second order singlet quark-quark and non-singlet quark- 
antiquark splitting functions

S( A ■k1)m

r cT'k^ dnk2_______(A-fct - Afc2)*'/(Afc2)______
J (2»)" (2r)" k^k^p - k2)2\p - k2)2S(kt - fc2)2'

1 _ _______(S kt-A kjYfjA kt)
7 J (2*)n (2x)n k^kS^p - kt)^(p - kj)26^ - fc2)2‘

. (^i ~ k2)2 — (p — k2)2 
(P ~ ki)2

The factor A-fc2 of the last term on the right-hand side cancels the (A fc2)-1 of the 
numerator N. Therefore, the resulting integral can be transformed into an integral 
with a numerator, which has the first form of eq. 4C.2. By recursion, on: can express 
every integral 4C.1 in simpler ones with only 4 different denominators ( cq::. 3C.22
and 3C.23). This trick was first shown by Tkachov in [17]. In principle ” are now 
able to perform each calculation of a two loop splitting function up to non-pole 
terms.

In the off-shell regularisation scheme one distinguishes the UV singularities from the 
mass divergences. The first type appears as factors e-1, whereas the second type 
manifests itself as ln(—p2/p2) terms. Because the e-1 poles are uniquely related to 
the logarithms, it is possible to use the operator renormalisation constants as splitting 
functions in the case of dimensional regularisation of the collinear divergences. In the 
off-shell scheme the UV poles are really removed by operator renormalisation and the 
remaining UV finite matrix element is used as splitting function. This makes clear 
why the non-pole terms of the operator matrix elements are needed in the off-shell 
regularisation scheme, while they are superfluous in the dimensional regularisation 
scheme.

The calculation of the singlet part of the quark-quark transition function involves 
the diagrams, which are shown in figure 4.14. The structure of the operator matrix

i + n — 2e — a —
(fci — k2)2 — k2

“ k>2

This equality is applicable to the integrals with a numerator of the first form in eq. 
4C.2. The second form of the numerator in eq. 4C.2 yields an extra contribution 
upon differentiation with respect to k2, which is due to



by

(4C.6)

) In x 4- (8 — ^x2 — 8x +
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56 
3

element is given

(oim(p)o<jo)^(-P))io) =
-^CfTjS^-pr fo'dxx'

Asi

+ ^y(3 — x2 + x

Fig. 4.14. The Feynman diagrams which contribute to F^q.

32 
T

+ /«■(•)}.
The c: p or Oq is given in eq. 3.1.2 and Sc in eq. 3.2.11. It is common use to 
proje- structures onto the sum As(x)+Bs(x) by applying the projection operator 
|tr(p he matrix element. This is equivalent to summing over the polarisations
of the nal quarks, as one is used to do in calculating cross sections. The counter
term at inserted in the third diagram is the UV pole term of the first order gluon­
quark i a;, dtion function. This diagram is due to the one loop renormalisation of the 
operators. The fourth diagram contains the second order operator renormalisation 
constant, which can be deduced from eq. 4.2.37. Its effect is the truncation of all 
e-poles in the final answer. Note that the first diagram involves integrals without 
divergences, which are of the form 4C.1.

The sum of the four diagrams in fig. 4.14 has to be compared to the form of 
Tqq, given in eq. 4.2.37. However, in the off-shell regularisation method one does 
not use the e-1-poles, but the total term which is finite after MS renormalisation 
of the e-1-poles (i.e. finite in the limit e —+ 0). The result of our calculation after 
renormalisation of the operator is

(x) + Bs(x) = [ 8(1 + x)lnx + 4 — "yx2 — 4x + yx"1 j In2 [

+ 16(1 + x) [ In2 x + In x ln(l—x) + Li2(l —x) ] 

)ln(l—x) j In

+ 8(1 + x) [ | ln3x + 21n2xln(l—x) + lnxln2(l—x) + 41nx Li2(l — x)



)

)ln2(l—x)

)ln(l-z)+ (30 + 14x +

.(4C.7)

(4C.8)

Fig. 4.15. The Feynman diagrams which contribute to F;^".

(4C.9)

by

[ S112(l-x)-2Li3(l-x)
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The mass scale p2 is the operator renormalisation scale, which will take the role of 
mass factorisation scale when we recalculate the Drell-Yan correction term. The 
splitting function 4.2.30 becomes in the off-shell method

want to present the operator matrix element which represents the 
are

(O|T(0,(p)Oq(O)^(-p))|O) =

—— |Cx)5,-j(—A-p)m f dxx'
(4tt) Jo

1 + x

+ |(1 + x)lnx + 1 — x

Li2(l—x) ] + (4 — yx! — 4x +

+ 21n(l —x) Li2(l—x) — 2 Li3(l—x) + 4 Slj2(l—x) ] + y(3 - x2 + x 

x [ lnxln(l—x) +

In this case, the finite expression A~ + B~ after operator renormalisation is given 

A-(x) + B~(x) = 16 [ | In2 x - Li2(-x) - |<(2) - Inx ln(l + x) ]

1 + X

2
f(2),S 

qq •

)ln2x + (^ + ^x2-ij5x +

r’’=(£) CfTz(71s(x) + Bs(x)) =

Secondly, we 
non-singlet quark-antiquark transition function. The contributing diagrams

±$x3 x

3 1 9 X

shown in fig. 4.15, where we only consider the part that is proportional to the factor 
(—l)m. The latter part of the operator matrix element can be given by (see discussion 
below eq. 4.2.40)

+ (16 - ^x2 - 64 x + *2x->)lnx - + ^x2 - i|Sx - ^x



-C(2)ln(l-x) + iln3x]+8(l+x)[ Li3(-x) - 2 S,,2(-x) + Li2(l-x)

+ <((3) — 2 ln(l+x) Li2(—x) — £(2) ln(l+x) — Inx ln2(l+x) + In xln(l — x)

(4C.10)

(4C.11)
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+ | In2 x In(l-t-x) j +(1 -x) [22- 12<(2) + 161n(l-x)] + 121n2x

+ 2 Li3

2r(2).NS
1 qqr« ’ (c)

The t\ .■ plitting functions which we have determined up to constant terms, can be 
used to i calculate the MS factorised quark-quark Drell-Yan correction terms.

CF(CF - ±CA) ( A-(x) + B-(x) ) = (g)

- 2Li® (-fT?) “ 2 Li’(-X) 1“(1 -x) + Li2(l-x) In X

— Lij(—x) In x — In2 x ln(l + x) + | In2 x ln(l — x) — 2 Inx ln(l — x)ln(l + x)

We have calculated the singlet part of the quark-quark transition function at second 
order in the coupling constant, using off-shell regularisation. This enables us to recal­
culate the Drell-Yan correction term, which belongs to the mass singular part of the 
non-identical quark-quark scattering process. The expression for the structure func­
tion, which still contains the collinear divergences, has been given by Schellekens and 
van Neerven (eq. 3.7 in their first article of [20]). Furthermore, the quark-antiquark 
transition function at second order enables us to check the Drell-Yan correction term 
of the mass singular part of identical quark-quark scattering. The expression of the 
mass singular partonic cross section has also been given by Schellekens and van Neer­
ven (eq. 2.5 in their second article of [20]). However, we do disagree with their result 
as regards the power of f in the logarithm: this should be 3 instead of 2. Of course, 
we have also checked those quark-quark Drell-Yan correction terms which do not 
need mass factorisation. In the latter case we agree with the results of Schellekens 
and van Neerven.

In order to factorise the mass singularities, we should consider eqs. 4.2.42 and 
4.2.43. The corresponding equalities in the off-shell scheme are

The splitting function 4.2.29 becomes in the off-shell regularisation scheme

+ 8(x — x l) [ Li2(—x) + Inxln(l-f-x) j + 6(5 + x)ln



(4C.12)

and

(4C.13)

In the off-shell scheme these first order qua : lies are given

(4C.14)= —4Cf

(4C.15)= 2Tj

References

142

(1 - x)2 + 1
X

(1 — x)2 + X2) In f-

[1] H.D. Politzer, Nucl. Phys. B129 (1977), 301; C.T. Sachrajda, Phys. Lett. 73B (1978), 
185; D. Amati, R. Petronzio and G. Veneziano, Nucl. Phys. B140 (1978), 54; B146 
(1978), 29; R.K. Ellis, H. Georgi, M. Machacek, H.D. Politzer and G.G. Ross, Phys. 
Lett. 78B (1978), 281; Nucl. Phys. B152 (1979), 285; S.B. Libby and G. Sterman, 
Phys. Lett. 78B (1978), 618

+ -1T}

,1.NS1 
qq J ’

= (£)2{2rS’s + 2^,®w!

W(2).NS

x(l — x)p2
, -P2
(1 - x)2Q2 

xp.2

where p denotes an arbitrary mass scale and p2 is the mass factorisation scale.
If we combine the singlet transition function, the convolution of the two quantities 

given above and the partonic structure function from [20], we reproduce the correction 
term, given in eq. 4B.21. The scale p2, which appears in the expressions of this 
appendix, must be identified with the scale M2 of expression 4B.21. Furthermore, 
if we combine the identical quark-quark result of Schellekens with our expression 
for the non-singlet quark-antiquark splitting function we reproduce the Drell-Yan 
correction term 4B.24. These results provide us with a good check on the calculations 
done in chapter 4.

+ | + 3x — .

where the convolution symbol ® was defined in eq. 4.2.35. The quantities and 
wtNS must be the same as the ones given in eqs. 4.2.42 and 4.2.43, because we consider 
the same mass factorisation scheme. The second order transition functions were 
given in eqs. 4C.8 and 4C.11. The singlet quark-quark splitting function contains 
both the leading and next-to-leading pole terms, which are separately visible in the 
dimensional regularisation scheme. The term is absent here, because we work 
in terms of the off-shell regularised quantities. The quantity that remains to be 
calculated, is /J”q ® u>qg. 
by



Rev. Nucl. Part. Sei. 39 (1989), 357

[3] P.M. Stevenson, Phys. Rev. D23 (1981), 2916; Nucl. Phys. B203 (1982), 472

[5] J.H. Christenson et al., Phys. Rev. Lett. 25 (1970), 1523

[6] S.D. Drell and T.M. Yan, Phys. Rev. Lett. 25 (1970), 316; Ann. Phys. 66 (1971), 578

[10] ,i. Kubar-Andre and F.E. Paige, Phys. Rev. D19 (1979), 221

[12] B. Humpert and W.L.

[13] J. Kubar, M. le Bellac, J.L. Meunier and G. Plaut, Nucl. Phys. B175 (1980), 251

[15] K. Freudenreich, Int. J. Mod. Phys. A5 (1990), 3643

[16] L. Fayard, and Za Production at Hadron Colliders’, LAL 90-48

[18] G. Kramer and B. Lampe, Z. Phys. C34 (1987), 497, Erratum: C42 (1989), 504

143

van Neerven, Phys. Lett. 84B (1979), 327, Erratum: B85
(1979), 471; B89 (1979), 69; Nucl. Phys. B184 (1981), 225

[17] K.G. Chetyrkin, A.L. Kataev and F.V. Tkachov, Phys. Lett. 85B (1979), 277; M. Dine 
and J. Sapirstein, Phys. Rev. Lett. 43 (1979), 668; W. Celmaster and R.J. Gonsalves, 
Phys. Rev. Lett. 44 (1980), 560; Phys. Rev. D21 (1980), 3112; F.V. Tkachov, Phys. 
Lett. 100B (1981), 65; S.G. Gorishny, A.L. Kataev and S.A. Larin, Phys. Lett. B212 
(1988), 238

[9] J. Abad and B. Humpert, Phys. Lett. 77B (1978), 105; B78 (1978), 627, Erratum: 

B80 (1979), 433; B80 (1978), 115; B80 (1979), 286

[14] J. Badier et al., Phys. Lett. 89B (1979), 145; R. Barate et al., Phys. Rev. Lett. 43 

(1979), 1541

[4] G. Grunberg, Phys. Lett. 95B (1980), 70, Erratum: B110 (1982), 501; Phys. Rev.

D29 (1984), 2315

[11] K. Harada, T. Kaneko and N. Sakai, Nucl. Phys. B155 (1979), 169, Erratum: B165 
(1980), 545

[8] G. Altarelli, R.K. EUis and G. Martinelli, Nucl. Phys. B143 (1978), 521, Erratum: 
B146 (1978), 544; B157 (1979), 461

[7] J.C. Collins, D.E. Soper and G. Sterman, Nucl. Phys. B261 (1985), 104; Nucl. Phys. 

B308 (1988), 833; G.T. Bodwin, Phys. Rev. D31 (1985), 2616, Erratum: D34 (1986), 
3932

[2] G. Altarelli, Phys. Rep. 81 (1982), 1; Ann.



[24] T. Matsuura, thesis, University of Leiden, 1989

Neerven, Nucl. Phys. B345 ' .990), 331

Neerven, Nucl. Phys. B268 (1986), 453

[31] R.J. Gonsalves, Phys. Rev. D28 (1983), 1542

[32] R.K. Ellis, M.A. Furman, H.E. Haber and I. Hinchliffe, Nucl. Phys. B173 (1980), 397

[33] J. Smith, D. Thomas and W.L. van Neerven, Z. Phys. C44 (1989), 267

Neerven and J. Smith, Phys. Rev. D40 (1989), 54

[35] E.G. Floratos, R. Lacaze and C. Kounnas, Phys. Lett. 98B (1981), 285

144

[26] F. Bloch and A. Nordsieck, Phys. Rev. 52 (1937), 54; D.R. Yennie, S. .schi and

H. Suura, Ann. Phys. 13 (1961), 379

[27] R. Doria, J. Frenkel and J.C. Taylor, Nucl. Phys. B168 (1980), 93; A. A :: , M. Day,
R. Doria, J. Frenkel and J.C. Taylor, Nucl. Phys. B182 (1981), 104; C. Di’lieto,
S. Gendron, LG. Halliday and C.T. Sachrajda, Nucl. Phys. B183 (1981), 223

[19] V.N. Gribov and L.N. Lipatov, Sov. J. Nucl. Phys. 15 (1972), 438, 675; G. Altarelli 

and G. Parisi, Nucl. Phys. B126 (1977), 298

[20] A.P. Contogouris and J. Kripfganz, Phys. Rev. D20 (1979), 2295; A.N. Schellekens and 

W.L. van Neerven, Phys. Rev. D21 (1980), 2619; D22 (1980), 1623; A.N. Schellekens, 

thesis, University of Nijmegen, 1981

[28] T. Kinoshita, J. Math. Phys. 3 (1962), 650; T.D. Lee and M. Nauenberg, Phys. Rev.
133 (1964), B1549; N. Nakanishi, Prog. Theor. Phys. 19 (1958), 159

[36] E.G. Floratos, D.A. Ross and C.T. Sachrajda, Nucl. Phys. B129 (1977), 66, Erratum:
B139 (1978), 545; Nucl. Phys. B152 (1979), 493

[29] R.J. Gonsalves, J. Pawlowski and C.-F. Wai, Phys. Rev. D40 (1989), 2245, and ref­

erences therein; J. Pawlowski, Phys. Lett. B246 (1990), 477

[34] W. Beenakker, H. Kuijf, W.L. van

[21] T. Matsuura and W.L. van

[25] T. Matsuura, R. Hamberg and W.L. van

[30] W.L. van

Neerven, Z. Phys. C38 (1988), 623

[22] T. Matsuura and W.L. van Neerven, Contribution to the Proc. Int. Europhys. Conf, on 
High Energy Physics, Vol. 1 (Uppsala, Sweden, 25 June - 1 July, 1987), ed. 0. Botner 

(Uppsala University), p. 198

[23] T. Matsuura, S.C. van der Marek and W.L. van Neerven, Phys. Lett. B211 (1988), 

171; Nucl. Phys. B319 (1989), 570



[38] E.G. Floratos, R. Lacaze and C. Kounnas, Phys. Lett. 98B (1981), 89

[40] A.N. Schellekens, Lett. Nuovo Cim. 24 (1979), 513

[41] D.A. Dicus and S.S.D. Willenbrock, Phys. Rev. D34 (1986), 148

[42] G. Altarelli, M. Diemoz, G. Martinelli and P. Nason, Nucl. Phys. B308 (1988), 724

[50] A.D. Martin and W.J. Stirling, Phys. Lett. B248 (1990), 443

[53] UA2 Collaboration: J. Alitti et al., Z. Phys. C47 (1990), 11

145

[51] J. Kwiecinski, A.D. Martin, W.J. Stirling and R.G. Roberts, Phys. Rev. D42 (1990),

3645, and references therein

[52] UA1 Collaboration: C. Albajar et al., “Measurement of the ratio R = <zwBr(W -» 
pp)/<rzBr(Z —► /2/r) and r$‘ at the CERN proton-antiproton collider”, CERN- 
PPE/90-141

[43] A.D. Martin, R.G. Roberts and W.J. Stirling, Phys. Rev. D37 (1988), 1161; Mod.

Phys. Lett. A4 (1989), 1135; P.N. Harriman, A.D. Martin, W.J. Stirling and
R.G. Roberts, Phys. Rev. D42 (1990), 798

[37] A. Gonzalez-Arroyo, C. Lopez and F.J. Yndurain, Nucl. Phys. B153 (1979), 161;

A. Gonzalez-Arroyo and C. Lopez, Nucl. Phys. B166 (1980), 429

[39] W. Furmanski and R. Petronzio, Phys. Lett. 97B (1980), 437; G. Curci, W. Furmanski 
and R. Petronzio, Nucl. Phys. B175 (1980), 27

[48] P. Aurenche, R. Baier, M. Fontannaz and D. Schiff, Nucl. Phys. B286 (1987), 509;

Nucl. Phys. B297 (1988), 661

[49] F. Aversa, P. Chiappetta, M. Greco and J.Ph. Guillet, Phys. Lett. B210 (1988), 225;

Phys. Lett. B211 (1988), 465; Nucl. Phys. B327 (1989), 105

[47] W. Beenakker, W.L.

B351 (1991), 507

[46] P. .a n, S. Dawson and R.K. Ellis, Nucl. Phys. B303 (1988), 607; Nucl. Phys. B327 
(1989), 49

van Neerven, R. Meng, G.A. Schuler and J. Smith, Nucl. Phys.

[44] P.N. Harriman, A.D. Martin, W.J. Stirling and R.G. Roberts, Phys. Lett. B243 (1990),

[45] J. :rfin and Wu-Ki Tung, “Parton distributions from a global QCD analysis of

d- .Jastic scattering and lepton-pair production”, Fermilab-Pub-90/74



146

[54] CDF Collaboration: P.F. Derwent, ‘Production properties of W, Z bosons’, talk pre­
sented at the 25th Recontres de Moriond, Les Arcs, Savoie - France, March 1990

[55] CDF Collaboration: F. Abe et al., Phys. Rev. Lett. 64 (1990), 152

[56] L. Lewin, ‘Polylogarithms and Associated Functions’, North-Holland, 1983; R. Bar­
bieri, J.A. Mignaco and E. Remiddi, Nuovo Cim. 11A (1972), 824; A. Devoto and 
D.W. Duke, Riv. Nuovo Cim. 7-6 (1984), 1



147

S amen vat ting
Tweede orde gluonische bijdragen aan fysische grootheden

De algemeen aanvaarde theorie die de sterke wisselwerking tussen quarks en gluonen 
beschrijft, staat bekend onder de naam Quantum Chromo Dynamica (QCD) en da- 
teert it het begin van de jaren ’70. Quarks en gluonen zijn de bouwstenen van alle 
tot rr to- bekende hadronen; ze zijn echter nog nooit afzonderlijk waargenomen. Men 
probe ; it feit, dat opsluiting (confinement) wordt genoemd, met behulp van QCD 
te vei ni. Terwijl het laatste nog steeds een moeilijk probleem is, bleek QCD veel
succe r te zijn in de beschrijving van zeer inelastische verstrooiingsprocessen. Dit 
zijn p ■ sen waarbij alle kinematische invarianten, die in de werkzame doorsnede 
voorkomen, asymptotisch zijn, maar waarbij de onderlinge verhoudingen van deze in­
varianten eindig gehouden worden. Onder deze voorwaarden kan men storingstheorie 
toepassen om de werkzame doorsneden uit te rekenen. Dit is geoorloofd omdat in 
QCD de van de asymptotische invarianten afhankelijke koppelingsconstante naar nul 
gaat. Dit laatste verschijnsel wordt asymptotische vrijheid genoemd. De theoretische 
methoden die hier al op vooruit liepen en later in QCD geimplementeerd werden, de 
operatorprodukt expansie en het partonmodel, worden gemtroduceerd in hoofdstuk 
twee van dit proefschrift.

De operatorprodukt expansie, die voor het eerst door K.G. Wilson werd toege- 
past, beschrijft hoe men een produkt van twee lokale operatoren, gedefinieerd in twee 
verschillende ruimte-tijd punten, in de buurt van de lichtkegel kan schrijven als een 
oneindige som van lokale operatoren. De verwachtingswaarden van deze operatoren 
beschrijven het lange-afstandsgedrag (lage-energiegebied) van de fysische groothe­
den die men wil onderzoeken. De coefficienten van deze lokale operatoren die in de 
reeks voorkomen zijn singuliere funkties (distributies), die het korte-afstandsgedrag 
(hoge-energiegebied) van de fysische grootheden zoals werkzame doorsneden beschrij­
ven. Voor deze singuliere funkties, ook wel Wilson coefficienten genoemd, bestaat een 
storingsreeks in de koppelingsconstante. De laagste-orde term van deze reeks wordt 
gegeven door vrije-veldentheorie en leidt tot schaalonafhankelijk gedrag van de struk-
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tuurfunkties die zeer inelastische lepton-hadron verstrooiing beschrijven. De eerste 
experimenten bevestigden dit gedrag.

Later, toen de experimenten nauwkeuriger uitgevoerd konden worden, ontdekte 
men afwijkingen van schaalinvariantie. Deze kunnen verklaard worden door hogere- 
orde QCD-correcties in de operatorprodukt expansie te beschouwen. Het blijkt dat er 
een intrinsiek verband bestaat tussen het singuliere gedrag van de Wilson coefficienten 
en de dimensies van de hiermee corresponderende lokale operatoren. In een vrije- 
veldentheorie worden deze dimensies kanoniek genoemd en spelen zij een soortgelijke 
rol als andere quantumgetallen, zoals bijvoorbeeld spin. Omdat in QCD er een wissel- 
werking tussen de quarks en gluonen bestaat, veranderen de dimensies van de lokale 
operatoren. Het verschil tussen een kanonieke dimensie in een vrije-veldentheorie en 
de dimensie die onstaat in een theorie met wisselwerking wordt anomale dimensie 
genoemd. Deze laatste kan ook als een oneindige reeks in de koppelingsconstante 
worden geschreven.

Om de anomale dimensies te berekenen moet men de lokale operatorer. renorma- 
liseren. Eike term in de lusexpansie van de verwachtingswaarden van de c s.loren 
geeft een volgende term in de reeks voor de anomale dimensie. Ook de : - iiali- 
satiegroepvergelijkingen spelen een grote rol als men het schaalafhankeh? ,<’drag 
van de Wilson coefficienten wil bepalen. In het begin van de jaren ’80 ’n alle 
relevante anomale dimensies van de operatoren, die in de operatorprodukt expansie 
voorkomen, al tot op tweede orde in de koppelingsconstante berekend. Er was echter 
een probleem: de uitdrukkingen die gevonden werden voor de anomale dimensie van 
de gluonoperator kwamen niet overeen. Deze berekening werd door verscheidene 
groepen uitgevoerd.

Het probleem van de tweede-orde bijdrage aan de anomale dimensie van 
gluonoperator is het onderwerp van het derde hoofdstuk. Er wordt beschreven 
hoe het renormaliseren van een dergelijk ingewikkeld object in een ijkveldentheo- 
rie, zoals QCD, zich voltrekt. De eerste-orde berekening wordt gepresenteerd voor 
twee gevallen, waarin de termen die de ijkkeuze vastleggen respektievelijk axiaal en 
covariant genomen zijn. De tweede-orde berekening wordt alleen in de covariante ijk 
gedaan, omdat in dit geval de berekening door eerdere groepen verkeerd is uitgevoerd. 
Door de constructie vein nieuwe operatoren in de Lagrangiaan, die niet voorkomen 
in de operatorprodukt expansie maar wel een rol spelen bij het renormaliseren van 
de gluonoperator, is het mogelijk de correcte anomale dimensie te vinden. Deze 
stemt overeen met het resultaat, dat tien jaar geleden met behulp van de axiale ijk 
is berekend. Het probleem van de ijkafhankelijkheid van de anomale dimensie van de
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gluonoperator is door de beschrijving in dit proefschrift definitief opgelost.

De operatorprodukt expansie heeft een beperkt toepassingsgebied en kan het 
merendeel van zeer inelastische verstrooiingsprocessen zoals hadron-hadron botsin- 
gen niet beschrijven. In 1969 introduceerde R.P. Feynman het partonmodel dat ook 
hadron-hadron processen kan beschrijven. Hierin worden hadronen voorgesteld als 
bestaand uit een verzameling vrije puntdeeltjes, de partonen. Met behulp van dit 
model gaven S.D. Drell en T.M. Yan een jaar later een theoretische beschrijving van 
de produktie van hoog-energetische leptonparen in hadron-hadron processen. Hun 
model had zoveel succes, dat het proces nog steeds wordt aangeduid met de naam 
Drell-Yan proces.

Evenals in het geval van lepton-hadron verstrooiing is de laagste-orde struktuur- 
funktie onafhankelijk van de botsingsenergie. Hogere-orde correcties maken deze 
funktie schaalafhankelijk, waarbij de eerder genoemde anomale dimensies weer een 
belangrijke rol spelen. Het renormaliseren van de operatoren uit de operatorpro­
dukt expansie wordt in het partonmodel vervangen door een procedure die massafak- 
torisatie iieet. Massafaktorisatie maakt het mogelijk om divergenties op een zinvolle 
mani< - Lehandelen door de partondichtheidsfunkties te renormaliseren. Deze funk­
ties be: jven de kans om een bepaald parton met een bepaalde impuls aan te treffen 
in een hadron.

Hogere-orde correcties op het Drell-Yan proces geven niet alleen aan hoe de 
energie-afhankelijkheid verloopt, maar corrigeren ook de absolute werkzame door- 
snede. Omdat de eerste—orde correctie bij dit proces nogal groot is, is het van be- 
lang om ook de tweede-orde correctie te leren kennen. Dit is noodzakelijk om de 
nauwkeurigheid van de theoretische voorspelling op hetzelfde niveau te brengen als 
die van de experimenten. Tot voor kort was het vrijwel onmogelijk om alle bijdragen 
van tweede orde te berekenen. Daarom werden alleen die bijdragen uitgerekend waar- 
van men veronderstelde dat ze het meest relevant waren. Ook bedacht men methoden 
om hogere-orde bijdragen af te schatten op grond van de reeds bekende eerste-orde 
bijdragen.

In hoofdstuk vier van dit proefschrift wordt de complete tweede-orde correctie op 
het Drell-Yan proces gepresenteerd. Deze berekening heeft als belangrijk resultaat 
dat het moeilijkste en tot nu toe altijd verwaarloosde subproces, namelijk quark­
gluon verstrooiing, een cruciale rol speelt in die zin dat de tweede-orde correctie zeer 
klein wordt door zijn negatieve bijdrage. Als tweede resultaat laat de berekening zien 
dat de afhankelijkheid van de totale werkzame doorsnede van de massafaktorisatie 
schaal op tweede orde vrijwel verdwijnt. Deze twee feiten geven de indruk dat het
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totale theoretische tweede-orde resultaat betrouwbaar en nauwkeurig is. De conver­
gent ie van de storingsreeks bij hoge botsingsenergieen is goed te noemen. De nu nog 
resterende font in de theoretische voorspelling wordt vrijwel geheel bepaald door de 
keuze van de parametrisatie van de partondichtheidsfunkties.
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Stellingen

Pi + aik?, (i = l,...,n)

waarbij kg = (k°,±kn). Voor even n bestaat er een ‘plus’-oplossing.

IV

5. Vanuit fysisch oogpunt gezien is het onwaarschijnlijk dat het Higgs-deeltje uit 
het standaardmodel elementair is.

{ (s,p) 6 V :

S en P, die respectievelijk alleen 
Persoon P zegt: “Ik ken het getal 
ik al!” Vervolgens zegt P het getal 
slot: “Ik ken nu 
als

4. Het feit dat de Atiyah-Singer indexstelling in enkele gevallen bewezen kan wor- 
den in de context van supersymmetrische quantummechanische systemen, zegt 
meer over de mathematische correctheid van het laatstgenoemde dan over de 
indexstelling zelf.

1. Het onafhankelijk testen van de renormalisatie- en faktorisatieschaalafhanke- 
lijkheden van werkzame doorsneden is zinloos zolang er in de parametrisatics 
van de partondichtheidsfunkties maar een schaal gcimplementeerd is.

|x(s) = {(s,p')e V:|{ «p')e V:
s' mod 2 = 1 A s' —2 ^n}| = l}| = l A (s,p) 6 X(s) , 

waarbij H de verzameling van priemgetallen voorstelt. Hierbij is het vermoeden 
van Goldbach voor waar aangenomen. Het kleinste element van deze verzame­
ling is (17,52); de produkten p zijn viervouden en de verzameling bevat oneindig 
veel elementen.

3. Beschouw de verzameling V van getallenparen (s,p) = (a+ 5, a-b), waarbij 
a en b gehele getallen groter dan 1 zijn. De verzameling W C V bestaat uit 
getallenparen die compatibel zijn met de volgende dialoog tussen twee personen, 

s en alleen p kennen en weten dat (s,p) e V. 
s niet.” Hierop reageert S met: “Dat wist 
s nu wel te kennen. Persoon S beweert tot 

ook het getal p.” De verzameling W kan worden geschreven

2. Voor n massieve 4-impulsen p, kan men n + 1 lichtachtige 4-impulsen k{ en n 
positieve parameters a,- vinden zodanig dat



8. Beschouw de logistieke afbeelding fc : (D —> <C, gegeven door

fc-

Laat zq een nulpunt zijn

11. De hoge graad

6. Voor de volgende dimensioned geregulariseerde integralen over de Minkowski- 
ruimte geldt:

Roelof Hamberg
28 november 1991

:=1

i(-l)*’T(/3-a-a)mn+2a-2'?
a!22“(47r)’nr(/l)

9. (a) Duursport kan dienen als therapie.

(b) Bij de afweging of sportblessures onder de ziektewet behoren te vallen 
of niet, dient rekening gehouden te worden met de positieve effecten van 
sportbeoefening.

10. Een samenleving die als economisch systeem een stelsel heeft dat op enkel kapi- 
talistische beginselen is gebaseerd, kent geen stabiele situaties die aanvaardbaar 
zijn vanuit het christelijke mensbeeld.

Hierbij wordt gesommeerd over alle permutaties a van de getallen 1,... ,2a.

is een nulpunt van een polynoom waarvan de coefficienten rationale funkties 
zijn in c.

<r = E£(zo)
«=0

7. Een toonsysteem dat als basiselementen de zuivere intervallen grote terts en 
quint heeft, kan redelijkerwijs slechts vier opeenvolgende tonen bevatten die 
alle een quint uit elkaar liggen.

r dnk n?gi .
J (2tt)" [fc2 +

en laat _f"(z) staan voor 
van het polynoom p(z,n)

fc n maal toegepast op z. 
= De grootheid

van compositorische perfektie en de mate van harmonische toe- 
gankelijkheid maken dat een groot deel van de werken van Wolfgang Amadeus 
Mozart tamelijk oninteressant is, dan wel als zodanig wordt uitgevoerd.
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