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'I know what you ’re thinking about’, said Tweedledum, ‘but it isn’t so, nohow.’ 
‘Contrariwise’, continued Tweedledee, ‘if it was so, it might be; 

and if it were so, it would be; but as it isn’t, it ain’t. That’s logic.’ 
Alice’s adventures in Wonderland - Lewis Carroll
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1 Introduction

Gauge theory in a finite volume1.1

All the known forces in nature, electromagnetism, the weak and strong nuclear forces, and 
gravity appear to be well described by gauge theories. In these theories there are roughly two 
kinds of particles: The particles that are subject to the forces, commonly denoted as “matter”, 
and particles that exert the forces, the gauge-particles. In a gauge theory there are, apart from 
the variables describing the properties of particles, like momentum and energy, extra variables 
parametrising a certain internal space. These variables are acted upon by a symmetry group. 
The gauge principle states that the physics should be invariant under local transformations 
by elements of this symmetry group. This means that measurable quantities are not affected 
by transformations by elements of this symmetry group, even if the transformation is not the 
same at each point in space-time. This does not mean however that the gauge symmetry has no 
consequences. Interactions between different particles are constrained to be invariant under 
the gauge symmetry group. As another consequence, it is not possible to give mass to the 
gauge particles in most cases, as it is not possible to write down a mass term for the theory 
that respects the gauge symmetry.

Probably the simplest example of a gauge theory is the theory of electromagnetism. In 
this case the internal space is one dimensional, and it appears to be a circle. That it is a circle 
and not an infinite line is already a profound idea, leading for example to the quantisation of 
electrical charge. The symmetry group is the group of translations along this circle, which 
mathematicians denote as (7(1). The internal space describes the phases of the particles, 
which cannot be measured. Different particles may transform in different ways under sym­
metry transformations. In a sense one can think of this as the internal circle attached to each 
particle being of a different size, the (inverse) size representing the electrical charge of the 
particle. Mathematically, the charge labels a representation of the group. The gauge particle 
that exerts the electromagnetic force, the photon, has no electrical charge, and therefore does 
not (directly) “feel” the force. In the mathematical description of the theory this can be traced 
back to the fact that the group (7(1) is Abelian, which means that the order in which group 
transformations are done is not relevant.

The two nuclear forces, weak and strong, are described by non-Abelian gauge groups, 
non-Abelian meaning that the order of the symmetry transformations is relevant. One of 
the consequences of this is that the gauge particles are not invariant under the symmetry, 
which again means that they must interact with themselves. This self-interaction leads to 
non-linearities in the theory, which make that even a theory of gauge particles alone (called a 
Yang-Mills theory, so named the discoverers) can exhibit complicated physics. In contrast, a 
theory of electromagnetism without any charged particles is a trivial theory of free particles.

The weak nuclear force is responsible for the radioactive decay of nuclear particles. The 
full description of the weak nuclear force includes electromagnetism, and this theory is said to
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describe the “electroweak” force. In this description, the t/(l) of electromagnetism is part of 
a bigger group called SI/(2) x t/(l). This bigger group is not the symmetry that is measured 
at low energies, as it is “spontaneously broken”. This means that, although the theory is 
invariant under the symmetry, it is not manifest in the low energy theory, because there is no 
starting point for perturbation theory that respects the symmetry. In the spontaneously broken 
theory the gauge particles associated to the weak interaction are no longer massless and only 
at energies much higher than the scale of symmetry breaking is the symmetry recovered. Long 
distance effects are under control because the mass of the gauge bosons gives the weak force a 
finite range. The remaining massless gauge boson in the electroweak theory is identified with 
the photon, as its effects fall off with the distance as is familiar from electromagnetism.

The strong nuclear force is responsible for the binding of atomic nuclei, and in these, the 
bindings of quarks into protons and neutrons. In this case the gauge group is c :ied S£7(3) 
and unlike the case for the weak force, it is not spontaneously broken, and the gait particles, 
called gluons, are massless. Therefore the strong force has long range effects. unlike in 
electromagnetism, the strong force does not fall off powerlike with the distance : :we<- '.he 
particles. This property is a consequence of the self-interaction of the gluons. the : hort 
distance limit, or at high energies, one has “asymptotic freedom” and the particks th.' feel 
the strong force, called quarks, behave approximately as free particles. At low energies, or 
long distances, the quarks form bound states, called hadrons. The hadrons are subdivided into 
baryons, like the proton and neutron, which are thought to be bound states of three quarks, 
and mesons, like the pions, which are bound states of a quark and anti-quark. In experiments, 
quarks always occur in these bound states and never as single particles. It is believed that the 
quarks are permanently “locked up” in bound states, and this property is called confinement. 
One of the great challenges for the theory of the strong force, called Quantumchromodynamics 
(QCD) is to explain confinement from the microscopic theory, and this has not been achieved 
yet in all rigour.

Confinement is a long distance effect, and a particular way to study such effects is to 
formulate the theory in a finite volume. The finiteness of the volume provides a maximum 
distance, and one may attempt to study effects in the theory as a function of this distance. 
This is one of the motivations for studying gauge theories in a finite volume. Another im­
portant motivation is given by the attempt to study gauge theories on a computer. As memory 
size is necessarily finite, one needs to approximate the theory, that has infinitely may degrees 
of freedom by a theory that has finitely many degrees of freedom. This is achieved by ap­
proximating the space-time as a finite set of points, lying on a lattice. The finite size of the 
lattice does not only imply a minimum length (being the smallest lattice distance), but also a 
maximum length, and hence a finite volume.

A third motivation can be found from string theory. String theory is a candidate “Theory 
of everything”, a theory that may be able to unify all forces, and in particular it provides a 
description of quantum gravity. Although at all accessible scales gravity is well described by 
the theory of General Relativity (which is a classical field theory), there is still a need for a 
microscopic description of gravity, to cope with the paradoxes and questions that arise when 
one tries to study the theory of gravity at small distances. At small distances we expect the 
classical field theory to loose its validity, and quantummechanical effects to enter. The recipe
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that has been successful in formulating the quantum field theories of electromagnetism and 
the nuclear forces however fails on the theory of General Relativity, due to the fact that the 
resulting quantum theory is not renormalisable, which means that at short distances it is ill- 
behaved. This suggests that we need a modification to the theory of gravity at short distances. 
String theory proposes that this modification is due to the fact that at truly microscopic scales, 
particles are no longer pointlike, but extended one-dimensional objects called strings. Apart 
from the variables that describe the motion of the string in space (which are also encountered 
in the description of point particles), there are also internal degrees of freedom: a string has 
several vibrational modes that can be excited. The different vibrational modes are interpreted 
as different particles in a macroscopic description.

String theory can be successfully quantised, but only in a highly restricted set-up. Naive 
quantisation of strings leads to anomalies and loss of Lorentz invariance, and/or to instabilities 
(tacky ?r»s) of the theory. The only known way to avoid these problems is to tum to strings 
th; orporate supersymmetry, the symmetry that relates bosons to fermions, and to assume 
th.i' space-time is really 10 dimensional (9 space dimensions and 1 time dimension). Another 
fea-u’c. is the possibility to include non-Abelian gauge symmetries in string theory. The res­
ulting low energy theory has then a sector that describes a non-Abelian gauge theory. That 
this is a 10-dimensional gauge theory appears to frustrate the hope that it may be related to 
a description of our 4-dimensional universe. There is however no contradiction if we assume 
that 6 out of the 10 dimensions of string theory are very small, and hence a subspace of the 10 
dimensional space-time actually has a finite (hyper-)volume. This again motivates the study 
of gauge theories in a finite volume.

The simplest way to get to a finite volume theory is to take n of the dimensions of finite 
length, and impose periodic boundary conditions. The result is a product of n circles, or an n- 
torus (in this thesis n will most of the time have the value 3). The n-torus is flat, meaning that 
for sufficiently large tori the physics is the same as in a flat but non-compact space-time. The 
main difference with flat non-compact space-time is the presence of non-contractible loops. 
For the case of supersymmetric field or string theory, another relevant fact about tori is that 
they preserve all supersymmetries.

Quantum theory tells us that the fields fluctuate around the values allowed by the clas­
sical field equations. If the fluctuations are small, one may use a semiclassical approach to 
study the fluctuations on top of the classical background. If the fluctuations are large then 
this approach looses its validity. In this thesis we will study the possible backgrounds for 
gauge theories on a 3-torus, and hardly deal with the fluctuations. As a further restriction we 
study only backgrounds that carry no energy. When a gauge theory is formulated on a torus, 
there is the possibility of setting the background gauge fields to values that cannot be gauged 
away. A way of parametrising these background fields is to study the non-Abelian phases that 
particles pick up when transported around a closed loop. These are called holonomies and are 
elements of the gauge group. The requirement of zero energy leads to the requirement of zero 
field strength, which implies that the holonomy around a contractible loop equals the iden­
tity. Holonomies around non-contractible loops are far less restricted. The zero field strength 
condition implies that holonomies around different non-contractible loops commute, which 
only depends on the homotopy class, but they are otherwise unrestricted. The classification of
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1.2 Supersymmetric gauge theories

possible zero field strength backgrounds on an n-torus then amounts to classifying all sets of 
n commuting elements of the group. The main part of this thesis is devoted to studying this 
problem for n =3.

A motivation for studying gauge theories on the 3-torus came from a problem with count­
ing the number of vacua for the supersymmetric extension of four-dimensional gauge theor­
ies. In the next section we will give some background on supersymmetry, and supersymmetric 
gauge theories in particular. One of the insights that led to a solution of the problem came from 
a discussion on gauge symmetries inspired by string theory. The full solution to the problem 
lead to new results for gauge theories with exceptional and orthogonal groups compactified 
on tori. The fact that some of these groups appear in string theories suggests to apply the 
new results in string theory. We will therefore also devote a section to give some background 
on gauge symmetries in string theory. This chapter concludes with an outline of the topics 
discussed in the remainder of this thesis.

The original motivation for this work came from an argument in supersymmetric gauge theor­
ies, but we stress that the results are applicable to gauge theories in general. Supersymmetry 
plays a role in various topics we will discuss. It is also a crucial ingredient in string theories, 
although it will not often enter our analysis.

Supersymmetry is a continuous symmetry, whose generators satisfy anti-commutation in­
stead of commutation relations. One may nevertheless obtain the symmetry transformation 
by exponentiating the generators, provided one uses a Grassmannian parameter, instead of 
an ordinary parameter. An infinitesimal supersymmetry transformation multiplies a bosonic 
commuting field with a Grassmanian parameter, resulting in an anti-commuting fermionic 
field. Similarly, fermionic fields tum into bosonic fields under infinitesimal supersymmetry 
transformations.

Supersymmetry is a remarkable idea, with several attractive features. Probably the most 
remarkable aspect of realisation of supersymmetry on physical models is that the Hamiltonian 
can be expressed in the supersymmetry charges. This leads to strong constraints on the dynam­
ics. The non-trivial relation between the symmetry generators and dynamical quantities does 
not only forbid certain interactions, it also protects certain quantities and relations between 
them against quantum corrections. Examples are the relation between mass and charges of 
special representations of supersymmetry (BPS-states), and non-renormalisation theorems for 
interaction parameters. Therefore many properties of supersymmetric physical systems may 
actually be deduced from symmetry considerations alone, making complicated calculations 
easier or even superfluous.

Because of its special properties, supersymmetry might be helpful (or even crucial) in 
solving certain riddles in high energy physics, such as the hierarchy problem and the cosmo­
logical constant problem. It also is a crucial ingredient in some approaches to unify gravity 
with the other known elementary forces, like supergravity and superstring theories.

Supersymmetry is not observed in nature, so if it is realised in some way it should be 
broken. The most attractive option is spontaneous breaking, since this conserves many of the
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(1.2.1)

(1-2.2)
(1.2.3)

= 
=

0

where £ is an Grassmannian parameter, and <rMV = |[/M,/W]. The resemblance with QCD 
suggests that many interesting non-perturbative effects, such as confinement and chiral sym­
metry breaking that occur in QCD may also occur in supersymmetric Yang-Mills theory. One 
question one may ask is whether such non-perturbative effects may spontaneously break su­
persymmetry. To get an idea one might calculate Witten’s index for supersymmetric Yang- 
Mills theory. This was done by Witten [52] who computed the index to be a non-zero number 
depending on the rank of the gauge group. The calculation requires a count of the number 
of ground states, which is hard to do because in perturbation theory the theory has a con­
tinuous spectrum with massless particles. A way to achieve a well defined calculation is to 
formulate the theory in a finite volume, and because the compactification should not break 
supersymmetry, compactification on a spatial 3-torus is the logical thing to do.

The fact that the index is non-zero indicates that supersymmetry cannot be broken spon­
taneously. It is nevertheless an interesting result as the invariance of the index suggests that 
the finite number of vacuum states may also be identified in other limits, such as the large 
volume limit, when the theory becomes strongly coupled. A simple argument based on the in­
dex theorem for adjoint fermion zero-modes in an instanton background, and the assumption 
that the gluino’s will condense, suggests that indeed it is possible to obtain a finite number 
in the infinite volume limit. Comparison of the numbers obtained from the two different

attractive features of supersymmetry. A criterion for the possibility of spontaneous breaking of 
supersymmetry was developed by Witten [52]. He introduced a quantity that became known as 
the "Witten index", and argued that spontaneous breaking of supersymmetry is only possible 
if this index is zero. He also argued that, under suitable conditions, the value of the index 
should not depend on the details of the computation to establish its value. The index may be 
computed from counting the ground states of the theory.

In this thesis we study non-Abelian gauge theories. For non-Abelian gauge theories super- 
symmetric extensions exist. The simplest of these theories are the supersymmetric Yang-Mills 
theories. This name is motivated by the fact that these are extensions of Yang-Mills theories. 
They are however not Yang-Mills theories in the usual sense, as supersymmetry requires the 
introduction of an extra field which is not a gauge field. This spinor field is called the gluino, 
a name motivated by the fact that it is the superpartner of the gluon.

The Lagrangian for supersymmetric Yang-Mills is

-e = -Av'”+i$°pab'l'b

The indices a, b run over the number of group generators, and Iftab is the contraction of the co­
variant derivative with the Dirac /-matrices, Iftab = y^d^Sab — i fabc), with fabc the struc­
ture constants. It is very similar to the Lagrangian for QCD with one massless quark. Note 
however that supersymmetry requires the gluino’s i/ra to transform in the same representation 
as the gauge field, being the adjoint. The Lagrangian is invariant under the supersymmetry 
transformations
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1.3 Gauge symmetry in string theory
We mentioned that the new vacua for gauge theories were found from an analysis motivated 
by string theory. The extension of the analysis to all groups also indicates the occurrence of 
new vacua in the exceptional groups, and in particular in the exceptional group E%. E& is a 
group that plays an important role in string theory, suggesting that the newly found ground 
states for this group may also play a role in string theory. This is indeed true. In this section 
we give some background on non-Abelian gauge symmetries in string theory [20] [44].

Consider a theory of open strings living in d +1 dimensions. An open string may vibrate in 
spatial directions transverse to its extension, which give it d — 1 transverse degrees of freedom. 
This may remind the reader of the fact that a gauge field in d + 1 dimensions also fluctuates

calculations now however leads to a surprise. For supersymmetric Yang-Mills theories with 
unitary or symplectic groups the answers agree. For theories with orthogonal and exceptional 
groups the numbers disagree however. Apparently one of the calculations is incorrect, or the 
Witten index is not invariant. There seems to be however no easy argument explaining the 
discrepancy between the results for orthogonal and exceptional groups, that does not affect 
the computations for unitary and symplectic groups.

Subsequent work lent further support to the assumptions made for the infinite volume 
computation [ 1][35][45]. In these works the powerful constraints imposed by supersymmetry 
were used to facilitate a computation for the value of the gluino condensate. According to 
these computations, the gluino’s indeed condense. At the same time there were no new n- 
sights in the calculation for the finite volume, sharpening the paradox.

It took more than 15 years before it was found out that, in the computation for tb< in ?x 
for supersymmetric Yang-Mills theories on a 3-torus with orthogonal groups someth, .g -as 
overlooked [55]. It turns out that there exist ground states for gauge theories with orthogonal 
groups on a 3-torus, that were not included in the previous computation of the index. I- is then 
not hard to show which assumption in the old computation is incorrect. The fatal assumption 
is however true for unitary and symplectic groups, explaining why for these cases there was 
never a discrepancy.

The discovery of the new vacua was achieved using new techniques coming from devel­
opments in string theory, in particular D-branes and orientifolds. These techniques however 
are inapplicable to gauge theories with exceptional groups. To understand these, one had to 
understand the existence of the new vacua from a group theoretic point of view, and extend 
the analysis to exceptional groups. This is the main topic of this thesis. It turns out that also in 
the case of exceptional groups there exist new ground states, and that for exceptional groups 
the structure is even much richer than for orthogonal groups. Including the new ground states 
for the theory on the torus, all index computations agree. Summarising, the argument that 
Witten’s index is an invariant for supersymmetric Yang-Mills theories appears to be correct. 
Supersymmetry is not spontaneously broken in supersymmetric Yang-Mills theory, but the de­
velopment that lead to this insight gave new results for gauge theories on 3-tori. The analysis 
can be extended to gauge theories on higher dimensional tori, and also there new ground states 
not previously considered are found.



1.3 Gauge symmetry in string theory 15

l0O>=^l0a> (13.1)

with the A" hermitian matrices, with a taking n2, and i and j each n different values. This is the 
Chan-Paton construction. The Aa may be normalised according to Tr(AaAfr) = 8ab. Each state 
now comes in n2 different species, which we may write as an n x n-matrix. The gauge boson 
we described previously is promoted by the above construction to a set of n2 gauge bosons, 
AM = AJAa. As strings interact, the states they carry interact and in particular the gauge 
bosons form an interacting theory. Then the n2 massless gauge bosons cannot transform in an 
Abelian group, but should form a fully interacting non-Abelian gauge theory. The quantum 
numbers from the Chan-Paton construction are appropriate for a set of states transforming 
under U(n), and closer examination of the interactions indeed reveals a t/(n) gauge theory.

In the above we implicitly assumed oriented strings, meaning that there is a notion of a 
left and a right endpoint. One may also consider unoriented open strings, that is strings that 
are invariant under reversal of the orientation of the worldsheet, commonly denoted as Q. To 
make the projection on the states, one has to decide how Q acts on these. In particular it is 
relevant how Q acts on the gauge bosons. The mode of the string that represents the gauge 
bosons turns out to be odd under Q. One however also need to specify the action of Q on 
the Chan-Paton basis. Q exchanges the endpoints of the string and therefore the indices i and 
j. One may also combine the action on the Chan-Paton basis with a unitary transformation. 
By an appropriate change of Chan-Paton basis, one may reduce the possibilities to two cases, 
resulting in a gauge theory with O(n) gauge group, or a theory with Sp(n/2) gauge group (the 
latter is only possible if n is even).

A theory of open strings automatically incorporates closed strings, as the two endpoints of 
the string can interact and may therefore join. When the space-time in which a closed string 
moves contains a closed circle, two quantum numbers are relevant. First, there is the mo­
mentum in the direction of the circle, which as quantum mechanics teaches us is proportional 
to n/R, with n an integer and R the radius of the circle. A second quantum number is given by 
the possibility of winding strings around the circle. This is characterised by another integer, 
the winding number w. The length of a winding string is wR and to find the energy associated 
to the winding one has to multiply this number with the string tension. In the mass formula of

in d — 1 transverse directions. Indeed if one checks the spectrum of excitations of the open 
string, it turns out that there is a state that is massless, and caries a vector index. This suggest to 
identify this state as a t/(l) gauge boson. The gauge boson is described by a d 4-1-component 
vector field. Not all these components are independent, as gauge symmetry eliminates one 
degree of freedom, and Gauss’ law a second one. A similar scenario is true for the string, 
which vibrates in d 4-1 dimensions, but one degree of freedom is eliminated by the possibility 
of equivalent embedding in space time (which is a gauge symmetry), and a second one by a 
constraint that follows from the equations of motion.

In an open string theory one may add degrees of freedom to the endpoints of the string. 
Conrder the possibility that each endpoint of the string may be in n states. To describe these, 
on i . < n labels for each endpoint of the open string, leading to a total of n2 different species 
of rings, labelled by two indices. All the states occurring by exciting such strings, are 
la’ - v ;th these two indices. Choosing a basis for the n x n matrices, one may expand each 
stare as
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the string states there appear several contributions. Roughly, the mass squared is the sum of 
the momentum squared (giving (n/7?)2), a contribution of the energy squared of the winding 
states ((w/?)2), and a contribution of the internal excited modes. For closed strings there is a 
symmetry of the spectrum, called T-duality, that exchanges n and w, and at the same time R 
and \/R. Apparently it is not possible to distinguish a string wrapped around a circle of radius 
R, with momentum n and winding number w, from a string wound on a circle of radius \/R 
with momentum w and winding number n.

The closed strings occurring in open string theories also have this symmetry, and it can 
be extended to the open string sector. Open strings moving freely in space cannot wind, and 
therefore only carry a momentum proportional to n. T-duality suggest that this should be the 
same as a string with no momentum at all (in the compact direction), and only winding. A 
string without momentum suggest that its endpoints are stuck somewhere, explaining at the 
same time why the string can wind. The “stuff” that the string end-points are attached to is 
called a D-brane, where D comes from “Dirichlet”, for the appropriate boundary conditions 
at the fixed endpoints of the strings. The endpoints of strings attached to D-branes may move 
along the branes, but cannot come off. This opens up the possibility of interpreting ail open 
string theories as theories of D-branes, if we imagine the existence of D-branes that fill all of 
space.

For strings with Chan-Paton factors and therefore gauge symmetry, the momentum re­
ceives contributions from the background gauge field, in a similar way as for a charged particle 
moving in an electromagnetic field. The momentum may therefore no longer be integer. Ap­
plying the previously described T-duality, one should then also allow for fractional windings. 
This is achieved by putting not one, but several D-branes on a circle. A string beginning on 
one D-brane and ending on another traverses a fraction of the circle. In this way the back­
ground gauge field in one theory may be made visible in the relative positions of D-branes 
in the dual theory. This important idea appears at several places in this thesis. Strings have 
a non-zero tension, and one can imagine that strings stretching from one D-brane to another 
“pull” on both branes. The D-branes are thus dynamical, interacting objects.

Also the orientation reversal that led to unoriented strings has a place in this picture. In the 
original theory we had open strings that were free to move. If these strings are unoriented, we 
have O(n) or Sp(n/2) as its gauge group. In these groups the eigenvalues of the matrix repres­
entations are not unrelated, as in U(n), but occur in pairs: if (f> G t/(l) is an eigenvalue, then so 
is 0*. In the T-dual description, the eigenvalues for the background gauge field are represen­
ted in the position of D-branes. The pairing of eigenvalues for <?(n) and Sp(n/2) should then 
be reflected in a geometrical symmetry of the D-brane configuration. Indeed one may show 
that in this theory, particular hyperplanes act as “mirrors”, reflecting the directions transverse 
to the plane. These “miiror” planes are called orientifold planes. On top of the reflection of 
the transverse spatial directions, there is also a projection that reverses the orientation of the 
string. In the hypervolume of the orientifold fixed plane, a string is mapped to a string on the 
same position, but with its orientation reflected. This projects onto unoriented strings. Strings 
away from the orientifold planes are reflected into a string at the mirrored position, but with 
their orientation reflected. In analogy with the possibility of D-branes filling all of space, one 
may also imagine an orientifold plane filling all of space. This leads to the unoriented string
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theories described before. A last point on orientifold planes is that there are no strings ending 
on them, and that they are therefore not dynamic.

In the above we have not yet mentioned any of the string consistency conditions. A sur­
vey of the dynamics of these theories leams that almost all suffer from inconsistencies. The 
only open string theory that seems free of problems is a supersymmetric theory of unoriented 
strings, with SO(32) as its gauge group. This theory is named type I string theory.

There is another way to incorporate non-Abelian gauge symmetries in string theory. Con­
sider closed instead of open strings. A closed string does not have endpoints but one may 
incoiporate extra degrees of freedom by adding fields living on the world sheet of the string. 
Such fields then form internal degrees of freedom. A particular construction involves 16 in­
terval bosonic degrees of freedom. These 16 bosons can be thought of as living on a compact 
manifold, being a torus R16/A, where A is a 16 dimensional lattice. Consistency can be 
achieved if A is even and self-dual. There are precisely two such lattices in 16 dimensions. 
One consists of two copies of the Eg-foot lattice, the other is the root lattice of the Lie-algebra 
of SO(32), with one of the spin-weight lattices added. These are the heterotic string theories. 
The theories with the two different lattices result in a 10-dimensional theory with Eg x Eg, 
rcsp. S<?(32) non-Abelian gauge symmetry.

It is also possible to compactify this theory on a J-dimensional spatial torus. For suf­
ficiently small size of the ^/-dimensional torus, some degrees of freedom living on the d- 
dimensional spatial torus cannot be distinguished from the bosons living on the internal 16- 
dimensional torus. The theory then obtains symmetries that mix directions in the internal torus 
with directions on the spatial torus. This is responsible for interesting phenomena, such as the 
possibility to enhance the Eg x Eg or SO(32) groups to larger groups, by combining them 
with Kaluza-Klein bosons in a non-trivial way. Another interesting consequence is that the 
compactified heterotic theories are actually one theory, as it turns out that both the Eg x Eg- 
theory and the 5O(32)-theory can be reached as different decompactification limits of the 
same compactified theory.

This thesis treats the construction of gauge field configurations with zero field strength on 3 
dimensional (and at some places higher dimensional) tori. We will mainly follow the historic 
lines, as described in the previous sections.

In chapter 2 we shortly review Witten’s index, and the calculation of the index for super- 
symmetric gauge theories on a 3-torus with periodic boundary conditions. We also describe 
Witten’s analysis for the SU(n) gauge theories with twisted boundary conditions. Then the 
analysis for the infinite volume case is described and the original paradox outlined. Then 
we move on to Witten’s original construction of the extra vacua for orthogonal groups, and 
explain the results both in terms of D-branes as in terms of explicit holonomies in various rep­
resentations. We also indicate how the analysis is almost trivially extended to the exceptional 
group G2-

In chapter 3 we describe a pragmatic approach to constructing extra vacua with periodic 
boundary conditions in various groups. This explicit construction yields explicit expressions
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for the holonomies. We demonstrate that it reproduces the results of chapter 2 and that for the 
remaining exceptional groups sufficient vacua exist to solve the Witten index problem.

In chapter 4 we briefly review the approach of two other groups [6] [26] on the same 
subject. This approach is more formal and somewhat more systematic. We will not cover 
these results in detail, but describe some used techniques and point out the parallels with our 
work as described in chapter 3. The chapter ends with a description of the calculation of the 
Chem-Simons invariant, which turns out to take fractional values for the new vacua.

In chapter 5 we study vacuum solutions for gauge theories with classical groups (unitary, 
orthogonal, symplectic) on the 2-torus and the 3-torus. These results were already studied 
in [47] and [6], but we reproduce them by an approach that uses D-branes on orientifolds, 
in a similar setting as the original result from [55]. These results also show how to ii ^rpfct 
various orientifold configurations as arising from configurations for classical gauge fie. or 
the 2— or 3-torus.

The results of chapter 5 were obtained completely ignoring the string consistency . i 
tions. In chapter 6 we turn to consistent string theories, starting with the Eg x Eg he‘’erotic 
string theory, compactified on a 3-torus, resulting in a 7-dimensional theory. We de . ribe 
how only relatively few of the many configurations possible in Eg x Eg-gauge theory iead to 
consistent string-theories. One of the configurations turns out to be considered before: It is 
a version of the CHL-string in disguise. The CHL-string [7] [8] is an Eg x Eg-string theory 
compactified on a circle, with a holonomy that interchanges the two Eg-factors. It may be 
compactified on additional tori. The version of the CHL-string we will describe in chapter 6 
is formulated in a different way, but is related to the original formulation by string duality. In 
8 dimensions there exists a dual formulation in terms of a Spin(32)/Z2 string with twisted 
boundary conditions, which together with the standard compactification are the only two pos­
sibilities for the Sp/n(32)/Z2-heterotic string. String dualities relate the heterotic string to the 
type I string, and the type I string is related by T-dualities to various D-brane and orientifold 
configurations. Of these, a few were encountered in chapter 5. The remaining configurations 
from chapter 5 are inconsistent, for various reasons. Lastly, we briefly address dualities to M- 
theory and F-theory realisations of the relevant gauge symmetries, which turn out to live on 
special compactification manifolds that involve the 4-dimensional Calabi-Yau manifold K3.

In two appendices, we outline our conventions for Lie-algebra’s. A third appendix is 
devoted to a small derivation of heterotic-heterotic duality, in a formulation that emphasises 
concepts relevant to this thesis.



2 Witten’s index and vacua for Yang-Mills theories

2.1 Witten’s index

{Qi.Qj+iez. e2) =4£ (2.1.3)

In -his chapter we will review Witten’s index [52], and its computation for non-Abelian 
gauge theories. Previously, for some groups computations of Witten’s index in finite and 
infinite volumes gave different answers. The resolution of this puzzle, for the case of super- 
symmetric Yang-Mills theory with an orthogonal gauge group, was found by Witten [55]. We 
will review this solution, and extend the analysis to the exceptional group Gz- The full resol­
ution of the puzzle together with a more detailed understanding will be presented in the next 
two chapters.

‘. They maintain that the operation of counting modifies quantities and converts 
them from indefinite into definite sums. The fact that several individuals who 
count the same quantity should obtain the same result is, for the psychologists, 
an example of association of ideas or a good exercise of memory.... ’

“Tlbn, Uqbar, Orbis Tertius” - Jorge Luis Borges
(dng'ish translation by J. E. Irby)

(2.1.1)
(2.1.2)

IQa.Qf} = 

= 0

Although applicable in a more general situations, we will only need Witten’s index for four 
dimensional relativistic field theories. The relevant symmetry is then four dimensional Poin­
care supersymmetry, which is the extension of Poincare symmetry with fermionic generators. 
It is possible to introduce more than one supersymmetry charge (up to four for renormalisable 
theories, up to eight if one drops renormalisability as a criterion), but we will not do so.

The fermionic supersymmetry generators Q, Q obey the following algebra (in the conven­
tions of [4]):

so indeed the energy (Hamiltonian) can be expressed in the supersymmetry charges.

where the four momentum is (po = £,p) and the four vector crM consists of the 1x1- 
identity matrix and the 3 Pauli matrices crM = (l,r). The indices a and f are chiral spinor 
indices, taking the values 1,2. Dotted indices transform oppositely under chirality as undotted 
ones (G has also a non-trivial commutator with the generators of the Lorentz group, expressing 
that it is a spinor). It is easily verified that
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From the algebra it is quickly deduced that:

(2.1.4)

Tr((—)F2a,‘pM) = Tr((—)f{Q, G)) = 0 (2.1.5)

(2.1.6)

'i'
0

Figure 2-1. Invariance of Witten’s index under perturbations, crosses are bosons, circles are fermions

The energy in a supersymmetric theory is bounded from below, and a state with lowest pos­
sible energy has E = 0, which implies that it is invariant under supersymmetry ((214* > = 
CI*>=0).

In the following we wish to count states. This is only well-defined in the case that the 
theory has a discrete spectrum, which can be achieved by putting it in a finite volume. We 
assume that appropriate, supersymmetry preserving boundary conditions have been chosen.

We now define an operator, which gives +1 on bosonic states and —1 on fermionic states; 
such an operator can be symbolically denoted as (—)F (where F stands for fermion number) 
(For some subtleties see [52]). By definition (—)f anticommutes with the supersymmetry 
generators, and hence (the trace is over the Hilbert space)

Since the four-momentum p commutes with the supersymmetry generators, the calculation 
can be performed at fixed non-zero p giving Trp(—)F = 0. This states that at non-zero p 
the number of bosonic and fermionic states is equal, which is a consequence of the often- 
heard statement that supersymmetry maps bosons into fermions, and vice versa. This last 
statement is however slightly inaccurate, since there can be states (bosonic or fermionic) that 
are invariant under supersymmetry. From the previous it follows that such states necessarily 
have momentum equal to zero, and therefore energy equal to zero, and hence

where nf=0 (nF=0) is the number of bosonic (fermionic) states at zero energy. Actually (2.1.6) 
is not accurate since the left-hand side is ill-defined (it is not absolutely convergent). It is clear 
from the above that there is an implicit counting prescription, that can be made explicit by 
replacing Tr(—)F by the regulated version Tr((—)Fexp(—/IF)). This is convergent, and gives 
the same result as (2.1.6). This regulated object is what has become known as Witten’s index. 
We will keep on using the inaccurate notation Tr(—)F for shortness.

e=< 4'ihi* >= > ii2+iiq.i* > ii2 >o

Tr(—)F is argued to be invariant under perturbations (provided these respect supersym­
metry). Witten’s index only depends on the states that have zero energy. There might be a

Tr(-)F = nf=°-nf=°
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2.2 Gauge theory on a torus

(2.2.1)Ad(S(.r))D„

A zero field strength solution for the gauge fields implies

(2.2.2)= i[DM, Dv] = Av - dvA^ -i[AM, Av] = 0

change in the number of zero energy states, for example if some perturbation would cause 
states to come down from non-zero to zero energy. But by the above states at non-zero energy 
have to come in bose-fermi pairs, and thus will not contribute to Witten’s index when they 
arrive at zero energy (see fig. 2.1). Similarly, if some states move away from zero energy they 
can only do so in bose-fermi pairs, again conserving the index.

There is an implicit assumption in the above which is probably best illustrated with the 
example of the Wess-Zumino model, which is in a sense the supersymmetrisation of 04-theory. 
The bosonic field in this theory is a complex scalar field 0, with a potential of the form 
|wi0|2| 1 — g0/m|2. This potential has two minima, and hence gives rise to two bosonic vacua, 
one at 0 — 0 and one at 0 = m/g. The fermionic superpartner of the scalar field is massive 
and does not contribute to the index, giving Tr(—)F = 2. This theory may be deformed by 
vary ing the parameter g, and indeed any small variation of g will not alter the index. If we 
however take g —> 0, then the potential takes the form |m0|2 which seems to lead to a unique 
minimum. The limit g —► 0 is however a singular one, as the expectation value of the vacuum 
at 0 — m/g diverges. Also the height of the barrier between the two vacua diverges, such that 
the two decouple. It is important to avoid such pathologies when calculating the index. For 
gauge theories in a finite volume, in which we will be interested, the configuration space is 
compact and there is no possibility for fields to develop infinite expectation values. In this 
situation the index is expected to be a constant, even when taking the infinite volume limit.

The importance of Witten’s index lies in its relation to spontaneous breaking of super- 
symmetry. By definition, spontaneous breaking of a symmetry means that the ground state 
|0 > of the system is not invariant under the symmetry. For supersymmetry this implies that 
(?|0 >/: 0, and necessarily that its energy Eq > 0. But if this is the state with lowest en­
ergy then this must imply that Tr(—)F = 0. Hence spontaneous breaking of supersymmetry is 
impossible in theories with a non-zero index.

We wish to calculate Witten’s index for supersymmetric Yang-Mills theory. In the previous 
section it was argued that a sensible calculation can be performed by formulating the theory 
in a finite volume with supersymmetry preserving boundary conditions. In the following we 
will discuss gauge theory on a 3-torus, and the possible boundary conditions.

In the Lagrangian formulation the gauge theory is defined on RxT", with IR. representing 
the non-compact time dimension. Then Ao can be gauged away and we will set Ao = 0. An 
n-torus Tn can be viewed as the quotient of R.n by a lattice A. For simplicity we will set 
A = LZ" here, with the length L the same for all directions. We consider a gauge theory on 
this torus with compact gauge group G. The covariant derivative is DM = — iAM. Under
gauge transformations, the covariant derivative transforms in the adjoint:

g(x)DMg-l(x)
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The (local) solution to this equation is given by

AM(x) = ii/(x)aM(i/-'(J[)) (2.2.3)

(2.2.4)Atf(y)rfy" UM = siWUM.

(2.2.5)

is independent of x [3]. This implies that cDjOij = , and that

QM = UM^UM~' (2.2.6)

(2.2.7)

(2.2.8)K(Q,(x + L,))K(Q,(x)) = R(Q7(x + Ly))R(n,(x))

where U takes values in G, and hence takes values in the Lie-algebra of G. This is easily 
rewritten to d^U = iAllU which can be integrated around a cycle of the torus to give

where P is for path ordering. By Li we denote the unit vector e, in the z-the direction, 
multiplied by the length L. It is implicitly assumed that there exists a path form x tc a L, 
such that U can be integrated along it. Q,(x) does not depend on the path chosen, as ; .0.

We demand periodicity of the gauge field, such that AM(x 4- L;) = AM(x). This ?es not 
necessarily lead to periodicity of U. Instead one can verify that periodicity of implies rhat

U(x) is only defined up to multiplication by a constant element on the right, and we may use 
this ambiguity to set U to the identity for a reference point, say L/(0) = 1, fixing Q,(0) =

If there are additional matter fields </>(x) present, transforming in a representation R of the 
gauge group, these will pick up a phase when translated around a closed cycle, as

with R(g) denoting the group element g in the representation R. One needs a constraint to 
avoid ambiguities at x 4- Lt 4- Lj which is

= Zij&j&i (2.2.9)

with Zij any element of the centre of G that is projected to the identity in G, R(zij') = 1 6 G.

t/(x4-L,)=Pexp{i

This can be rewritten to Rioj^Rtajj) = R(a>j')R(a>i').
This condition is in general more restrictive than the condition on AM. For a theory with 

gauge fields only, we may take 17, and therefore cu, in the adjoint representation of the group. 
If the condition on the matter fields is satisfied, then the cd, certainly commute in the adjoint 
representation.

We have not specified the topology of the gauge group G, but every compact G has a 
simply connected cover G. Every representation R of G is also a representation of G. Defining 
t7, Qj, and c5f to be liftings of U, Qf. co, G G to G, the above consistency conditions may be 
translated to

(7-1(x)G(x4-L,) = tul
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(2.2.10)

(/(O.y.O) = exp {inT2£},t/(x,0,0) = exp{inr,|j. 17(0,0, z) = exp |inT3|-}.

t/(L,y,O) = exp{inr2£)Qi, (7(x,Z.,0) = exp {ittTi Q2, etc.

l/(L,y,z) = C/(O,y,z)QiU(x,y,L)=l/(x,y,0)Q3, G(x,L,z) = G(x,0,z)Q2,

[/(x + L,y,z) =t/(x,y,z)Q1 

t/(x,y + L,z) =C/(x,y,z)Q2 
U(x, y, z 4- L) = U(x, y, z)Q3

where Q, = expliirT}} (The choice of 7}, once Q, are given is not unique, but it is irrelevant. 
Take some set of the logarithms of holonomies Q,). Having done this, U can be extended 
over all other edges of the 3-cube so that the boundary conditions (2.2.10) are fulfilled. For 
example, we define

With U(x, y, z) defined on the edges of the cube, U can also be continued to the faces of the 
cube due to the fact that, by assumption, 7tj(G) = 0 i.e. any loop in the group is contractible. 
First do this for the 3 faces adjacent to the vertex (0,0,0). On the other 3 faces of the cube 
G(x,y,z) can now be found by imposing the required boundary conditions:

With L/(x,y,z) defined on the surface of the cube, it can be continued to the interior using 
the fact that 712(G) = 0 for all simple Lie groups. By construction, t/(x,y,z) satisfies the 
boundary conditions (2.2.10) and hence Af(x,y,z) is periodic.

This skeleton construction is common in homotopy theory and can be found also in the 
physics literature (see e.g. [2]). Simply connectedness of the group is an essential ingredient 
in the construction.

If G itself is not simply connected, then there are additional solutions to the consistency 
requirements [23] [24]. The ztj parametrise the different boundary conditions, and different

with constant commuting Q, (commutativity of Q, ensures the uniqueness of U). Then 
Af(x,y,z) is periodic. Choosing G(0,0,0) = 1, the matrices Q/ are the holonomies. The 
matrix G(x,y,z) can be constructed in several steps.

At the first step, we define

Note that Zij = 1 6 G is always a solution and this is called periodic boundary condi­
tions. We have seen that a flat connection with periodic boundary conditions gives commuting 
holonomies. To go in the other direction we need a restriction, namely that the holonomies 
commute in a simply connected representation. For example, for the 3-torus we have that: 
Theorem For any set {Qj, Q2. ^3}, € G where G is a simple, connected, and simply con­
nected group, and the Q( mutually commute, a periodic flat connection exists such that Q, are 
the holonomies.

This can be proven as follows:
The flat connection is written as A, = iUdjU~x with G(x,y,z) € G. We demand that 

G(x,y,z) satisfies the following boundary conditions
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2.3 The index for supersymmetric Yang-Mills theories

(2.3.1)=Ci/L,

In this section the original calculation of Witten’s index for supersymmetric Yang-Mills the­
ories will be presented. For a well-defined counting procedure, the spatial dimensions will be 
compactified on a 3-torus. We also have to specify boundary conditions. It turns out that also 
in the large volume a sensible calculation is possible.

2.3.1 Periodic boundary conditions

For periodic boundary conditions (all Zy = 1), we have that AM(x -J- L,) = AM (with L, = Lei 
with e, the unit vector in the i-th direction as before). Supersymmetry requires us to impose the 
same boundary conditions on the gluinos, and hence x//(x + Lj) = xj/(x). A periodic solution 
for the gauge fields can be obtained by setting (remember Ao = 0)

with € a constant spinor taking a value in the Cartan subalgebra. This is because of the com­
mutator in the Dirac equation, which requires the € to commute with c,. Another derivation

where each of the c, = 2it(ha)i is an element of the Cartan subalgebra (CSA) (the Cartan 
subalgebra is parameterised by vectors a taking values in IR.r with r the rank of the Lie group, 
see appendix A). This fixes the Q, to exp{icj}. Making this choice does not completely 
eliminate the gauge freedom, there are two types of gauge transformation that are still allowed.

It is possible to shift an a by a coroot, say ft, by using a local gauge transformation of 
the form g = exp{2nix‘hp/L}. Since exp{27ti/i^} = 1 this is periodic, and because we have 
to identify under these transformations, this makes the moduli space compact. The second 
kind of gauge transformations are global discrete gauge transformations that map the Cartan 
subalgebra to itself. These discrete transformations make up the Weyl group W. The moduli 
space parametrising the vacua for the gauge theory on T3 will then be of the form S(r)3/ W, 
where S(r) is the quotient of Rr by the coroot lattice of the Lie algebra.

With such a gauge field in the background, the Dirac equation has zero modes of the form

(2.3.2)

Zij can clearly not be deformed into each other. If any of the Zij 1, and thus G not simply 
connected, the above construction fails, as it is impossible to continue to the face with co­
ordinates xt and Xj. Traversing the loop around this face one picks up a factor Zy g G, which 
projects to 11 G G. This signals that the loop is closed in G but not contractible. A flat con­
nection may nevertheless be constructed by covering the face with patches, as in [2]. For the 
example where one of the Zij 1, we cover the relevant face with two patches. We cut out 
a disk from the face, and set U = 11 there. On the complement of the disk, we construct the 
U with the appropriate holonomies. On the boundary of the disk, the two different definitions 
of U should be glued together using a transition function. This transition function maps the 
boundary of the disk, which is a circle, to a closed loop in the group, and therefore carries the 
homotopy type.
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(2.3.3)

2

(2.3.4)

of the same result may be obtained by noting that a zero mode of in the background of 
the gauge field has to obey i/r(x + Lf) = Ad(Q,)V<(x) = Q, V<(x)QI“I, but on the other hand 
our boundary conditions require x//(x + L() = V<(x). The two conditions imply that should 
commute with and as the Q, are on a maximal torus, \J/ can be taken to be an element of 
the CSA.

The strategy of [52] consists of only quantising the modes (2.3.1) and (2.3.2). The ra­
tionale for this is that these are zero energy modes, and that other modes will typically carry 
an energy of order 2n/L with L the size of the torus. Of course these modes interact with the 
zero modes, but the expectation is that for sufficiently small torus size the energy separation 
is large and the interaction small. Moreover, as motivated in the general discussion, the index 
is thought to be independent of such calculational details.

Th-- Lagrangian for the slow modes ct and 6 becomes

The fermions have dropped out because their action is only linear in t. The c, are periodic 
variables, and therefore have a discrete spectrum. It can therefore be safely asserted that this 
Hamiltonian has a unique ground state, other states having a finite energy.

We still have to include the fermions. When adding these the residual gauge freedom has 
to be taken into account. The residual gauge freedom from periodic gauge transformations 
acts trivial on the fermions, the Weyl group however does not, and only combinations invari­
ant under the Weyl group are allowed. To find these we note that the Weyl group is a discrete 
subgroup of O(r). This group has an invariant tensor Sab leading to the invariant combination 
U = 8ab€a^€"€^ (where one has to antisymmetrise in the spinor indices to make the combin­
ation non-zero). Also the products t/2,...Ur are invariant. The operators Uk with k > r are 
zero because the antisymmetry requirements cannot be fulfilled anymore.

If |0 > is the ground state of the bosonic Hamiltonian, then t/|0 >,t/2|0 >,... are also 
valid ground states. In each of these, an even number of fermionic zero modes is occupied, so 
these are all bosonic. The Witten index count gives then Tr(—)F = r 4-1.

One may argue that the adiabatic approach used to derive this result is questionable. It does 
not deal with the fact that the moduli space for periodic flat connections has singular points, 
such as c° = 0. At such singular points the group commuting with the A, is non-Abelian, and 
the zero-modes are not limited to the CSA. It seems then that the above derivation is too naive. 
We will not resolve these matters here, nor is it resolved by the results to be presented later. 
We stress however that the fact that new vacuum components are found is independent of the 
question whether the adiabatic approach is applicable.

Here /t(G) is the dual Coxeter number of the group. One now has to expand in the group 
generators a = c°Ta, and € = taTa. The Ta are generators for the adjoint representation, and 
are normalised according to tr(TaTb) = h(G)8ab. Quantisation leads to the Hamiltonian

( 1 3c,- ,
2/i(G) \ir ot)

V
2/>(O
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2.3.2 Twisted boundary conditions

(2.3.5)1.Z32

One may attempt to avoid the problems associated to the singular points in the moduli 
space by choosing boundary conditions that eliminate the vacuum degeneracy. In some cases 
this is indeed possible, as will be described in the next section.

We calculate the set of co, i = 1,2,3 that satisfy the commutation relation (2.2.9). One can 
choose to be diagonal, and it follows from the commutation relations that its diagonal 
entries are cexp(27iin/TV), with c an overall constant to make detcJj = 1. It is defined up to a 
factor exp(2rcin/7V) but all choices are equivalent, since they can be obtained by conjugating 
with a>2- Choosing a specific diagonal form for a>\ fixes, by the commutation relations, also the 
form of a>2 completely, again up to an overall factor exp(2nin/7V). Also here all choices are 
equivalent, as they can be obtained by conjugation with a>\. Finally d>3 should be a constant 
matrix commuting with <z>i and a>2. An element of SU(n) commuting with a>] should be 
diagonal, a diagonal element commuting with a>2 should have all its diagonal entries equal, 
and hence the only possibilities for o>3 are the N elements of the centre of SUf.N'). We have 
therefore in total N distinct possibilities for the d>,, and this leads to N distinct possibilities 
for the gauge field .

To investigate the zero-modes for the gluino’s we may use again that a zero mode in the 
background has ^(x + L/) = Ad(Qf(x))^(x) = Ad(t/(x)a>,t7_|(x))V<(x), but on the other 

hand i/r(x 4- L,) = V'CO is required by the boundary conditions. This implies that if is a 
zero-mode, then Ad((7_,(x))V< commutes with all the a),. One may solve this in the SU(N) 
cover of SU{N')/r̂J^. Ad((7-1(x))V< is a certain element of the Lie-algebra of SU(N') which 
consists of traceless hermitian matrices. We have again that a matrix commuting with both 

and a>2 has to be diagonal with all diagonal entries equal; together with the condition of

Periodic boundary conditions are not the only supersymmetry preserving boundary conditions 
for supersymmetric Yang-Mills theories on the 3-torus. In these theories only the adjoint 
representation is present, and’t Hoofts twisted boundary conditions [23] [24] can be i ■ -oosed. 
These lead to a completely different but still supersymmetric theory. With such b' mc'ary 
conditions part of the vacuum degeneracy is removed. Here we will study the case in i- i it 
is completely removed, which is only possible for the group SU(N). For the other g- the
treatment with twisted boundary conditions is in a sense intermediate to this extreme md
the treatment with periodic boundary conditions. Results for these theories can be i' <n . in 
[6]. In chapter 5 we will study twisted boundary conditions for theories with classier-; groups 
from a different viewpoint, and reproducing the analysis of [6] for these groups.

Consider supersymmetric Yang-Mills theory with SU(N') gauge group. This theory is 
actually a SU^N^/'Ln gauge theory as all fields transform in the adjoint. We will work in 
the simply connected group SU(N'). Compactify the theory on a spatial 3-torus with non­
compact time direction, and gauge away Aq = 0. The centre of SU(N) is formed by elements 
of the form exp(2nin/7V)ll. Of these we pick an element z that generates the full centre and 
set

Z12 = Z Z13 = 1
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2.3.3 Infinite volume

(2.3.6)

(2.3.7)

Table 2-1. rank r + 1, and dual Coxeter number h for all simple compact Lie groups

This symmetry does not survive quantisation because of the chiral anomaly. The current asso­
ciated to the chiral symmetry is not conserved, since the current conservation law is changed 
into:

Remarkable is however that for the infinite number of S(7(/V)-theories all calculations do 
agree, as well as for Sp(N). The number of groups where the results disagree is however also 
infinite. Note that in case of disagreement h is always larger than r + 1.

tracelessness this implies that Ad(G *(x))V< vanishes, and hence there is no fermionic zero­
mode in this background.

The only possible solutions are those specified by the N boundary conditions on the U's. 
This gives (up to gauge transformations) N purely bosonic vacua, and performing the index 
count thus gives Tr(—)F = N. As the rank of SU(N) is N — 1, this is identical to the result 
found with periodic boundary conditions.

Both e volume calculations indicate a vacuum degeneracy for supersymmetric Yang-Mills 
theory :r • v of the discussion on the Witten index, it is natural to ask how this degeneracy 
can be ■" ■» eted in the large volume limit.

To -m- ver this question, observe that in the infinite volume limit the classical theory has a 
chiral symmetry:

/V + l 
2/V — 1

/V + l 
2/V—2

r + 1 
h

with /i(G) the dual Coxeter number of the gauge group. This relation states that in a back­
ground of non-zero hence in the presence of instantons, the (7(1) of chiral symmetry
is broken to a discrete group, being Z2/r(G)-

It is expected that dynamical effects will generate a non-vanishing gluino condensate 
< XX 0. This expectation is confirmed by various calculations [1] [11] [35] [45] (Note 
however that these groups do not agree on the value of the gluino condensate, but all find a 
non-zero result.) The condensate is not invariant under Z2h(G) but breaks it further to Z2, 
giving Zi(G) degenerate vacua.

The reasoning behind the Witten index suggests that these 7i(G) vacua could be the r 4-1 
vacua of the finite volume theory. To support this /i(G) and r + 1 should be equal. A glance 
at the following table shows however that this is in general not the case.

G2
3
4

E6 
7 
12

E3 
9 

30

F4 
5 
9

Ey 
8 
18

SU(N) Sp(N) SO(.2N1 SO(2N + V)
N N + l
N N +1
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2.4 Extra vacua from orientifolds

The puzzle on the disagreement of the Witten index computation in various limits lasted for 
over 15 years. It was again Witten who pointed out what the flaw in the original argument is 
[55]. The rather innocent looking but wrong assumption is, that on the 3-torus all classical 
solutions to the Yang-Mills vacuum equations can be put in the form (2.3.1), that is globally 
constant gauge fields taking values in the Cartan subalgebra. This assumption can be found on 
various places in the literature, sometimes accompanied by "proofs". Unfortunately all these 
proofs contain flaws, as we will see a counterexample shortly. But let us first discuss to what 
extent the assumption is really wrong.

It is not hard to show that if the Yang-Mills gauge group is SU(N) or Sp(N'), tht ery 
solution to the vacuum equations can be transformed to a globally constant one taki - ties 
in the CSA. But these are precisely the groups for which all Witten index computations ed. 
For orthogonal and exceptional gauge groups, the assumption can not be proven er=. ; and 
as we will see, it is actually incorrect. One can also show that if one considers a gaug theory 
with simply connected and simple gauge group on a circle or a 2-torus then (2.3.1) is always 
correct (for any gauge group). It is only for 3- and higher dimensional tori, and theories with 
orthogonal or exceptional gauge groups that there are extra solutions.

In [55] Witten focussed on the orthogonal groups (the exceptional groups cannot be treated 
within the formalism presented there). The orthogonal group can be realised as a gauge group 
in string theory by means of the Chan-Paton construction [20] [44]. One attaches charges 
to the endpoints of open strings, which have to be unoriented to give orthogonal symmetry. 
The strings are allowed to move freely through space. Now this theory is compactified on a 
3-torus. By using a T-duality transformation in all 3 directions of the torus, this string theory 
is transformed to another theory with the same physical content. This dual theory has open 
strings whose endpoint are confined to hypersurfaces called D-branes [43]. These D-branes 
are transverse to the dual 3-torus, intersecting it only in a point. The positions of D-branes 
on this dual torus parametrise the holonomies around the three cycles of the original torus. 
The dual torus is not exactly a torus however. The original theory was unoriented, which 
means that only states invariant under reflection of the string worldsheet are kept. In the 
dual theory this translates into an orientifold T3/Z>2, where the Z2 acts as a reflection on all 
three coordinates of the torus simultaneously, and reflects the string world sheet. The D-brane 
configuration is required to be invariant under the orientifold projection. This requires all D- 
branes to occur in pairs on the double cover of T3/Z2, unless they are located at a fixed point 
of the orientifold projection. An O(n) theory on a 3-torus is thus translated in a collection of 
n D-branes, living on an orientifold.

In this way one can parametrise a compactification of an O(n)-gauge theory on a 3-torus. 
We require however a more restrictive set-up. First of all, we demand that the gauge theory 
can be restricted to the connected component of O(n), being SO(n). Second, we demand peri­
odic boundary conditions, which translates to the requirement that the SO(n)-configuration 
lifts to a configuration in the simply connected double cover Spin(n). There exists mathem­
atical machinery to tackle this problem in the form of characteristic classes. The special case 
of investigating the liftings from O(n) -> SO(n) -> Spin(n) occurs often in physics and in
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(2.4.1)

Other choices for the set {□,} differing from (2.4.1) by permutations of the columns are pos­
sible, since the orientifold construction does not specify the ordering of these. They all can be 
obtained from each other by global 50(7) rotations.

That the holonomies can be lifted to Spin(7) can also be shown explicitly. The spinor rep­
resentation of Spin(T) is 8 dimensional, and can actually be chosen to be real. The easiest way

Qi = diag( 1,-1,-1,-1, 
Q2 = diag( 1,-1, 1, 1, 
Q3 = diag(—1, 1, 1,-1,

mathematics and the characteristic classes associated with these are known as Stiefel-Whitney 
classes.

The first Stiefel-Whitney class luj is a Z2-valued one-form. It measures the obstruction 
to lifting an O(/i) configuration to an SO(n) configuration: If the class is non-trivial then 
lifting is impossible. Similarly, the second Stiefel-Whitney class u?2 is a Z2 valued two-form 
measuring the obstruction of lifting an SO(n) configuration to 5pin(n).

The task is then to compute the Stiefel-Whitney classes for a given orientifold-D-brane- 
configuration. First of all, note that a smooth deformation of the flat connection corresponds 
to smoothly changing the position of some D-branes. The isolated D-branes at the orientifold 
fixed points cannot be moved, as this would be inconsistent with the orientifold projection. 
l> i. < > b-.rnes can be moved on the orientifold, in particular to the origin of the orientifold
(con.?. .. g to the eigenvalue 1 in the holonomy). The pairs can therefore never be the 
.-ur. . ■. obstruction to the liftings we consider, and we may as well take the number

of at each point modulo 2. This is of course in keeping with the Z2 nature of the
Sti. fi . fi j.ney classes. The remaining branes are the isolated ones which are located at the 
fixed points on the double cover of the orientifold. Except for the origin, all fixed points 
correspond to one or more eigenvalues —1 in the holonomies. Therefore, one can associate to 
each of the branes a formal class 1 + ax8x + ay8y + az8z. Here the a, are either 0 or 1 (we are 
using an additive representation of Z2). We set a, to I if the corresponding brane contributes 
an eigenvalue — 1 to the holonomy Q,. The total Stiefel-Whitney class w = 1 + uq + w2 4-... 
can be obtained by multiplying the contributions of all D-branes (note that, since — 1 = lmod2 
there is no ordering ambiguity).

A way to proceed now is to calculate the Stiefel-Whitney class of a general configuration 
of D-branes, and demand that the first and second Stiefel-Whitney class vanish. One can also 
make an ansatz based on the knowledge of the moduli space for Spin(n < 6), since these 
all correspond to unitary and symplectic groups which are known to admit only one class of 
solutions. From this one concludes that one needs at least 7 D-branes for a non-trivial solution, 
and the only non-trivial configuration of 7 D-branes that does not correspond to anything one 
should encounter in lower dimensional 5pizi-groups, is to distribute these 7 D-branes over all 
orientifold fixed points apart from the origin. Computation of the Stiefel-Whitney class of 
this configuration shows that w is trivial, and hence this can be lifted to 50(7) and 5pzn(7). 
Moreover, by the theorem below formula (2.2.9), it corresponds to a solution of the vacuum 
equations.

The new vacuum corresponds to the 5O(7)-holonomies

1, 1,-D
1,-1-1)
1-1,-D
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T i = ia2® ct2 ®ct2; icr1 ® a2 ® 1;

(2.4.3)

These obey the same commutation relations as the 7 dimensional matrices

(ri;)u = 4f,4/‘ - S'tSi‘ :2 4.4)

= ±<r3®l®cr3; Qj'”" =±<x3®a3®l; n’3p‘n = ±a3® 1 ® 1 (2.4.5)

= i(r..r,j

which are the generators of the vector representation.
To construct the liftings of the holonomies (2.4.1), one writes these holonomies as expo­

nentials of generators T?, and replaces these by the generators of the spinor representation 
Tj. There are multiple ways to obtain the Q, from exponentiating generators T?, but this 
does not matter, as any particular choice only affects an overall sign (this reflects the two­
fold ambiguity one has in lifting from 50(7) to Spinal). The set of SpinfJ) holonomies 
corresponding to the set (2.4.1) of 50(7) holonomies is

1^2 = —il ® cr1 ®cr2; Tj = — il ® a3 ® a2; 1^ 
fs = —icr3®a2® 1; 1^ = — icr2 ® 1 ® a1; T? = —ia2 ® 1 ® cr3,

to construct Spin(7) is to find a representation of the 7-dimensional Euclidean T-matrices, 
satisfying the Clifford algebra {Tj, TJ = —26|; . A particular choice for these T-matrices is

(2.4.2) 
with cr, the 2 x 2 Pauli-matrices, and 1 the 2 x 2 identity matrix. Notice that these T-matrices 
are all real.

The generators of Spin(7) TfJ can be simply constructed as

It is easy to see that [Q*p'n,Qjp'n] = 0. As tti(Spin(7)] = 0, non-trivial periodic flat connec­
tions with the holonomies (2.4.5)(2.4.1) exist. Important is also that the 8 different liftings of 
the holonomies are all equivalent. To see this, notice that exp(n7}J} = 27}J, so 2T-J is an ele­

ment of Spin(T). It is easily checked that for example 2T/5 changes the sign of leaving 
the other two invariant, and 2Tf6 and 2T^ do the same for ” and Qs3p,n. Hence all signs 
are related by gauge transformations.

The new vacuum does not correspond to a situation where the gauge potentials AM are 
constant commuting matrices. This can be shown explicitly. Suppose one could choose the 

to be constants, then we could write Q, = exp{i7i5i). The condition [5n5j] = 0 Vi, J 
implies that [5i,Q;] = 0 Vi,j. But, as one can easily check, a matrix that commutes with 
all three has to be diagonal. The generators of 50(7) however are antisymmetric, so no 
generator of 50(7) commutes with all . This proves that the assumption [5,, 5/] = 0 must 
be wrong.

This new vacuum is disconnected from standard vacua for 5pin(7)-theory, which corres­
pond to one D-brane at the origin and 3 pairs of D-branes placed at arbitrary points, represent­
ing a configuration where the gauge potentials can be chosen to be constant commuting 
matrices. This can be easily seen since there is no continuous way to deform from one con­
figuration to the other; the orientifold condition prevents either of the 7 D-branes to come of
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Q' = Q,(l+^Tfl) (2.4.6)

and require that the Q' still commute. This implies the conditions

<Ql[7'a,Qy] = aj’Q;[Ta,QJ] (2.4.7)

ib solve . > e, we note that:

■ if (Ta, Q,] = 0 (since [Ta, QJ 0 for some i £ j)• a*

□;. = Q,+/3a[QnTa] (2.4.8)

o af - aj if both [Ta, Q,] /= 0 and [Ta, Qj] /= 0

From these observations it follows that we can rewrite (2.4.6) as

their fixed point for one vacuum, or to split any pair of D-branes for the other vacua. It can 
also be deduced from group theory. Try to perturb the Q,

. : given Q' and the standard basis Ta of the so(7) Lie algebra (denoted by in 
e), either [Q',Ta] =0or {Q',Ta} =0

with fra independent of i. This is a global group rotation, and not a nontrivial deformation. 
The new vacuum does not admit deformations, and hence is isolated.

Being a new vacuum component, its contribution to the Witten index of SO (J) supersym­
metric Yang-Mills theory was not included in previous calculations. The new vacuum breaks 
all continuous gauge symmetries. Quantisation shows again a unique bosonic vacuum, but 
now, in the absence of continuous gauge symmetries, there are no fermion zero-modes. So 
its contribution to the Witten index is 1. This should be added to the Witten index from the 
previous calculation, which is rso(i) + 1=4, giving Tr(—)F =4+1 = 5 = /i(5O(7)).

For any SO(2N + 7) theory on a 3-torus, extra vacua can be obtained by adding N pairs 
of branes in the orientifold representation. A non-trivial 50(8) vacuum can be obtained by 
adding to the non-trivial 5O(7)-vacuum one single brane, by placing it at the orientifold fixed 
plane at the origin. Vacua for 5O(27V + 8)-theories can be obtained by adding N pairs of 
branes to orientifolds representing 5O(8)-vacua.

For 50(7), the new component in the moduli space of classical vacua presents just a 
single point. The same is true for 50(8): up to a global gauge transformation, any set of 
commuting 50(8) matrices whose logarithms do not commute can be presented in the form 
qSO(8)  diag(Q5O(7), 1) with Q?0(7) given by Eq.(2.4.1). Consider still higher orthogonal 
groups. For S0(N > 8), an additional freedom appears associated with Cartan rotations in 
extra dimensions; any set Q/s0(/V) = diag(QI5O(7),«yJ O(/7-7)) with logarithms of cufO(Ar-7) be­
longing to the Cartan subalgebra of SO(N — 7) gives rise to a nontrivial SO(N) connection. 
The extra component of the moduli space is not an isolated point anymore, but represents a 
manifold. Its dimension is 3rso(N-i)- There are rso(N-T) + 1 eigenstates of the corresponding 
Born-Oppenheimer Hamiltonian. All together we have (rs<?(/V)+ l)+0*$O(/v-7) + 1) = N— 2 
vacuum states [55] which is also the value of the dual Coxeter number for the group SO(N).
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(2.4.9)

defined according to the prescription (2.4.9) com-

qS0(14) = diag(l, — l, —1,-1,1,1,-1; 1,-1,-1,-1,1,1,-1) = 

exp {ti[ 7^,9 + 73,10 + 74.11 + 77.14]}

and similarly for ^2,^3- The logQfO(14)

Two theories have a minor subtlety. In the 5O(9)-case, the non-trivial vacuum has the 
continuous unbroken symmetry group is S0(2), which is Abelian. The index for SO(2)- 
theory is Tr(— 1 )F = 0 [52], which does not seem to solve the problem for 5C*(9)-theory. This 
is however resolved as follows. Apart from the continuous 50(2), there are also some discrete 
symmetries unbroken. An example of such a discrete symmetry is represented by the matrix 
diag( 1,1,1,1,1,1, — 1,1, — 1). This matrix commutes with the holonomies diag(Q‘sO(7'. 1,1), 
and acts as diag(l, — 1) in the unbroken 5O(2)-subgroup. It is a gauge symmetry, so we have 
to demand invariance under this symmetry. In this way, the unbroken SO(2) is enhanced 
to 0(2), and we need Tr(—1)F for O(2)-theory, not 50(2). To calculate the index orc can 
simply repeat the analysis for 50(2) from [52], with the requirement of invariance .nd-. r the 
extra symmetry diag(l, —1). One finds that, of the four states mentioned in [52], the o states 
with one fermion are not invariant under the extra symmetry, while the two bosonic •■.er (two 
fermions or none) are invariant. In this way we find Tr(—l)f = 2 for O(2)-theory, 1 irast 
to the zero result of 5 O(2)-theory. Hence for 5 0(9) this results in Tr(—)F = (r$o(9) : ; 2 = 
7, the correct number.

Another seemingly problematic case is resolved in a similar way (this case is not men­
tioned in [55] [27]). In 50(11), the connected part of the unbroken gauge group for the 
non-trivial vacuum is 50(4). Its double cover is 5p/n(4) = 50(2) x 50(2), which is not 
simple. We have not treated the calculation of Witten’s index for non-simple groups, but the 
extension of the analysis is straightforward. 50(2) x 50(2) theory has a unique bosonic va­
cuum, and both 5O(2)-factors allow a bilinear combination of fermion zero-modes. The index 
for Spin (4) theory is then 4, coming from one empty bosonic vacuum, two vacua in which 
one of the respective bilinear combinations of zero-modes for the SU(2) factors is occupied, 
and one in which all fermion zero-modes are occupied. Again this naively leads to the wrong 
value for the Witten index. The resolution lies again in an extra parity symmetry, as the un­
broken subgroup is 0(4) instead of 50(4). Parity in 50(4) acts by exchanging the two spin 
representations. Imposing this as a gauge symmetry, we see that of the four vacua for 50(4)- 
theory, two are actually equivalent (related by a gauge transformation) in 0(4). The index for 
O(4)-theory is therefore 3, and not 4, leading to the right answer for the Witten index.

The extra parity symmetry is actually present for all higher orthogonal groups, the un­
broken symmetry group being 0(N —7) (for the Spin groups this is Pin(N — 7), the double 
cover of O(N —7)). However, the extra symmetry does not affect the analysis for the other 
cases, and the previous results remain valid.

In the orientifold representation, it is clear that there are no more than two vacua; due to 
the fact that there are only 8 non-trivial fixed points, one can have at most 8 isolated branes; 
for these, only two configurations lead to a trivial Stiefel-Whitney-class. Of course the same 
result follows from group theory. For N > 14, one might want to try to write down holonomies 
of the form diag(£lf O(7), Q^O(7)). These are however contained in the trivial component of the 
moduli space. One can write explicitly
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2.5 Extension to G2

(2.5.1)

(2.5.2)

(2.5.3)

mute and can be put into the Cartan subalgebra of 50(14). So nothing new is obtained. Also 
for still higher groups nothing new happens. Hence for SO(N), there are never more than two 
components in the moduli space, no matter how large N gets.

where the sum runs over all components of the moduli space, and r, is the rank of the unbroken 
subgroup on component i. Equation (2.5.3) is satisfied for the unitary and symplectic groups, 
where the moduli space consists of one single component. For the orthogonal groups and for 
G2, with a moduli space consisting of two components, the formula holds as well. We will 
see in the next chapters that (2.5.3) is also satisfied for the remaining exceptional groups, with 
the number of components of the moduli space being larger than two.

As was observed in [27] the above results are trivial to extend to the smallest of the exceptional 
groups G \ , which is a subgroup of 50(7) and can be defined in various ways.

A particular definition defines it as the subgroup of 50(7) leaving invariant the combina- 
ion where Q' ,P\Rk are 3 arbitrary 7-vectors and is a certain antisymmet-

tensor. One particular convention for fijk is

/165 = /341 = /523 = fzi\ = f&73 = /475 = /246 = 1
and all other non-zero components are recovered using antisymmetry. It is easy to see now 
that the matrices (2.4.1) do belong to the G2 subgroup of 50(7).

Another way to see the same is to define G2 as a subgroup of Spin(7) leaving a particular 
spinor invariant. The matrices (2.4.5) leave invariant the spinor

"=G)®G)®G)’
and hence belong to G2 (and, incidentally, fijk = rjTr[iVjrk]r]y with the T-matrices as defined 
in (2.4.2)). Note that this leads to the same representation for the G2-holonomies, since the 
8-dimensional spinor-representation of 50(7) splits in a singlet and a 7-dimensional repres­
entation of G2.

All G2-representations fall into one conjugacy-class, meaning that all have a trivial centre, 
and all are simply connected, 7t|(G2) = 0 (see e.g. [12]). The previously stated theorem 
guarantees that a non-trivial periodic flat G2 connection exists, with holonomies as above. As 
in 5 0(7), this vacuum breaks all of G2, and so gives one new vacuum state. This extra vacuum 
state adds up with the rc2 + 1=3 “old” states associated to the constant gauge potentials 
belonging to the Cartan subalgebra, to make the total vacuum state counting in accordance 
with the result Tr(— 1)F = A(G2) = 4.

These results for orthogonal groups and G2 suggest that also supersymmetric Yang-Mills 
theories with the other exceptional groups as gauge group should have A(G) vacua. The /t(G) 
vacua may be found from different components in the moduli space, according to the formula 
[55]
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3 Non-trivial flat connections on the 3-torus

3.1 holonomies and vacua

(3.1.1)

where k = 1,2,3 labels the holonomy corresponding to the cycle wrapping around the x,y,z 
direction respectively, Lk is the length of the cycle.

The fact that the connection is flat implies that the holonomies commute. If one is only 
working with fields that take values in a representation of the gauge group that does not faith­
fully represent the centre (implying that the representation is not simply connected), it is 
possible to impose commutativity up to an element of the centre [23][24]. Working in a rep­
resentation of the group that is simply connected, one can easily distinguish between commut-

We recall some relevant fact from the previous chapter. For any flat periodic connection on a 
torus, one can define a set of holonomies, Wilson loops along nontrivial cycles of the torus.

Q* = Pexp

Inclusion of the extra vacua for gauge theories with orthogonal gauge groups, as well as for 
the case of the exceptional group G2, leads to a resolution of the problems with the calculation 
of the Witten index. This strongly suggest that the presence of extra vacua may also solve the 
problem for the remaining exceptional groups F4, E^, E-j and Eg. A simple comparison of 
1 umbers already shows that for these cases the vacuumstructure might be more involved. As 
an examr :«.• consider Eg whose rank r is 8, but whose dual Coxeter number equals 30. The 

-ussier. the previous section suggests that a particular component of the moduli space 
; fi com• i; at most r 4-1 = 9 to the index, hence there should be at least 4 components to 

reach 30. T '.is is of course an optimistic estimate, and we will find no less than 12 components 
for the moduli space of Eg flat connections on the 3-torus.

The indicated exceptional groups do not allow a formulation in terms of D-branes, nor do 
they have a simple relation to any of the classical groups. Also a brute force computation is not 
attractive (the smallest non-trivial representation of Eg consists of 248 x 248-matrices). So we 
need new ideas. The right idea involves a variant of the construction of twisted boundary con­
ditions, and was found more or less simultaneously by a number of groups [28] [29] [26] [6]. 
In this chapter we describe the approach of the first two references, which may be described 
as pragmatic, but nevertheless leads to the correct results. The remaining two references are 
more mathematical and formal. These will be discussed in the next chapter.

In this thesis we use a different normalisation for roots, group generators and related quant­
ities than in [28] [29]. This was done to conform with the conventions as used in [6] [26], and 
the remainder of this thesis. The different normalisations for the algebra do not affect the 
group elements constructed in [28] [29], and hence the results stay the same. The reader is 
referred to appendix A for the new conventions.



36 Non-trivial flat connections on the 3-torus

(3.1.2)

(3.1.3)

(3.1.4)

ativity, and commutativity up to a centre element (twisted boundary conditions). We mention 
these points because twisted boundary conditions will form an essential ingredient in what 
follows, although in a somewhat unexpected way. As shown in the previous chapter, the fact 
that holonomies commute in a simply connected representation, is sufficient for the existence 
of a corresponding flat connection. Thus, we can use the holonomies (3.1.1) to characterise 
the flat connections.

The holonomies transform covariantly (£2'k = gQ*g-1) under periodic gauge transforma­
tions, and hence their traces are gauge invariant. For the trivial class of solutions = câHa, 
the holonomies Q* = exp(icJ//aLjt) are on the so-called maximal torus (obtained by exponen­
tiating the CSA). To find a different solution, one has to find holonomies that commute, but 
do not lie on a maximal torus. The corresponding flat connections are no longer of a simple 
form in these cases.

For T2, using the complex structure on the 2-torus, it is possible to prove (a.‘ hed in
a footnote in [55]) that the moduli space of flat connections is connected, and hen trivial
class is the only class of solutions . For T3 this is not the case, but using the resub for T2 one 
can arrange that any two out of the three holonomies are exponentials of elements of the CSA. 
The third holonomy is therefore the crucial one: either it can be written as the exponent of 
an element of the CSA, and we have a trivial solution, or it cannot, and one has a non-trivial 
solution.

The local parameters of the moduli space can be found by perturbing the holonomies Qt 
around a solution, demanding they still commute (so that the perturbations also lead to ad­
missible vacua), see eqs. (2.4.6) and (2.4.7). For those generators Ta that commute with each 
of the Q*, eq. (2.4.7) does not lead to any restrictions on the corresponding and these gen­
erators correspond to admissible perturbations. They will generate a group which is unbroken 
by the holonomies, and this is the group that is relevant in the calculation of Tr(—1)F. We 
now show that the generators that do not commute with all holonomies correspond to global 
gauge transformations. We will see in the following that one can choose a basis Ta for the Lie 
algebra such that (see e.g. (3.3.11) (3.4.9) (3.5.8))

Ad(Q*)T° = QJTon^1 =exp(^^)T‘' n‘t,N eZ Vk,a.

In that case the condition (2.4.7) reads

cr»(exp(-^-)- 1)W =«exp(-^^)- DfijQ/T0.
N N

Restricting ourselves to generators that do not commute with all holonomies, we define

ga _ ak

1 -exp(----^)
for k such that [Qj,7'°] 0. Equation (3.1.3) implies that is independent of k. whereas
(2.4.7) implies that a* = 0 if [Q*. T“] = 0, so we can write

aaknkTa =/3°[ak,T°]. (3.1.5)

We are thus left with a global gauge transformation, generalising the result below eq. (2.4.8) 
for groups other than S 0(7).
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3.2 method of construction

(3.2.3)zi = (Z2) = z
We now have

P\Q\ = Z1Q1P1
P2Q2 = Z2Q2P2

(3.2.1)
(3.2.2)

P = P\P2 Q = QiQ2 =*PQ = QP (3.2.4)

It is possible1 and convenient to embed the PG2 subgroup in such a way that its maximal 
torus T' is a subgroup of a maximal torus T of G. If the PGj-subgroup has the same rank 
as G, then the tori T and T' coincide. If this is not the case, then there are multiple ways to 
extend T' to a maximal torus T of G.

We can choose the elements P\ and P2 to lie on the torus T'. Since the maximal torus is 
Abelian, it immediately follows that neither Qi nor Q2 is on T', and neither is their product

’it was proven by Dynkin [17] that if a Lie algebra Zg has a subalgebra £.&■. then the CSA of £'G 
can be chosen to be contained in the CSA of Zg (by applying a suitable automorphism of Zg). Upon 
exponentiation, one finds that the maximal torus of the group G', generated by Zg'. is contained in the 
maximal torus of the group G, generated by Zg-

For irreducible representations of G', Zi is a root of unity, for a reducible representation Zi 
is a diagonal matrix, with on the diagonal the centre elements appropriate for the different 
irreducible components. Since we only deal with representations of (G' x G,y)/Zdias, Zi and 
Z2 are actually elements of the central subgroup (Z x Z)IZdiag = Z . By picking P, and 
Qi in a specific way, we can thus arrange that (3.2.1, 3.2.2) are satisfied with the additional 
condition

Our construction is based on a variant of the so-called multi-twisted boundary conditions, as 
considered first in [10], involving subgroups of the gauge group.

We restrict ourselves to Yang-Mills theories with a compact, simple and simply connected 
gauge-group G. We will be interested in subgroups PG'N whose universal covering PG'n is 
the product of N factors G'. The representation of PG'N will in general not be irreducible, 
nor are its irreducible components in the same congruence class.

The global structure of our subgroup PG'N will not be that of a direct product group. 
For the . h nation of twisted boundary conditions, it is necessary that a non-trivial discrete 
centra! - •! r >up has been divided out; for multi-twisted boundary conditions this discrete

:rai a.'oup is diagonal. As a relevant example of such a subgroup, consider SO(4) 
which 1; ; a’jy 5t7(2) x SU(2), but has global structure (St/(2) x SL7(2))/Z2, where Z2 is 
uie diagon subgroup in the Z2 x ZS centre of St/(2) x SU(2).

For (itc discussion here we will restrict ourselves to a subgroup PG2 (with universal cov­
ering G'2). since the generalisation to PG'N will be obvious. We assume that G' allows a 
non-trivial centre Z, and that the global subgroup PG'2 is a representation of (G' x G'}IZdia% 
where Zrfjag = Z is the diagonal subgroup of the centre Z x Z of G'2. Now select two ele­
ments Pj, Qi generated by the Lie algebra of the first G' factor (G',), and two elements P2, 
Q2 generated by the Lie algebra of the second G' factor (Gj), such that they commute up to a 
non-trivial element of the centre Z of GJ:
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(3.2.5)P

3.3 Constructions based on z2-twist

Q (since Q does not commute with either of the Pf). We will now construct a third element 
P' by “twisting” one of the G'’s with respect to the other G'

shall always 
SUMf* x

In this section we specialise to G' = SU(2). We will start by developing the relevant tools for 
this subgroup. After that we will give an overview of groups in which our construction can be 
realised. These include SO(N) where the result from [55] is reproduced, and G2, where we 
rederive the result from section 2.5.

2If some simple subgroup with non-trivial centre is not SU(N), its centre is either Z2 (Sp(n). SO(2n + 1) 
and E7). Z4 (SO(4n+2)), Z2 x Z2 (SO(4n))or Z3 (Ee). In these cases the centre is contained in an SU(2), 
SU(4). SU(2) x SU(2) or Sl/(3)-subgroup, respectively

p'=Q\pQr = &{P\Qr =p\ Q~2nPiQn2=z

We can define a set of holonomies by setting Qi = P , Q2 = P' and Q3 = Q. We will always 
assume P' and P to be different, which is essential for finding non-trivial vacua. This limits 
n to a finite set, since there exists some n for which z~n = 1. We also should not allow z to 
be an element of the centre of G, since this will also imply that the connection defined by the 
holonomies P, P' and Q is trivial (we can arrange that P and Q are on a maximal torus of 
G, and then, since the centre of G is also on this maximal torus, P' must be on this maximal 
torus). Since P is on the maximal torus T', and z is an element of the centre of F . and the 
centre is generated by the CSA, P' is on the maximal torus T'. By assumption torus T' 
is contained in a maximal torus T of G. To define a non-trivial flat connection Q hc-.ild not 
be on any maximal torus T of G. If Q is on a maximal torus of G, then the maxii. ... belian 
subgroup that commutes with P, P' and Q is a maximal torus.

Since the construction involves subgroups G' with a non-trivial centre, one may always 
take a subgroup of G' that is a product of unitary groups2. Henceforth, we 
assume G’ to be a product of St/(7V)’s. Thus we may take G' = SU(N\')ni x , 
(Nj different, m positive integers), which has as centre (Z^t)ni x (Z/v2)"2 x • •

Although not strictly necessary, extremely useful for our calculations is the concept of a 
diagonal subgroup. It is possible to construct a diagonal subgroup D (with universal cover­
ing D = G') in PG'n as follows: construct a Lie algebra Z for G', consisting of elements 
T°. Then the Lie algebra for {PG'N has the structure Z| © Z2 ffi • © Jin with each of the 
Z, = Z. Hence we can write T°, for the generator from Z, that corresponds to Ta under 
an isomorphism mapping Z to Zj. The diagonal subgroup of PG'N is then constructed by 
taking as generators T° + T2" H------ H T)J. This construction is not unique, there are many
isomorphisms from Z, to Z, and these will give different diagonal subgroups.

We now take Pi, P2. Qi, Q2 as before. The P, are elements of the maximal torus of 
G'j, so we can write P, = exp(ift,) with ft, an element of the CSA of Z,, and similarly 
Qi = exp(ie,) with e, not in the CSA. The elements P = P1P2 = exp(i(fti 4-/12)) and Q = 
Q1Q2 =cxp(i(ei 4-e2)) are then elements of a diagonal group D, as constructed in the above. 
Conjugating with 2" will produce Q"PQ^" = P' and Q"QQ[" = 2. which are elements of 
a diagonal subgroup D', isomorphic to D (the isomorphism being given by D Q" D 2?”)-
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We will use the following convention for the su(2) algebra:

[L.3,L_] = -L_ [L+,L_]=2L3[L3,Z.+] = L+ (3.3.1)

(3.3.2)pq = ~qp

'' . , invention is to take:

(3.3.3)

(3.3.4)

1 
0

?L3 = -L2q 
qL+ = L-q 
qL- = L+q

pLl = L3p 
pL+ = -L+p 
pL_ = —L-p

In terms oi generators this is p = exp(inZ,3) and q = exp(i7t(Z,+ + L_)/2) (When lifted to 
50(3), the elements are p = diag(—1, —1,1) and q = diag(l, —1, —1), which commute). The 
commutation relations of p,q with the algebra elements are easily determined

0 \ ni ( 
-i j=exM

We have L3 = Z,3 and = L_. With these conventions the eigenvalues of Z.3, (L+ + L_)/2 
and i(L+ — L_)/2 are half-integers for representations that exponentiate to 5(7(2), and integers 
for representations that exponentiate to 50(3).

In 5(7(2) we will be looking for elements p and q such that

Note that q induces the Weyl reflection on the root lattice. This has a nice analogon for twist 
in SU(N~), N > 2, as we will see in the subsequent sections.

The elements P, will take the role of p in the above, the elements (2, take the role of 
q. Now notice that the condition (3.2.3) implies that the diagonal group D that contains 
P = Pi P2 and Q = 2iC3 is actually an 50(3) (it has a trivial centre). This can be seen 
as follows: the diagonal subgroup-construction provides a homomorphism from any of the 
G' = 5(7(2) factors to the diagonal subgroup D. Under this homomorphism the non-trivial 
centre element of SU(2) is mapped to the identity in D (because P, —► P, Qi -> Q, we have 
P.QiP-'Q-' PQP-'Q-' = 1).

One of the issues we did not address so far is the fact that we require the holonomies £2, 
(P, P' and Q) to commute in a simply connected representation (otherwise the theorem of 
section 2.2 might not be applicable). In fact we will show that they commute in any repres­
entation, which seems more general, but is equivalent to the previous statement by the theory 
of compact Lie groups. For the 5(/(2)-based construction described in this paper, a sufficient 
condition for the commuting of all holonomies is that D is an SO(3)-group (since this will 
imply that P and Q commute, and from this it follows that P' and Q commute. P and P' 
commute by construction). To determine whether D is an 50(3) subgroup, we construct its 
algebra.

As remarked in footnote 1 on page 37, it is always possible to choose an embedding of a 
subgroup such that its CSA is contained in the CSA of the group that contains the subgroup, 
so let L3 = h( for some h( in the CSA of G. The eigenvalues of h( are determined by taking 
inner products with the weights of G. We want L3 to be an 5O(3)-generator, and therefore its

in ( 0 1 X 
exMi o)P=U
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(3.3.7)phap = ha peap

(3.3.8)L-flh = -qL^x =

(3.3.9)0xV'-(X+l) = 0A+1 V'-CA+l)

(3.3.10)
4- V'-x eigenvalue <p 

xpk — xjf-x —> eigenvalue — <p

(3.3.5)
(3.3.6)

So, 0a = 0A.+1 = 0, independent of A, and 02 = 1. It is now trivial to construct eigenvectors 
and eigenvalues for q:

Hence we conclude qxpx = (where <pk is a phase factor). In fact, since we are only 
dealing with 50(3) representations of q, we know that the eigenvalues of q should be ±1 and 
hence q2 = 1, meaning that = 1- Moreover from qL+ = L_q we easily find that3

= exp(in(a,<))ea

Note that this implies that the generators either commute or anticommute with p.
There is also a nice and easy way to compute qTq~x. First decompose the representa­

tion of G into irreducible representations of 50(3). In each irrep, construct the normalised 
eigenvectors xj/k of Ly. Ljxpx = kxp^. It then follows that

eigenvalues should be integers. Therefore (A,£) should be integer for any weight X. Since any 
weight is expressible as a linear combination of fundamental weights and simple roots with 
integer coefficients, the condition that Lj should have integer eigenvalues can be translated to

where a, are the simple roots of G, and A, are its fundamental weights. However, if the first 
of these two conditions is satisfied, then the second condition is satisfied for some weights, 
namely those fundamental weights with A, = ^2kqkOtk with qk integer (we call the e integer 
weights). Hence the second condition only has to be checked for what we will call non-'nteger 
weights. A list of these is contained in our appendix B.

We will want to compute products like pT p~\ qTq~*, where T are generators of the 
group G we are working in, and p and q are as in the previous paragraph. We will be looking 
at 5O(3)-subgroups, and the generators of G split into 5 0(3) representations. pTp ' is easily 
calculated. With L3 = we have

Now remember once more that only 50(3) representations occur, meaning that A e Z. If the 
dimension of our representation is 2n + 1, then the eigenvalue tp occurs n 4-1 times, and — <p 
n times. The determinant of the matrix is then (—')n(p2n+l = (—)"0. The determinant should 
however be 1 since the matrix has been obtained by exponentiating a traceless generator.

3We use the Condon-Shortley phase convention: L+xp[ = J (J — A)(j + X 4- 1)^+1 ancl = 
</(j 4- X)( J — X 4-1 )xp^_j, where j is the usual angular momentum number, related to the dimension d of 
the representation by j = (d— 1 )/2

(«i,<) G Z
(A„<) e Z
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pTap-' = ±Ta qTaq~' = ±Ta (3.3.11)

3.3.1 G2

X

(3.3.12)

The diagonal subgroup is now easily constructed, being generated by

(3.3.13)

Our first example will be the non-trivial flat connection in G2, already described in section 
2.5. We will treat this example in full detail to clarify our methods. G2, being the group of 
lowest rank that possesses non-trivial flat connections on T3, is the simplest from the point of 
view of our construction (unlike the constructions in the previous chapter that are simpler for 
orthogonal groups).

G2 possesses an 5G(4) = (5(7(2) x 5(7(2))/Z2 subgroup. The first 5(7(2)-factor can be 
taken to be generated by hai ,ea} and e_ai, the second one is then generated by hai+2a2>eax+2a2 
and e_(ai+2a2). We label the two 5(7(2) factors SU(2)1.2, and normalise their generators such 
that they satisfy the algebra (3.3.1):

5G(2)!

l'+ = ea,/V2

SU(2)2
I3 = 3ha,+2a2/2 
(4. = -*/3/2eai +2a2

The diagonal SU(2) turns out to be an 5G(3). To check this we construct the weights for 
the 5M(2)-representation. These are (2a 1 4-3q'2>^) where A. are the weights of G2. However, 
since any weight of G2 is of the form pa\ + qaz, with p,q integer, it is sufficient to compute

We will now discuss the cases in which our construction actually gives a non-trivial flat con­
nection. Ob', conventions concerning roots and weights can be found in our appendices. For 
the lecomposition of groups into subgroups, use was made of [33].

Although in each case our construction can be carried out in a subgroup PG'2 = 50(4), 
wc will often take PG'N with PG' n = SU(2)N where N >2. This allows us to choose PG'N 
to be a regular subgroup [17], that is, the root-lattice of PG'N is a sublattice of the root-lattice 
of G. This gives an enormous simplification of the calculations. Our methods are not limited 
to regular subgroups, and we have actually carried out our construction for several irregular 
embeddings, but we always found the same results as for the regular embeddings. Therefore 
we will describe only constructions with regular embeddings.

Hence we find </> = (—)”, and the action of q on any representation of 50(3) is fully determ­
ined. and since by assumption G splits into 50(3) irreps, the action of q in G is completely 
determined. Most of the above is also valid for SU(2)-irreps, but there are two differences: 
one finds 02 = — 1, and it is not possible to determine whether 0 = i or —i. This ambiguity 
comes from the centre of 5(7(2), which we are unable to detect since we are trying to determ­
ine q from commutation relations alone. Notice that these considerations imply that for an 
appropriately chosen basis of generators T of G that (compare to (3.1.2))

— ^3~^~^3 —^2a\+3a2

L° = l'++l* =(eai+V3eai+2a2)/V2



42 Non-trivial flat connections on the 3-torus

i+2“:2

a2

-“1 “1

-“2-«r«2

1 2“2

:,-3a2-2a,-3a2

Figure 3-1. the root diagram for Gz

(3.3.14)

It is easy to construct the elements P and Q: Take

(3.3.15)

iL (3.3.16)

(3.3.17)

Now we wish to obtain P'. Conjugation with Qi 
reflection in the first of the two Sl/(2)-factors:

P' = exp(irrL3°') (3.3.18)

P, P' and Q commute by construction. It is also clear that the flat connection implied by 
£2j = P, Siz = P' and Qj = Q is non-trivial, since the maximal torus of Gz is simply the 
direct product of the tori of D and D', and Q is not on either one.

SI/(2) x SG(2) ->
(l,3)ffi(2,2) ->•

(3,1)® (2,4)® (1,3) ->

St/(2)/Z2 = SO(3)
3®3®1
3®5®3©3

G2
7

14

CtiftXj

(2ai +3a2,ai) = 1 and (2aj +3or2,a2) =0. We find that the weights of the su(2) are always 
integer, no matter what representation of G2 we use, and hence the su(2) is actually an so(3). 
We find the following decompositions for the fundamental and adjoint irreps:

= exp(y(/^_ + /J.)) generates the Weyl

P = exp(irrLf) Q = exp(y(L° + /,?))

2 a [+ 3a2

This will take the diagonal subgroup D to a diagonal subgroup D' generated by:

L? = — 's+'j =7lcr,+3a2

/-+= lL+l2+ =(e_„, + 73eo, +2or 2)x/2

Since L* + L& = + Z-£, Q is also an element of D'. Constructing P‘ proceeds as in the
above:

a1+3a2

\ a
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(3.3.19)

Q, = Q =

X

These can be conjugated to the form used in the previous chapter.

0
0
0
0
0

0 
0 
0 
0 
0 
0 

-1

0 
-1

0 
0 
0 
0 
0

0 
0 

-1
0 
0 
0 
0

0 \ 
0
0

-1
0
0
0 /

To calculate the unbroken subgroup, we calculate the commutators of generators with the 
Q, ’s. As explained before only generators that commute with all three Q, ’s will be relevant. 
Therefore the most efficient way to proceed is to first compute the commutators with = P 
and = P • since these are the easiest, and only compute the commutator with = Q for 
those generators that commute with both P and P'.

We can use the results of the beginning of this section. If there we substitute L2 for Lj, 
and L® for 7.4., then it is clear we should identify P with p, and Q with q. If we substitute 
L? for £5. and Z® for L±, then we should identify P' with p, and Q with q. For the 
commutators of the algebra with P, we use (3.3.7), with < = 2«i + 3a2. We find that the CSA 
co mutes with P, and ep commutes with P only for p = ±a2 and p = ±(2<X| + 3o?2)- For the 
commutator > ■:' the algebra with P', we use (3.3.7) with f = ai + 3a2, from which it follows 
th . r d with ' -a2 and P = ±(2a, + 3a2) anticommute with P'. Hence the only generators
that commute with both P and P' are the CSA-generators hp.

To determine the effect of conjugation with Q on these, we study the branching of G2 —» 
SO(3), where the SO(3) is either D or D'. We will take D, so the ladder operators are and 
the CSA-generator is Lf. We work with the generators of G2 themselves, and hence we are 
in the adjoint representation of G2. Eigenvectors of L2 are easily found, since ad(L°)e^ = 
[/i2O,+3«2.e^] = (2ai + 'ia2,P)ep in our conventions, and , ad(L3>)h^ =0, hp and ep are 
eigenvectors of ad(£°). We can now split the representation in irreducible components, by the 
standard procedure of looking for highest eigenvalues, and then applying the ladder operators 
L± to complete a representation, constructing the orthogonal complement etc.. We find that 
both CSA-generators have eigenvalue 0 in a 3 irrep of SO(3). We should thus identify each 
CSA-generator to >7o in a 3-dimensional representation of SO(3), and using the results of the 
beginning of this section we find that, since qyfrp = —ipo, QhpQ~x = Ad(2)/i^ = —hp. The 
CSA generators thus anticommute with Q. Thus there is no generator that commutes with 
all S2,. and, as already established in section 2.5, the vacuum implied by these holonomies is 
isolated, and there is only a discrete unbroken subgroup.

Finally we will give a matrix representation of the holonomies. The 7 irrep of G2 has as its 
weights 0,a, + a2,«t +2a2,a2,- (a, +a2),-(“t +2“2), —“2- Using this ordering of weights, 
we find:

0 
0
0 
0

-1
0 -1
0 0

Q, = P = diag(l,-l,-l, 1,-1,-1,1) 
Q2 = P' = diag(l,1,-1,-1,1,-1,-1) 

/ -1 
0 
0 
0 
0 
0 
0
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(3.3.20)

(3.3.21)

5©5(3)ffil

To construct D', twist the first factor with respect to the other two

a
which leads to

(3.3.22)

The set of holonomies is

Q, = P=exp(inZ.f) Q2 = P' = exp(inL?') Q3 = Q = exp(—(L° + L?)) (3.3.23)

I3 l3+ ll.

one finds
P’ = exp(in/t(i.o,-i)) = exp(in/i(O,o.-2)) P

Again this is always an so(3)-algebra, which can be easily verified by calculate. the inner 
products of (1,0, —1) with the simple roots and non-integer weights. Vector, spin, nd adjoint 
representation branch as follows:

SO(T)
7
8

21

(SZ7(2))3 ->•
(1,1,3) ©(2,2,1) ->
(1,2,2) ©(2,1,2) ->
(3,1,1)©(1,3,1) 
ffi(l,l,3)ffi(2,2,3) ->

SO(3) 
2(3) ©1 
2(3) ©2(1)

Lf = Jj+Zj+Z’ =^(0,1,1)
l°’= iv+a+a =e-tt.-1,0)/s/2 + e( 1, 1,0)/ V2 + e(0,0, i)

Q, =P=exp(inL?) Q2 = P’ = exp(intf) Q3 = Q = exp(y (L° + Z.?)) (3.3.23)

In the vector representation, these are equivalent to the holonomies of Witten [55]. There is 
no generator of the algebra that commutes with all three .

Two remarks are in place here. First, one might think that it is arbitrary which of the 
S(7(2)-factors one chooses to twist (in the sense of eq. (3.2.5)). Indeed, twisting the first 
factor leaving the other two the same, as in the above, will give a result equivalent to twisting 
the second factor while leaving the other two. However, twisting the third factor with respect 
to the other two will not work: If one tries

-ll

33.2 SOW
In SO(7), there exists a subgroup PG\ with PG'3 = Sl/(2)3. The S(7(2)-factors can be taken 
to be generated by subalgebras with elements with = (1, — 1,0) for the first factor,
& = (1,1,0) for the second factor, and £3 = (0,0,1) for the third. The diagonal subgroup is 
then (appropriate normalisations for each generator included)

L? - l3^l3+l3 = *(U<M)
+ = «(i,-i,O)/>/2 + e(i>i,o)/'>/2 +^(o,o,i)
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.O'"

6 •o
o ©

o
■©.. o

Figure 3-2. projection of the roots of so(7) onto those for g2

(3.3.24)

(3.3.25)

(5) ©7(3) ©2(1)

Because of triality, the spin-representations 8C and 8S have a branching that differs only from 
the one for 8, in 5f/(2)4 by permutations of the 2's and 1's, their SO(3)-content is the same.

-> (5t/(2))4

-> (2,2,1,1)©(1,1,2,2)
-> (3,1,1,1)©(1,3,1,1)©(1,1,3,1)

©(1,1,1,3) ©(2,2,2,2)

50(3)
2(3) ©2(1)

50(8)

8V
28

But. noticing that /i(o.o.i) is a (correctly normalised) generator of an integral sw(2)-subalgebra 
of so(7), we easily find exp(i7t/i(o,o,-2)) = ±1 (4-1 if the so(7)-algebra is in the same con­
gruence class as the vector or adjoint representation, —1 if the so(7)-irrep is isomorphic to 
the spin representation). Hence P and P' differ only by an element of the centre of Spinal). 
But the connection implied by setting Qi = P, Q2 = P' and Q3 = Q must be trivial, as any 
element that commutes with Qi commutes with Q2, and ^1 and Q3 do not reduce the rank 
(if they did they could be used to construct a reduced rank periodic solution on the 2-torus, 
which does not exist).

As a second remark, we consider the embedding of G2 in 50(7). The so(7)-root diagram 
fits into a cube. To see its g2-subalgebra, project onto the plane orthogonal to a diagonal. Take 
as diagonal the direction (—1, —1,1). The roots £2 = (1,1,0) and £3 =(0,0,1) will coincide 
under this projection (they will both project to (1,1,2)/3), and we find that the 50(7) result 
can be understood from the G2-result. This is less relevant for the orthogonal groups, but 
explains the encountered unbroken subgroups for the construction in the exceptional groups.

In 50(8), there is a subgroup PG'4, with PG'4 = SU(2)4. All 5L/(2)-factors can be taken 
to be generated by algebras with elements hpi,e±pi, with = (1, —1,0,0), fa — (1,1,0,0), 
£3 = (0,0,1,-1) and £4 = (0,0,1,1). The diagonal subgroup is then

1.0.1,0)
= (*(i,-i,o,O)+*( 1.1,0,0)+ *(O,o,i.-i) +*(0.0,1, i))/>/2

It is easy to verify that this is an so(3)-algebra. Vector, and adjoint representation branch as 
follows:
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Twist the first factor to construct D':

D' (3.3.26)

= fi(I.O.l.O) f-? =fi(0.l.l,0)

333

(3.3.28)

(3.3.29)

u.0.0)/V2 + e(0.0.i.0)

SO(N)-t SO(N-l)->------>SO(7)->G2 (3.3.27)

that shows that non-trivial flat connections in SO(N) can be derived from its subgroup G2. 
The connected component of the maximal unbroken subgroup is 5 O(N — 7), as can be under­
stood from the fact that SO(N) branches into G2 x SO(N — 7).

L3 = *40,1.1,0)

L+ = (e-(i.-i.0.0) + e(i,i.0.0> + e(0.0.i.-i)+e(0.0.i.i))/V2

F4

The easiest way to proceed in Ft is by using the fact that the so(7) root lattice is a sublattice of 
the ft root lattice. We can use su(2)-algebra’s with elements ,e±&, with ft = (1,-1,0,0), 
ft = (1,1,0,0), and ft = (0,0,1,0). The two diagonal subgroups and holonomies are con­
structed in the standard way.

Lf — I3+/3+/3 =h(t.o,l,O)

— *+ + *+ + *+ = <(i.-i,o.O)/''^+e(i.i,o.o>/v/2 + e(o.o,i.O)

= *3+*3+*3 =11(0,1.1.0)
L-+ — *++*++*+ = e-(i,-i.o,O)/s/2 + e(i,

The holonomies are then constructed in the usual way (3.3.23). The unbroken subgroup is 
again discrete. The projection of SO(8) onto 50(7) is trivial, and we find that we can under­
stand the 5O(8)-result from the G2-result.

It is clear that the 5O(7)-example and the 5O(8)-example can both be embedded in 
50(9). Notice however, that both in the embedding of the 5O(7)-example, and th.; embedding 
of the SO(8)-example we find

The vectors (1,0,1,0) and (0,1,1,0) are called “defining vectors” for D and D' and there is 
a theorem by Dynkin [17], that two representations of 50(3) are equivalent, if their defining 
vectors are equivalent. Hence the SO(7) and 50(8) embeddings are equivalent, and will not 
lead to different results. One finds a 1/(1) = 50(2) unbroken subgroup, but, as explained 
in [55, 27], the actual unbroken subgroup is 0(2), because of discrete symmetries that are 
invisible in our approach.

In a similar way, the non-trivial flat connections for 5 O(N) with N > 9 can be constructed. 
For N sufficiently large, there are multiple ways of embedding an SU(2~)M with a diagonal 
50(3). Although we know no simple way of proving this in our approach (their defining 
vectors need not be equivalent, for example), the analysis of [55] shows that these can never 
lead to new results, other than an 50(7) or 50(8) embedding will do. Note the chain of 
subgroups
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(3.3.30)

3.3. £6, £7, £8

(3.3.31)

(3.3.32)

(3.3.33)

(3.3.34)

(3.3.35)

Note that here it is important that our construction fits into G2. Starting from 50(7) might 
lead to the wrcne -xpectation that the unbroken subgroup would be 50(2), since Ft branches 
into 50(7) x 50(2).

Again these are found to be so(3)-algebra's. The holonomies are as in (3.3.23). Calculating 
the (connected component of the) unbroken subgroup, one finds that it is 50(3). This can be 
understood from the branching of Ft into G2 x 50(3).

E6 ->• G2xS(/(3)
27 -» (7,3)®(1,6)
78 -»• (14,1) ©(7,8) ©(1,8)

£.f = fj +lj+l3
L° = l\.+l2++l\

= fl (0.0.1.1.0.0)

= (e-to.i.-i.o.o.o.O) + C(O.1.1.O,O.O.O) +
<(0.0.0.1.-1.0.0) + <(0.0.0.1.1,0,0))/s/2

In E, we use ;.:.u the so(8) root lattice is a sublattice of the e& root lattice. We use su(2)- 
algebra's will, elements fift,e±/>,, with fit = (0,1,-1,0,0,0), ft = (0,1,1,0,0,0), and ft = 
(0,0.0,1, —1,0), and fit = (0,0,0,1,1,0). The two diagonal subgroups are:

L? = ^3+/3+/3 = (0.1.0.1.0.0)

£? = (J.+(£+(+ = («(0,l. -1,0.0.0) + <(0.1,1.0.0.0) +
«(0.o.o. 1.-1.0) + qo.o.o. 1.1.0) )/V2

= *3+*3+*3 = fl (0.0.1.1.0.0)
Z-+ = l'++l++l+ = (<-(0.1.-1.0.0.0)+<(0.l.l.0.0.0) +

«(o.o.o, 1.-1.0) + e<o.o.o, 1.1.0))/->/2

These are so(3)-algebra's. The holonomies are as in (3.3.23). The (connected component of 
the) unbroken subgroup is found to be 51/(3). This can be understood from the branching of 
Ei into G2 x 51/(3).

The Es-example can be trivially embedded in E7, using that the root lattice is a sublat­
tice of the <7 root lattice. We add an extra zero to the vectors, and obtain

Lf = (3 +(3 +(3 = fi (0.1.0.1.0.0.0)

+I++1’ =(e(0.i.-i.o.o.o.0) + <(0.i.i.o.o.o.0) +
ew.o.o. 1. -1 .o.o) + <(o.o.o. 1. i.o.O))/ 3/2

Ft -> G;x5O(3)
26 -> (7,3)ffi(l,5)
52 -> (14,1)® (7.5)® (1,3)



48 Non-trivial flat connections on the 3-torus

(3.3.36)

(3.3.37)

(3.3.38)

(3.3.39)

3.4 Constructions based on Z3-twist

(3.4.1)

56
133

[H«,,Ea2] = -£»,
\Hai,Eai}=2Eai
[Ea2.^-a2] =2Hai [Ea,. Ea2] = Ea}+a2

_________________ [£<H-Hr2. £-a,-a2] ' 2Wtt|+a2 = 277a, 4" 2Hai
4In the decompositions given, both 14-dimensional representations of Sp(3)are present. By 14. we denote 

the representation with Dynkin labels (001). while 14' is the irrep with Dynkin labels (010) (the simple roots 
of Sp(3) are ordered such that the longest one appears on the right) [33].

= Zy+,3+,3 = h (0.0.1.1.0.0.0)

L+ = ^+<i + /+ =(e-(0.i.-i.o.o.o.o.0) + e(0.i.i,o.o,o.o,0) +
«(o.o,o.i.-t.o.o.o) + ejo.o.o.i.i.o.o.o))/^

These are so(3)-algebra’s. The holonomies are as in (3.3.23). The (connected component of 
the) unbroken subgroup is Ft- This can be understood from the branching of Eg into G2 x Ft-

E% —> G2 x Ft
248 -> (14,1)©(7,26)©(1,52)

E7 —> G2 x Sp(3)
(7,6)ffi(l,14)
(14,l)ffi(7,14')ffi(l,21)

The eg root lattice contains as a sublattice the e2 root lattice. Again we add -.1 extra zero 
to the vectors, to obtain

L?= /3+/3+/3 =^(0,1.0.1,0.0.0,0)

L+ = l++ l++l+ = (e(0.1,-1.0,0,0,0,0) + *(0.1.1,0,0,0,0,0) +

*(0,0,0.1,-1.0,0,0) 4- *(o.o.o, 1.1.0,0.0))/ ^2

We will now develop the relevant tools for the case G' = SO (3). Twist in an SO(3)-subgroup 
can be realised in all the exceptional groups except G2- F4 will be discussed in quite some 
detail.

Like in section 3.3 where G' = SU(2) was discussed, our construction can always be car­
ried out in a subgroup SU(3)2, but we will often take SU(3)M with M > 2, as this allows us to 
choose it to be a regular subgroup. This will give important simplifications in the calculations.

We will take the canonical form (in the conventions of the appendices A and B, with the 
modification that we will use capital E and H to be able to distinguish the subgroup generated 
by these from the original group, whose generators we keep on denoting by ha and ea):

[Hai, Eaj ] = 2EOJ [Hofj, Ea2] = — Ea} [Ha}, Eai+a2] = Ea]+ct2 
[^fa2’^all== = 2Ea, [M»2, +a2] = +a2
[Ea,,E_ai] =2Ha}

These are so(3)-algebra’s. The holonomies are as in (3.3.23). The (connected component 
of the) unbroken subgroup is a simple group of 21 generators. It takes a little more work to 
show that it is Sp(3) (and not SO(7)). This can be understood from the branching of E? into4 
G2 x Sp(3)
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(3.4.2)

p and q will commute when lifted to SU(3)/Z3. We take:

(3.4.3)? =P =

In terms of generators this is

(3.4.4)P

£<*1 +or2)^
exp

(3.4.5)
pE« —

Figure 3-3. The extended Dynkin diagram for SU(N + 1)

0
1

0 0

The action of the rotation R (This is a genuine rotation over 2rt/3 in the root diagram) is 
fully determined by its action on the simple roots. R is an element of the Weyl group: It is the 
composition of the Weyl reflection generated by o?2. followed by the reflection generated by 
«). The effect of R is

The commutation relations of p and q with the group generators are most easily calculated in 
a specific representation. One finds

All other relations can be found by conjugation, and the Jacobi identity.
In Sl/(3) we look for two matrices satisfying

0
0

qHa = HKaq, 
qEa — ERaq

pEa — Eap,
exp(™(a,o?i + a2))Eap,

2rti 
pq =exp( —)9P

R : a,-> «2—(“1+“2) “1 (3.4.6)

A nice mnemonic for the action of R is provided by the “extended Dynkin diagram” [17] of 
5U(3). The extended Dynkin diagram of an algebra consists of its Dynkin diagram, extended 
with one more root, —a//, with an the highest root of the algebra. The node representing 
the highest root is then connected to the diagram via the standard rules. For sh(3), — aH = 
—(a, + «2) and the extended diagram consists of 3 nodes, connected to form a cycle. The 
action of R is nothing but a rotation of this cycle by one step. For twist in the higher unitary

-£-«2

exp(2si) 0 0
1 0
0 exp(-^i)

— E-ai

-= exp 7/ai+a2^

0 1
0 0
1

2ir i

\ 3
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(3.4.7)Ph°P = ha = exp(i«,^))eRpe^p

(3.4.8)Hnaq'l'>. = qHa^>. = («A)q^x = (Ra. RXjq^k

To calculate qTaq~' we start by decomposing the representation of the group G into ,rredu- 
cible representations of SG(3)/Z3. First we construct the normalised eigenvector of the 
CSA: = (cr.X)^. It then follows that

This means that qipk is an eigenvector of the CSA with weight RX. If all weights are simple, 
as in the 1 and 10, then everything is easily solvable, as in the SU(2) case: q\pi = (t’k'l'Rf. 
with a phase. From q3 = 1, we find that <$>>.<£>Rk<t>r2r = 1- With the ladder operators one 
shows that <fk is actually independent of X (in a suitable phase convention). The following 
three combinations are eigenvectors:

0
eigenvalue exp(^y)
eigenvalue exp(—)

'I'x + 'I'Rk + 'I’R^k -* eigenvalue <p
Va + expf^jVf/a + expj^)^^ -> eigenvalue expf^)#
V'x + exp(2j1)Vri!i + exp(^)VrR2X -> eigenvalue exp(^)</>

Note that formally we have to tum to the complexification of the real Lie-algebra for this to 
make sense. For X = 0 the last two of these combinations are zero. We find that each triple of 
eigenvectors contributes d>3 = 1 to the determinant, and since all weights, apart from the zero 
weight, occur in triples we find that the determinant is equal to <p3"+l =<)>=: 1.

When not all weights have multiplicity 1, the above discussion for the non-zero weights 
applies anyway. It is the zero weight that causes the problems. The eigenvectors with weight 
zero form a subspace that will be mapped into itself, our previous methods fail, and we know 
no easy way to determine the action of q on any vector of this subspace. For the 8, the solution 
is nevertheless easy to find by realising that this is the adjoint. The zero weights of the adjoint 
representation are the generators of the CSA, the H„, on which we already know the action of 
q, and the eigenvectors of q are

Ha + Hru + HKla
Ha+exp^IHRa+exp^HRia
Ha + exp(~)W«o + exp(^)HR2„

groups we will see the same feature: the action of the analogon of the element q can be 
represented by rotating the (cyclic) extended Dynkin diagram of the unitary group by one 
step.

We now tum to the computation of the unbroken subgroup. We wish to compute the 
combinations pTa p~l and qTaq~\ with Ta the generators of G. We will generalise our 
methods for the S(7(2)-case to 5(7(3), but this is complicated by a crucial difference between 
SU(2) and SU(3): For SU(2) all weights in an irreducible representation have multiplicity 1, 
whereas this is not true for 5(7(3)-irreps. However, we will need only three irreps of 5(7(3): 
the 1 and 10, which do contain only simple weights, and the 8, which is equivalent to the 
adjoint. Note that these are all irreps of 5(7(3)/Zj.

We proceed as in the SU(2)-case. pTa p~l is easily calculated, with p = exp(i ‘  ) v/e have
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pT“p-' (3.4.9)

A'. oft + ?ft

(3.4.11)

eZ (3.4.12)

(3.4.13)

2 1(A,-,-p\ + -ft).

3.4.1 F4

possesses a PGj-subgroup with PG'i = SU (3)2. The roots of the subalgebra are contained 
in the f4 root lattice. An su(3)-sublattice is completely determined by making a choice for 
its simple roots. We take for the first su(3) factor the two roots (1, —1,0,0) and (0,1, —1,0), 
which are of equal length and have an angle in-between of 2n/3 and can therefore be used 
as simple roots for su(3). For the second su(3) factor we take as simple roots (0,0,0,1) and 
(1,1,1, -1 )/2. These two are orthogonal to the root vectors of the first su(3). To construct the 
su(3) algebra’s, we need to include appropriate normalisation factors. The first Sf/(3)-factor 
is generated by:

We can now construct the action of q on any representation of G that splits into singlets, octets 
and decuplets. As a final remark we note that these considerations imply that

pTV-1 =exp(^)T“, qT°q~' = exp(^-) T“

For the nz(3)-subalgebra of an algebra <£g, we define the CSA generators Ha^ and Ha^ 
associated to the simple roots of sm(3). Set Ha> = hpr Ha^ = hp2 for hp, € <£g- We wish to 
check how Zg branches in representation of su(3). A way to do this is to project the weights A 
of Zg to the subspace spanned by fi\ and £2. The projected weights kproj have an expansion 
of the form

= ftl.-l,0.0) Ha2 = *(0,1,-1.0)
= «(i.-i,o,O) E'a2 = e(0.1-1,0) = «(i.0,-i.0)

1 2(A„-ft + -ft)

>Jr°i =dPi+c2h (3.4.10)
The coefficients may be found by taking the inner product with the fundamental coweights 
col of 5m(3). These are identical to the fundamental weights cd, = Aj of su(3), as su(3) is 
simply laced. " : e fundamental weights can be expressed in the roots as

A^ = lft + |ft.

The Cj may now be found by computing

c, = (x^,a;.) = (a,a;.)

The last equality hold because the A' are orthogonal to A — X.proJ.
The weights of a representation of the group G as

A = A, 4-/nla'l) with ni,mj e Z

with A, the fundamental weights of G and a, its simple roots. We will demand that the 
representation of G branches into representations of SU (3)/Zs. This implies that the c, are 
integers, a condition that can be translated to

2 1 12 2
to. 3/*! + 3^2), +-^2), (“i’j



52 Non-trivial flat connections on the 3-torus

The second 5(7(3) factor is generated by

(3.4.14)

The diagonal subalgebra D is then easily constructed:

(3.4.15)

(3.4.16)

(3.4.17)P

£«1+«2>)

(3.4.18)

< = hJ2 + h«2, = 71(0.1.-1.2)

= A(i.-t.oa)

= 71(1.2.0,-1)

= «< 11.0.0) + v/2e(O,o,o. i >

= e<o.i.-i.O) + '/2e(i.i,i.-l)/2

= e(i.o.-i.O) + -x/2e(i.i ,i,i)/2

Now look for two matrices that commute, but cannot be written as exponentials of gener­
ators of D that commute. From (3.4.4)

where R is the rotation (3.4.6). The second 5(7(3) will be left as it is. We now construct the 
diagonal group D':

Ft -> 5(7(3) x 5(7(3) -» 5(/(3)/Z3
26 -> (3,3)® (3,3)® (8,1) -> 3(8) ©2(1)
52 -» (8,l)ffi(6,3)©(6,3)©(1.8) -> (10)®(10)©4(8)

'/2«(l.l.l.l)/2£“l+«2 -

= 271(0.0.0.1) Wj; = 271(1,1.1 D/2

- v^eio.o.o.D E'ai = s/2e(i,i,i1>/2

— Ed -»2-E°

H'Ka E'a - Ek

D 
-aj -a2

h^ + h^2
£i. + £«.
£i2 + £«2

+ ^ai+a2

Splitting the generators of the diagonal group as = H^ + and E^ = E^ + E% reveals 
the product structure of P and Q, which decompose accordingly as P = Pi P2, and Q = 
Qi Q2- That P and Q commute follows from the fact that they take the role of the elements 
p and q constructed previously, and that they are elements of an St/(3)/Z3-subgroup. Now 
we wish to construct P'. Our methods for St/(2) have to be generalised in such a way, that it 
produces a subgroup D' that is isomorphic to D, such that Q is an element of both D and D'. 
The appropriate generalisation has the form of a rotation of one of the two factors

By checking the conditions (3.4.12) we see that this algebra generates an SU(3)/Z3-group. 
We have A, = (1,0,0,1) and A^ = (1,1,0,0), and the inner product of these vectors with 
the simple roots of F4 all give integers. F4 has no non-integer fundamental weights. The 
decomposition of F4 into the diagonal St/(3)/Z3 is as follows:

= exp

Q = “p(^(E°+E° + E: 
\JV J

£«,=
E.“ =

£O|-H>2 = £«|-Hr2
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(3.4.19)

We set P' to be

(3.4.20)

0 e {(0,0,1,0), (1.1,0.0), (1,0,0,1), (0,1,0, -1),

(3.4.21)

E'_

E'_

However, none of these commute with P’. Hence the CSA-generators are the only ones that 
commute with both P and P'. The effect of Q on the CSA can be computed by studying 
the branching of Ft into SU(3)/Zs. Careful examination shows that all CSA-generators have 
weight zero for the 8’s in the decomposition. There is no combination of zero weights for the 
8 that is invariant under the adjoint action of Q and hence no generator commutes with P, P' 
and Q. The unbroken subgroup is therefore discrete.

We therefore have found a new flat connection: Neither the trivial flat connection nor 
the flat connection constructed in section 3.3 can be deformed to a flat connection that has 
a discrete unbroken subgroup. Note that instead of the rotation (3.4.18) we could also have 
rotated by

= *(0.1.2.-!)

= C(o.i.-i.o> + '/2c(O.o,o.d

= c(-i.o.i.o) + v/2e(t,i,i,-i)/2

= e<—1.1.0,0) + '/2e(i.i,1.i)/2

( 1,— 1,1,— 1) (1,—1,-1,— 1) y 
2’2'

=
<=

fd' —t-'ai +a2

E‘ E\la

Repeating the steps for the construction of D', this gives another diagonal subgroup, that we 
will call D". It is also possible to construct an element P" = expf^j1//^.^,). P" commutes 
with P, P', and Q, and can be used in the construction of non-trivial flat connections. The 
flat connection corresponding to Qi = P, Q2 = P' and ^3 = Q >s not equivalent to the one 
corresponding to Q| = P, Q2 = P" and ^3 = Q- These two flat connections both have discrete 
unbroken subgroups.

We remind the reader that the non-trivial flat connection in SO(7) (see section 2.4) was 
characterised by simultaneously diagonalising the three holonomies in the 7 dimensional vec­
tor representation. The 7 triples ((Qi)h,(Q2)h*(^3)»»)are th® triples (±1,±1,±1) with at least 
one —1. In Witten’s original construction, the triples (±l,±l,d=l) correspond to the positions 
of D-branes at orientifold fixed points [55].

There is a remarkable resemblance between this result and the St/(3)-based non-trivial 
flat connection in F4. We can diagonalise the holonomies constructed here. On the diagonal

E' = exp(^H°'+a,)

P, P' and Q commute by construction. Since F4 is simply connected, the gauge connection 
implied by the hcionomies Qj = P, Q2 = P' and Q3 = Q is flat and non-trivial.

Now we calculate the unbroken subgroup: first find the generators that commute with P, 
of these check how many commute with P', and finally compute the commutator with Q of 
the generators that commute with both P and P'. These computations can be done by using 
our previous results and substituting P for p and Q for q in the first step, and in a second step 
P' for p and Q for q . The only e±p that commute with P have

-O2 + Eo,2 
+ £«l+«2
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(3.4.22)n, e Z

(3.4.23)

(3.4.24)

(3.4.25)

-> (10) ©(10)® 7(8)® 2(1)

(3.4.26)

3.4.2 Eg, Ef, Eg

In Ef there is a S(/(3)3-subgroup that is suitable for our purposes. The xu(3)-fac rs have root 
vectors

-f SI/(3) x SI/(3) x 5(7(3) -»
->• (3,3,l)ffi(3,l,3)® (1,3,3) 
->■ (8,l,l)ffi(l,8,l)ffi(l,l,8) 

ffi(3,3,3)® (3,3,3)

Sl/(3)/Z3 
3(8) ©3(1)

Ef, 
27 
78

= ^(0,0.1,—1,2.0)

= h (0,0-2-1,-1.0)

= %'+e«?+e«’
= e«'2+eal+e«l
= ea}+«2 + e°i+a2 eofi+a2

h^ + h^ + h^ 

E^ + E^+E^

E^ + E^ + E^

+ E2tt,^ + El

we have the eigenvalues exp(2nin/3). Take now the triples

, 2ni/i| 2nin-> 2nin3(exp(-y-), exp(—y-), expC —y2))

and exclude the triple (1,1,1). There are 33 — 1 = 26 distinct triples, and this is precisely the 
dimension of the fundamental irrep of F4. Indeed, constructing the elements P, P' and Q in 
the 26 of F4 and diagonalising, we find that the triples of diagonal elements (Pf/, P'r Qu) are 
precisely the 26 triples mentioned above. It is an intriguing question whether this too can be 
related to an M-theory construction.

< =
<=

ed =
^a]+a2 ^ori+az "r c'ai+ct2

Checking the conditions (3.4.12), we see that this algebra generates an St/(3)/Z3-group. This 
subgroup corresponds to the decompositions

The diagonal subalgebra’s D' and D" are obtained by rotating one of the three St/(3) factors 
by (3.4.18) resp. (3.4.21). The holonomies are then Qi == P, Q2 = P' and ^3 = Q

7>=exp(^HO+a2) />' = exp(2fiH°.a2)
C = exp(^(E° + £° + £° ,_«2 - £?„, - £^2 - E°+„2))

jh(3)i: a* = (0,0,0,0,1,1), a‘ = (%/3,-1,-1,-1,—1, —1)/2;
j«(3h: ot2 = (0,0,1,-1,0,0)/, a2 = (0,1,-1,0,0,0);
xu(3)j: a3 = (0.0,0,0,1,-1), a3 = (-73,-1,-1,-1,-1,l)/2.

The relevant geometrical properties are easily verified. To construct the su(3) algebra’s, we 
need to include appropriate normalisation factors. A full exposition would be very space 
consuming, so we limit ourselves to a few points.

The diagonal subalgebra D is generated by:
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P" produces a

(3.4.27)

(3.4.28)

(3.4.29)

3.5 Constructions based on Z4-twist

(3.5.1)

It is also possible to use 517(4) for a construction of non-trivial flat connections. However, we 
need a subtle modification with respect to the SC/(2) and SC/(3) constructions. After develop­
ing the relevant tools for SU(4), we will construct the explicit realisation of this construction 
in the groups Ej and E%.

We will take the canonical form, where again we will use Ha and Ea for the generators of 
the subgroup, and ha and ea for the generators of the original group.

In St/(4) we look for two matrices satisfying

Again the subgroup D" gives rise to an element P", and the exchange P' 
non-equivalent flat connection with the unbroken discrete subgroup.

These f6-flat connections are essentially the same as the ones for F4, as can be understood 
from the decomposition.

F6 ->
27 ->
78 ->

F4 
26© 1
52 ©26

E8 —► G2 X F4

248 -> (14,1) ©(7,26) ©(1,52)

Like the mbe ... of Gz in S(?(7) of section 3.3, it is not hard to make this explicit. Take 
the ro - s of E(, ■: conventions of appendix B) and set the first and last component of each
vector cro. -ojection gives the roots of F4. Applying the same projection to the roots
(3.4.23 one fn? the S(/(3)3 subgroup of E^ projects onto an SU(3)2 subgroup of F4.

We .'urthermo.o note that, concerning the remark in the previous paragraph on the triples 
(3.4.22 j. that in the fundamental 27 irrep of E^, the holonomies can be constructed from these 
triples with the triple (1,1,1) included.

Because the Eo-lattice is a sub-lattice of the Ej-lattice, it is not hard to embed the previous 
Ef> result into £7. Working out all details, one finds two inequivalent non-trivial flat connec­
tions with an unbroken SC/(2), precisely as one would naively expect from the decomposition 
of Ei in F4 x SC/(2)

As the Ee-lattice is also a sublattice of the lattice of Eg, our construction is easily extended 
to E$. One finds two inequivalent non-trivial flat connections with unbroken subgroup G2, in 
accordance to the decomposition

2ni
pq = exp(—)qp

Ei -► Ft x $1/(2)

56 -> (26,2)0(1,4)
133 -> (52,1) ©(26,3)® (1,3)
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We take:

I
P = 9 =

\
(3.5.2)

(3.5.3)

(3.5.4)

(3.5.5)

(3.5.6)R : -(«l+<»2+“3)-» “1«1 “2 -» “3

(3.5.7)= qHa>h = (a.X)qV'x = (E«, R^q'l'k

0 
1

0 
exp(^) 

0 
0

0 
0 

exp(-^) 
0

exp(2ji) 
0
0
0

1 0 0 \
1 

0 0 0
0 0/

0 
0 0

0
0 
0 

exp(-^i) /

Just like in the 5U(3)-case this is nicely visualised by a rotation of the extended Dynkin dia­
gram of 51/(4). R is an element of the Weyl group: It is the composition of the Weyl reflection 
generated by a2, followed by the reflection generated by a2 and the reflection generated by 
a]. It is obvious that R* = 1, but on the vectors that are a multiple of ai +«3 R acts as a 
reflection, and we even have R2(a\ +<rj) = +03.

We want to compute the subgroup commuting with p and q. We will determine the effect 
on the generators Ta. To compute of the combinations pT“p~l and qTaq~t, we will need 
several representations of 51/(4). For the construction in the fundamental 56 irrep of E7 
we need the 1, 15 and 6 of 51/(4). For the construction in the adjoints of E7 and Es (the 
133 resp. 248) we furthermore need the 10 and 20 of 577(4). Note that the 6 and 10 still 
contain a non-trivial Z2 centre, which is a subgroup of the Z4 centre of their simply connected 
covering 51/(4). To compensate for the non-trivial Z2, we will use the 57/(2) factor in the 
decomposition E7 -> SU(4) x SU(4) x 51/(2). We will need only the one-, two- and three 
dimensional representation of 51/(2), and relevant facts about these representations can be 
found in section 3.3.

The calculation of pT“p~l proceeds in the same way as in (3.4.7). For qT“q~' we start 
again by decomposing the representation of the group G into irreducible representations of 
51/(4). Construct the normalised eigenvectors V'x of the CSA: = (a.^'l'l'k- It then
follows that

ni. 
exp(—)

-erj) (Eo, +02 + Ea2+a2 '

The commutation relations of p and q with the group generators are most easily calculated 
in a specific representation. One finds

pHa = Hap, qHa - HRaq,
pE„ = exp(St(a,3ori +4a2 + 3a4))EI,p, qEa = ERaq.

The action of the rotation R (which is in this case a combination of a genuine rotation and a 
reflection) is fully determined by its action on the simple roots.

p = exp

q = expl

In terms of generators this is

(™H
I “3ofi+4a2+3a3 I

(~((1 — i)(£cq + ^a2 + ~a2

~ (£-ai —a2 + ^-a2-a3) + (1 + i)(E_a) + E-„2 + E-ay

1 0
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pTa p 1 = exp (3.5.8)

I
1 1 3

A3 = 4^1 + 2h + 4a2 = xft +h + -ft

'I'k + 'I'Rk + 'I'R'-k + 'I'R'k -* eigenvalue <p
'I'x- i'I'Rk-'I'Rkk + i'I'Rix -> eigenvalue \<p

'I'k ~ 'I'Rk + 'I'Rkk - i'Rik ->■ eigenvalue - <p
'/'k + i'l'Rk-'l'Rkk-"l'Rkk eigenvalue -i0

= 0
—> eigenvalue i
—► eigenvalue — 1
—> eigenvalue — i

Note that for weights A with R2k = A, two of these combinations are zero.
The and 10 do not posses zero weights, and by checking the eigenvalues we find that the 

phase </> -- ±1. The above considerations thus determine the action of q up to an overall sign. 
In the actual constructions for E-j and Eg, this sign will be compensated for by another sign 
coming from an St/(2)-subgroup.

The 15 is the adjoint of St/(4). Among the fifteen weights there are 12 non-zero weights, 
that decompose in 3 4-cycles under the action of q. The remaining three zero weights corres­
pond to the generators of the CSA, the Ha, on which we already know the action of q. The 
eigenvectors of q are

This means that q^x is an eigenvector of the CSA with weight Rk. For simple weights, we 
have qx[/k = with </>x a phase. Because all representations we consider are represent­
ations of S(7(4)/Z2, we have q4 = 1 and we find that = 1- With the ladder
operators one shows that <px is actually independent of A (in a suitable phase convention). For 
A j4 0 the following four combinations are eigenvectors:

A^ =cl/31 + c2&+c3/33 (3.5.9)

The coefficients c, may be found by taking the inner product with the fundamental weights Aj 
of sm(4) (as su(4) is simply laced, the fundamental weights equal the fundamental coweights). 
The fundamental weights can be expressed in the roots as 

, 3 1 1 , 1 „ n 1
A| = -ft+~ft+-ft ^2-2a-. .^.2

Ha + HRa + + ^R^a
Ha — \Hru — HR2a + iHR3a

Ha — Hro + HR2a — HRya
Ha+\HRa-HR2a-\HR3a

The last irrep we wish to consider is the 20. The easiest way to reconstruct the action of q 
in this irrep, is to use the decomposition of the tensor product of two 6’s: 6 0 6 = 1 © 15 ® 20. 
From this decomposition we quickly find that the 20 has 18 non-zero-weights, which under 
the action of q decompose in 4 4-cycles and one 2-cycle. The two zero weights form a 2-cycle.

We note that these considerations imply that

/27tin\ /2nizn\r- ^*=exp(—)
To compute the representations of SC/(4) we follow the same route as for St/(3). Define 

the CSA generators //„•, //„■ and Ha^ associated to the simple roots of su(4). Set ,
for hp, e JLq. To determine how Zq branches in representation of s«(3) project the weights X 
of Zq to the subspace spanned by fi\ and fit. The projected weights Xpr°' have an expansion 
of the form
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The c; may again be found by computing

(3.5.10)

(72,0,0,0.0,0,0) 3.5.11)

For the first SU(4) factor that we will label St7(4)i, we take as roots:

«}= (0,0,0,0,0,1,1) c»2 = (0,0,0,0,1, —1,0) a] = (0,0,0,0,0,1,— 1) (3.5.12)

The second SU(4)-factor (SU (4)2) has as roots:

a? = (0,0,1,1,0,0,0) a\ = (0,1,-1,0,0.0,0) af = (0,0,1,-1,0,0,0) (3.5.13)

With these roots we have the following branching rules for £7 into 5 1/(2) x 5 U (4)

(3.5.14)

(3.5.15)

The 5(7(2)-factor has as its generators

L+ — e(V2.o.o,o.o.o.O)/'?Z2 (3.5.16)£3 — 72,0,0.0.0.0,0)

In the 5(7(4) x S(7(4)-part we construct as usual a diagonal subgroup D. We only list the 
Cartan generators:

Hat = >>(0.0.1.1.0.1.t)

= h(o.i.-i.o,i,-i.o) 
w«3 = *(0.0,1,-1,0.1,-t)

33.1 E-j, Eg

As mentioned before, we need the subgroup of £7 whose universal cover is 5(7(2) x 5(7(4) x 
5(7(4). This subgroup can be chosen to be regular, such that its lattice is a sublc'tico of the 
El-lattice. We take as 5(/(2)-root:

x 5(7(4)

^ = ^,4;) = (a, a;>

We compute the inner products of the weights of Eq with (l/\/2,0,0,0,0,0,0) to find the 
SU(2)-representations (if the inner product is integer, the corresponding weight belongs to an 
50(3) representation, otherwise it is a genuine SU(2) representation with Zj-centre (28)). 
To check the 5(7(4) irreps, it is sufficient to compute ci (see (3.5.10)) for the diagonal group, 
ci is found by computing the inner product of the weights of £7 with =
(0,1,1,1,1,1, l)/2 (where a? =a- +aj are the simple roots for the diagonal group). Defining 
c') = ci mod 1, there are 4 possibilities. If c\ = 3/4 the weight belongs to a representation of 
the fundamental 5(7(4), for c'j = 1/4 it belongs to an irrep that is congruent to the complex

£7 -» 5(7(2) x 5(7(4) x 5(7(4)
56 -v (l,4,4)ffi(l,4,4)®(2,6,l)ffi(2,l,6)

133 -> (1,15,l)ffi(l,l,15)®(3,l,l)ffi(l,6,6)®(2,4,4)® (2,4,4)
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(3.5.17)

D

in the diagonal .S t . -sy oup, and

(3.5.19)Psuai = exp(inZ.3)

PsC/(2)2s(/(2)V,A = 2sU(2)7’sU(2)VrAPsuwQsuw'I'x = QsuwPsuw'I'x

If the weight X belongs to a faithful (SU(4)/Z2) x SU(2)-irrep, we have

PsumQsu{2)'l'x = —QsumPsum'l'kPsuwQsuw'l't. = —QsuwPsuw'I'x

The products

(3.5.20)Q = QsumQsuw

(3.5.21)-(at + a2 + a3)R : or i —> 02 —> a3 «l.

Psuw — exP( 4 ^£|+4a2+3«3) (3.5.22)

The same considerations as above lead to the conclusion that the element

(3.5.23)

to the first 5£/(4) factor and then reconstructing the diagonal subgroup. In this diagonal sub­
group we construct an element

in the SI7(2) group. For a weight X with corresponding eigenvector that belongs to an 
(SC/(4)/Z4) x SO(3)-irrep, we have

commutes with P and Q, and hence we have three candidate holonomies = P, Q2 = P' 
and Qj = Q.

+ E-a,

P' ~ PsumP'sUW ~ eXP( 4 ^(72.0.-l.-2,2.l.0>)

Qsum = exP ( y(£+ + L-)

+ e£+«3) (3.5.18)

+ ED )) ’ eq+a2+Of3-'-'

p = Psumpsum - exp(y/l(72,2,l.0.2.1.0))’

are commuting elements of E-j, since they commute on each weight of any representation. We 
construct another diagonal subgroup D' in SU(4) x St/(4) as usual, by applying the rotation

conjugate of the fundamental, for c, = 1/2 the irrep is congruent to Sl/(4)/Z2, and if ci = 0 
the irrep is congruent to S(7(4)/Z4. Careful examination shows that all weights of E-] fall into 
two categories: One category is formed by weights that are in an irrep of (Sf/(4)/Z4) x S0(3), 
while the second category consist of weights that are in an faithful irrep of (SC/(4)/Z2) x 
SU (2). We now construct the elements

Psui4) = exp^//£,+^+3oj^

Qsum = exp ^-((1 - i)(£® + _O2_,

+ E°„2_.J) + (H-i)(E°., + Ef.2
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(3.5.24)(1,1,0,0,0,0,0,0)
One 5(7(4) factor has as roots:

(3.5.25)

A second SU(4)-factor is generated by the roots:

= (0,0,0,1,1,0,0,0)
(3.5.26)

“i

Of2

“3

= (0,0,0,0,0,0,1,1)
= (0,0,0,0,0,1,-1,0)
= (0,0,0,0,0,0,1,-1)

«2 = (0,0,1,-1,0,0,0,0) 
<*3 = (0,0,0,1,-1,0,0,0)

Next we calculate the unbroken subgroup. Computing the commutators of the generat­
ors of Ey with P and P', we find that only the CSA-generators of Ey commute with both 
P and P'. These CSA generators correspond to zero weights in the representation of the 
SU(2) x SU(4) x SU(4) subgroup, and from previous considerations we know that there is 
no combination of zero weights of the adjoints of 5(7(4) or 5(7(2) that commutes with Q. 
Hence we find that there is no generator that commutes with P, P' and Q, and the unbroken 
subgroup is at most discrete.

Instead of the rotation R given by (3.5.21), one could also apply the rotations R2 or P3 
to construct elements that we will call P" resp. P"'. The holonomies Q] = P, Q2 = 
and Q3 = Q also only commute with a discrete subgroup of E7, and give a no--trivial flat 
connection inequivalent to the one implied by Qi = P, Q2 = P' and Q3 = C The non­
trivial flat connection implied by Qi = P, Q2 = P" and Q3 = Q gives a bigg broken 
subgroup. The unbroken symmetry group can be calculated to be (7(1)3, and th: non-trivial 
flat connection is actually a gauge deformation of the flat connection constructs i; section 
3.3, based on twist in 5(7(2). Therefore the construction based on twist in 5(7(2) x . (7(4) x 
5(7(4) gives two new vacua with discrete symmetry group, and a gauge deformation of a 
vacuum configuration that we have encountered before.

We wish to point out that also the SU(4)-based construction in Ey fits into a pattern. We 
already remarked that the G2 and 50(7) non-trivial flat connection can be described by the 7 
triples (±1,±1,±1) with at least one —1, and that the SU(3)-based construction in F4 can be 
characterised by the 26 triples (3.4.22) with at least one element not equal to 1. For the 5(7(4)- 
based construction, the eigenvalues that appear on the diagonal of the diagonalised holonomies 
are i". Consider now the triples (in|,i”2,i"3) with nj € Z. There are 43 = 64 distinct triples. 
Now exclude all triples that are not of order 4, by which we mean that we demand each triple 
to contain at least one i or —i. We are then left with 64 — 23 = 56 triples. 56 is precisely 
the dimension of the fundamental irrep of Ey, and indeed, constructing the holonomies in this 
representation and diagonalising, we find that the triples ((Q])n,(Q2)n»(^3)n) are precisely 
the triples mentioned above.

The SU(2) x 5(7(4) x SU(4) construction of Ey can be easily embedded in E% by using 
the fact that the E7-lattice is a sublattice of the Eg-lattice. More specific, we can take as 
5(7(2)-root:
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(3.5.27)

3.6 ns based on Zs-twist

(3.6.1)

We take:

\

<? =P

\ 1\

In terms of generators this is

(3.6.3)

(3.6.4)

with

(3.6.5)+ 2a

(3.6.6)+ 2b

The third vacuum is, as for £7, 
constructed in section 3.3.

0
0
0

0
0
0

/ 0
0 0

/ exp(^) 
0
0
0
0

With this information it is trivial to copy the £7 construction. Like in the Ey-case, one finds 3 
vacua. For two of these, the subgroup unbroken by the £7 holonomies is SU(2). This is to be 
expected, since £j decomposes into £7 x Sf/(2):

a gauge deformation of the vacuum based on twist in SU(2)

( 4ni\ /4xiV exP(-—)-exp(—/

/27ti\ / 2ni\exp(_J_exp(- — j

exp(

2ni 
pq = expt—jqp

A construction based on the group SU(5) is also possible, but only in the largest exceptional 
group E%. We will again use Ha and Ea for the subgroup, and ha and ea) for the original 
group.

In 5(7(5) we look for two matrices satisfying

2ni\ /2jti\-kexpM
/ 4ni\ /47ti\ 

exp exp

0
0
0
0 

exp(-^) )

Eg £7xS(/(2)
248 -> (133,1) ©(56,2)® (1,3)

0 0
exp(?y1) 0

1
0 exp(-^)
0 0

1 0 0 0 \
1 

0 0 0
0 0 0 0

0 0 0 0 /
(3.6.2)

0 0
1 0

1

/ jri \
p = exp I — 7/40'1 +6012+6«3-f-4«4 I

— ■ exp2^' (^(a' ^“2 d~ d- ^04 d- E_(a| 4-02+0'3+<*4)) d-

£(£of|+<»2 d” £or2+a3 d“ ^«3+«4 d” (cq+or2+a3) d" (o’2+a3+flf4))

+complex conjugate))
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(3.6.7)

(3.6.8)R : «4 -> -(at + «2 + «3 + ai) at«1 «2 “3

3.6.1

1 1 1 1 1 (3.6.9)

while the second S(/(5)-factor will have roots

(3.6.10)

The decomposition of Eg into this SI/(5) x SU(5) for the adjoint is given by5

(3.6.11)

a'= (0,0,0,0,0,0.1,1), 

a] = (0,0,0,0,0,0,1,-1).

The commutation relations of p and q with the group generators are most easily calculated 
in a specific representation. One finds

£8

Only Eg allows a suitable PG'2-subgroup with PG'2 = Sl/(5) x Sl/(5). We take as root 
vectors for the first Sl/(5)-subgroup

a? = (0,0,0,1,-1,0,0,0), 

«3 = (0,1,-1,0,0,0,0,0),

St/(5) x SU(5)
(24,1) ® (1,24) ® (10,5) ffi (5,16) ffi (5,10) ffi (10,5)

<4 = (0,0,1,-1,0.0.0.0), 

= (-1,-1,0,0,0,0,0,0).

pHa = Hap,
pEa = exp(y(a,4ofi + 6a2 + 6a3+4a4))Eap,

The action of the rotation R (which is in this case a genuine rotation) is fully determined by 
its action on the simple roots.

E*
248

qtia — Unaq, 
qEa = Enaq.

Again this can be conveniently depicted by a permutation of the roots of the extended Dynkin 
diagram of SU(5). R is an element of the Weyl group: It is the composition of 'he Weyl 
reflection generated by a4, followed by the reflections generated by 0*3, 0*2. and c .

For the calculation of the unbroken subgroup we will only need the action of . • on the 
zero weights of the adjoint. These are the CSA-generators, on which the action of q is easily 
diagonalised. The only fact we will need is that there is no linear combination of CSA- 
generators that commutes with q.

The congruence classes of the irreducible components of St/(5) x SL7(5) are then1 (0,0) with 
multiplicity 2, and (3,1), (1,2), (4,3) and (2,4) all with multiplicity 1. We note that for 
each congruence class (x,y) we have x + 2y mod 5=0. Since all Eg representations are 
isomorphic, this must automatically hold for any Eg representation.

5We will label the irrep with Dynkin labels (1000) as 5 and the irrep with labels (0010) as 10. We define 
the congruence class of the representation with Dynkin labels (n1.n2.M3.w4) to be labelled by the integer 
nj + 2n2 + 3h} 4-4/14 mod 5.

2’ 2’ 2’ 2’ 2’ 2’ 2X 

a] = (0,0,0,0,0,1,-1,0),

1 1
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Pi = exp (3.6.12)

Qi = expi

Qi Pi '/'i (3.6.14)

Pi Qi(P2~)2Q2'/'i = exp QiPiQ2(P2)2^ = QiPiQ2(.P2)2^ (3.6.15)

Hence the elements
(3.6.16)

(3.6.17)

(3.6.18)P exp

(3.6.19)

rij G Z (3.6.20)

2ni(ni +2n2)^

PiQi'I'x =exP^“^“^

From the >bove observation on congruence classes it follows that for any weight A of E% we 
have

We now construct the elements

( +6a^+6orj +4a; )

/2jti
+ E^2 + + + +»'+«')> + (3.6.13)

6<£a{+«‘ + £a‘+a' + £a'+cr' + £-(aj+«'+a') + £-(a'+a‘+a')> 

-(-complex conjugate))

When actmg on an . ^envector Vet, corresponding to a weight A that belongs to an irrep with 
SU(5) x 5)-cor:: ;nce class labelled by (n i ,M2), Pi and Qi obey the following commut­
ation nib:

P = Pi(P2)2, 2 = 2122

commute. A third commuting element is constructed in the standard way: 

p' = Q-nPQ\ = Qn2PQ-n

n can range from 1 to 4, and therefore there are 4 different flat connections constructed this 
way. We will work out the case where n = 1.

In that case we have
(nil, \
I yn(-6,2.-2,-6.-10.4.2.0) I 

P' = exp (yh(-2.-2.-«.-10,6.4,2.0) j

After a somewhat tedious calculation we find that none of the ladder operators ep of Eg com­
mutes with both P and P', so we are only left with the 8 Cartan generators. We have to check 
whether these commute with Q. Q has been constructed in such a way that it is an element 
of the diagonal St/(5)-subgroup, so we can apply our previous methods. The elements of the 
Cartan subalgebra are also the CSA elements for St/(5) x SU(5), and we know that none of 
these are invariant under commutation with Q (Q takes the role of q in the diagonal subgroup 
of SU(5) x SU(5)). Hence no group generator commutes with P, P' and Q simultaneously, 
and the unbroken subgroup is at most discrete.

For the SU(5) based construction, the eigenvalues that appear in the diagonalised holo- 
nomies are exp(^EL). Consider now the triples

2nini 2nin2. 27ii/n
(exp( —-—), exp( —y—), exp(—y—))
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3.7 Constructions based on z6-twist

3.7.1

(3.7.1)
(3.7.2)
(3.7.3)
(3.7.4)
(3.7.5)

If one excludes the triple (1,1,1), there are 53 — 1 = 124 distinct triples of this type. Unlike 
the cases we considered previously, 124 is not the dimension of any representation of Eg. 
The smallest non-trivial representation of E$ is the 248-dimensional adjoint. Constructing 
the holonomies in the adjoint and diagonalising, one finds that the 248 triples (P„, P',, Qu) 
consist of precisely two sets of the above 124 triples.

At first sight all possibilities seem to be exhausted, since constructions with SU(V). /V > 5 are 
impossible because the exceptional groups are not big enough to contain more th i one S U (6)- 
factor. There is however still one more possibility, based on our previous consti ' ' ns based 
on SU(2) and SU(3). It is easy to see that E& allows the 5(/(2) non-trivial flat mr.ection to 
be realised simultaneously with the SL/(3)-flat connection.

«i=(Pg2,Pf4) Q2 = (Pg2’Pf4) ^3 = (Gg2,Cf4) 
«i=(Pg2,Pf4) Q2 = (PG2,P/4) «3 = (Qg2,2f4) 
«!=(Pg2,Pf4) Q2 = (P£2,Pf4) ^3 = (Qg2,(2f4) 
«i=(Pg2.Pf4) Q2 = (Pg’,p;4) Q3 = (Gg2,(2f4) 

^i=(Pg2,Pf4) Q2 = (Pi2,P;4) Q3 = (2g2,Qf4)

However, not all of these are new. The flat connection implied by the holonomies (3.7.2) has 
twice the element PGz in the G2-factor: This means that in the G2 subgroup the connection 
can be deformed to a trivial one, and only the F4 part is non-trivial. This is a deformation 
of one of the flat connections based on 5U(3)-twist that was already constructed previously. 
Similarly the flat connection implied by the holonomies (3.7.4) is deformable to the other flat 
connection based on SU(3)-twist. The flat connection implied by (3.7.3) is trivial in its F4 
factor, and only non-trivial in its G2 part. It is therefore a deformation of the flat connection in 
Eg that was constructed in section 3.3. The remaining two flat connections are new. We note

*8

According to the decomposition (3.4.29) Eg allows a G2 x F4 subgroup (in this case we are 
dealing with a subgroup that is a genuine product). In section 3.3 we constructed holonomies 
for a non-trivial flat connection in G2, that we named P, P' and Q. Here we will rename 
them to PG,, Pq2 and Qg2 to avoid confusion. F4 allows different types of non-trivial flat 
connections. We will use the non-trivial flat connections constructed in section 3.4.1, and will 
rename the holonomies P, P', P" and Q constructed there to Pf4, P'Fi, PFi and 0f4- Decom­
posing Eg into its G2 x F4 subgroup, elements of this subgroup can be denoted by a pair of 
elements (gG2,gF4) with gGz G G2 and gFi G F4. Therefore (PGz, Pf4) and (QGz, Qf4) repres­
ent commuting elements of Eg. A third commuting element can be constructed by applying 
the standard procedure of rotating group factors to both elements of the pair to construct the 
element (P^2, Pp4). The rotation can be applied multiple times to construct multiple triples. 
We have the following possibilities:
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3.8 < \ ua

£s -> E6Ej

SO(2N) -» S0(8)
(3.8.1)

SO(7) g2Ft

SO(2N + l)

that, to commute a generator with the Q,, we can commute it first with the G2-element and 
then with the Ej-element. We can choose a basis of generators such that they commute or anti­
commute with the G2-elements, and they commute up to a Zj-element with the F4-elements. 
We conclude that to commute with the a generator has to commute with both the G2 and 
the Fi-elements. The generators that commute with the G2 part of the holonomies generate 
the F4 subgroup in the decomposition G2 x F4. The F4 part of the holonomies breaks this F4 
group completely. Hence only discrete symmetries commute with the holonomies constructed 
here.

We will 1. he <ii. mt vacua by an integer related to the centre of the appropriate SUIN') 
embeddings .equir. -or twisting. Hence the integer is taken to be N for the SU(N) based 
construct;, i: and 6 for the SU(2) x 5(7(3) construction. Obviously we reserve the label 1 for 
the trivial component.

The essence of the 5(7(2) based construction is the existence of a suitable subgroup PG'N 
within a G2 subgroup of G. The non-trivial flat connections arise through the decomposition 
of G into G2 x H, with H the maximal subgroup commuting with G2. It is the CSA of H 
that determines the deformations of the non-trivial G2 connection as embedded in G, fixing 
the dimension of this connected vacuum component (rank(H)). Since H commutes with 
the G2 subgroup containing the holonomies, it also plays the role of the maximal unbroken 
subgroup, apart from some global discrete symmetries. Compare the situation to Witten’s 
D-brane construction [55].

Our construction presented here goes via the chains

It is this general feature that repeats itself for the SU(N > 2) based constructions. For 5(7(3) 
the role of G2 is played by F4, with the embedding chain E% —► Ej -*■ Ef> —► F4. For 5(7(4) 
the role of G2 is played by £7, with chain E% —> £7, and finally for 5(7(5) and 5(7(2) x 5(7(3), 
£s stands alone.

Our results are summarised in table (3-1), which presents the connected component of the 
maximal unbroken subgroup for each vacuum-type.

So far we have concentrated on the classical gauge fields. For a calculation of the Witten 
index Tr(—)F, these should be quantised, and the fermions should be included. The computa­
tion is essentially the same as in chapter 2 and [52] [55]: Each vacuum component implies a 
unique bosonic vacuum, and fermions can be added in r' 4-1 ways, where r' is the dimension 
of the vacuum component, which is equal to the rank of the unbroken subgroup. Thus each
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Table 3-1. The connected part of the maximal unbroken subgroups

652

Table 3-2. Contributions to Tr(—1)F

(1 + D
(1+1)
(2+2) (1+1)
(3+3) (2+2) (l+l+l+I) (1 + D

discrete
SU(2)

1
SIZIN') 
Sp(N)

SO(2N + V) 
S0(2N) 

Gt 
Ft 
E6 
Et 
Et

discrete 
discrete 
SU (2) 

Gt

Vacuum-type
3 4

SO(2N-6) 
SO(2N-7) 

discrete 
SO(3) 
51/(3) 
Sp(3)

Fa

N-2
N-3

1
2
3
4
5

h 
N

N + l 
2N-\ 
2N— 2 

4 
9 
12 
18 
30

Group 
G

SU(N) 
sPm

SO(2N + 1) 
SO(2N) 

Gt 
Fa 
E6 
Et 
Ei

Group 
G 

sum 
sPm 

5O(2N+1) 
SO(2N) 

Gt 
Fi 
Ei 
Et 
Ei

1
N

N + l 
N + \ 
N + l 

3 
5 
7 
8 
9

Vacuum-type 
3 4

vacuum component contributes r' +1 to Tr(—)F. In table 3-2, we list r' + 1, wnere r' is the 
rank of the group listed in table 3-1. The columns labelled by 3,4,5,6 contain more entry’s to 
indicate that there is more than one vacuum component for each type. Finally, table 3-2 also 
lists the dual Coxeter number for each group. It is easy to verify that (2.5.3) is satisfied.



4 Almost commuting triples

4.1 Reduction of the rank for gauge theories on an n-torus

In chapter 3 the starting point was a 2-torus with two commuting holonomies. A third holo- 
nomy commuting with the first two was then constructed. In [6] [26] an opposite viewpoint 
was taken. First one holonomy is constructed with a special property, and then the remaining 
two. This is motivated below.

A configuration of gauge fields at an /i-torus with commuting holonomies can be construc­
ted with all gauge fields taking values in the CSA of the gauge group. A maximal Abelian 
subgroup commuting with the holonomies may then be obtained by exponentiating the ele­
ments of the CSA. The centraliser of the holonomies has then the same rank as the original 
gauge group.

We are interested here in configurations of gauge fields such that the rank of the subgroup 
that commutes with the holonomies is smaller than the rank of the original gauge group. Not 
all holonomies can be chosen to be on a maximal torus in this case.

To describe the various possibilities, we consider compactification of a gauge theory with 
gauge group G on an n 4- 1-torus, such that n holonomies can be chosen on a maximal torus 
of G, and the last one cannot. We may now write Tn+1 = S1 x Tn. There is a holonomy Q 
along the circle we have split of, and we will take it to be one of the holonomies that lies on 
a maximal torus of G. The n holonomies along the directions of Tn commute with Q, and 
hence lie in the centraliser Z(Q) of Q. Of these n holonomies, n — 1 can be put on a maximal 
torus of Z(Q), but one cannot, due to our starting assumption. We have not specified the size 
of the circle, and we may consider shrinking it to zero size. Dimensional reduction then leads 
us to a gauge theory with gauge group Z(Q) compactified on a Tn, leading us back to our 
starting point, with the torus dimension n 4-1 replaced by n, and the gauge group G replaced 
by Z(Q), which has the same rank as G. Repeating these steps we finally arrive at a gauge 
theory on a circle, with some gauge group G', and a holonomy Q' that cannot be put on the 
maximal torus.

A single holonomy that is an element of the part of the gauge group G' that is connected

In chapter 3 it was shown that for gauge theories on a 3-torus, sufficient vacuum solutions 
exist for all exceptional groups. In a more formal approach, one may also prove that there are 
no more solutions than the ones already constructed. In this chapter we will review parts of 
[26] [6]. and point out the relations with our work as described in the previous chapter. In 
[6] also the generalisation to general boundary conditions was undertaken. We will reproduce 
parts of their analysis for gauge theories on a 3-torus with classical groups in the chapter 5, 
using a diffe-enl app oech. In [6], a method for calculating the Chem-Simons invariant was 
developec ill b. .sowed in section 4.4. This invariant will play a role in the considera­
tions of chapter 6.
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(4.1.1)

The coordinate <p on the circle is indeed reflected. In a (7(1) formulation R corresponds to 
complex conjugation C, as this acts as expi0 -> expi(—</>).

The connected part of 0(2), which is S0(2), has rank 1. The centraliser of diag( 1, — 1) in 
0(2) is 0(1) x 0(1) = Z2 x Z2. Being a discrete group, it has rank 0, and we have indeed 
succeeded to reduce the rank.

This procedure can be used on any group that is disconnected, or possesses an outer auto­
morphism. Examples of outer automorphisms can be found for the simple compact non- 
Abelian Lie-groups St/(n), S0(2n) and E^. Products of groups that contain several iso­
morphic factors Gi posses outer automorphisms that permute the Gt amongst each other. The 
latter possibility is well known in string theory for the case of the Eg x Eg gauge group of the 
corresponding heterotic string. The outer automorphism exchanging the two Eg factors can 
be used in a holonomy when compactifying the Eg x Eg heterotic string on a circle [8], to give 
the CHL-string [7].

An outer automorphism does not map every representation to itself. Therefore for any 
representation present in the theory, one should require also its image under the automorphism 
to be present, otherwise the automorphism is not a symmetry of the theory.

We now return to our original theme, which was compactification of gauge theory on a 
torus with reduction of the rank. Consider a gauge theory on a 2-torus with gauge group G 
(which we will now assume to be connected). We write the 2-torus as a product of two circles 
S° x 5^, around which there are commuting holonomies Qa, resp. Qj,. When we assume that 

is an element of the maximal torus of G, the centraliser Z(Qa) of Qa has the same rank 
as G. We may still achieve reduction of the rank if Z(Qa) is not connected, such that we can 
pick Qb to be an element of the part of the Z(Qa) that is not connected to the identity. This is 
the situation that occurs in’t Hoofts twisted boundary conditions [23] [24].

As an example consider an SO (3) gauge theory on the 2-torus. The holonomy will 
be set to diag(—1, —1,1). The centraliser of Qa is a subgroup of SO(3) that is isomorphic to

/ 1 0 \ / cos</> — sin</> \ / 1
\ 0 — 1 ) \ sin</> cos0 / \ 0

0 \ / cos(—</>) — sin(—</>)
I ) ~ \ sin(—0) cos(-</>)

to the identity can always be put on a maximal torus of G'. So Q' is not part of the connected 
part G'c of the gauge group. Upon traversing the circle with holonomy Q', we certainly return 
to a point with the same local physics. Therefore Q' must specify an automorphism of G' 
acting by conjugation on the group itself. In particular it maps the connected part G'c of the 
group to itself (as it maps the identity, which is an element of the connected part to itself). As 
Q' is an element of a disconnected part of the gauge group, it is an outer automorphism of G'c.

As an example of a theory with rank reduction we consider a theory with G'c = SO (2) = 
(7(1) compactifled on a circle Sb, which we will use as base manifold for a bundle. The 
group manifold of S0(2) is a circle Sf, which will be the fibre. The circle has as a reflection 
symmetry R. It is thus possible to demand that upon traversing the circle Sb, the fibre 5/ is 
reflected. The reflection symmetry is not an element of SO(2), but nevertheless an automorph­
ism. The structure group of this bundle is not S 0(2), but a semi-direct product of S 0(2) with 
the Z2-group generated by the reflection R. In this specific case this group has name, it is 
0(2). The element R can be represented as diag(l, — I), since
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0(2), as it has an O(2)-block in the upper left comer, completed by ±1 on the third diagonal 
position to make the total determinant 1. From our previous example we know how to reduce 
the rank of an O(2)-theory. Therefore we set = diag(l, — 1, — 1). The centraliser of Qa and 
Qi, is a discrete group which has rank 0, which is smaller than the rank 1 of 50(3).

As we require an element from a connected group G to have a disconnected centraliser, 
G should be non-Abelian. Assume now that G is simple. A theorem by Bott (as quoted in 
[26] [6]) states that the centraliser of any element from a simple and simply connected group 
is connected, and hence G should be a non-simply connected group. Possibilities for these 
are SU(n), Sp(n), SO(n), Ef> and Ey quotiented by a non-trivial subgroup Z of their centre. 
The possible representations of the gauge group are restricted to those representations that 
represent the elements cf Z by the identity.

We now move on to the 3-torus, and assume a simply connected gauge group G. The 
3-torus may be split in the product 51 x T2. Along the circle 51 we assume a holonomy Q 
that is an element of the maximal torus of G. From the above discussion for gauge theories 
on the 2-torus, we know we can achieve rank reduction if the centraliser Z(Q) of Q is not 
simply connected. The classification of group elements of simple groups that have a non- 
simply connected centraliser is the topic of the next section. One finds that Spin(n > 7) and 
all exceptional groups allow such elements.

One may extend the line of reasoning to still higher dimensional tori. For a gauge theory 
with gauge group G on an zz-torus Tn, one has a set of n holonomies. Assume that no proper 
subset of these n holonomies has a centraliser that has a rank smaller than the rank of G. A set 
of n holonomies obeying this condition will be called a non-trivial zz-tuple [26]. In the above 
we saw examples of non-trivial 1-, 2- and 3-tuples (2- and 3-tuples are also often called 
pairs and triples. In [6] 2-tuples are called c-pairs, 3-tuples are called commuting triples)

To construct a non-trivial zz-tuple, one may proceed as follows. Suppose an zz-tuple is 
non-trivial, and pick one element Q from the zz-tuple. By definition the remaining (zi — 1 )— 
tuple is trivial in G; the centraliser Z(Q) of Q has the same rank as G. The (zi — l)-tuple forms 
a set of commuting elements of Z(Q), but the centraliser of the (zz — I )-tuple has a rank smaller 
than that of Z(Q). Therefore the (zz — l)-tuple is non-trivial in Z(Q). Note however that the 
existence of a non-trivial (zz — l)-tuple in a subgroup Z(Q) is only a necessary condition, but 
not a sufficient one. A non-trivial (zz - l)-tuple in Z(Q) lifts to a rank reducing zz-tuple in G 
by adding Q to the (zz — l)-tuple. It then remains to be investigated whether the zz-tuple is 
non-trivial.

For non-trivial 1—, 2— and 3-tuples we avoided this question by successively imposing re­
strictions on the gauge group. We studied 1-tuples for general groups, 2-tuples for connected 
groups and 3-tuples for simply connected groups. For zz-tuples with zz > 3 there is no success­
ive restriction on the group. However, by the above analysis one can show that the number 
of possibilities is very limited, and one may perform a case by case study as performed in 
appendix D of [26]. Here we will just quote their results.

The simple groups containing non-trivial 4—tuples are Spin(n > 15). These groups have 
elements that have as centraliser Spin(k\) x Spintkj) with both ki > 7. By constructing a 
non-trivial triple in each of the Spizz(Ar,-)-factors, and combining this with the holonomy that 
gave the subgroup one finds a non-trivial quadruple.
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4.2 Non-simply connected subgroups

/lottQ +/i1a/ = 08o«o + 8i«i =0

+ = 1 (4.2.2)

The group element g does not define a unique Adding a coroot to $

(4.2.3)0+<rv,0

with go = ho = 1. The g, and hi are always bigger than zero. As a,v = 2a,/(a,,a,), the g, and 
hj are related by g, = 2/i,/(a,,a,). Note that g,a, = h,a^.

A single element g of the group may, after conjugation, be taken to on the maximal torus, 
in which case it can be written as

leaves g invariant. Conjugation with suitable group elements implements the Weyl reflections, 
which act on fi as

/I ~/i — (a,/l)av (4.2.4)

This does not leave g invariant but transforms it to an equivalent element. These ambiguities 
can be fixed by choosing a suitable fundamental domain under all these transformations. Such 
a fundamental domain is called an alcove. We take without proof the assertion from [26] that

g =exp(2nih^j, (4.2.1)

with hp an element of the CSA. Define a basis co, for the coweight lattice by (a,, co,} = 4,7, 
with a; the simple roots of the group. The coweights form a complete basis, and hence we 
can expand ft = ^Sicoi, with s,- = (a,,/I). It is also convenient to define so = («o,Z7 + 1- We 
see that

We now return to the 3-torus. Consider a simple and simply connected group G. We need an 
element G that has as its centraliser a non-simply connected subgroup. The analysis can be 
done with the aid of the extended Dynkin diagram of the group. The nodes of the extended 
diagram correspond to the simple roots, and one extended root, which is minus the highest 
root. We will also need the root integers and coroot integers, defined by the relations

For rank reducing theories on the 5-torus, one may take a gauge group G with an ele­
ment Q whose centraliser allows the above construction on the 4—torus. The simple groups 
Spin(n > 31) have elements with centraliser Spin(k\) x Spinfe) with both k, > 15. Con­
structing a non-trivial quadruple in each factor gives a non-trivial quintuple. The exceptional 
group Eg also allows a non-trivial quintuple. It has an element with centraliser Spin(16), and 
in Sp/n(16) a non-trivial quadruple can be constructed.

One may extend to tori of arbitrary dimension, but only with Spin(n) groups of sufficiently 
high rank. On an n-torus one may achieve rank reduction with the gauge group Spin(m') with 
m > 2" — 1. These groups have elements with centraliser Spin(ki) x Spinfkz) with both 
hi > (2'1-1 — 1). In both factors non-trivial (n — l)-tuples should be constructed to achieve the 
desired result.
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(4.2.5)

(4.2.6)

(4.2.7)1exp

I;;

Similarly, the coroot lattice of Zss(g) may be obtained as a sublattice of the coroot lattice of 
G. This lattice is generated by a/ with i G I, i 0, and, if so was zero,

n G Z

K = = ft
Hi

Now suppose k = gcd(/i,^/) > I. We have the result

because /k corresponds to a coroot of the gauge group G. 0q Ik is however not a coroot of 
Z„(g). That it nevertheless gives the identity in Z(g) must mean that it is a coweight, but co­
weights can only represent the identity if the group is not simply connected. The fundamental 
cell of the coroot lattice of the semi-simple part of the centraliser contains k of these points 
which are f%n/k for n = {0,.. .k — 1}. This implies that the Zss(g) is &-fold connected.

The centraliser obtained this way was found by erasing nodes of the extended Dynkin 
diagram that had associated to them coroot integers divisible by k. To obtain a “minimal” 
non-simply connected group, one may choose an element that has as the semi-simple part of 
its centraliser the group represented by all nodes with coroot integers not divisible by k. This 
leads to table 4-1. The entries in the table are familiar, as they are the subgroups used in the 
previous chapter to construct non-trivial fiat connections on the 3-torus. Perhaps the only 
unfamiliar entry is the last one in the table: Eg with subgroup 5(7(6) x SU(3) x 5(7 (2)/Zg, 
whereas we used 5(7(3)2 x SU(2)2/Ze in the previous chapter. Note however that is 
isomorphic to Z2 x Z3. There exists a SU(2) x 5(7(3)-subgroup of 5(7(6), where the factors 
are embedded such that the Z2-centre of 5(7(2) and the Z3-centre of 5(7(3) form the Zg- 
centre of 5(7(6) (obtained for example by tensoring the 2 of 5(7(2) with the 3 of 5(7(3) which 
gives a 6-dimensional matrix group that is a subgroup of the 6 of 5(7(6))

i

all Sj can be chosen such that sf > 0. The formula (4.2.2) then implies that all s< < g~l. This 
defines a specific alcove, which is called the fundamental alcove.

For a given ft we may now define the set of indices I = {/ : s, = 0}. Consider the ladder 
operators ea of the Lie-algebra of G. The a can be expanded in the simple roots, as c*a*, 
with all Ck integer. By direct calculation one immediately verifies that only those ea commute 
with the group element g that have Ck = 0 if k £ I. In particular, eak with a* a simple root 
only commutes with g if k G /.

From the direct calculation it immediately follows that the centraliser Z(g) of g can be 
obtained as fol-ows. The semi-simple part Zss(g) of Z(g) has as its Dynkin diagram the 
diagram obtain • by erall nodes i from the extended Dynkin diagram that have s, /= 0. 
The full centr.. : Z(. ■ •- btained by adding to the semi-simple part (7(l)-factors, such that 
the rank of the . . rali equals the rank of the original group.

We now co: ■ ntraie on .he semi-simple part Zss(g) of Z(g). The root lattice of Zss(g) is 
a sublattice of ;.i.; oot lathee of G. It is generated by a, with i G I,i /= 0, and, if sq was zero,
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Table 4-1. Minimal non-simply connected subgroups

4.3 Twisted boundary conditions
We have achieved the goal of classifying all group elements (and therefore the holonomies) 
that will lead to a non-simply connected centraliser. We wish to impose twisted boundary 
conditions in this centraliser, which amounts to finding two elements that commute up to an 
element of the centre. Again the analysis can be conveniently done with the aid of extended 
Dynkin diagrams.

Consider the elements of the centre of a group G. These can all be taken to be in a maximal 
torus, and hence can be written as in the previous section, as exp{2rti/i^} with P — S/co,- 
In particular, the identity corresponds to P = 0 (and s0 = 1, s, = 0). If there are additional ele­
ments in the centre, they may be easily found from the extended Dynkin diagram: if a single 
node can be erased from the extended diagram to give the diagram of the group, then there is 
an element of the centre associated to that node, which can be found by exponentiating hwi, 
aij being the relevant coweight. Note that this implies that the coroot integer associated to 
this node must equal 1. If there are non-trivial centre elements, then there exists a diagram 
automorphism of the extended Dynkin diagram such that this diagram automorphism maps 
the node corresponding to the extended root (which corresponds to the identity) to another 
node corresponding to an element of the centre. The diagram automorphism corresponds to 
a symmetry of the root lattice, and therefore of the algebra. As it does involve the extended 
node, it cannot be a symmetry of the Dynkin diagram itself and therefore not be an outer 
automorphism. Hence it is an inner automorphism of the root lattice, and therefore it corres­
ponds to some element of the Weyl group, say 6. The Weyl reflections can be implemented 
by conjugating with suitable group elements, and we will denote the element corresponding 
to Weyl transformation 6 as 0. As 0 acts on the diagram, it permutes the set of simple roots

k
2
2
2
2
3
2
3
2
3
4
2
3
4
5
6

subgroup 
SU(2)3/Z2 
SU(2)i/Z1 
SUltf/fy 
SU(2?/'Z>1 
Sl/(3)2/Z3 
St/(2)4/Z2 
St/(3)3/Z3 
SU(2)4/Z2 
St/(3)3/Z3

Sl/(4)2 x SU(2)/Z4 
Sl/(2)4/Z2 
SU(3)3/Z3

Sl/(4)2 x St/(2)/Z4 
Sl/(5)2/Zj

St/(6)xSU(3)xSI/(2)/Z6

Group 
SO(2N + 7) 
SO(2N + 8) 

G2 
F4 
F4 
Es 
E6 
Ei 
Ei 
Ei 
Ei 
Et 
Ei 
Ei 
El

rank 
N 
N 
0 
2 
0 
3 
0 
3 
1 
0 
4 
2 
1 
0 
0
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(4.3.1)

(4.3.2)+ = 1

Now observe that

si —< °fi,0(/F) + <Up(O) = <0 ‘(a,),P > + < a,.ajpm >

sp(0) —<ao.P (4.3.4)+ < “p(0).tOp(0) >= (so- 0+ 1 — so

For i — 0 we have

J0— 1 — < aO.0(^) + C0p(0) (4.3.5)aP-'m<P > + < “o."p(O) Sp_,(O) 8p(0)

Otherwise we have

(4.3.7)0G9) + a>(O> = P -* Si = Sp(i)

(4.3.8)exzo — X

Invariant points always exist. In the extreme case (4.3.7) implies that all s, are equal, and then 
(4.2.2) fixes the values of the s, giving a unique solution. This may be realised for the groups 
SU(n). In the generic case invariant points are not unique.

Assume p to be an invariant point, and define X = exp(2rri/t^), and the centre element Z = 
exp(2rria>P(0)). Also remembering that the transformation 8 is implemented on the algebra by 
commuting with ©, we may exponentiate (4.3.7) to

0(;8) + a)p(O) = s/atjp = y?s,a>,

> + < “>.<up(0) >
(4.3.3) 

for i 0 where we used that 0 is an element of the Weyl group, which is a subgroup of the 
orthogonal group O(r), with r the rank of G.

For i = p(0) one finds

si —< >— “* sp(i)  s‘ (4.3.6)

As gp(o) = go = 1, we may simply summarise the above equations as s^ij = $j, where i is 
now allowed to take any value from 0,1...,r. As 0 < s'p(i) < g~^ = g~l, all coordinates lie 
within the allowed range and hence 0(^) + cdP(Q) is in the fundamental alcove.

So the fundamental alcove is mapped to itself, but a generic point in the alcove is not. An 
invariant point has to obey the condition

and the extended root among each other, and we write 0(otj) — ap(i), p standing for the per­
mutation that is induced on the indices. 0 preserves geometrical relations between the roots, 
and therefore gp{i) = gi

We assume that 0 is non-trivial. Then the fundamental alcove is not mapped to itself 
under the 0, but it is not hard to show that if & is an element of the fundamental alcove, then 
0(j8) + a>p(o) is also an element of the fundamental alcove. Write
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4.4 The Chern-Simons invariant

(4.4.1)

A' = g-’(A + d)g (4.4.2)

where g is some element of the gauge group g, and A is another one form. Then

CS(A')-CS(A) = CS(g-'dg) + da2 (4.4.3)

where orj is a two-form given by

(4.4.4)

(4.4.5)

Now define Y = f"0, with Y' an element of the maximal torus that is invariant under 0. Then 
clearly

on the maximal 
exp(2ni/i?), and

YXZY~' =X-> XY = ZYX (4.3.9)

We have therefore found elements X and Y that commute up to the element Z of the centre. 
That all elements X and Y satisfying (4.3.9) are up to conjugation equivalent to a pair obtained 
in the above manner is harder to prove, and we leave this to the references [47] [6],

In this section we will explain how to calculate the Chem-Simons invariant for a ghen triple, 
following [6], It is convenient to switch to form-notation. The gauge field is represe -d by the 
1-form A = —iA^dx*1, and the field strength by the two-form F' = dA + A2 = —. d.r'‘dx”, 
where we abbreviated A A A to A2. The four form F2 can be written locally as an form, 
as tr(F2) = 16n2/>dCS(A) (h is the dual Coxeter number), where CS(A) is kin n as the 
Chem-Simons form

z = 'Q,1

Z and S2) are two commuting elements of Z(S2i) and may therefore be put 
torus. We can then write them as exponentials of elements of the CSA, z = 
Q[ =exp[2rciAf).

1 2
CS(A) = - tr<AdA + Ta3> 

16k2/i 3
This is a three-form, and can be integrated over the 3-torus.

We cannot not directly calculate the Chem-Simons form, as we have no expression for the 
gauge field. Instead we will use an indirect method. We will construct a gauge field having 
the right holonomies in steps. Define the one form

a2=-^haws^'A)

Formula (4.4.3) can be found in various places in the literature (e.g. [2]), and can be verified 
by a brute force calculation, or more advanced methods.

We will now construct a flat connection with the appropriate holonomies. Let the holo­
nomies be £2i, Qa, and As we saw previously, the centraliser Z(Q|) may not be simply 
connected. Define Z(S2i) to be the simply connected covering of Z(Q|), and Q, to be the 
lifting of Q; to Z(£21). Define z as
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(4.4.6)D

with 0 < R < and e 0 .. uh the limit e J. 0 understood. Define also 7b as

(4.4.7)7b

Figure 4-1. Patches D. and To for the 2-torus

(4.4.8)Alaro =i/ifd0

be glued together, by the transition

A' has holonomy Q, in the x,—direction, S2? in the x2-direction and Q3 in the X3-direction.

The two definitions of A on the different patches can 
function exp{i0hf} defined on B.

We now move on to the 3-torus S1 x T, where on 5i we define the coordinate 0 < x\ < 1. 
Define the gauge function g(xi) = exp{2jrix|A^}, and the connection A' over the 3-torus with

A'(xi,x2,x3) = g_,(xi)(A(x2,x3)4-d)g(xi) (4.4.9)

Take now a two torus T, with coordinates (x2,x3) with periods x, ~ x, + 1. On this 2-torus 
we define a flat connection A for the gauge group Z(Qi) such that the holonomies are Q2 and 
Q3. The holonomies define the boundary conditions on the edges of the square 0 < x, < 1, 
but there may be obstructions extending to the interior of the square, as Z(Qj) is not simply 
connected. Define an open disk D

We now define the gauge connection. On D we set A = 0. On To we define a flat con­
nection such that the holonomies in the X2 and x3-direction correspond to Q2 and Q3. By a 
suitable gauge transformation we may take A such that on the edge of To it is given by

{(x2,x3) e T : (x2 - |)2 + (x3 - |)2 < (/? + «)2)

!t. 1, x2) e T : (x2 - |)2 + (X3 - |)2 > (R - «)2}

The intersection B of D . _ To is a circular strip of vanishing width. Along this circle we
2ti.
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(4.4.10)

CS(A') = - (4.4.11)

(4.4.12)

(4.4.13)

(4.4.14)

(4.4.15)

(4.4.16)

I

The centre elements of the non-simply connected subgroup are represented by (see (4.2.6) and 
(4.2.7))

i</ i</

These were coweights for the semi-simple part of the centraliser Z(#), and hence our £ 
A f°r some integer n. Then

CS(A')=<f,J >=£
iil

The 3-torus S1 x T2 is covered by the patches S1 x D, and S1 x To. First consider the 
patch S* x D. On this patch we have A = 0, A' = 2mh(dxi. By direct calculation one 
immediately finds CS(A') = CS(A) = 0. On the patch S' x To we use the formula (4.4.3) 
to calculate the Chem-Simons form. On this patch we still have CS(A) = 0, as C5(A) is a 
three-form, but A only depends on two coordinates, so the differential dura cannot occur. Also 
CS(g_|dg) = (2rri)3CS(h$dxi) = 0, and (4.4.3) then reduces to

CS(A') = 16n2/i
The Chem-Simons invariant reduces to the integral over the surface S1x 37b:

I CS<-A"> = —^2];Io dxi deb(2Trih?ih?)=<Cf >

For the commuting triples we constructed earlier this number is not hard to calculate. 
Qi = exp{2nih^) with fi = and hence

?=y.wi

As 0 e 7, we can use (<*>,,07) = , to obtain

CS(A') = n-Y'si&i 
k J—* 

HI

Finally, as I was defined to consist of those i for which s, = 0 we may write 

cs<A')=^Eii«i = ^

which is a fractional number if n is not a multiple of k.
The fractionality of the Chem-Simons invariant has a number of important consequences. 

First, it provides a check that the various disconnected components of the moduli space of fiat 
connections are indeed disconnected, as the Chem-Simons invariants associated to different 
components can be shown to be different. Second, it hints at the existence of instanton-like 
solutions, describing the tunneling between different components in the moduli space. Also 
the Chem-Simons invariant plays a role in anomaly cancellation for the heterotic string, which 
is important for the applications discussed in chapter 6.



5 Orientifolds and realisations of flat connections

i:

5.1 The T-dual of a crosscap

ii

In the case of a compactification of Yang-Mills theory with orthogonal gauge group on a 
3-torus with periodic boundary conditions, Witten found a new vacuum solution by means 
of a construction involving D-branes and orientifolds. The analysis of Borel, Friedman and 
Morgan shows that if one relaxes the requirement of periodicity, also the other classical groups 
(unitary, symplectic, orthogonal) allow extra vacuum solutions [6]. All classical groups can be 
embedded in siring theory by including Chan-Paton degrees of freedom, and gauging world­
sheet parity for the orthogonal and symplectic cases. In T-dualised descriptions, this will 
give configurations of orientifolds and D-branes. The solutions obtained by Borel et al. for 
the 3-torus also allow descriptions of this kind. To construct these, we first consider the T- 
dual description of a geometrical object, the crosscap. We then move on to compactifications 
on a 2-torus with twisted boundary conditions, as first proposed by ’t Hooft [23] [24], and 
analysed in detail by Schweigert in [47]. We finally consider compactifications on the 3- 
torus, reproducing some results from [6].

In this chapter we will not be bothered by the consistency requirements of string theory, 
which allow only S<9(32) as Chan-Paton gauge group. This will be postponed until the next 
chapter, where we will find that some of the vacua considered here can be used as string theory 
vacua, but most will suffer from (sometimes subtle) inconsistencies.

We start by considering U(n) theory on a circle. U(n) can be embedded in an open string 
theory by attaching Chan-Paton charges on the ends of oriented strings. Compactifying this 
string theory on a circle and applying a T-duality transformation, we obtain a configuration 
of n D-branes that are transverse to a dual circle, each intersecting the dual circle in one 
point. The location of the D-branes is controlled by the holonomy Qi along the circle in the 
original theory. We are interested in configurations with discrete symmetries. The discrete 
symmetries of the circle are the shift symmetries, shifting the circle by an angle 2nq with q a 
rational number, and the order 2 reflection symmetry. Only for specific choices of the original 
holonomy will the D-brane configuration respect one or some of these symmetries. In this 
section, we are interested in the reflection symmetry.

The reflection on the circle has two fixed points, which will be taken to be at X = 0 
and X = tiR (X being the coordinate along the circle, and 2nR its circumference). This 
can always be arranged: in the original theory we had a holonomy in t7(n), which is locally 
equivalent to £7(1) x SU(n). The holonomy for the t/(l)-factor can be chosen arbitrarily, since 
it does not couple to anything. In the dual theory this corresponds to an overall translation, 
which we use to set the coordinates of the fixed points to the above values.

Now compactify in addition on another circle of radius R' with holonomy Q2 along this 
circle. The standard formalism assumes holonomies that can be diagonalised within the group.
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Figure 5-1. The Klein-bottle: a double cover of the Klein-bottle, arrows indicating the direction of 
identifications (middle); an attempt to draw the standard representation of the Klein-bottle. obtained 
by taking the lower half of the double cover as fundamental domain (right); the cylinde, with two 
crosscaps, obtained by taking the left half of the fundamental domain (left). We have also drawn an 
example of a brane in all three pictures (depicted twice on the double cover) as it is posit; ,ncd after 
the first T-duality

In case we have the above Zj symmetry, we may consider a holonomy that includes the Z2 
reflection. Gluing the circle to a reflected circle upon going around the second cycle, one does 
not obtain a 2-torus, but a Klein bottle. Instead of a non-trivial line bundle over a circle, we 
will represent the Klein bottle here as a cylinder of length rtR, circumference 4nR', bounded 
by two crosscaps at the end, the crosscap being an identification over half the period of the 
circle.

The D-branes are wrapped around the cylinder, parallel to the crosscaps. There are two 
possibilities, controlled by the holonomy Q; in the original theory. D-branes in the bulk (away 
from the crosscaps) represent branes that were reflected into their image. In this represent­
ation, D-brane and image are represented as one brane (which is in this sense a brane pair). 
In the original theory there can also be D-branes at the fixed point(s) of the Z2-reflection. In 
this representation of the Klein-bottle, they are located at the crosscap. Under a smooth de­
formation of the original holonomy, only even numbers of D-branes can move away from the 
crosscap. Hence for U(n) with n odd there is at least one brane fixed under the Z2 reflection 
and therefore stuck to a crosscap. For n even there are two possibilities: the number of branes 
at each crosscap is either even or odd. In the latter situation there is at least one brane at each 
crosscap.

The above is reminiscent of the situation for orientifold planes. For orientifolds, a brane 
and an image brane on the double cover are mapped to a brane-pair in the orientifold. There 
is also the possibility of single branes being stuck at an orientifold plane (in the case of O ~ 
planes. By O~ we denote the orientifold plane that gives orthogonal gauge symmetry, and 
O+ is an orientifold plane that gives symplectic gauge symmetry).

The above configuration can be interpreted in terms of the original gauge theory. U(n) is 
locally 17(1) x St/(n), and the 1/(1) background is fixed. For n > 2, SU(n) possesses an outer 
automorphism, which, in a suitable representation, corresponds to complex conjugation. We 
will be working in the fundamental representation, and denote complex conjugation as C with
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action

may transform A and B to a block diagonal form

(5.1.2)

(gBg l,gACg ‘) = (B,A«2C).(B,AC)g

C U -> U* U G SU(n) (5.1.1)

One can extend this action to f/(n) as C also has a simple action on £7(1), and now one 
may also extend to n < 2. One normally considers holonomies taking values in the gauge 
group, which corresponds to combining a translation in space with the action of an inner 
automorphism (i.e. a conjugation) on the group. One may also consider a holonomy that 
corresponds to an outer automorphism, and this is precisely what we are doing in the above. 
The outer automorphism C can be combined with an inner one, say conjugation with a group 
element A. To avoid ambiguities we require that AC = CA, which is true if A is real, that 
is A e O(n). Th.- holonomy Q2 combines the action of C with conjugation with A, and we 
denote it as Q2 = AC. with 4 in the fundamental representation of £7(n), and C the operator 
that implements complex conjugation. The holonomy Qi is an “ordinary” holonomy, and 
we write Qj = B. with B .n element of £/(n) in the fundamental representation. Qi should 
commute with Q2, which is solved by taking B commuting with A and B G O(n). Continuous 
variation of the {/(l)-background is incompatible with complex conjugation; in the D-brane 
picture this corresponds to the fact that a global translation on the D-branes is incompatible 
with the reflection for generic cases.

By conjugation with O(n) matrices, we 
with 2x2 blocks of the form

/ cos<f> — sin0 \
\ sin</> cos</> )

on the diagonal, and some l’s and — l’s as remaining diagonal entries. In the following, we 
will take A and B to be of this standard form.

We wish to T-dualise the cylinder with the two crosscaps in the direction of the circle. 
Ignoring the crosscaps one would roughly expect this to lead to a dual theory on a cylinder. 
The inclusion of the crosscaps can be analysed by examining the symmetries of the original 
theory.

A and B are elements of the vector representation of O(n), and in particular their eigenval­
ues occur in pairs: If expi</> is an eigenvalue, then so is exp—i^. The ordering is unimportant 
as there are symmetries that allow the exchange of expi<£ and exp—i0, for every 0 separately. 
If A and B where holonomies for an O(n)-theory in an orientifold description this symmetry 
would be simply the orientifold projection itself. This suggests that also for this U(n)-theory 
the dual should be some orientifold.

The radius of the dual theory is expected to be 1/(27?'), half the “normal” radius. The 
coordinates of the D-branes in this theory reflect the eigenvalues of the holonomies in the 
original theory. Naively mapping these onto the dual circle suggests a circle of radius 1/R't 
which seems to lead to a contradiction. The resolution to this paradox lies in the presence 
of the operator C. If are the holonomies for a certain theory, then the holonomies Q- = 
gQ/g-1 with g some element of U(n) represent the same theory. Consider the set of diagonal 
matrices with entries ±1, ±i on the diagonal that commute with the A and B. Taking g to be 
a specific element from this set has the effect
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(5.1.3)

(5.1.4)

L
-

0 1
-1 0

on the diagonal, and call this matrix J. The unbroken symmetry group is then the ubgroup 
of U(n) of matrices U that commute with JC. C transforms U -> U‘, but as U is unitary, 
U* = (U~X)T, where T is for transposed. We may then rewrite the invariance condition to

UTJU = J

This leaves Qi and Qj in standard form, but with A replaced by Ag2. Hence in this construc­
tion, A and Ag2 have to be identified, g2 is an element of O(n) that commutes with A. By a 
suitable choice of g2, any eigenvalue expi^> of A can be mapped to — expi4> = expi(</> + rr). 
Therefore the periods of the circle and the eigenvalues of the holonomies match, and the dual 
theory is indeed an orientifold. Now we examine the orientifold planes.

To find maximal symmetry groups we set B to either 1 or —1. If we set A = 1, then the 
surviving symmetry group is the subgroup of l/(n) that is invariant under C, which is O(n). 
For another maximal symmetry group, assume n to be even for a moment and take A to be of 
block diagonal form with 2x2 blocks

which, together with the unitarity condition defines the symplectic group. It is obvious how 
to generalise to arbitrary holonomies, and odd n: a holonomy with k blocks diag(l. 1) and 
k' blocks (5.1.3) gives rise to O(k) x Sp(k')-symmetry, completed with some (7(m)-factors, 
whenever m eigenvalues not equal to ±1, ±i coincide.

The above I/(n) theory on a Klein-bottle is thus T-dual to an orientifold T2/Z2, where 
two of the four orientifold planes are of O_-type and two are of O+-type. The holonomy 
B = ±1 distinguishes two parallel configurations of one O+ and one O_-plane, whereas in 
the theory on the Klein bottle it distinguished the two parallel crosscaps. As a rule of thumb 
one may therefore state that the dual of the crosscap is a configuration of one O+ and one 
O~-pIane. This fits with the usual charge assignments: opposite charges for the O+ and O~ 
plane versus no charge for the crosscap. The original theory may have had isolated D-branes 
at the crosscaps. In the dual theory the isolated branes should be located at the O ~-planes, 
since the O+ planes cannot support isolated branes. Examining the holonomies that will lead 
to such a situation indeed shows this to be the case.

These ideas are independent of whether D-branes are static in the background, or used as 
“probes". The above orientifold background is identical to a IIB-orientifoId encountered in 
[55], but consistency requires absence of D-branes. This suggests to regard this model as a 
“£/(0)-theory” with a holonomy that includes complex conjugation. Its duality to IIA on a 
Klein-bottle is obvious from the above. Considering various limits one may also reach other 
theories discussed in [55] and [14].

We interpreted the Klein-bottle theory as created by combining a translation with an outer 
automotphism (complex conjugation). Outer automorphisms can always be divided even if 
not combined with a translation. Dividing a U(n) group by its outer automorphism will give a 
symplectic or orthogonal theory, where the ambiguity comes from the fact that an outer auto­
morphism may be combined with an inner automorphism to give another outer automorphism. 
In our case one may consider, instead of C, an operator AC with A an element of U(n). One
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(5.2.2)

should require A to commute with C and therefore A G O(n). Consistency also requires that 
AC acting on the group squares to the identity. The group action on itself is always in the 
adjoint representation, and hence we have the possibilities A* A = (A~l)T A = ±1, so A is 
either symmetric or antisymmetric. One may now copy a standard textbook derivation [43] to 
show that this leads to either symplectic or orthogonal groups. The reasoning is parallel to that 
for orientifolds, so one may interpret the introduction of an orientifold plane as quotienting 
the gauge group by an outer automorphism. With this point made, which is not stressed in 
the literature, we may also say that in the above a translation is combined with an orientifold 
action, as the theory in the last chapter of [55] was originally motivated.

5.2 Twist in unitary groups
The (/(zi)-gauge group allows a second form of twist. The circle also has discrete shift sym­
metries by angles 2rct?7?, with q a rational number, which can be chosen on the interval [0,1). 
Choose a configuration of the n D-branes that respects one or some of these shifts. In that case 
the number q is a multiple of 1/n. Now compactify on a second circle with a holonomy that 
includes the shift over 2nqR. This results in a theory on the 2-torus, not with n D-branes, 
but with k = gcd(<7?j, n) branes, wrapped n/k times around the torus. This theory is naturally 
interpreted as a f/(n)-theory with twisted boundary conditions [23] [24]. We will not have 
much new to say on this theory, but mention it for completeness, and to point out some effects 
that are encountered in other theories as well.

Let Xi and X2 be the coordinates transverse resp. parallel to the branes. Then this 2-torus 
is R2 with coordinates (Xj,X2)» quotiented by a lattice generated by the vectors

ei = 2n(qR\, Ri) *2 = 2n(/?i,0) (5.2.1)

Now transform to an SL(2,Z)-equivalent form. Let n' = n/k. Then n' and qn' are integer, 
and gcd(gn',n') = 1. Hence the equation

n'a + qn'b = 1, a,b G Z

has a solution, which can be found using Euclid’s algorithm. The solution is not unique as 
a —► a +mqn', b —> b — mn' with integer m gives another solution. Use this arbitrariness to 
select a b such that 0 < b <n'. Then change the fundamental domain of the torus by using the 
SL(2,Z) transformation

2n(<7Kj,K2)-> 2n(0,n'K2) 2jt(/?i,0) -► 2n(Ri/n',bR2) (5.2.3)

On this fundamental domain only k D-branes (which are in a sense configurations of //-tuples 
of branes) are visible. This is analogous to the two different representations of the Klein- 
Bottle in the previous section. The set-up is the one considered in [16], which is argued to 
lead to a Yang-Mills theory on a non-commutative torus in a suitable limit.

where (x,y) G Z are coordinates for the lattice vectors xe\ + ye2. Under this transformation 
the basisvectors transform as
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X -> -X + 2nqR

5.3 Twist in symplectic groups on the 2-torus

We may T-dualise our original theory back to an open string theory (with Neumann bound­
ary conditions) on a torus, using the standard methods [19]. The resulting theory has a non­
zero B-field (with B = q in appropriate units) in the background, as our original theory does 
not live on a square torus.

Combining the discrete shift over 2nqR, with the Z2 reflection does not lead to anything 
new. The resulting transformation is of the form

which is just a Z2-reflection, but with other fixed points. This is related to the <7 (/?) theory of 
the previous section by a trivial translation.

Symplectic groups can be realised in string theories by combining the Chan-Paton onstruc- 
tion with the gauging of world sheet parity [43]. This gives a theory of unoriented strings. To 
complete the description of the theory one has to prescribe how world sheet parity acts on the 
Chan-Paton matrices. If the reflection of the world sheet is combined with the action of an 
anti-symmetric matrix on the Chan-Paton indices, the resulting theory will have symplectic 
gauge symmetry.

Compactifying this theory on a circle of radius /?] and T-dualising leads to an oriented 
string theory, living on an interval I = 5l/^2 of size (27?i)-1, bounded by two (9+-planes. 
For an Sp(fc)-theory there will be k D-brane pairs distributed along the interval. The two 
O+-planes do not allow any freely acting shift. We will instead assume that the D-branes are 
distributed in a configuration that is invariant under the reflection that exchanges the two O+- 
planes. For odd k one brane-pair is fixed in the middle of the interval. Now compactify on 
another circle of radius R2 with a holonomy that implements the ^-reflection. The resulting 
compactification manifold is a Mobius strip with an O+-plane as edge. For k even half of 
the D-branes are exchanged with the other half on going around the circle. For k odd half 
of (k — l)/2 pairs are exchanged with another (k — 1 )/2 and one brane-pair is fixed by the 
Z2 reflection. Another representation of the Mobius strip, is a cylinder of diameter 2 7?2 an^ 
length (42? 1)— 1. One end of the cylinder ends in a crosscap, the other end is formed by a single 
O+-plane. On the cylinder there are k/2 D-branes pairs for k even, and (k — l)/2 for k odd in 
which case there is a brane-pair stuck at the crosscap.

This theory is a U(2fc)-theory as described in section 5.1 with an extra orientifold plane 
inserted. The mirror symmetry of the orientifold plane turns the Klein-bottle into a Mobius- 
strip. Take the circle that is dual to the circle of radius R\ and choose coordinates as follows: 
we will take the orientifold planes at X = 0 and X = n/R\, and the fixed points of the Z2- 
reflection at X = n/2R\ and X = 3n/2R\. The description from the U(n) theory has to be 
slightly modified, as the fixed points of the Z2 are no longer located at X = 0 and X = tx R, 
as before. The action of the ^-reflection can be interpreted in the original theory as accom­
plished by the operator (—1)C, which is complex conjugation combined with multiplying by 
(—1). The symplectic theories one projects onto states invariant under JC, with J the matrix
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U
Figure 5-2. The Mbbius-strip: a double cover of the Mbbius-strip, arrows indicating the direction of 
identifications, fat lines the edges (middle); the standard representation of the Mobius strip, obtained 
by taking the lower h. Jf of the dc.ble cover as fundamental domain (right); the cylinder with one 
crosscap, obtained by taking the left half as fundamental domain (left)

I

composed of 2 x 2-blocks of the form (5.1.3), and the invariance condition is (5.1.4). In the 
orientifold projected theory, the operator (—1)C is identified with (—l)AdJ, which has as 
action “conjugate with J and multiply with — 1”. Multiplying by —1 is not an outer auto­
morphism of Sp(k') (in fact, the symplectic groups do not posses any outer automorphism at 
all), and it can be realised by conjugation, as we will show later.

With the appropriate symmetries realised, we can pass from the U(n)-theory to the sym­
plectic theory as follows. We argued that the L/(n)-theory had as its holonomies (Qi,&2) = 
(B, AC). Replace the operator C by (—1)C, and then perform the orientifold projection. The 
resulting holonomies are then (Qj,Q2) = (B, A(—l)AdJ). and Q2 do not commute, but
anticommute. Their eigenvalues can be read of from B and A, but we have to find a way to 
implement the action of — 1.

Anticommutativity of the holonomies is allowed in symplectic theories, provided all rep­
resentations of Sp(k') have trivial centre (this is the case for all representations one encounters 
in Sp(k) string perturbation theory. These are the adjoint, which is the symmetric two-tensor; 
a k(2k — 1) — 1 dimensional representation which is the antisymmetric tensor with an extra 
singlet removed; and the singlet). This theory may also be analysed by the methods of [47]. 
Here we will reproduce the results from such an analysis by a different method.

The T-dual theory to the Mobius strip is an orientifold T2/Z2, with the size of the T2 being 
(2/?i)-1 x (27?2)-1 (one fourth of the usual size, compare with [55]). At the four fixed points 
we find orientifold fixed planes. The original C+-plane splits into two (9+-planes intersecting 
the torus at a point. The crosscap will dualise into one O+-plane and one (?_-plane, so we 
have a total of 3 (?+-planes and 1 O “-plane. On the dual we have k/2 D-brane pairs at 
arbitrary positions if k is even. If k is odd, there are (k — l)/2 D-branes whose positions can 
be chosen freely. The remaining brane pair was stuck at the crosscap, so in the dual picture 
there is an isolated brane at an orientifold plane, which should be the O~.

The corresponding holonomies can be read of as follows. A brane pair in the bulk has 
two coordinates, and each pair corresponds to four eigenvalues A.,,—A./,A.|“1,—A.J"1 with A, = 
exp(27tiXj/??;), Xi and R, being the coordinate and the radius of the corresponding dimension
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(5.3.1)

5.4 Twist in orthogonal groups on the 2-torus
TWist in the orthogonal groups gives a more involved situation and we can distinguish several 
possibilities. Every orthogonal group has a two-fold cover, so the resulting .Spin-group has at 
least a Zj centre. Compactification on a two torus with twist in this Za will lead to absence

(the O~ plane is located at (Xi/RitX2/R2) = (1/4.1/4), the remaining O+ at (0.0), (1/4,0), 
(0,1/4)). Corresponding to these eigenvalues we have 2x2 blocks on the diagonals of the 
holonomies of the form

( M 0
V 0 —AI

where the left block appears in one of the holonomies and the other, resulting from mul­
tiplying a diagonal block with a block of the form (5.1.3) in the other holonomy. There is a 
second set of blocks with (A), Az) replaced by (AJ"1,^1). For a single brane located at the 
O~ plane we get blocks with (A|, A2) = (i,i). One easily verifies that this prescription leads to 
anticommuting elements in the fundamental representation of the symplectic group.

On the orientifold T2/Z2 one should introduce a B-field which is half-integer valued. For 
orthogonal groups this is well known, and it is usually deduced from a path-integral argument 
[49]. It may also be deduced from duality. The Mobius strip we used may be described as 
the torus T2, which is R2 quotiented by the lattice generated by 2n(0,27?2) and 2ir(R , /2, R2), 
quotientedby an orientifold action that takes (Xi,Xz) (—Xi.Xz). Omitting the orientifold 
for a moment, we see that the torus is skew, implying a half-integer value for the B-field in 
its dual [19]. The same reasoning applies to a Mobius strip, where the edge is formed by an 
O~ instead of O+ -plane. This corresponds to an orthogonal theory without vectorstructure, 
as described in [55], and reproduced by our analysis later.

The resulting orientifolds describe the moduli space of compactifications of Sp(k) theories 
with twisted boundary conditions. As a check consider the cases k = 1 and k = 2, since as 
Sp(l)/Z2 = 5(7(2)/Zz = 50(3), and 5p(2)/Z2 = 50(5) these results should be reproduced 
by other orientifolds. 5p(l) with twist corresponds to an orientifold with 3 O+-planes, and a 
single D-brane stuck to the O~ plane. The resulting configuration allows no continuous gauge 
freedom, in accordance with the standard description of 5(7(2) with twist. The single D-brane 
at the O~ fixed plane gives 0(1) = Z2 residual symmetry; this should be interpreted as the 
symmetry of the centre of 5(7(2) which is the only symmetry of 5(7(2) that survives the twist.

For k = 2 the dual description consists of a single D-brane-pair on the orientifold with 3 
O+ and 1 O”-planes. The rank of the unbroken group is 1, and generically it is (7(1). At 
the O~-plane this is enhanced to 0(2), while at any of the three O+-planes it is enhanced 
to 5p(l) = 5(7(2). We will see in the next section that this nicely agrees with the orientifold 
description of the 0(5) orientifold corresponding to the Z2-twisted case.

For higher k the analysis is similar. For k even the generic unbroken group is (7(1 )*/2, 
which can be enhanced to (7(A/2) at a generic position at the orientifold, to Sp(k/2) at one 
of the three O+ planes or O(A) at the O~ point. For k odd this analysis can be copied while 
replacing k by k— 1, with the exception that at the O~ plane O(k) symmetry is possible 
because of the brane already present there.

0 -A2 \
-a2 0 J
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are not allowed since the holonomies willof “spin-structure”: fields in the spin representation 
not commute in this representation.

For 5O(/V)-theories with ZV-odd this is all one can do apart from compactification with 
periodic boundary conditions. For N even, SO(N) already has a non-trivial centre and the 
above mentioned Z2 is just a subgroup of the whole centre. For N divisible by 4, the centre of 
Spin(N') is Z2 x Z2. Z2 x Z2 allows three Z2 subgroups (basically each of the Z2 factors, and 
a diagonal embedding). Of these two are related by the outer automorphism of the Spin(N)- 
groups with N even. Hence there are two options for twisting by a Z2: The already above 
mentioned Z2 leading to compactification without spin structure, and a second one, named 
“compactification without vector structure”. The latter is named so because in this compacti­
fication the vector representation is not an allowed one.

For Spin(N) with ZV even but not divisible by 4, the centre is Z4. The previously men­
tioned Z2 is generated by the order 2 element in Z4. It is also possible to twist by an element 
of Z4 generating the whole centre. We will call this compactification without vector structure, 
since in this case the vector representation is not an allowed one either. Note however that this 
twist forbids any representation with a non-trivial centre, so the spin representation should be 
absent as well. The only representations allowed in this case are conjugate to the adjoint.

The results from this section can also be derived with the methods of [47]. We will follow 
a different route.

5.4.1 No spin structure

Absence of spin-structure does not forbid the vector representation, so one can use an ordinary 
orientifold T2/Z>2 with 4 O~-planes. The topological non-triviality has to be treated with 
the technique of Stiefel-Whitney classes, following the appendix of [55). Absence of spin­
structure implies that the second Stiefel-Whitney class is non-vanishing. We will keep on 
demanding that the first Stiefel-Whitney class vanishes (which implies SO(N)-symmetry, not 
only O(N\), and hence the total Stiefel-Whitney class should be w = 1 4- o>2. with a>2 the 
2-form on the 2-torus. For SOIN) with N odd, this is accomplished by placing 3 branes at 
the three non-trivial orientifold fixed points, placing (N — 3)/2 pairs at arbitrary points. For 
SO(N') with N even one distributes 4 branes over all orientifold fixed points and has (N/2 — 2) 
pairs at arbitrary locations. These are the only solutions.

It is instructive to compare the cases of 50(3) and 50(5) without spinstructure to the 
analysis for 5p(l) and 5p(2) with twist, as 5pzn(3) = 5p(l) and 5pzrz(5) = 5p(2). For 50(3), 
3 isolated D-branes are located at three orientifold planes, and there is no continuous gauge 
freedom at all, just like in the 5p(l) case. There are discrete symmetries O(l)3 = Z2, but these 
just correspond to the 8 diagonal O(3)-matrices. Of these, 4 are not elements of 5 0(3), and of 
the remaining 4, 3 lift to elements that anticommute with the holonomies in Spin(3) = Sp(X). 
Only the identity remains, which lifts to the two centre elements of 5p(l), which is how the 
Z2 discrete symmetry there is recovered.

For 50(5), we have 3 orientifold planes occupied by one brane each, and a pair of branes 
at an arbitrary point. Generically the unbroken symmetry is 0(1), which can be enhanced 
to 0(3) at any of the three points where an orientifold plane with brane is present. At the
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5.4.2 No vector structure

remaining orientifold plane 17(1) is enhanced to 0(2). Stressing again that $0(3) is the 
double cover of $p(l), we see that this is exactly the same as the $p(2) orientifold with twist.

Further easy examples are $0(4) and SO(6) without spin structure. For $0(4) there is 
no residual gauge symmetry. The Z? associated with vector structure acts as twist in both 
$U(2)-factors of $pin(4), eliminating all gauge freedom. $0(6) without spin structure is 
equivalent to Spinffi) = SU(4) with Zj-twist. From the above description this gives a rank 
1 subgroup, which can be enhanced to 0(3) at 4 orientifold-planes. This coincides with the 
SU(4)-description, where SU(2) is a maximal symmetry group.

The case of absence of vectorstructure was already analysed by Witten [55] for O(4W). Here 
we present an analysis from a different point of view, which also nicely extends t he case of 
O(4N+2).

Compactifying a string theory with orthogonal gauge symmetry SO(2k) on a circle, and 
T-dualising along this circle, gives a theory on the interval I = $'/Z2. The interval is bounded 
by two ©"-planes, and on the interval we have k pairs of D-branes. We will assume that the 
O~ planes do not contain any isolated D-branes, since if both of them would be occupied we 
do not have $0(2k) but O(2k)-symmetry, and if only one of them would be occupied this 
would indicate O(n)-symmetry with n odd (actually, for n odd the following construction is 
impossible, which is a reflection of the fact that $0(n) with n odd allows only one kind of 
twist).

Again the only possible discrete symmetry is Z2 reflection symmetry, and we will hence­
forth assume that this is realised. Compactifying on an extra circle, with a holonomy imple­
menting this reflection leads again to a theory on the Mobius strip, this time with O planes 
on the boundary. We again go to the representation in which the Mobius strip is a cylinder, 
bounded on one end by an O" plane, and on the other end by the crosscap. Notice that for k 
odd, there is a pair of D-branes fixed by the reflection and, on the cylinder it has to be located 
at the crosscap. Half the number of the remaining D-branes are visible in this representation. 
Since we are restricting to $ 0(n(-configurations, we can repeat the whole discussion presen­
ted for symplectic groups, with the difference that the orientifold planes we insert here will not 
give symplectic but orthogonal symmetry. From the geometric picture one may again deduce 
anticommutativity of the holonomies Q, and

We may now T-dualise as before, and obtain an orientifold with two ©“-planes from the 
original ©"-plane, and an O+ and ©"-plane from the crosscap. This explains the relation 
between the IIA-theory on a Mobius strip, that is discussed in [41], and the I1B orientifold in 
[55], which are both proposed as dual for the CHL-string [7] [8].

We may represent the parts of the holonomies corresponding to branes in the bulk in the 
same way as in the symplectic case. These can be conjugated to matrices in the real vector 
representation of O(n). Readers who prefer the real representation of 0(A) should substitute
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for each brane in the bulk the following 4 x 4-blocks

0 
1

0
sin</>i

0
— COS0| )

0
— COS 02

0
— sin02

0
sin 02 

0
— COS 02

-

-COS 02 
0

— sin 02 
0

— sin0i 
0 

COS 0| 
0

0
— COS 0|

0
— sin0i

(?-;)
in the real representation of O(n). Demanding anticommutativity with a 2 x 2 block in the 
holonomy Q2 leads to the unique solution diag(l, —1) (in the real representation, up to con­
jugation with an element of SO(2)). One may also consider a single brane stuck to one of the 
other O~ planes. This defines a block diag(l, — 1) in the holonomy Qj. Demanding anticom­
mutativity with a second 2x2 block leads to two inequivalent possibilities, being

< COS01 

0 
sin 0|

\ 0

(?-;) (?;)
These two possibilities correspond to the two O“-planes that came from dualising the original 
O~-plane. The point is now that occupying 1 or 2 of the O~ planes by an odd number 
of branes corresponds to holonomies in O(n), but occupying all three at once with an odd 
number of single branes does give holonomies in SO(n). This also gives the interpretation 
for the orientifold with 3 0“ planes and one O+-plane where not all of the O~ planes are 
occupied; these represent O(k) configurations that cannot be represented in SO(k). We see 
that if we demand S O(n)-symmetry, and occupy one O“-plane with an odd number of branes, 
we have to occupy all O~ planes by an odd number of branes.

On the resulting dual orientifold we have k/2 pairs of D-branes if k is even, or (k — 3)/2 
if k is odd. For k even we obtain back the description of [55], with the possibility of O(k) 
symmetry at 3 planes, and Sp(£/2)-symmetry at 1 plane. For/: odd we have the possibility of 
0(k — 2) at three planes, and Sp((k — 3)/2) at one plane.

It is again instructive to look at a few examples, k = 1 is impossible, k = 2 corresponds 
to 5O(4)-theory without vector structure. Since Spzn(4) is 5t/(2) x SU(2), this corresponds 
to twist in one of the St/(2) factors, and arbitrary holonomies in the other SU(2)-factor. In

sin</>2
0

— COS 02

0 /
(5.4.1) 

as can be derived straightforwardly. The parameters = Xi/2nRi follow from the coordin­
ates of the D-branes on the torus.

For k odd. there was an odd number of D-brane pairs at the crosscap, and hence (he 
0~-plane coming from the crosscap has to contain an odd number of branes. The other two 
orientifold points also contain isolated branes. This is possible because the even number of 
branes that should be on the edge of the Mobius strip (to ensure SO(2fc)-symmetry), may 
translate into odd nu -hers of branes at each of the corresponding O“-planes in the dual 
theory.

Consider a single brane stuck to the O~-plane that came from dualising the crosscap. As 
can be seen from the geometric picture, this corresponds to a block diag(i, —i) in the holonomy 
Qi, or equivalently, a block

5.4 Twist in orthogonal groups on the 2-torus
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5.5 Commuting n-tuples for orthogonal groups

(5.5.1)

the orientifold description, we have the possibility of enhanced symmetries 0(2) and 5p(l)- 
5p(l) = 50(2) obviously corresponds to the unbroken second factor. The O(2)’s correspond 
to situations in which the holonomies in the second factor are (1, icr3), (io3,1), (icr3, icr3). The 
extra parity transformation is due to the fact that io3 anticommutes with the elements io1,2, 
which lifts to the double cover as commutation symmetry.

k = 3 gives 50(6) without vector structure. This corresponds to 5pzn(6) = 50(4) with 
Z4-twist. The absence of remaining gauge freedom is completely in agreement with the 5U(4) 
description.

k = 4 gives 50(8) without vector structure, which due to triality should be equivalent 
to 50(8) without spin structure. We certainly do find 5p(2) = Spin($) symmetry in both 
descriptions. 0(4) is less visible in the above description of 50(8) without spin structure, but 
this is due to the fact that the parity in 0(4) is actually not a real symmetry (co- pare to the 
0(2) symmetry found for k = 2), and Spin (4) = 50(2) x 50(2) can also be obtained outside 
orientifold fixed planes. The asymmetry in the two description is then due to the ct that they 
represent different projections from the same moduli space.

An 5L(3,Z)-subgroup acts trivially on the holonomies, it does not leave the holonomies in­
variant, but transforms them into gauge equivalent ones. An 5L(4, Z) transformation that is 
not in this subgroup, transforms the holonomies into a set that is not gauge equivalent to the 
original set. An easy way to see this is that it will transform the fourth holonomy, which 
was the identity, into a non-trivial group element. This can never be accomplished with a 
gauge transformation. On the Stiefel Whitney class, the 5L(4,Z) acts as a simple coordinate 
transformation. In particular it transform the trivial class into the trivial class, so the 5L(4, Z)- 
image of a periodic flat connection is again an allowed solution. In this way already many new 
solutions can be found.

In this section we will investigate gauge theory with orthogonal gauge group, compactified on 
higher dimensional tori with periodic boundary conditions.

For orthogonal gauge theory on the 3-torus extra vacua were found by Witten [55]. As 
described in section 2.4, a configuration with 7 D-branes on the 7 fixed points excluding the 
origin of an orientifold parametrises a periodic connection for 5O(2jV + 7)-theory. Similarly, 
a configuration with 8 D-branes distributed over all 8 fixed points parametrises a periodic con­
nection of SO(2N + 8)-theory. On the 3—torus these were the only new solutions. Obviously, 
these can be trivially embedded on an n-torus, by taking 3 holonomies from the 3-torus and 
(n — 3) holonomies equal to the identity. This is however not the only solution.

As a first example consider the non-trivial flat connection of 5O(7)-theory or 50(8)- 
theory on the 3-toms, and embed the 3-torus in a 4-torus, setting the holonomy along the 
fourth direction to the identity. The 4-torus has an 5L(4,Z) invariance group, that acts non- 
trivially on the holonomies. If M,j are the entries of the 5L(4, Z)-matrix, then the holonomies 
transform as
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T4, and that the

As a matter of fact, each of the above solutions actually represents two solutions, since 
always two inequivalent liftings to the simply connected Spin groups are possible.

For the second example consider the non-trivial flat connection of SO(8)-theory on the 
3-torus. Embed this in a 4—torus, with holonomy —1 along the extra cycle. This surely 
represents an allowed solution to the vacuum equation, as can also be verified by computing 
the Stiefel-Whitney class, or writing down an explicit representation. It is also easily verified 
that this solution is not contained in the previously discussed set. Again one can generate 
more solutions by acting on this one with SL(4, ^-transformations.

■-

A last construction that partially overlaps with the previous examples but also produces 
new vacua is as follows. Each of the above flat connections corresponds under T-duality 
to some collection of D-branes, with trivial Stiefel-Whitney class. One can take two such 
configurations and “add” them, that is superimpose the two. Computation of the Stiefel- 
Whitney class is modulo two, so one can throw away all the D-brane-pairs that arise in the 
superposition, and again obtain a flat connection.

For yet another example we consider SO(15)-gauge theory on the 4-torus. In the same 
fashion as for the 3-tcrus, using T-duality, a flat connection for this theory is described by a 
^-invariant configuration of 15 D-branes on T4, which is the covering space of an orientifold 
T4/Z2 . There are 16 • i ntifold planes, corresponding to all possible combinations of eigen­
values (±1,±I,~ i ,±! of the four holonomies around the non-trivial cycles. Now distribute 
the 15 D-branes over the 16 orientifold planes, one brane at each plane, leaving only the ori­
entifold plane that corresponds to the eigenvalues (1,1,1,1) empty. The total Stiefel-Whitney 
class of this configuration can be easily computed. The easiest way to do this is to divide 
the branes into two groups, the first group consisting of the 7 branes at (±1,±1,±1,1). the 
second group containing the remaining 8 branes. The first 7 branes are in the same config­
uration that Witten used to prove the existence of a non-trivial flat connection on the 3-torus 
(embedded in a higher-dimensional orientifold) and hence these do not contribute to the total 
Stiefel-Whitney class. The remaining 8 also do not contribute, since they actually corres­
pond to the SO(8)-configuration described previously. Hence the total Stiefel-Whitney class 
is trivial, and the bundle is topologically trivial. It is also easily shown that this configuration 
gives an isolated point in the moduli space of flat SO(15)-connections on T4, and that the 
gauge group is completely broken.

This generalises to still higher dimensional tori: 2" — 1 branes distributed over 2n ori­
entifold planes in the covering of the orientifold fn/'Z>2, one brane at each plane but leav­
ing the plane corresponding to (1,1,..., 1) empty, corresponds to a topologically trivial flat 
SO(2n — l)-connection on Tn (calculation of the total Stiefel-Whitney class of this configura­
tion is trivial, since the 2n — 1-branes can be divided in one group of 7, and 2n-3 — 1 groups of 
8, where in each group (n — 3) eigenvalues of the holonomies are fixed. The group of 7 does 
not contribute, nor does any of the groups of 8, giving a trivial total Stiefel-Whitney class). 
Note that these configurations realise the non-trivial n-tuples of [26]. To obtain an SO(2") 
connection, one also inserts a D-brane at the orientifold plane corresponding to (1,1,..., 1).

5.5 Commuting n-tuples for orthogonal groups
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As an example, the 5O(7)-configurations on the 5-torus specified by

and

can be added to give

1,-1, 1, 1)

which determines a flat 50(12) connection on the 5-torus.

5.6 c-triples for symplectic groups

i, 
i.

Qi = diag( 1,-1,-1,-1, 1, 1,-1) 
O2 = diag( 1,-1, 1, 1,-1,-1,-1) 
O3 = diag(—1, 1, 1,-1, 1,-1,-1) 
O4 = 11 Q5 = 1

For symplectic groups on the 3-torus one may also choose non-periodic boundary conditions. 
This can be done in various ways, but by using SZ.(3,Z) transformations on the torus, all 
possibilities are isomorphic to one standard form. We can choose the standard form to have 
twist between the holonomies in the 1 and 2 direction, and the third holonomy commuting 
with the former two. Following [6], we call a triple of such holonomies a c-triple, where c 
denotes that the three holonomies only commute up to a (non-trivial) centre element of the 
gauge group.

From our analysis for twist in symplectic gauge theories on the 2-torus, one easily deduces 
that the corresponding orientifold description has 6 O+-planes and 2 O“planes. The two 
planes with 3 O+ and 1 O~, are distinguished by the eigenvalue ±1 in the third holonomy. 
Eigenvalues for the third holonomy can be read of in the usual way, with the remark that their 
multiplicities should be doubled. A configuration for the 2-torus may therefore be imported 
in either of these planes, corresponding to choosing the third holonomy in Sp(k) to be ±1, 
which are the two elements of the centre of Sp(k). One quickly deduces that there are always 
2 disconnected possibilities for placing the D-branes in this orientifold background.

First suppose Sp(k) symmetry with k even. For the description with twist on a 3-torus, 
this should give k/2 pairs of D-branes in the above orientifold background. There are two 
possibilities to distribute the D-branes. First, one can have k/2 pairs at arbitrary locations on 
the orientifold. But one can also split one pair, put one D-brane on one O ~-plane and the 
other on the other O_-plane, and have the remaining (k/2 — l)-pairs at arbitrary locations.

01 = 1
O3 = diag( 1,-1,
O4 = diag( 1,-1,
O5 = diag(—1, 1, 1,-1,

O2 = 1 
1,-1, 1, 1,-1) 
1, 1-1-1,-1) 

1,-1,-1)

O, = diag(-l,-l,-l, 1, 1,-1, 1, 
O2 = diag(—1, 1, 1,-1,-1,-1, 1, 1, 
03 = diag( 1, 1,-1, 1,-1,-1, 1 
O4 = diag( 1, 1, 1, 1, 1, 1, 1
O5 = diag( 1, 1, 1, 1, 1, 1,-1, 1,-1,

1, 1, 1,
1. 1, 1, 1)
1, 1, 1,-D 
1,-1,—1,-1) 

1,-1,-1)
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5.7 c-triples for orthogonal groups

(5.7.1)Q3Q1 —^2^3 = Zc^3^2Q1Q2 = ^2 1

This can be thought of as a standard form. SL(3,Z)-transformations result in an isomorphic 
moduli-space. We will call this case “spin nor vector’’-structure, and treat it separately.

For orthogonal groups on a 3-torus there are more possibilities for the boundary conditions. 
Like in the case for the 2-torus, we can have absence of either spin- or vectorstructure. By 
5L(3, ^-transformations on the torus, we can again arrange that the holonomies for the 1 and 
2-direction are the ones that do not commute (in the Spin-cover of the group), while the third 
holonomy does commute with the other two.

In the case of 5O(4n) there is however a new possibility. For Spin(4n) the centre of the 
gauge group is not cyclic but a product of cyclic groups, being Z2 x Call the generator of 
the first Z2 zs (with 5 for spin), and the generator of the second Z2 zc (c being the standard 
notation for the second spin-representation). Also define zv = ZjZc- This notation is motivated 
by the fact that identifying zv ~ 1 gives the vector representation.

We can now also impose the following twist conditions on the holonomies:

Both possibilities are legitimate, since Sp(Jc) is simply connected. The conclusion is thus, 
that Sp(A')-theory on a 3-torus with twisted boundary conditions has a moduli space of 2 
components, one with a rank k/2 unbroken gauge group, and one with a rank k/2 — 1 unbroken 
gauge group. We can now perform a Witten index count for this theory, as also performed in 
[6]: The two components will contribute k/2 +1 and k/2 to the index giving the total value 
& 4-1 in agreement with both the periodic boundary conditions case, and the infinite volume 
case [52].

For k is odd the procedure should also be clear. One can place (k — l)/2 pairs of D-branes 
at arbitrary points in the orientifold background. The single D-brane that is left can go on 
either of the two O“planes. These are inequivalent possibilities, and hence also in this case 
the moduli space consists of 2 components. Each of these components contributes (k 4-1 )/2 
to a Witten index calculation, giving also the correct result k + 1 [6].

Again we che-~k tl • :: = 1 and k = 2 cases. According to the above, Sp(l)-theory with 
twist on a 3-torus : ives moduli space of 2 components. On each component the gauge group 
is completely broken, 'his is as it should be as 5p(l) = SU(2) which, when compactified 
on a 3-torus with twist has a moduli space that looks like this. We again have the remaining 
0(1) = Z2 symmetry corresponding to the centre of SO(2), which commutes with everything.

Perhaps more interesting is the Sp(2)-case, where we have one component for which the 
gauge group is completely broken, and another where a rank 1 group survives. The rank one 
gauge group is generically 0(1), but can be enhanced to 0(2) at two planes or Sp(l) at six 
other planes. This coincides with the description we will find for SO(5) = Sp(2)/Z2, without 
spin structure.

5.7 c-triples for orthogonal groups
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(5.7.2)Qi = ia3; Q2 = iai; Q3 = ±l,

but ±1 in SU(2) are both projected to the same element of SO(3) being the identity.
k = 4 gives S(?(4) which gives two orientifolds, but some thought will reveal that also in 

this case there are twice as many components in moduli space. Using that Spin(4) = SU(2) x 
St7(2), the no-spin-structure condition amounts to twisting both SU(2) factors simultaneously. 
For the third holonomy one has then 4 possibilities, being any combination of plus or minus 
the identity in each SU(2)-factor. These 4 possibilities project to only two sets of holonomies 
in 50(4), and hence two orientifold descriptions.

5.7.1 No spin structure
This is the easiest case, provided we use some previously obtained knowledge. From our 
description of orthogonal theories on a 2-torus without spin structure, a particular case for the 
3-torus can be obtained as follows.

For SO(JO with k odd, place 3 single D-branes at three O ~ -planes within one plane within 
the orientifold T3/Z2 leaving the fixed plane at the origin empty, and place the others in pairs 
at arbitrary points at the orientifold. For k even one should place 4 single D-branes at 4 
orientifold fixed planes within one plane of T3/Z2-

For k > 4 there is always a second possibility. Remember from section 2.4 and [55] that 
a configuration of 8 D-branes distributed at all orientifold planes has a trivial Stiefel-Whitney 
class. We may “add” this orientifold configuration to another as follows. Take a specific con­
figuration of D-branes at the orientifold. This has a certain Stiefel-Whitney class, which can 
be thought of as providing a topological classification for the configuration. Now adding 8 
more D-branes at the orientifold fixed points will not affect the Stiefel-Whitney > hiss This is 
so because the Stiefel-Whitney class of the 8 D-branes is trivial, and the Stiefel-Whitney class 
of the "new" configuration may be simply obtained by multiplying the class of the "old" con­
figuration with that of the added configuration (it is important to realise that Stiefel-Whitney 
classes are Z2 valued, and that —1 = 1 mod 2, so there is no ordering ambiguity). One may 
also add or delete any pair of D-branes without affecting the class, also because of its Z2 
nature.

We thus obtain the following possibilities: For 50{k) with k odd. we had 3 single D- 
branes at three O~-planes. Adding the 8 D-branes and reducing modulo 2, we obtain a con­
figuration of 5 D-branes with the same topological classification as the previous one. The 5 
D-branes are precisely at the orientifold planes that were not occupied previously, and in a 
sense one could speak of a ^-complement. One can add pairs of D-branes to again obtain an 
SO(k) configuration.

For k even one had 4 single D-branes at 4 O~-planes. Taking the ^-complement, we get 
an inequivalent configuration with 4 single D-branes at the other 4 O~-planes, with the same 
topological classification. Of course, afterwards we must add pairs of D-branes to acquire 
SO{k\

We will now discuss several cases, k = 3 corresponds to 50(3) = 5(7(2)/Z2 with twist 
on the 3-torus. The SU(2) description has two components. The 5O(3)-description has 
also two components, but these cannot be distinguished by their holonomies. In a particular 
representation, the SU(2) holonomies read
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5.7.2 No vector structure

From the analysis for the 2-torus we deduce that O(2k) without vector structure on a 3—torus 
corresponds to an orientifold background with 6 O“-planes and 2 (?+-planes. Again eigen­
values for the third holonomy can be read off in the usual way, except that their multiplicities 
should be doubled. One obvious solution to the boundary conditions is to import the solution 
for the 2-torus here.

For k even we have seen that a particular solution is given by placing all D-brane pairs at 
arbitrary points. For the second solution we take as before the ^-complement. We have not 
defined how the operation of "Z2-complement" acts on the O+-planes but this is not hard to 
guess. Since O+ planes cannot support isolated D-branes, they should remain empty. Hence 
the second solution has all O~ planes occupied by one D-brane, and k — 3 pairs at arbitrary 
points. A way to see this is as follows. The smallest group for which the configuration with 
six isolated branes exists is SO(12). One can take the 50(6) holonomies Q| and Q2 that 
gave “no vector structure” on the 2-torus (these are unique up to gauge transformations), to 
construct the 5O(12)-holonomies Q| © Q|, Q2 © ^2 and 1 © -1, where 1 stands for the 
identity in 50(6). That these 5O(12)-matrices satisfy the required boundary conditions is ob­
vious, and liftings to Spin( 12) can be constructed from the liftings of the 5O(6)-holonomies

k = 5 gives us 50(5) which is interesting because we should be able to reproduce the 
5p(2)-results here. 50(5) without spin-structure gives two orientifolds. On one we have 5 
fixed D-branes and hence no residual gauge symmetry. On the other we have 3 fixed D-branes 
and a pair wandering freely. Possible enhanced gauge symmetries are 0(3) at three points, 
and 0(2) at five points. However, all but one of the “parity” symmetries (corresponding to 
elements with det = —1) in these O(n) groups are “fake” in the sense that they correspond 
to elements that anticommute in 5pin(5). The remaining 0(2) corresponds to the 0(2)’s 
we encountered in the 5p(2) case, and the 5O(3)’s map to the 5p(l)-unbroken subgroups 
in 5p(2). That the multiplicities of these enhanced symmetry groups are only half of those 
encountered in the 5p(2) description reflects the fact that 50(5) is a double cover of 5p(2), 
which also translates to the fact that the moduli space of 5p(2)-triples is a double cover of 
the space of 50(5'-triples The moduli space for the gauge theory is the moduli space of 
5p(2)-triples, as every set of 50(5) holonomies has two inequivalent realisations in terms 
of gauge fields. Note however that here the number of components in moduli space agrees 
with the number of orientifolds; the two SO(5)-components are double covers of two 5p(2) 
components, not of 4 5p(2) components.

k = 6 gives 50(6) whose spin cover is 50(4). Here there are two equal dimension com­
ponents in moduli space, both with a rank 1 gauge group which can be enhanced to 50(3) at 
4 points.

It is easy to perform the Witten index count for k > 5 [6]. In these cases we have always 
two components of the moduli space and two corresponding orientifold representations. For 
k even, both components contribute k/2 — 1, for a total of k — 2. For k odd, one component 
contributes (k — 1 )/2 whereas the second contributes (k — 3)/2 for a total of k — 2. Of course 
these answers are as they should be.

5.7 c-triples for orthogonal groups
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5.73 Spin nor vector structure

For SO(4k) there is the possibility of holonomies satisfying equation (5.7.1). In some sense 
this should encompass both the case of no spin- as well as no vector-structure. The orientifold 
background is as in the case without vector structure, T3/Zi with 2 O+-planes and 6 O~- 
planes. On top of this 2k branes should be distributed.

A clue on the D-brane configuration can be found from T-dualising in the direction of the 
line connecting the two planes. This gives a theory on the product of a circle and an ori­
entifold T2/Z2 with 3 O“’s and 1 O+ plane. This orientifold corresponded to an orthogonal 
theory without vector structure on the 2-torus. In our case, the gauge group is 50(4/:), and we 
know that if there are branes at an orientifold plane, their number should be even. Translating 
back to the orientifold T31Z2, the pair of orientifold planes corresponding to one O “-plane in 
T2/Z2 will be occupied either both by an even number of branes, or both by an odd number 
of branes. This leaves 8 possibilities, 2 of which can be quickly discarded as they correspond 
to a 5O(4/:)-theory without vector, but with spin structure. The remaining possibilities have 
thus either 2 or 4 branes stuck at 0“ planes, and hence 2k — 2, resp. 2k — 4 D-branes in the

to Spin(f>) = 5t/(4). That 50(12) is the smallest group allowing these extra solutions can 
also be deduced with the techniques from [6].

For k is odd we have 3 0“-planes within one plane occupied by D-branes. A priori one 
has two possible planes, and actually both give distinct solutions. Note that also in these cases 
the solutions are each others Z2-compIement. For k odd all components of the moduli space 
are isomorphic, as also follows form the analysis of [6].

50(4) without vector structure on a 3-torus gives only one solution, since there are simply 
not enough D-branes to realise the second one. This gives a rank 1 unbroken gauge group 
which can be enhanced to 5p(l). A naive calculation of the Witten index would give half 
of the right answer, but as before, the moduli space consists of 2 components that cannot be 
distinguished by their holonomies in 50(4). We therefore have to multiply the naive value for 
the index by two, again obtaining the right answer.

50(6) without vector structure gives two solutions, but from 5O(4)-analy . on expects 
four. Again this is due to the fact that inequivalent solutions exist that cannot be distinguished 
by their holonomies in 50(6). Notice that the gauge group is completely broken, which is as 
it should be.

A Witten index calculation is straightforward for these theories. For 5O(4.v 4- 2) there 
are always 4 components [6] (projected to two orientifolds) that are all isomorphic. Each 
orientifold has 27V + 1 branes on it, of which 3 are stuck. The rest should organise in TV — 1 
pairs, giving a rank N — 1 gauge group and contribution N to the Witten index. With 4 
components one obtains the total value 4N, which is indeed the dual Coxeter number for 
these theories.

For 5O(4N) one has 2 components (1 orientifold), where no branes are stuck and N pairs 
move freely, giving a contribution of 27V 4-2 to the index. For N > 3 this is not sufficient, but 
for these cases there exist 2 more components (1 orientifold) having 6 stuck branes, and TV — 3 
pairs at arbitrary points. The total adds up to 2(/V 4-1) 4- 2(7V — 2) = 4/V — 2, the right answer.
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(5.7.3)Q3 = (iCTi.iai)Q2 = (±iai,±ia3)Qi = (ia3,ia3)

There are four inequivalent possible choices for the signs in Q2 (one cannot change a sign in 
^2 by conjugation without changing some sign in the other holonomies).

For SO(4k) (k > 1) and larger groups each of the two orientifold descriptions represents 
two components. Each of the two orientifold descriptions again represents 2 components. For 
SO(4k~), the two components contribute k, resp. k — 1 to the Witten index. Taking into account 
the correct multiplicities, gives the correct answer 4k — 2 for the Witten index [6].

5.7 c-triples for orthogonal groups

bulk.
T-dualising in another direction, along a line connecting an O+ and an O“-plane will lead 

to an orientifold of the form ((T2/Z2) x S*)/Z2. One can represent this by an orientifold 
T-/Z2 with 4 O~ planes, quotiented by a Z2-reflection in one of the points halfway on the 
line between 2 O~-planes (the multiple possibilities are related by SL(2,Z)-transformations). 
This reflection has a second fixed point. Over the orientifold (T2/Z2)/Z2 one erects a circle 
everywhere, except at the two fixed points of the Z2-reflection where it is replaced by a cross­
cap. On the orientifold T2/Z2 we should have absence of spin structure, meaning that al) 
O“-planes are occupied by an odd number of branes (remember that 4k is even). This trans­
lates to occupancy of boi'r (?“-planes in the quotient (T2/Z2)/Z2- We now have two pos­
sibilities; either the.- arc an odd number of branes at both crosscaps, or there are an even 
number. For the G; rntif ' / T3/Z2, these two possibilities translate into the situations with 
two O~-planes oc rosscaps occupied by even number of branes), and four O -planes
occupied (crosscap <?ci. - ■ by odd number of branes). Thus both possibilities can be real­
ised.

The 3 possibilities of occupying 2 O“-planes are related by 5L(2,Z), as are the 3 possib­
ilities of occupying 4 O planes. Only one of each set of possibilities solves the boundary 
conditions (5.7.1) (as these are not 5L(2,Z) invariant), and actually, the two possibilities are 
each others Z2 complement, as before.

We therefore have two orientifolds representing SO(4&)-theory on a 3-torus with spin- 
nor vectorstructure. Each orientifold background is of the form 7'3/Z2, with 6 O planes, 
and 2 O+-planes. One orientifold has 2 0“ planes occupied, and the other has the remaining 
4 0“-planes occupied.

50(4) with spin- nor vector structure has only 2 branes on the dual orientifold, so only 
one out of the two possibilities mentioned can be realised. This corresponds to 4 compon­
ents on the moduli space, all consisting of a single point. This can be seen as follows. 
Spin (4) = SU(2) x SU(2). and therefore we may write 5pzn(4) holonomies as St/(2)-pairs. 
The holonomies obeying the boundary conditions are (up to conjugation)
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6.1 Triples for the heterotic string

6 New string and M-theory vacua

In the previous chapter we studied orientifold realisations of non-trivial triples. In this chapter 
we will study consistent string theories, and find that consistency requirements disqualify 
nearly all orientifolds of the previous chapter as possible string vacua.

The group £8 x £8 is realised in 10 dimensional string theory. It is the symmetry group of 
one of the heterotic siring theories. The heterotic £8 x £8 theory is a suitable starting point for 
studying compactifications on a 3-torus, since in this theory all gauge symmetries are realised 
perturbatively, and ate relatively straightforward to check. By duality this also provides clues 
for realisations of li;c same mmetries in dual models.

6.1.1 Asymmetric orbifolds and consistency conditions

The fields living on the world sheet of a closed string can be divided in left and right movers. 
These are almost independent from each other, making it possible to consider strings where 
the left-moving fields are different from the right moving ones.

For the heterotic string [21] [22] (in its bosonised description) the right moving fields are
10 bosons and 10 fermions, which is the same as the right moving fields of a closed type
11 superstring. In the type II superstring the left moving fields are also 10 bosons and 10 
fermions. The heterotic string however has a different field content. We may take the left 
movers to be 26 bosons, which would be the left-moving field content of the bosonic string. 
In a sense the heterotic string is thus a fusion (heterosis) of a bosonic string and a superstring.

In the superstring and the bosonic string the pairs of left and right moving bosons are inter­
preted as the 10 resp. 26 coordinates of some embedding space for the string. In the heterotic 
string this will not work as there is a different number of left and right movers. This may be 
solved by thinking of 16 of the 26 left-movers as internal coordinates. A consistent theory can 
be obtained by putting the 16 left-movers on a 16 dimensional torus Rl6/A, where consist­
ency requires the lattice A to be even and self-dual. There are precisely two 16 dimensional 
even self-dual lattices [36]. These are the lattice £8 ® E&, with £8 denoting the root lattice of 
the exceptional algebra £8, and the lattice T16, which consists of the root-lattice of SO (32), 
together with one of the spin weight lattices for this group. Both lattices give rise to a heterotic 
string theory, usually named the £8 x £8 resp. the Spin(32)/%2 heterotic string. The remain­
ing pairs of 10 left moving bosons with 10 right moving bosons may then be interpreted as 
parametrising the 10 dimensional space in which the string lives.

The 16 bosons on the torus take momenta on the dual lattice A*, which is equal to A 
as the lattice is self-dual. The excitations of the string therefore carry quantum numbers 
corresponding to these hidden momenta. In particular there is a set of 496 massless gauge 
bosons, that transform in the (248,1) © (1,248) of £8 x £8 in the case of the heterotic £8 x £8-
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(6.1.1)k =

(6.1.2)kiL.R =

i

with i, j running over the compact directions. The n' and w' are integers denoting momenta, 
resp. winding numbers in the compact directions. The vector q takes values on the 16 di­
mensional lattice A. For ur,- = 0 these formulae look just like what one would expect from a 
theory of particles, with as covariant momenta. For strings that wind in the presence of 
the background gauge fields, non-linearities appear due to the fact that the extra bosons living 
on the wrapped string world sheet transform under the gauge fields. Especially the correction 
to k due to winding strings will be significant below.

The momenta lie on aLorentzian lattice Tisj of signature (19,3) [36], For two vectors p 
and q on this lattice, with components (p,p;z.,p,s) and (q,q,/.,?,«). the innerproduct is given

WjRi 

a'

string, or the 496-dimensional adjoint of Spin(32) for the heterotic Spin(32)/Z2-string. This 
gives rise to Eg x Eg, resp. Spin(32)-gauge symmetry in 10 dimensions.

We have seen that both Es x Eg and Spin(32) were among the gauge groups that gave new 
vacua when used as gauge group for Yang-Mills theory on a 3-torus. It is therefore natural to 
attempt to realise the new vacua in string theory. We then have to compactify these heterotic 
string theories on a 3-torus.

Compactifying on a torus makes the momenta in the compact directions discrete. Also 
new quantum numbers occur, corresponding to the winding of strings around the compact 
directions. Furthermore, compactification on a torus opens up the possibility of particular 
non-zero background fields. One of these background fields is the metric on the torus, which 
is a symmetric tensor. For 2- and higher dimensional tori, one may also choose a non-zero 
value for the background B-field, which is an antisymmetric 2-tensor gauge field appearing in 
the string theory. Last, and these are the background fields we will be interested in. one may 
pick a set of holonomies for the gauge fields.

We denote the left and right moving momentum in the compact direction i by l;,z, resp. 
kiK. The momenta on the internal torus will be denoted by k, which are 16 dimensional lattice 
vectors of A. The background fields are the metric gij, the anti-symmetric tensor B,y, and 
the gauge fields. For the moment we restrict ourselves to the case that the holonomies for 
the gauge fields can be taken to be on a maximal torus. One may then set the background 
gauge fields to take values in the CSA of the group. The elements of the CSA are in turn 
parametrised by vectors taking values in the root space. One may write the holonomies as 
Q, = exp(2nifc1(), associated to a constant background gauge field A; = hUl/R,. R, being the 
radius of the corresponding dimension. It is common in the string literature to refer to the 
dimensionless objects a, somewhat imprecisely as “Wilson lines".

We shall be mainly interested in the gauge symmetries, and therefore set = 0, and 
gij = Sij. The a, are 16-component vectors, taking values in the 16-dimensional torus, which 
is in a sense interpreted as the maximal torus for the group. The spectrum of the compactified 
theory can be expressed in the momenta [37] [ 18]

'»i-q-a,-EjTLa,-a>
R.
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by

[38] (level matching is basically the requirement that the theory is invariant under spatial

(6.1.5)

.. -

= (ma*)2mod m

translations along the string world sheet). If the group element g has order m, and e » 
i = 1 19 denote the eigenvalues of 0L, and e2™'"", i = 1,2,3 denote the eigenvalues of 
Or, then for tn odd we should have [38]

(P4) = p- q + PiLQiL — PiRQiR (6.1.3)

With this innerproduct one easily verifies that the momentum lattice is even and self-dual.
Thus far we took all holonomies on the maximal torus. The new vacua for gauge theories 

on the 3-torus were obtained with holonomies that cannot all be put on the maximal torus, 
and therefore this set-up is too restrictive for our purposes. Remember however how such 
a vacuum was obtained. For the holonomies three group elements were chosen, such that 
the first group clement leaves an unbroken subgroup that is not-simply connected. In this 
non-simply connected subgroup we then impose twisted boundary conditions. We may also 
subdivide this in two steps, the first being to choose an element that leaves a group that has an 
outer automorphism, and the second step choosing a group element that implements this outer 
automorphism. In terms of lattices this means that the first two group elements (which can be 
conjugated simultaneously into a maximal torus) are such that the lattice requires a nontrivial 
automorphism. These two group elements may be taken as exponentials of elements in the 
CSA, and it is therefore only for the implementation of the third step that we need something 
new. The relevant construction is known as an asymmetric orbifold [38] [39].

In a general orbifold construction one quotients by a discrete symmetry of the theory. In 
an asymmetric orbifold the action of the discrete symmetry is not symmetric in the left and 
right-moving sectors.

In an asymmetric orbifold, the group elements g of the discrete symmetry act on the 
momenta as

8\Pl,Pr) =e2’,i(^^-/,*a*)|0LPL,^P/f) (6.1.4)

with PL the left moving momenta (k.^t), Pr the right moving momenta km. The 0’s are 
rotation matrices and a^R correspond to shift vectors. The rotation matrices act independently 
on the left and right movers.

In an orbifold construction the theory splits into untwisted and twisted sectors. The un­
twisted sector describes the states that are left invariant under the symmetry g that is divided 
out.

The identifications induced by the orbifold group also lead to new, so called twisted sec­
tors. The identifications by the orbifold group lead to the possibility of closed strings that 
cannot be lifted to closed strings on the space before the quotienting. States from these strings 
take momenta on a lattice I*+a*. I* is the lattice dual to the lattice I, which is the sublattice 
of I"19,3 invariant under rotations by the 0’s .The shift a* is the orthogonal projection of a onto 
/ [38].

The main consistency condition on the asymmetric orbifold comes from level matching

6.1 Triples for the heterotic string
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and for m even
= (ma*)2mod 2m, Sj = 0 mod 2 (6.1.6)

(6.1.7)exp{2jri/i^}

(6.1.8)

where w is the winding number in the direction of the holonomy. One may easily calculate

(6.1.9)

8
with £ = sj j

( 8
k = I q +wy^sya);

8
22>= So — 1 = -1,

The procedure will now be as follows: To construct the heterotic theory corresponding 
to the triple (Q|,Q2,^3). we first consider the heterotic string corresponding to (Qj,Q2» 0- 
The holonomies Qi and Q2 correspond to a special locus in the heterotic string moduli space 
where the lattice P'19’3 acquires a non-trivial automorphism (that acts purely within the T16 
part corresponding to the Eg ® Eg lattice). From the group theory, we know that the relevant 
automorphism corresponds to some element of the Weyl group, with order n. Next we take 
an asymmetric orbifold where 0L is this automorphism, and 0R trivial. The shift vector a will 
be one period on the spatial 3-torus, divided by n. The resulting theory has two holonomies 
on the maximal torus, while traversing the third cycle (which has become a factor n shorter in 
the construction) gives a holonomy implementing the Weyl reflection (compan . ith [32]).

Suppose now we take some commuting triple in one Eg and another comm;’ling triple in 
the other Eg. In terms of the gauge theory, there is no restriction on the allowed triples, but in 
string theory there is.

We recall some relevant fact from chapter 4. Any element of the group Eg can be conjug­
ated to an element of the form

where the a>j are the fundamental coweights of Eg, and the Sj are a set of numbers satisfying 
Sj > 0, Y^=osjgj = h with gj the root integers (this last relation determines the number so)- 
To obtain the centraliser of this element, one erases from the extended Dynkin diagram all 
nodes i for which s, 0, and adds t/(l)’s to complete the rank of the group. The semi-simple 
part of the centraliser is n-fold connected, where n is the greatest common divisor of the 
coroot integers of the roots that where erased (actually, since we are dealing with a simply 
laced group, one can drop the distinction between root and coroot, and weight and coweight).

We now consider the Eg x Eg theory with a holonomy that is only non-trivial in one of the 
Eg-factors. If we require that the centraliser contains an ah-fold connected factor with m 1, 
we may never erase the extended root ao (which has coroot integer 1). Therefore, in the above 
50 = 0. oro will now survive as a root of the subgroup. In the presence of such a holonomy in 
the compactified heterotic string theory, the momenta k are of the form
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added to the group

6.1.2 Realisation

and therefore 52y=i projected onto the subgroup of which <*o is a node, is minus the 
(co)weight corresponding to the simple root ao in the unbroken gauge group. We conclude 
that in string theory the resulting lattice for the subgroup does not only consist of the lattice 
given by the group theory, but has extra (co)weight lattices due to the existence of the winding 
states. It is now easy to check that when these extra weight lattices are added to the group 
lattice, the lattice of a simply connected group remains.

The conclusion is then that in most cases where gauge theory analysis predicts a non- 
simply connected group, string theory actually gives a simply connected group. The only 
way 10 get to a non-simply connected subgroup is to embed in each E8-factor a Wilson line 
that breaks the group to a subgroup containing an m-fold connected centraliser. In the gauge 
theory this would result in a centraliser whose semi-simple part has as its fundamental group 

x but the above analysis for the string theory will lead to the conclusion that the semi­
simple part has rci = This leaves only the “diagonal” 12 of the original 144 possibilities.

For E% x E% gauge theory on a 3-torus, the Chem-Simons invariant splits into two contri­
butions, one for each fig-factor. To obtain the total Chem-Simons invariant one may add the 
two contributions. An analysis for the possible configurations for the string theory shows that 
these precisely correspond to those cases where the two separate contributions add up to an 
integer. Non-integrality of the Chem-Simons invariant would present a serious problem for 
anomaly cancellation in the heterotic string [15]. We do not have to consider the possibility 
here, as the theory avoids this possibility.

We will now present an analysis of the m = 2,3,4,5,6 orbifolds. The analysis is inspired 
on the group theory, described in previous chapters, and found in [6] [26] [28] [29]. Since in 
heterotic string theory (in its bosonised form) the relevant aspects of the gauge group can all 
be described in a perturbative way, these constructions may shed some light on phenomena in 
dual theories, where some or all of the relevant physics is non-perturbative.

In chapter 3 we constructed the holonomies in a minimal subgroup and embed them in 
larger groups. Here we will do the same, but for convenience take the minimal simply laced 
subgroup. The holonomies for orbifolds with m = 2,3,4,5,6 can be embedded in the 
simply laced groups S(9(8), fi6, £7, £g, £s- Triples embedded in these subgroups have a num­
ber of convenient properties that make them a starting point for a "canonical" construction of 
the orbifolds. One suitable property is that all three holonomies are conjugate to each other, 
which implies that they have the same set of eigenvalues (in every representation of the gauge 
group). Furthermore, one can also show, for example by the techniques of chapter 3, that these 
eigenvalues are exp{27rifc//n}, with k an integer. Other convenient properties will arise in the 
construction.

We will compactify the heterotic string on a 3-torus T3 = £3/A, where the lattice A 
has an orthogonal basis, but unspecified radii. We start by turning on Wilson lines in the 1- 
and 2-directions, and will later use the 3-direction for the shift accompanying the orbifold 
projection. As before we set the metric on the torus g,y = 5fy (scales are absorbed in the radii, 
angles are tf/2), and the antisymmetric tensorfield B/y = 0 (these values are convenient, but
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fied heterotic string before the orbifold projection :

(6.1.10)k =

(6.1.H)kiL.R = i = 1,2

(6.1.12)klL.R =

± Wj Ri 

a'
mrij — mq az — Wj(m — 1)

mRj
"3 ± w3/?3 
Ry a'

In the above no summation is implied unless explicitly stated. Due to the special choice of 
Wilson lines, q • a(- is always a multiple of 1/m, and hence the combination mn, — mq a, — 
wfm — 1) is always an integer, and actually can take any integer value.

We are now at the point in moduli space where we want to perform the orbifold construc­
tion, so we have to make sure that this lattice has the right symmetries and obeys the orbifold 
consistency conditions. That it has the right symmetries is not entirely obvious due to the be­
haviour of the string winding states, as explained before. If all Wj would be identically zero, 
this theory would be the same as the gauge theory, which does have the appropriate sym­
metries at this point. For checking the symmetries we will need some facts on the orbifold 
operation. It consists of a shift a, and a rotation 0l, in these cases acting solely on the gauge 
part of the lattice. Since there is no right rotation we will drop the subscript and write 0 for the 
rotation, and #(v) for the image of the vector v when rotated by 0. 0 is an element of the Weyl

not necessary: the moduli corresponding to these background fields will survive the orbifold 
projection). The holonomies in the 1 and 2 directions are parametrised by ai.32- We will 
set 83 to zero until further notice. In the formulae for the momenta of the heterotic string 
compactified with Wilson lines the inner products aj • a2 appear. Since the Wilson lines at 
the relevant point in moduli space are conjugate to each other, we have a^ = a|. Writing 
a, = to display the Wilson lines in the “first” (I), and “second” (II) E% factor, it is
convenient to set the Wilson lines to ai = (5|,ai), and a2 = (02,-02). This eliminates the 
inner product ai • a2 from our formulae. We will use an orbifold projection that is symmetric 
in both Eg-factors. With the conventions for the holonomies this implies that the total gauge 
field configuration has the Chem-Simons invariant equal to zero. There should be equivalent 
ways of realising a non-trivial triple, as the two Eg-factors are independent, but we find the 
above conventions the most convenient ones.

The value of a J = a? can be obtained in various ways (which of course all give the same 
result). In the set-up we have chosen, the holonomy parametrised by ai will eliminate only 
one node from each Eg extended Dynkin diagram, and from the previous discussion it follows 
that a 1 is of the form (cuyhy^cuyhy1), with a>j the fundamental (co)weight, and h} the (co)root 
integer associated to the node (for some values of in there seem to be more options, but only 
one corresponds to the embedding of a minimal triple), a2 can now easily be found by using 
that the weight can be expanded in the simple roots, so co, = p*ctk- As co, is a fundamental 
weight, the coefficients pf are simply the entries of the inverse Cartan matrix. It is then trivial 
to show that a? = 2p\/(hi)2 (no summation implied). p\ is a diagonal element of the inverse 
Cartan matrix, and for the cases we study we find a? = 2(m — l)//n.

Putting all these conventions and results together, we find the momenta for the compacti-
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the orbifold consistency

group of E% x Eg, which is a discrete subgroup of the orthogonal group 0(16) (16 being 
rank of E8 x Eg). Notice that “rotation” in the above also may include reflections. *. regar 
as the holonomy around the third cycle of the torus, should commute with the o er 
lines. This does not mean that 0(a,) = a,, but rather implies the weaker condition [6J

(6J-13;0(a,) = a,+z.

where z is some lattice vector (for the heterotic string, theories based on lattices that differ by a 
shift over a lattice vector are identified). There is some ambiguity in the choice of z. but in 
cases of non-trivial commuting triples, the lattice vector cannot be chosen to equal zero- z =0 
corresponds to a trivial triple, • hich would correspond to some Narain compacufied-Loecry 
In group theory, this can be seen by exponentiating the relation (6.1.13) to give yxy ' = Zx. 
where x = exp{2nihaj}. y implements the Weyl reflection 0 by conjugation, and Z is zx 
centre element exp{2iri/iz}.

To see that the lattice has the right symmetry, we construct the image of a vector 
labels (q,H|,W|,/i3,103). There should exist an image vector labelled by (q\n'.irx.nj.,z:s,- 
with k' = 0(q 4- w 1 a 1 4-1^282). We expect existence for generic radii of the space-torus, ntfsidz 
implies w, = w' (i = 1,2,3) and zi3 = n'3, so we have to check the consistency of the exrzzzyzts

q' = (?(q)4-wi(0(ai) —ai)4-W2(#(a2) —az) (6.1.14J
n'i — q' a( = n,—qa, i = 1,2 (6.1.15/

The group lattice equation (6.1.14) is consistent by construction, the only thing that has co 
be verified is that (qz — q) a, is an integer for i = 1,2. This is true if (#(q) — Q) ' a« 2=^ 
(0(at) —a,-)-ay are integer.

(0(a,) — a,) • a7 is actually zero for i /= j, because of the specific choice of 81.83 ana be­
cause the transformation 0 is symmetric in both Eg factors. In the above we already remarked 
that 0(8,) —a, = z for some lattice vector z. Then a2 = (0(ai ))2 = z2 4-2a, z + a2. where use 
was made of the fact that 0 g 0(16). Since z is on an even lattice, it immediately follows that 
a, • z is an integer. Finally, rewriting (0(q) - q) ■ a, as (0~l (a.) - 8j) q, we notice that this is an 
inner product between two lattice vectors, and hence also integer. Therefore an image point 
always exists.

For the orbifold consistency conditions (6.1.5), (6.1.6), we need the r, parametrising the 
eigenvalues of 0. These can be obtained from group theory. We took a in a particular direction 
on the spatial 3-torus, which implies that it has the form an, — OjR, and components in the 
gauge torus directions zero. As a* is the projection of a on the lattice invariant under 0, and 
0 acts only on the gauge torus, one finds that (o*)2 is always zero. For m = 2, 0 has eight 
nonzero rz, all equal to 1. For m = 3, 0 has 12 non-zero r,, 6 equal to 1, and 6 equal to 2. For 
tn = 4, 0 has 14 non-zero r,, 4 equal to 1 , 6 are equal to 2, and 4 are equal to 3. For m = 5 0 
has 16 non-zero r,, 4 equal to 1, 4 equal to 2, 4 equal to 3, and 4 equal to 4. For m = 6 finally, 
there are 16 non-zero r,, 1 with multiplicity 2, 2 with multiplicity 4, 3 with multiplicity 4, 4 
with multiplicity 4. and finally 5 having multiplicity 2. In all cases the orbifold consistency 
conditions are satisfied.

All requirements are fulfilled, hence the asymmetric orbifolds exist and can be construc­
ted.
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(6.1.16)

(6.1.17)

v = (q,™). (6.1.18)= 1,2

6.1-3 Lattices for the orbifolds

Mikhailov [34] defines a lattice for the CHL-string. We will now do the san for the asym­
metric orbifolds constructed in the above.

Start with the momenta (6.1.10), (6.1.11), (6.1.12). The momenta in the untwisted sector, 
after projecting onto invariant states can be described as follows. First define he projection

a" i 
a"

mwy Ry 
a"

1 1 ,
48 ~ 16<2m - ”

Each periodic boson contributes -1/24. Adding all contributions 
energies are —1/m for the twisted sector(s) of the Zm-orbifold.

one finds that the zero point

nt
V‘LK = r;

Having obtained the eigenvalues, it is also possible to calculate the zero-point energies for 
the twisted sector(s), using that the contribution of each eigenvalue k of 0 to the zero-point 
energy is (44]

The vectors u/l./? and v^l.r form a lattice, which (when rescaled by -Ja"/2) in Mikhailov’s 
language would be called Tjj ® rij(/n). This lattice arises in an intermediate step, because 
we have not yet included the twisted sectors.

Now consider the vectors v which are the vectors of r8 ® Pg projected onto the subspace 
invariant under 0 (and suitably rescaled). Of course, for every m this defines a different lattice. 
It can be verified from group theory or explicit calculation that these lattices are D* ® D4, 
^2 ® A2, A| ® A| for m = 2,3,4, and the empty lattice for tn =5,6 (£>4 is the root lattice of 
S(?(8), A2 is the root-lattice of 5(7(3), and Aj is the root lattice of 5(7(2)). A note of caution 
is in place here: We define the lattices D4, A2 and A] as usual with their roots normalised 
at length %/2. For the symmetry groups arising in the gauge theory, the roots of length -J2 
form the short roots of non-simply laced algebra’s at level 1. For example, at the point in 
moduli space constructed here the gauge group is F4 for the m = 2 case, and G2 for the in = 3 
case, with the long roots having length 2 and n/6 respectively. The gauge group 5(7(2) in the 
m — 4 case has roots of length >/8 (it’s at level 4), the vectors with length \/2 = V8/2 are on 
the weight lattice of 5(7(2) (note that, although there is no 4-laced algebra, there is a 4-laced 
affine Dynkin diagram which turns up in the group description. See Borel et al. [6])

"3

m i=0

projects all lattice vectors onto the space invariant under 6, since 0m = 1. PeM = 0 by 
construction, and we set Pe(q) = (the extra rescaling with v/w will become clear
soon, when we will reabsorb it in a rescaling of a'). Define n, = mn, - wiq a, - Wj(m - 1) 
f°r 2 = 1»2. The radii for the 1 and 2-direction are rescaled by defining R't = mRt. We also 
define a" = ma’ (Note that the invariant radii Rt/y/~a' are only rescaled by a factor y/in)-

We now define a lattice with the vectors



6.1 Triples for the heterotic string 105

then (Da ® Da)/-Jl,

(6.1.19)i = 1.2

(6.1.20)= 1,2

(6.1.21)

(6.1.22)P/(a;) = (1 - /”»)(»,) = a,

In the twisted sectors, the momenta lie on the lattice /*, which is dual to the lattice I 
of vectors invariant under 0. We will treat the parts of the lattices that represent the group 
quantum numbers, and the part that represents the space quantumnumbers separately.

The group parts of the lattices Z of invariant vectors can be easily calculated. An invariant 
vector v satisfies Po(v) = v. In the above we defined the lattices of vectors y/rnPety'), and 
named them D4t&D4, A2©A2, Ai©Ai for/?i =2,3,4. With these definitions, the group parts 
of the lattices / of invariant vectors should be called s/2{D^ ® D^), a/XAJ ® Aj), 2(A* ® A*), 
for m = 2,3,4. The stars denote the dual lattices, which are the (co)weight lattices. The 
stars arise because of the definition of D4, A2, Ai in the above, and the fact that we have to 
keep track of relative orientations. The group parts of the lattices Z* are then (D4 ® ^4)/ 
(A2®A2)/x/3, (Ai©Ai)/2.

To construct the spatial part of the invariant lattice we note that, to be invariant the group 
vector q 4- 22 wiai has to be on the root lattice, implying that w, is a multiple of m, say 
(the a( are on the weight lattice of some subgroup, and only multiples of ma; are on a root 
lattice. This can also be seen from the value of a?) . Also, if q 4- £ w«a» ’s on invar^ant 
lattice, then its dot product with either a, has to vanish, implying that q • a, = —2lj(m — 1). 
The spatial momenta on the invariant lattice are thus given by

ni ± wiRi / = 1 2 71/3 ± W'*R3

m Rj a' ’ R3 a'

We now have constructed Z*, we still need the shift a*. The only non-zero components of this 
vector are in the spatial 3-direction. These are given by multiples of

A -l. R*
&V3L,R = ±----- 7ma

We finally perform the same reparametrisations as in the untwisted sector: we scale the 
group parts with ^m, define R\ = mR, for i = 1,2, and set a" = ma'. We see that the lattices 
/* are simply copies of the lattice for the untwisted sector, confirming a result from appendix 
A of [38]. The momenta are given by Z* 4- a* with the non-zero components of a* given by 

(with t = l,...,(m — 1) labelling the twisted sectors). This implies that the lattices 
for the untwisted and twisted sectors can be put together to a lattice A, in the process of which 

the spatial part of the lattice is completed to ^,3.
We only calculated the lattices for very specific orbifolds, with special values of the holo- 

nomies and other background fields. One may extend to the general case. First we note that 
the metric and antisymmetric tensor field did not play any role thus far, and the moduli cor­
responding to these fields survive the orbifold projection. For the holonomies we took special 

values, that had

n, +lj(m - 1) mljRj . _ «3 ± W3R3
Ri a' R3 a'

Note that n, +lj(m — 1) can take any integer value, while Ijtn is a multiple of m. The momenta 
on the dual to the spatial part of the invariant lattice are then given by the vectors
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(6.1.23)

6.1.4

A
Tsj ffi Eg ffi Eg 
Tj.3 ® Dt ffi O4 
Pgj © A 2 ffi A 2 
Pgjffi Ai ffi A, 

r3J 
r3.3

Ar 
T 

8 
12 
14 
16 
16

E, 
-1 

-1/2 
-1/3 
-1/4 
-1/5 
— 1/6

New string and M-tlieory vacua

1 s

Duality with the CHL-string

One may also consider the possibility of constructing a heterotic Spin(32)/Z2 theory that 
corresponds to the triple for Spin(32) gauge theory with periodic boundary conditions. Fol­
lowing the same steps as for the Eg x Eg theory, one finds that construction of this triple is 
not possible. We also note that this triple, if it would have existed, would have non-integral 
Chem-Simons invariant, again confirming that the theory avoids this possibility.

There exists another asymmetric orbifold for the 5pin(32)/Z2 string [32] [55]. Using the 
fact that the group 5pin(32)/Z2 is not simply connected, one may consider compactifying 
the theory on a 2—torus with twisted boundary conditions, resulting in a theory without vector 
structure. The analysis of [6], and the one we presented in chapter 5, indicated multiple 
components in the moduli space of Spizi(32) gauge theory compactified on a 3-torus without 
vector structure. Again one may deduce from the fact that the topology of the gauge group 
in string theory differs from the topology found from ordinary gauge field theory due to the 
presence of winding states, that none of the extra components can be constructed for the 
Spin(32)/Z2 string.

Therefore, for the 5p/n(32)/Z2 string, the only possibilities for compactification on a 3- 
torus are the standard Narain-compactification [36], and the one without vector structure from 
[32] [55], embedding the 2-torus in the 3-torus with a suitable holonomy on the third cycle.

We may generalise to a more general case with holonomies parametrised by a',, provided the 
projection Pg- gives the special value PpL(a/,) = a,. Possible moduli for varying the holonom­
ies are then given by One may use the general formulas from [36] [37] [ 18] to show 
that this results in a moduli space that locally has the form

50(19-Ar,3)
50(19-Ar) x 50(3)

where Ar is the rank reduction for the Zm orbifold (see also the table below).
We summarise the results found thus far in a table. We also include the standard Narain- 

compactification (denoted by Z|), which fits perfectly in the picture when we take trivial 
holonomies and m = 1.

A-1
0

O4 © £>4 
E6© E6 
Ej ® Ej 
E& ® Eg 
Eg (B Eg

Table 6-1. Lattices A, complements A1, rank reduction Ar and zero-point energies in the twisted 
sector Ei for Zm asymmetric orbifolds corresponding to triples.
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W(a) (6.1.24)

31

(6.1.25)32

e
Here the first E% is in the first 8 positions of the vectors, and the second E% in the last 8. The 
transformation 0 swaps the two E&'s. This is the CHL-construction. In this case, both a, are 
invariant under 6 and can actually be smoothly deformed away. The corresponding circles can 
then be expanded to give the 9 dimensional CHL-string.

/ q + wa

y ^/cF(/i-q a-u>a2/2 _

In [32] [55] it was argued that compactification of the Spin(32)/Z2 string without vector 
structure is dual to the CHL-compactification of the E$ x Eg-string. We will show here that 
also the Eg x Eg-compactification with a ^-triple is dual to these theories.

A derivation of the duality between the Eg x Eg and 5pin(32)/Z2 theory can be found 
in appendix C. We will follow the notation used there, but will replace EA with a. Consider 
a heterotic string theory compactified on a circle. The transformation of the momenta of the 
heterotic string under the inclusion of a holonomy a is as follows (see eq. (6.1.1) (6.1.2)):

q

a' ( n wR\
\ V 2 ' a' '

In the appendix C we show that the duality transformation between 5pzn(32)/Z2 and the 
Eg x Eg string can be characterised by:

• Its form is W(—a')w W(a), and it maps T® Tij to T' ® TJ ,, with T T';

• a is a root of G', and 2a is a coweight of G;

• a' is a root of G, and 2a' is a coweight of G'\

• a a' = -l,andEE' = a'/2.

where a and a' describe Wilson lines for the two heterotic theories, R and R' are their respect­
ive compactification radii, T and T' are the lattices Tg ® Pg and T|6, and G and G' are their 
associated algebra’s Eg x Eg and SG(32). Finally u is the transformation that reflects the right 
moving momentum.

In the example below, we will compactify on a 3-torus, and choose the a, to be orthogonal 
for the different i. Then the momenta and winding numbers associated to the dimensions of 
the spatial torus do not mix any more (as in the momentum formulae for the heterotic string, 
the off-diagonal contributions from a, ay, and are all set to 0). We can therefore dualise 
in each direction separately.

In the example, there are always two holonomies on the maximal torus present. On the 
third radius of a three-torus we perform an asymmetric orbifold construction, with a shift over 
half the third circle and a transformation 0 on the group lattice that will be listed explicitly.

We start with a particular example of an Eg x Eg-string, with background gauge fields

= (l,0l4,-l,)
1 4 14= (04,l,-i,04)

<9(«1........«!«)=- («I6......... «1)
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»i

(6.1.26)

«i)

ai

(6.1.27)

»2 

e

»2

e

Now the first Eg is interpreted to be in the positions 1,...,4, 13 16. and the second Eg in 
positions 5 12. Actually this formulation is not completely accurate, since neither a, nor 
az is invariant under 0. and it is therefore impossible to decompactify any dimension. This is 
a particular case of a non-trivial triple in Eg x Eg. Hence we see that the CHL-string. toroidal 
compactification without vector structure and the non-trivial Zj-triple are actually one and the 
same. That they share the same Mikhailov lattice [34], rank reduction and unbroken symmetry 
groups is now more or less obvious, and also from various proposed dualities it is hard to see 
how there could be more than one way to divide by a Z2.

Mikhailov claims that the 7 dimensional CHL-string moduli space has three cusps, which 
he interprets as "ways for going far away in the moduli space”[34]. It is natural to conjecture 
that the above three interpretations correspond to these three cusps. Strange is however that 
Mikhailov claims that two cusps correspond to 5prn(32) interpretations and one has a natural 
Eg x Eg interpretation, while the above suggests that it is the other way around, two Eg x Eg 
cusps and one Sprn(32). Mikhailov is very sketchy in his interpretation of the cusps, so it is 
hard to check his arguments.

The other asymmetric orbifolds we constructed (corresponding to Z„,-triples with m > 2) 
can be compactified on additional tori, but probably do not have analogues in dimensions 
higher than 7. In particular, in the papers [46] and [9], the authors constructed some asym­
metric orbifolds in 6 dimensions that are probably compactifications of our 7-dimensional 
orbifolds.

The specific form of the a, was chosen to allow duality transformations. We dualise in the 
1 direction to get the Sprn(32)/Z2 string with holonomies

For this case a, no longer commutes with d. The difference 9(ai) —ai lies on the spin weight 
lattice of Sprn(32), indicating that we are dealing with a compactification ' .thout vector 
structure. We have reproduced the result from [32] [55]. The “twist" is in the 1-3 direction. 
a2 is still invariant under the transformation 6. and can therefore be smoothly d for med away. 
We can therefore reach 8 dimensions in this situation, but not more.

On this theory we apply another T-duality, this time in the 2 direction, to obtain another 
Eg x Eg string with:

New string and M-theory vacua

I2 I4 I2 8 = (-- ■- ,— ,08) 
2 2 2
I4 I4 = (o4,i.-i,o4)

S(»l........ «16)=-(«16 

= (_i2,r,_i2,o8)22 2
= (O3,1,-1, o’)

0(|<!........ uis) = - (“16.......... «1)
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6.2 Orientifold realisations

The Spzn(32)/Z2 heterotic string, and the type I open superstring are conjectured to be one 
and the same theory [42]. That they appear to be so different is thought to be due to the fact 
that they describe the theory in different limits that are related by a weak-strong coupling 
duality. Taking this conjecture to be true, all previously constructed compactifications for the 
Spfn(32)/Z2 heterotic string should have analogues for the type I string. More dramatically, 
the compactifications for the type I superstring and its T-duals constructed in chapter 5 that 
cannot be reproduced by the heterotic string should suffer some kind of inconsistency. There 
are good indications that the configuration of a 6 dimensional O~ orientifold fixed plane 
with a single Db brane on top cannot be embedded in a consistent string theory, invalidating 
precisely those configurations that are not reproduced by a heterotic string compactification 
[15],

We also recall ai this spot that there were orientifold configurations in chapter 5 that rep­
resented multiple components in the moduli space of the gauge theory. These ambiguities 
should also disappear in the full string theory. The topology of gauge groups as analysed from 
the heterotic string indicates that this is indeed the case.

In the type I picture the topology of the gauge group is modified by non-perturbative ef­
fects. The heterotic string is thought to appear in type I string theory as a soliton, the D-string 
[42], and its effects cannot be studied from standard string perturbation theory that was the 
basis for the analysis of chapter 5. There is a remarkable hierarchy of non-perturbative effects 
in type I theory affecting the topology of the gauge group. In perturbative type I theory all 
states transform in the adjoint of 0(32). In [56] it is argued that instanton effects break 0(32) 
to the adjoint of SO(32). According to [50] [51] [56] there are solitonic particles transform­
ing in a spinor representation, setting the gauge group to Sp»n(32)/Z2- And finally in the 
above we argued that a solitonic string affects the topology of subgroups of 5pzn(32)/Z2. 
The instanton, solitonic particle, and solitonic string all act as obstructions against certain 
compactifications. They all feature in the paper [56] which tries to explain the existence of 
these non-perturbative excitations from a unifying framework.

We now return to our original theme, compactifications of string theory on a 3-torus. The 
5pz?i(32)/Z2 heterotic string allowed only one non-trivial compactification on a 3-torus, be­
ing one without vector structure. By strong-weak duality this corresponds to a type I compac­
tification without vector structure, with the same holonomies on the 3-torus. From the results 
of chapter 5 it follows that this is T-dual to IIA string theory on the product of a Mobius strip 
and a circle. The edge of the Mobius strip is formed by an O~ orientifold plane. This again 
is dual to a product of a IIB orientifold 7'2/Z2 with a circle. The Z2 of the orientifold reflects 
two of the three torus coordinates, and has 4 fixed points on T2, 3 of which correspond to em­
planes, the fourth being an O+ plane. Another T-duality brings us to a IIA orientifold T3/Z2 
where the Z2 reflects all torus coordinates, hence gives 8 fixed planes, to be subdivided in 6 
O~ planes and 2 O* planes.

The T-duality that transformed type I theory on a 3-torus without vector structure to IIA 
theory on the product of the Mobius strip and the circle acted on one of the coordinates of the 
two-dimensional sub-torus that carried the holonomies that eliminated the vector structure.
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6.3 M-theory and F-theory realisations
This section consists of a brief sketch of extensions of the previous materia! to M- and F- 
theory, the theories describing strongly coupled IIA resp. IIB-strings. A more complete ac­
count of this material will be published later [15].

It is argued that the strong coupling limit of the 10 dimensional IIA string theory leads 
to a new 11-dimensional theory, called M-theory [54]. A complete description of M-theory 
has not been found yet, but there is a large amount of information available on aspects of the 
theory. The low energy theory of M-theory should be 11-dimensional supergravity [13], the 
unique maximally supersymmetric theory in 11 dimensions not containing fields with spin 
bigger than 2. M-theory is thought to be a theory of two-dimensional membranes. Its relation 
to IIA string theory is by compactification. The IIA theory is obtained as M-theory on a 
circle, the radius of the circle being proportional to the coupling constant of the IIA theory. 
For strong coupling the circle is large, and the theory lives in an 11 dimensional space. For 
weak coupling the circle is very small, and the theory effectively 10 dimensional. The IIA 
string is thought to be a membrane wrapped around the circle. Also various other extended 
objects in the IIA theory have an 11 dimensional interpretation.

There is another compactification of M-theory to 10 dimensions. Compactifying the the­
ory on S*/Z2 (Z2 being the reflection on the circle) also leads to a 10 dimensional theory, and 
the possibility to wrap membranes around S11Z2 suggest that this may also be a string theory. 
The fixed points of the Z2 however may lead to problems with the low energy supergravity 
theory. As it turns out the fixed points indeed lead to anomalies, but they can be successfully

On the third circle there is a holonomy taking some value in the maximal torus left invariant 
by the other two holonomies. One may also T-dualise the type I theory in this direction. This 
results in a IIA-theory on the product S‘/Z2 x T2. The Z2 orientifold projection acts on the 
circle with two fixed points, corresponding to O~ planes. The T2 carries holonomies that 
encode absence of vector structure.

The last T-duality is more subtle. We know that T-duality on a T2 without vector struc­
ture leads to a theory on the Mobius strip, but we have to be careful to include the extra 
S1/^ in the right way. A careful analysis leads to a IIB orientifold that may be described 
as (T2/Z5 x We labelled the two Z2’s appearing here differently, as they have com­
pletely different actions. The acting on T2 is the standard orientifold action acting on 
the 2-torus. It inverts the two coordinates of the two-torus, and on top of that reflects the 
worldsheet of the string. The fixed points of Z? are O~ planes. The action of Z2 is harder 
to describe. It acts simultaneously on T2/^ and on the circle S1. The action on S1 is a shift 
over half the period of the S1. The action of Z2 on T2/Z2 is a reflection in a point (it has a 
second fixed point because of the various identifications). The presence of O~ planes restricts 
the possibilities, as the O~ planes should be mapped to each other by Z2. Also the D-brane 
configuration present should be invariant under the Z2. The point is that in the T-dual to the 
type I-theory without vector structure, the D-brane configuration on the orientifold T2/Z2 
indeed has this symmetry.

Other T-dualities will take us back to one of the orientifolds considered before.
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cancelled by inserting a 10 dimensional gauge theory with gauge group E% at the fixed points 
[25]. The proposal in the cited paper is that M-theory on S'/Zz is the strong coupling limit 
of the Eg x E$ heterotic string. Again the size of the eleventh dimension is interpreted as the 
strength of the coupling. At large coupling the fixed hyperplanes with the Eg gauge theories 
are far apart. At small coupling they are a small distance apart, leading to an Eg x Eg-string 
theory.

With this information it is almost trivial to obtain the strong coupling limit of the CHL- 
string. S*/^2 can be represented by an interval, with an Eg-gauge theory living at each end. 
The CHL-string was a compactification of the heterotic Eg x Eg string on a circle with a 
holonomy that interchanges the Eg factors. In the eleven dimensional picture, this implies the 
presence of an extra circle. Traversing the circle, the two endpoints of the interval should be 
interchanged. Hence the strong coupling limit of the CHL-string is M-theory on a Mobius 
strip. Compactify ing this theory on an additional 2-torus, one obtains a dual of the 7 dimen­
sional CHL-string. The interpretation as the strong coupling dual of the CHL-string identifies 
the size of the interval as the coupling constant for the string. Alternatively, one may interpret 
the size of one of the circles of the additional 2-torus as the coupling constant for a string the­
ory. Moving to weak coupling then means shrinking the circle, and the limit for small circle 
size is interpreted as IIA theory on a Mobius strip, with an additional circle, which is also a 
theory we encountered before. Eg is not a gauge group that is encountered in the IIA theory. 
It is usually argued that Eg arises due to strong coupling effects, and that in this low energy 
description it is broken to its S(?(16)-subgroup.

The strong coupling limit for Eg x Eg theory with a triple is also not hard to find. The 
theory lives on a product of T3 with S’/Zz- On 7'3 appropriate holonomies should be included 
for the Eg theories. In the case of a Z2 triple, one may again consider shrinking one of 
the circles of T3 to obtain a weakly coupled IIA string theory. This IIA theory lives on 
T2 x S*/2u2, with on the fixed points of the Z2 O~ planes inserted. On the remaining 2-torus 
non-trivial holonomies that reduce the rank are included. If one again assumes that the Eg’s 
are broken to Sprii(16)/Z2 subgroups, and realises that this group allows a compactification 
on a 2-torus without vector structure, then it is clear that this corresponds to one of the theories 
we discussed before.

In the previous chapter we encountered another IIA theory, living on an orientifold T3/Z2 
with 6 of the 8 fixed points on the torus occupied by O“-planes, and 2 by O+-planes. The 
strong coupling limit of this theory is still rather mysterious. The case where all fixed points 
are occupied by O~ planes, was argued in [54] to correspond to M-theory on a K3. A K3 
is a non-trivial 4-dimensional Calabi-Yau manifold. Compactification on K3 breaks half of 
the supersymmetries of M-theory, which is necessary to make it match with the amount of 
supersymmetry for heterotic theory on a 3-torus. M-theory compactified on a smooth K3 
gives L7(l)22 as gauge symmetry. Non-Abelian gauge symmetries are argued to occur when 
the K3 has one or more singularities. Singularities on K3 come from vanishing 2-cycles. 
The singularities are classified by the intersection matrices for these vanishing 2-cycles. This 
leads to a classification of singularities that closely resembles the classification of simply 
laced compact Lie-groups. Membranes can wrap around 2-cycles, and in case the cycle has 
vanishing size this is argued to lead to extra massless states, and non-Abelian gauge symmetry.
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There is then a one to one correspondence between singularities, and possible non-Abelian 
symmetry groups.

IIA theory, living on an orientifold T3/Z2 with 6 0" planes, and 2 O+ planes closely 
resembles the above situation. The main differences are that the presence of O+ instead of 
O~ planes leads to a reduction of the rank of the group, and non-simply laced gauge groups 
such as Sp(k). In [55] it was argued that the strong coupling limit of this theory should 
correspond to compactification of M-theory on a K3 with a mysterious so called D4 ® D4 
singularity [31], that somehow manages to reduce the rank and produce the non-simply laced 
groups. The precise mechanism is still unknown. An ordinary D4 singularity would give 
SO(8) x SO(8) symmetry. It is striking that we argued that SO(8) x SC>(8) is the smallest 
group that we can use to construct the asymmetric orbifold for the Z2-triple in the heterotic 
Eg x E& string. This suggest that also for the other triples a strong coupling hi nit may exist 
corresponding to M-theory on K3 with rank reducing singularities. By analogy the example 
of [55], we expect the mysterious singularities to be of the type E& ® Ee fo> a /^-triple, 
Ej ® E-j for a Z4-triple, Eg ® Eg for a Zs-triple and Z^-triple. This subject .■ however still 
under investigation [15].

The idea of M-theory being a strong coupling limit of the IIA theory, with the size of an 
11 dimensional circle being the coupling in the IIA theory may make one wonder whether an 
analogous construction exists for other theories. The strong coupling dual of the IIB theory is 
thought to be the IIB theory itself. IIB theory contains two types of strings, the fundamental 
string and a solitonic D-string. These are thought to be interchanged by strong weak coup­
ling duality. One may also consider “dyonic” strings, collective states of fundamental and 
solitonic strings. Such strings may be labelled by two charges p and <7, describing a state of 
p fundamental and q D-strings. All possibilities form a two dimensional lattice, much like 
the charge lattice that occurs in theories with electrically charged particles as well as magnetic 
monopoles. In this lattice changes of basis may be made by transforming by an element of 
SL(2, Z). This SL(2, Z) is conjectured to be a symmetry of the full IIB theory, and it acts also 
on the coupling by fractional linear transformations.

SL(2,Z) is also known in another context as the modular group of the 2-torus. The 
2-torus has a complex structure that transforms under the SL(2,Z) by fractional linear trans­
formations. This led Vafa to propose to interpret the complex coupling constant of the IIB 
theory as the modular parameter for a 2-torus. One then compactifies IIB theory on a certain 
base manifold, and erects at each point of this manifold a 2-torus whose modular parameter 
corresponds to the coupling in the IIB theory. This construction was named F-theory [53]. As 
an example one may consider the IIB-theory on a 2-torus at constant coupling. According 
to the prescription one may erect the same 2-torus as a fibre at each point. This results in 
F-theory on the 4-torus. Things become more interesting if we allow the fibre to become sin­
gular. This may happen if in the IIB theory the coupling diverges. Accordingly, at the location 
of the fibre there should then be a source or sink for the dilaton, and this is interpreted as the 
position of a D-brane. Coinciding D-branes lead to non-Abelian gauge symmetries. In the 
F-theory picture this corresponds to a collision of singular fibres. The possible singular fibres 
are again mathematically classified, and there exists a correspondence between singular fibres 
and possible non-Abelian symmetry groups.
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A particular compactification of F-theory is achieved by compactifying the IIB theory on 
a 2-sphere. The 2-sphere is not Ricci-flat and therefore not a suitable background for a string 
theory, as it does not solve the equations of motion. This may be repaired by adding a num­
ber of D7-branes transverse to the sphere. In the background of a D7-brane space-time is 
not flat, and this modifies the curvature. One can achieve a consistent string compactifica­
tion by adding 24 D7-branes. In the F-theory description we then have a 2-sphere with 24 
singular fibres. Mathematically, a 2-sphere with 24 singular fibres gives a subclass of the K3- 
manifolds, the elliptically fibered K3’s. The moduli space classifying elliptically fibered K3’s 
has the same form as the moduli space of Narain compactification of heterotic string theory 
on a 2-torus. Thi s and other evidence has led to the conjecture that F-theory on an elliptically 
fibered K3 is c: .■ 1 to heterotic string theory on a 2-torus [53].

Given this .. is clear that the Narain compactification of heterotic string theory on
a 3-torus should be <! •• to F-theory on a product of an elliptically fibered K3 with a circle. In 
the above we < ;side: -d compactifications of heterotic string theory that led to reduction of 
the rank of the gauge ; oup. For the case of the CHL-string in 8 dimensions, it was argued in 
[55] that with a suitable choice of holonomies, there exists a IIB orientifold dual with 3 O 
planes and 1 O+ planes. Another distinguishing feature in this theory is the presence of a non­
zero B-field on the orientifold. Together with the rank reduction this led to the proposal that 
this should be dual to F-theory on a K.3 with a singular fibre of D& type, with the property that 
this singular fibre does not lead to enhanced gauge symmetry. This description was developed 
in [5] [30], who further emphasised the role of the non-zero B-field over the base of the K3. 
This is immediately extended to one of the duals for the heterotic string with a Z2-triple: It 
should be dual to F-theory on the product of the circle and an elliptically fibered K3, with 
non-zero B-field over the base.

There exist K3’s with extra symmetries; discrete groups mapping the K3 to itself, which 
leads to another F-theory dual. AH possible automorphisms of K3 have been classified by 
Nikulin [40]. Among the possible automorphisms of K3 there are a Z2, Z3, Z4, Z5 and Z$. 
One may choose a basis of 2—cycles of the K3, such that the Z2 acts on 8 of the basis cycles, 
the Z3 on 12, the Z4 on 14, and the Z5 and Z$ on 16 basis cycles. Recalling that the Z2, 
Z3, Z4, Z5 and Ze triples led to rank reduction with 8, 12, 14, 16 and 16, there is clearly a 
connection. Indeed the relevant symmetries can be realised on elliptically fibered K.3 s. By 
analogy with the heterotic construction, one may then compactify F-theory on an additional 
circle, and divide by a Zn-symmetry, where the Zn acts as a shift on the circle and as the 
Nikulin automorphism on the K3, thus obtaining F-theory on (K3 x S*)/Zn. There exist a 
few special limits in the K3 moduli space, where K3 may be written as a global orbifold of 
a 4-torus by a Zw symmetry. One of these special K3’s is 7’4/Z2, where the Z2 acts as an 
inversion of all coordinates. F-theory on 7'4/Z2 is argued to be dual to IIB theory on the 
orientifold T2/Z2 with the fixed points of the Z2 corresponding to O planes [48]. The 
last IIB-orientifold of the previous section included this orientifold as a sub-manifold of the 
compactification space. Therefore, this orientifold (with a suitable D-brane configuration) 
should be dual to F-theory on (T4/Z2 x S,)/Z2 = (K3 x SI)/Z2-

The whole web of theories that are dual to the CHL-string is depicted in figure 6-1. In this 
figure /iE8-stands for the heterotic Eg x Eg-string, and hSO for the heterotic Spiniyi)/^-

M-theory and F-theory realisations
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Figure 6-1. The web of relations between the various dual theories to the 7-dimensional CHL-string

Figure 6-2. Dual theories for Z„-triples (n > 2)
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1156.3 M-theory and F-theory realisations

string. The I, IIA and IIB stand for the corresponding string theories, M and F for M- and 
F-theory descriptions. Below the theory label we have written the corresponding compacti­
fication manifold. “CHL” stands for the special holonomy leading to the CHL-string. The 
subscript “nv” on tori stands for “no vector structure”. On a 3—torus, “triple’ denotes the 
presence of three holonomies leading to reduction of the rank. The symbol I appearing in 
the compactification manifold stands for 5*/Z2. The +-signs for IIA on T3/Z2 and IIB on 
T2/Z2 x S1 denote the presence of two resp. one O* fixed planes. In one F-theory and 
one M-theory case we labelled the K3-compactification manifold with Dg, resp. D4 ® ^4 to 
remind the reader that there is additional structure in the form of rank reducing singularities.

In the case of heterotic theories with Zn-triples, with n > 2, the web of dual theories is less 
rich and is depicted in figure 6-2. Again one K3 appearing in an M-theory compactification 
is marked with Ek 4- Ek, to denote the occurrence of an Ek ® Ek -singularity that reduces the 
rank. Note that of th. theories appearing in figure 6 — 2, the heterotic E% x Eg string gives the 
only description in ms of weakly coupled strings.
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7 Conclusions

The moduli space of vacua for Yang-Mills theories compactified on tori turns out to be much 
richer than was thought a few years ago. For Yang-Mills theory on an n-torus with periodic 
boundary conditions for the gauge fields, one may always obtain a vacuum solution by setting 
all gauge potentials to be constant elements taking values in the Cartan subalgebra of the 
gauge group. Recent insights show that for theories with orthogonal and exceptional gauge 
groups compactified on tori of dimension 3 or higher, there exist vacuum solutions that are 
not of this form.

The new ?cua are valid solutions for pure Yang-Mills theories on tori. Their discovery 
however was motivated by supersymmetry. For four-dimensional supersymmetric Yang-Mills 
theories the number of ground states is equal to the Witten index [52], which is argued to 
be independent of perturbations of the theory. One therefore expects the number of ground 
states for supersymmetric Yang-Mills theory on a spatial 3-torus with non-compact time dir­
ection to be equal to the number of ground states for the same theory in non-compact flat 
4-dimensional space-time, as one may continuously deform the theories into each other by 
varying the volume of the spatial 3-torus. Explicit calculations did not confirm this expect­
ation for supersymmetric Yang-Mills theory with an orthogonal or exceptional gauge group, 
where the number of vacua in the infinite volume limit seems larger than the number of vacua 
for the theory on a small 3-torus [52] [ 1 ] [11] [35] [45].

A partial resolution of the paradox came from a construction within non-perturbative string 
theory [55]. The vacua of a gauge theory with an orthogonal gauge group compactified on a 
torus may be parametrised by the positions of D-branes on an orientifold. Using this construc­
tion it can be shown that the gauge theory on the 3—torus admits vacua that were not considered 
before. Including these extra vacua in the count for the number of vacuum states for the gauge 
theory on the 3-torus, the discrepancy between the various Witten index calculations disap­
pears. A crucial fact is that the subgroup commuting with the holonomies parametrising the 
new vacua has a rank that is smaller than that of the original gauge group. For the exceptional 
group G2, which can be defined as a subgroup of SO(7), one can also show that an extra 
vacuum state exists, and that including this extra vacuum makes the Witten index calculations 
agree. These were the topics that were discussed in chapter 2.

With the knowledge that extra vacua solve the Witten index problem for the orthogonal 
groups and G2, it is natural to conjecture that also for the remaining exceptional groups new 
vacuum states exist. As these groups can not be studied with a D-brane construction, or as a 
subgroup of an orthogonal group, new insights are needed. The crucial observation was that 
new vacua can be constructed by imposing’t Hooft’s twisted boundary conditions [23] [24] in 
appropriate subgroups of the gauge group, as described in chapter 3. With this construction, 
the results for the orthogonal groups and G2 can be reproduced, and new vacua for the ex­
ceptional groups F4, Ef,, E~i and E% are found. For the orthogonal groups and G2 the moduli 
space of vacua consist of 2 components, for F4, E^, Ej and Eg the moduli space consists of
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resp. 4,4,6 and 12 components. Counting all vacua for the theory on the 3-torus, one obtains 
the same result as for the infinite volume theory, confirming the constancy of the Witten index.

The subject of compactifications of gauge theory on a 3-torus has been under study by 
two other groups [6] [26]. In chapter 4 we briefly discussed some elements of their analysis. 
One may understand the new solutions for the 3-torus from a more general pattern, that gives 
insight in the possibilities for compactifying a gauge theory on an zi-torus such that the sub­
group of the gauge group that commutes with the holonomies has a rank that is smaller than 
that of the gauge group itself. This argument leads to a systematic search for the subgroups, 
in which the twisted boundary conditions can be imposed. We also reviewed how to con­
struct the holonomies in this approach. Finally, a section was devoted to the calculation of 
the Chem-Simons invariant, which is a topological invariant classifing the various compon­
ents in the moduli space, as different components have different values for the Chem-Simons 
invariant.

For theories with orthogonal gauge group and periodic boundary conditions, t ne vacua 
were found by considering D-branes in an orientifold background. We returned hi theme 
in chapter 5, and showed that all vacua for gauge theories with classical gauge groups on a
2- or 3-torus, with both periodic and twisted boundary conditions, can be par; «etr sed by 
a configuration of D-branes in a certain orientifold background. A crucial ele ment in our 
analysis is how to apply T-duality to D-branes in the vicinity of a geometrical object called 
a crosscap, which yields unoriented spaces. We also made a brief excursion to theories with 
orthogonal gauge groups and periodic boundary conditions on higher dimensional tori.

The string theories with orthogonal gauge groups played an important role in the develop­
ments described above. Also exceptional groups occur in string theory. One of the heterotic 
string theories has as its gauge group Eg x Eg. Since Eg is one of the groups giving new vacua 
on the 3-torus, we turned in chapter 6 to compactifications of the heterotic Eg x Eg string on a
3- torus. The new vacua are described by asymmetric orbifolds of the heterotic string. Before 
performing the orbifold construction, we need to carefully examine the gauge symmetries of 
the theory. This leads to the insight that the topology of the gauge group in string theory is 
crucially different from the topology found from an analysis of the low energy gauge theory. 
The difference is due to the presence of winding strings, that have no field theory analogue. 
These give states transforming in representations of the gauge group different from the ones 
found from non-winding strings, and modify the topology of the gauge group. The modified 
topology reduces the number of possibilities for new vacua dramatically. One of the theor­
ies constructed this way turns out to be the CHL-string [7] [8]. The new formulation can be 
related to the traditional one using string duality.

String duality may also be used to obtain other string theories with the same gauge sym­
metries. In particular, for the CHL-string there are various orientifold descriptions, of which 
some have been encountered in chapter 5. Strong coupling dualities lead us to M- and F-theory 
descriptions [54] [53], where the compactification manifold is no longer a torus, but involves 
the 4-dimensional Calabi-Yau manifold K3. One M-theory description, on a K3 with rank 
reducing singularities, remains mysterious. M-theory on K3 with a particular rank-reducing 
singularity has been proposed before [55] as dual for the CHL-string, but in other theories 
different rank reducing singularities are found, signaling a more general pattern. This is still
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under investigation. One may hope that resolving this issue will lead to new information on 
M-theory, and its possible compactifications.

There are many more open ends. The developments described here only concern the 
(semi-)classical vacua for gauge and string theories. The full quantum dynamics in these 
theories remains to be explored. The degeneracies of the vacua should be preserved in su­
persymmetric field theories, because of the Witten index. In non-supersymmetric field the­
ories, non-perturbative effects are likely to lift the degeneracy, selecting a particular vacuum. 
It is significant that different vacua have different Chem-Simons invariant, which hints at 
instanton-like excitations describing the tunneling between different vacua. Studying dynam­
ical effects may also take us further away from the extreme limits considered here, being the 
small volume and . finite volume limits. The constancy of the Witten index suggests that, at 
least in the super .; metric theories, also at intermediate volumes a discrete set of vacua may 
be identified.

Anoth. direc i for further research is to classify the vacua for Yang-Mills theories with 
given gauge grot ... >nd given boundary conditions on higher than 3-dimensional tori. Some 
preliminary result-, for orthogonal groups from chapter 5 indicate that one should expect a 
multitude of components, but many of these isomorphic. For finding all possibilities the non­
trivial n-tuples mentioned in chapter 4 may be used as building blocks, but it is a non-trivial 
problem how to combine them, certainly for the cases with twisted boundary conditions. Res­
ults for the higher dimensional tori are relevant for compactifications of 10 dimensional string 
theories.
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A Lie algebras: conventions

heJt (A.l)

tr|ad(/i„),ad(/i^)} = Na(hp) = Nfi(ha) = N{a,f)) (A.4)

(A.5)[ha,ep] = (a,P)ef

The ep are normalised such that
(A.6)

If or 4-/3 ^0:

•1 =

[£«,£—or] — 271 a

Let Z be a Lie algebra. A Cartan subalgebra is a maximal abelian subalgebra in Z. Because 
all elements in commute, they can be simultaneously diagonalised. In particular, in the 
adjoint representation, the eigenvectors of are elements of the Lie algebra. One can write:

hpa+qp = pha+qhp (A.3)

The space * of linear functionals on is a vector space. The roots form a (finite) subset of 
this space. The set of root vectors will be denoted by A. One can introduce the notation

[7i,ea] = a(h')ea

(We will never need an 
conventions

[ea,ep] = Na,flea^.p (A.7)

explicit form of Na,p). Hermitean conjugation acts as follows in our

The left hand side, and hence the right hand side is clearly symmetric and biliniear. For com­
pact Lie algebra’s, (A.4) defines an inner product on the root space. This will be normalised 
such that the length of the longest roots is always V2 (this fixes the normalisation constant TV). 
Since it turns out that the roots of the algebra occur in at most two different lengths, one may 
speak of short and long roots. An algebra that has only roots of one length is called simply 
laced.

We now have

tr{ad(ha),ad(70) = Na(h) (A.2)

with N a normalisation constant to be fixed later (In our articles [28] [29] we set N = 1, but 
in this thesis we will use a different convention. This does not affect the results of [28] [29], 
which can be found in chapter 3 translated to the conventions defined below). Because of 
linearity one has

=ha — e_a (A.8)

One picks a (non-orthogonal) basis of roots a, such that, if or;, aj are in this basis, a, —aj is 
not a root. The roots of such a basis are called "simple". Any root is expressible as cjorj,

The a(h) are linear functionals on the space M, called roots or root vectors. The elements 
of 3t form a vector space. It is possible to associate elements ha to the functionals or(/t) by 
defining
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(A.9)nU

(A. 10)

< = (A.11)

(A. 12)

(A.13)trfad/M.ad^)} = 2h(a,P),

2a,

The Cartan integers may be written as ny = (a/.a^). One may also define a coroot diagram, 
following the procedure for a Dynkin diagram, but replacing all roots by coroots. This leads 
to a diagram that is almost the same as the Dynkin diagram, the exception being that the nodes 
denoting the long roots become nodes denoting the short coroots, and the nodes denoting short 
roots become nodes denoting long coroots. Also an extended coroot diagram can be obtained 
by replacing all roots by coroots for an extended Dynkin diagram. The corresponding set of 
coroots also does not form an independent set, but obeys a relation of the form

h»ao +y?/bgiv = °
with the integers /i, given by />,- = g, < a,> /2, and similar for /to, which turns out always 
to equal 1. hg and A; are the coroot integers, and play a prominent role in chapter 4. h =

*s called the dual Coxeter number. Note that for simply laced algebra’s, roots and 
coroots, and therefore Coxeter number and dual Coxeter number may be identified. It can 
be shown that the normalisation constant N appearing in (A.4) equals twice the dual Coxeter 
number, and hence

where the c* are integers which are either all positive, or all negative. We always denote 
simple roots by a,-, where i is an index or a number. The simple roots of the compact simple 
Lie algebra’s are listed in appendix B. The geometrical relations between the simple roots may 
be expressed through the Cartan integers

_ 2(q, ,tt>)

The n,y form a matrix, the Cartan matrix, which together with the normalisation fixes all 
relevant properties of the root system. An easy way of depicting the Cartan matrix is by 
means of a Dynkin diagram. For this diagram, one draws a node for every value of the index 
i (the number of dots is thus equal to the rank r of the group). Then every pair of nodes i and 
j are connected by njjnji lines. We will denote the long simple roots by open dots, and the 
short roots by solid dots.

As any root may be expressed uniquely as one may assign a heig.. function
to any root. For a unique root this function is maximized, and consequently is . ailed 

the highest root The lowest root is then ag = —an- When the lowest root , added to 
the set of simple roots, the resulting set still has the property that a, — aj is nc root for 
any member of the set. By the same rules as for the Dynkin diagram, one may "aw a so- 
called extended Dynkin diagram for this set. A property that this set does not ha' is linear 
indepence: There is a relation of the form

ggag + ^gia, =0

with the gi all integers, and go = 1. g = ^!i=o8i *s ^e Coxeter number, and we see that it is 
the height of the highest root plus 1.

The coroots are defined as
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(A. 14)njyirti G Z

(A.16)Ck = {P,“>k)-

a result that will be needed in chapter 4.
Because the elements ha of the CSA always commute, they can be simultaneously diag­

onalised in any matrix representation. In a specific matrix representation (Aa)i; , weights A, are 
defined by = (a, A,) for each a. Consequently the number of weights of a representation 
is equal to its dimension. A weight A of a group is always of the form

where A, are the fundamental weights, and a, the simple roots. The fundamental weights are 
defined from the simple roots by

A = A; -Fm/a/
i

(A.15)

The weigh. 1 attic > thus the dual lattice to the coroot lattice. The fundamental weights are 
always or ;ie for S^kqkotk where the qk are rational numbers.

The dual latir - o the root lattice is called the coweight lattice. A basis for the coweight 
lattice may be fou J by taking the dual basis to a basis of simple roots < <Xi,a>j >= . If the
algebra is simply iced, the weight and coweight lattice may be identified.

Roots and weights have an expansion in the simple roots of the form & = 52*c*a*- The 
coefficients ck can always be obtained by computing the inner produkt with the coweight &>*, 
as
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B Lie algebras: roots and weights

An

Bn

Dn

O’

E6

E7

ES

F4

Figure B-l. Extended Dynkin diagrams. The Dynkin diagram is obtained by deleting the node 
marked by a0 and all lines connected to this node.

C n

For easy reference we give some quantities for the groups used in this thesis. For G2, we find 
it easier to work with abstract root vectors, for the orthogonal and other exceptional groups 
it is more convenient to work with explicit forms for the root vectors. F4 and G2 do not 
possess non-integer fundamental weights, and hence none are listed. Non-integer fundamental 
weights of SU(ri) and Sp(n) are not listed either since we will not need them.

We use the notation <?, for the unit vector in the /-direction. In the non-simply laced 
algebra’s, the solid dots in the Dynkin diagrams denote the shorter roots.

G2

“0 % % “4

•
% “> %
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S(/(n)(A„)

• coroot integers:
ft; = 1 Vi

SO(2n + l)(Bn)

• Simple roots, explicit representation:

af = (e,-e,+i) (l<i<n) a„ =e„

• Positive roots:
(e*±e/) (*</)e*

• Non-integer fundamental weights:

■ coroot integers:

Vi e (0,1,n) ft, =2 Vi £ {0,l,n)ft, = 1

sPw (c„)
• coroot integers:

h, = l Vi

SO(2n) (£>„)

• Simple roots, explicit representation:

(I<i<n) a„ = (en_!+e„)«i = (e< — «i+l)

• Positive roots:
(e4±e() (*<Z)

• Non-integer fundamental weights:

n
A„ = Y>/2 

i=l

A„ = e,/2 — en-i /2 + en/2)

A„-i = e,/2 - e„-i /2 - e„/2)
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• coroot integers:

V t £ (0,1, n — 1, n)hi = 2V i e {0, l,n — l,n}ft, = l

a4 = («3 ~ «4)

• Positive roots:

(ek ± ei) (1 < k < Z) (ej \/2> ± €2 ± e?> ± e4 ± *5 ± *6)/2

In the las: .pression the number of minus-signs should be odd.

• coroot integers:

h3=3/12 — Zi4 = Zi6 = 2ho = h 1 = h$ = 1

Ei

• Positive roots:

eiV2 (et±e;)(l <k </) (e, V2±e2 ±e3 ±«4 ±«5 ±«6 ±«7>/2

In the last expression the number of minus-signs should be even.

• Non-integer fundamental weights:

■

«3 = («5 - ee)
<*6 = («2 - ej)

• Simple roots, explicit representation:

• Simple roots, explicit representation:

«i = (e,^2 —e2 -ej -ea — es - es — e?)/2 
“2 = (e6 + e?) «3 = (e5~ e6) <x4 = (e4-e5)
0-5 = («?3 — e4) a6 - (e2 - e3) 0-7 = (e6 — e?)

• Non-inte; ■ fundamental weights:

A,= (|V3e|)
A2 = (|-/3ei + |(e2 4-C3 + ^4 +e$ 4-es))
A4= (jVJei +e2 + e3)
Aj= (j\/3ci+e2)

«t =(elV3-e2-ej-et-ei-e6')/2
<*2 = (e5 + e6) «3 = («4-e5)
»5 = (,e2 ~ej) a6 = (es - e6)

A4 = (| V2e,+e2+ e3+ «4)
As = (.^'/2ei+e2)
A7 = (x/2e, +|(e2 + e3 + e4 + es + e6 —
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• coroot integers:

*0 = *6 = 1 h i = h$ = h-j = 2 *2 = *4 = 3 hy = 4

Es

• Simple roots, explicit representation:

• Positive roots:

(et ±ei) (k < /) (e\ ±ey ±e3 ±ea ±«5 ±«6 ±e3 ±eg)/2

In the last expression the number of minus-signs should be odd.

• coroot integers:

ho = 1 h\=hy = 2 hft = h% = 3 h2 = h$ = 4 6ht = 5 hy

Ft

• Simple roots, explicit representation:

• Positive roots:
(ej±e/)(k<Z) (ei ±e2±e3 ±e4)/2e»

• coroot integers:
ho = *4 = 1 *,=*3 = 2 *2 = 3

G2

• Positive roots:
a^ay.ai + 02,+2a2>“l +3a2,2a, +3a2

• coroot integers:
*0 = *2 ~ 1 *2 = 2

«2 = (e? + es)
“5 = («4 - es)

«1

«3

a, = (e, - «2 - ej - e< - C5 - e« - «7 - es)/2 
“3 = («6 - e?) 
“6 = («3 -«4) 
“8 = (e? - es)

= («2 - ea)
= («4)

“4 = (e; - e6)
«7 = («2 - ey)

“2 = (e3 - et)
a4 = (e, - ey - e3 - e4)/2
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The heterotic £s x Ej-string and 5pin(32)/Z2-string are T-dual to each other when either one 
is compactified on an n-torus [36] [37] [18]. In the following we will rederive the result of 
[18], Our main purpose is to point out some facts which are relevant for this thesis.

In the Narain-description of compactification of either heterotic theory on a circle, the 
momenta lie on the lattice fl 17,1. n 171 is the unique even self-dual Lorentzian lattice of 
signature (17,1) (up to 0(17,1) transformations). One can decompose flnj as T ffiTij, 
where T, 1 is interpreted as the lattice of momenta for one compactified dimension. T is 
then a Euclidean Lie algebra lattice, reflecting the gauge symmetry in 10 dimensions. The 
possible choices are either T = Tg ffi Tg with Tg the Eg-root-lattice, or T = Tie. with T16 the 
composition of the 5’0(32) root-lattice with one of its spin weight-lattices.

The inclusion of a background gauge field A in the heterotic theory compactied on a circle 
with radius modifies the momenta as follows (we set a' = 2 for convenience) [37] [18]

where we wrote Ar for the transpose of A, and A2 for its Euclidean norm. The vector q takes 
values in the lattice T, and we define = 4 ± where n and w are the momentum and 
winding quantum numbers. The vector with components (q, p+; p-) is an element of T ffiTij.

Consider the lattice of vectors W(A)Vr with e fffi Ti j. The vectors in this lattice 
can also be described as with the components of 4r' chosen relative to another basis,

6 T' ffi Tjj, and M an 50(17,1) transformation (T', , is obtained from Ti.i by replacing 
R by /?'). To find the coordinate transformation from T ffi Ti j to T' ffi TJ,, we have to find 
M. We will fix its form by a few ansatze. First, we anticipate the fact that the desired duality 
transformation involves a large R «->• small R duality transformation, which can be imple­
mented by the matrix u = diag( 1l7, — 1). Second, we assume that also in the dual theory a 
Wilson line is present, which can be implemented in the dual theory by the transformation 
W(A). We then have to set M = «W(A')u. is now given in coordinates appropriate for

The n and w are integers denoting momenta, resp. winding numbers in the compact direction. 
By A we denote a 16-component Euclidean vector, taking values in the root space of the gauge 
group. It is thus naturally identified with an element of the Cartan subalgebra of the gauge 
group, and it corresponds to a holonomy exp(2ni/iRA) taking values in a maximal torus.

One can rewrite this as an SO(17,1 ^transformation acting on an element of fln i:

-A
Al

A 
_ Al 
■J 
■ 2
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r ffi Ti.i. Coordinates appropriate for F'ffiTj j involve an extra u-transformation. The duality 
transformation is thus given as: W(—A')uW(A) which takes r© Ti.i -> T'ffi T',

The required form of the lattices already fixes most of transformation between them. The 
remaining part can be fixed by two more ansatze. The first ansatz will be that specific Kaluza- 
Klein states are mapped to vectors in the root lattice of the gauge group of the dual theory. 
Specifically, we demand that (0, + 4; — 4) is mapped to a vector in the Lie algebra lattice 
with p+ = p_ = 0. This implies that |RA|2 = 2, that A-A' = —1 and that the image of the 
above vector is (RA.0,0). As a second ansatz we impose that (0, + y; is mapped
to a vector with p+ = p_ = 0, but now by the inverse transformation. This implies that 
|R'A'|2 = 2. This identifies RA as a root of T', while R'A' is a root of T.

The images of vectors of the type (v,0,0) (with v a lattice vector of T) have the correct 
form in T, , if and only if2Av/R' is an integer. Thus 2A/R' is a coweight of T. Performing 
the same computation for the inverse transformation shows that 2A'/R is a coweight of T'.

To complete the basis of T© T| j we check the image of (0,1/R, 1/R). This imr e has the 
correct form if either RR' — 1 or R R' = 2. RR' = 2 leads to a transformation with . ' — T (it 
will take either heterotic string theory at R to the same theory at 2/R). Probably ti qu kest 
way to see this is to note that either for Eg x Eg or Spin(32), the conditions th is a 
coweight and has length %/2 implies that RA is a root, and the same for R'A'. hence the 
Wilson lines are trivial, and this is just a complicated way of stating that the T-du il of any 
heterotic string theory without Wilson lines is itself, as also noted in [18], Set RR' 1. so the 
Wilson lines are non-trivial. This will take one heterotic string theory into the other.

Summarising, the duality transformation found in the above is characterised by:
• Its form is W(—A')uW(A), and it maps T© Tgi to T'ffi T', ,, with T/I”;

• R\ is a root of I"', and 2RA is a coweight of T;

• R'A' is a root of T, and 2R'\' is a coweight of T';

• A • A'= —|, and RR'= 1.
Notice the symmetry between A and A' that is not explicit in most derivations of heterotic­
heterotic duality. Especially the observation that 2RA and 2R'A' are coweights of one of the 
gauge groups will be significant for our applications. For the inverse transformation, simply 
interchange R <-> R' and A <-> A'.

The transformation found in [18] is equivalent to the above transformation. One can check 
that the requirements on the Wilson lines lead to an unbroken subgroup whose simply connec­
ted cover is Spin(16) x Spin(16). When more dimensions are compactified, explicit duality 
transformations are harder to find in general. In the cases we will study, things are simplified 
by a special circumstance. One of the compact directions will have Wilson line RA and, in the 
absence of other Wilson lines we could perform the duality transformation to the dual theory 
with Wilson line R'A'. In the cases we will study there will be additional Wilson lines, say 
R;B,, present, but it will be possible to pick them such that A • B, = A' • B, = 0. With these re­
quirements, momenta from different directions will not mix, and one may dualise dimensions 
separately. The duality transformation will then factorise, and one may dualise a theory with 
Wilson lines RA, RfB, to a theory with Wilson lines R'A', R,Bj.
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Samenvatting

Nieuwe vacua voor Yang-Mills theorie op de 3-torus

'Het hoofd van de gemeente keek versuft naar de deur, die zich achter de weten- 
schaps man sloot.
"Wat wilde hij?", vroeg hij zich af. "Hij is tenslotte een geleerde en men kan zijn 
woorden niet verwaarlozen. Als men ze maar begreep.”

Burgemeester Dickerdack in “De geweldige wiswassen” - Marten Toonder

Volgens de modeme natuurkunde worden alle fundamentele krachten beschreven door 
ijktheorieer; Een ■ theorie is niets anders dan een theorie met meer parameters dan vrij- 
heidsgraden. Die parameters zijn niet van invloed op fysisch waameembare grootheden. 
Ze kunnen daarom arieren, niet alleen globaal, maar zelfs van plek to plek dus lokaal. In 
het gevai van de eiektromagnetische kracht, beschreven door de eenvoudigste ijktheorie, be- 
staat de extra vrijheid uit slechts ddn parameter. Een ander fundamentele kracht is de zwaar- 
tekracht, beschreven door de algemene relativiteitstheorie. Volgens het relativiteitsprincipe 
mag de fysica niet afhankelijk zijn van de keuze van coordinaten op een ruimte. In de Al­
gemene Relativiteitstheorie is de ijkvrijheid dus zo groot als de vrijheid van keuze voor een 
coordinatenstelsel op de beschreven ruimte, wat in zekere zin oneindig veel vrije parameters 
geeft. De overige twee bekende fundamentele krachten, de zwakke en sterke kemkracht, zit- 
ten qua complexiteit tussen electromagnetisme en gravitatie in. Ze worden beschreven door 
niet-Abelse ijktheorieen. Deze theorieen hebben een eindig aantal ijkvrijheidsgraden. Deze 
vrijheidsgraden vormen een wiskundige structuur, genaamd een groep. “Niet-Abels” betekent 
dat de elementen van deze groep niet commuteren, dus dat A x B B x A. Groepentheorie 
is een goed ontwikkelde tak van de wiskunde, en de groepen die gebruikt kunnen gebruikt 
worden voor niet-Abelse ijktheorieen zijn bekend. Ze worden onderverdeeld in de unitaire, 
symplectische, orthogonale en exceptionele groepen. De zwakke kracht wordt beschreven 
door een model waarin de unitaire groep SU(2) een grote rol speelt. Het model voor de sterke 
kracht (Quantumchromodynamica, oftewel QCD) heeft 5t/(3) als (unitaire) ijkgroep. Ook 
modellen gebaseerd op andere groepen zijn mogelijk, zoals SU(5) (unitair), 50(10) (ortho- 
gonaal) en Ef> (exceptioneel), die gebruikt worden in zogenaamde geunificeerde theorieen. 
Deze theorieen pogen de bekende krachten (op de zwaartekracht na) te verenigigen in 66n 
enkele theorie.

De elektromagnetische kracht en de zwakke kemkracht zijn vrij goed begrepen, en voor- 
spellingen met grote nauwkeurigheid zijn hier mogelijk. Dit ligt anders voor de twee overige 
krachten, de sterke kracht en de zwaartekracht. Voor de sterke kracht ligt dit in het feit dat de 
theorie een aantal opmerkelijke eigenschappen bezit. Een van die eigenschappen is “asymp- 
totische vrijheid”, wat betekent dat de krachten die de deeltjes voelen op korte afstand zwak 
zijn, maar op lange afstand juist zeer sterk. Dit is precies het omgekeerde van wat je ziet
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bij bijvoorbeeld de elektromagnetische kracht. Als een consequentie daarvan kunnen we het 
gedrag van bijvoorbeeld quarks (dit zijn de elementaire deeltjes die de sterke kracht voelen) 
redelijk voorspellen. Maar hoe op een wat grotere schaal een gebonden toestand zoals het pro­
ton (dat bestaat uit drie quarks) beschreven moet worden kan niel makkelijk worden afgeleid 
uit de microscopische beschrijving.

Een manier waarop een theoretisch natuurkundige dit probleem kan ontwijken is door er- 
voor te zorgen dat er geen lange afstanden zijn. Dit kan bijvoorbeeld door de theorie in een 
doos van een eindig volume te stoppen. Bepaalde effecten kunnen dan bestudeerd worden 
door het volume van de doos te varieren. Een andere motivatie voor het bestuderen van the­
orieen in een eindig volume kan gevonden worden in computersimulaties van natuurkundige 
systemen. Vanwege het eindige geheugen van een computer moet een te simuleren systeem 
een eindige grootte hebben.

Het formuleren van een ijktheorie in een eindig volume brengt echter extra problemen met 
zich mee. De extra ijkvrijheidsgraden moeten op een consistente manier worden ingebouwd. 
wat inhoudt dat hun gedrag op de randen van het eindige volume moet worden voorgeschre- 
ven. Dit kan op meerdere manieren. Deze globale randvoorwaarden zijn echter van invloed 
op de fysica van het systeem. Om het effect van deze randvoorwaarden te verminderen zou- 
den we het volume groter moeten maken, maar we krijgen dan weer te maken met de sterke 
krachten die de berekeningen bemoeilijken.

Een andere vereenvoudiging is het weglaten van de materie uit de theorie, waama een 
theorie met louter de krachtvoerende deeltjes overblijft. Zo'n theorie heet een Yang-Mills 
theorie, naar de ontdekkers.

In het begin van de jaren tachtig werd een probleem geconstateerd bij het beschrijven 
van Yang-Mills theorieen. De motivatie kwam uit supersymmetrische theorieen. Supersym­
metric is een symmetric tussen bosonen en fermionen, die enorme beperkingen oplegt aan 
een theorie. De soorten deeltjes en de interacties tussen de verschillende deeltjes worden 
zwaar beperkt door de eis van supersymmetric. Desalniettemin zijn vele supersymmetrische 
theorieen mogelijk, en in het bijzonder bestaan er supersymmetrische generalisaties van niet- 
Abelse ijktheorieen. Een interessante vraag is of er in deze theorieen toestanden met energie 
nul bestaan en zo ja, hoeveel. Deze toestanden zijn belangrijk omdat ze de toestanden van 
laagste energie zijn (in supersymmetrische theorieen is de energie groter of gelijk aan nul), en 
omdat ze invariant zijn onder supersymmetric. Sommige van deze toestanden (ook wel grond- 
toestanden, of vacua genoemd) zijn bosonisch en andere fermionisch. Het verschil tussen het 
aantal van bosonische grondtoestanden en het aantal fermionische grondtoestanden is een ge­
tal, dat de Witten index wordt genoemd. Voor niet-Abelse ijktheorieen is het aannemelijk dat 
er geen fermionische vacua zijn, en de index is dan simpel het aantal grondtoestanden. Men 
beargumenteert nu dat deze index niet verandert als de parameters van de theorie iets worden 
veranderd.

Het berekenen van het aantal grondtoestanden voor een (supersymmetrische) Yang-Mills 
theorie is niet eenvoudig. Voor een manier van berekening kan men de bovenstaande proce­
dure volgen: De theorie in een (klein) eindig volume stoppen, in dit geval een 3-dimensionale 
doos met periodieke randvoorwaarden (ook wel 3-torus genaamd). Berekening van de Wit­
ten index geeft nu een bepaald getal. Dit getal zou niet moeten veranderen als de parameters
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van de theorie worden veranderd. In het bijzonder kan het eindige volume heel groot wor- 
den gemaakt. In deze limiet kan een andere berekening van de Witten index worden gedaan. 
Vergelijking van de twee manieren van berekening leidt nu tot een verrassing: de antwoorden 
zijn gelijk bij theorieen gebaseerd op de unitaire of symplectische groepen, maar verschil- 
lend bij theorieen gebaseerd op orthogonale of exceptionele groepen. Dit is in het bijzonder 
merkwaardig omdat, afgezien van de groepsstructuur, deze theorieen helemaal niet zoveel van 
elkaar verschillen.

Het verschil tussen de twee berekeningen bleef lange tijd een raadsel, totdat eind 1997 
werd ontdekt dat voor de orthogonale groepen de oude berekening voor een klein volume in­
correct is. Er blijken naast de grondtoestanden die men altijd al meenam in de berekening, nog 
andere grondtoestanden te bestaan, waarvan men zich voor die tijd niet het bestaan realiseerde. 
Als men deze nieuwe grondtoestanden meetelt, komt het antwoord voor de index in het kleine 
volume wei overeen met het antwoord voor het grote volume. Ook is het niet moeilijk om te 
laten zien ar t voor de unitaire en symplectische groepen zulke extra toestanden niet bestaan, 
wat verklaart dat *2 : jerekeningen voor deze gevallen altijd al in overeenstemming waren. Het 
leek aannemelijk dat ook de exceptionele groepen aanleiding geven tot extra grondtoestanden 
in een klein volume. Dit kon echter toen nog niet worden aangetoond.

Overigens is supersymmetric niet relevant voor het bestaan van de nieuwe oplossingen, ze 
bestaan ook voor Yang-Mills theorieen op de 3—torus zonder supersymmetric. Voor theorieen 
zonder supersymmetric kan het argument van de Witten index echter niet worden toegepast. 
Deze berekening is een fraai voorbeeld van hoe supersymmetrische theorieen tot inzichten in 
niet-supersymmetrische theorieen kunnen leiden.

De ontdekking van de nieuwe vacua werd gedaan in de context van snaartheorieen met 
D-branen. Het oplossen van het probleem voor de exceptionele groepen is niet mogelijk 
in deze context, en het blijkt nodig de berekening opnieuw te formuleren. Een belangrijk 
deel van dit proefschrift is hieraan gewijd. Dit leidt tot een beter begrip van de situatie voor 
orthogonale groepen. Ook voor de exceptionele groepen blijken extra vacua te bestaan op 
de 3-torus. Hiermee is de titel van dit proefschrift, “Nieuwe vacua voor Yang-Mills theorie 
op de 3-torus” verklaard. In de hoofdstukken 2, 3 en 4 worden de Witten index berekening 
en de constructie van de nieuwe vacua besproken. Ook met niet-periodieke randvoorwaarden 
blijken er nieuwe oplossingen te bestaan.

De overige hoofdstukken van het proefschrift zijn gewijd aan een onderdeel van de theore- 
tische natuurkunde waar de nieuwe oplossingen van belang zijn: snaartheorie (vaak aangeduid 
met de Engelse naam string theory). Bij vele natuurkundige theorieSn zijn de fundamentele 
objecten puntdeeltjes. In snaartheorieen zijn de bouwstenen draadjes (snaren). Er zijn twee 
mogelijkheden: de draadjes hebben twee uiteinden (open snaren), of het draadje vormt een 
gesloten lus (gesloten snaar). Er zijn twee belangrijke verschillen tussen theorieen met snaren 
en theorieen van puntdeeltjes. Het eerste is dat snaren een zekere ruimtelijke uitgebreidheid 
hebben, wat er toe leidt dat interacties niet langer in een punt gebeuren, maar uitgesmeerd 
worden in de tijd-ruimte. Het tweede verschil is een gevolg van de ruimtelijke uitgebreidheid 
van snaren: in snaren is ook nog een interne structuur aanwezig. Snaren kunnen namelijk in 
trilling worden gebracht, en de verschillende trillingswijzen (grondtoon en boventonen, denk 
aan de snaren van muziekinstrumenten) zijn mogelijk. Als men op grotere afstand kijkt, is de
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snu'cn niet in

uitgebreidheid van de snaar niet meer zichtbaar, maar de energie die in de interne trilling zit 
geeft het object andere eigenschappen. Zo proberen snaartheorieen het bestaan van verschil- 
lende deeltjes te verklaren.

De snaartheorie werd oorspronkelijk (begin jaren 70) opgezet als een mogelijke theorie 
voor de sterke wisselwerking, maar dit idee werd later verlaten ten gunste van een andere 
theorie, het eerder genoemde QCD (er bestaan wel vele interessante relaties tussen QCD en 
snaartheorie, en dit is nog steeds een onderwerp van onderzoek). Men realiseerde zich echter 
al snel dat snaartheorie wellicht een beschrijving kon geven van de quantumtheorie van de 
enige kracht die tot nog toe buiten beschouwing is gebleven: de zwaartekracht. Een nai'eve 
formulering van de theorie van quantumzwaartekracht leidt tot grote problemen, vanwege het 
optreden van oneindigheden in de berekeningen. Die oneindigheden suggerer-.n dat de theorie 
van zwaartekracht moet worden geherformuleerd voor korte afstanden. Snaat heorie lijkt een 
geschikte modificatie van de theorie van de zwaartekracht op te leveren. E • oneindigheden 
doen zich in snaartheorie niet meer voor, in essentie omdat interactie tusse 
een punt plaatsvindt, maar over een eindig oppervlak wordt uitgesmeerd a, dere gun- 
stige eigenschap is dat ook de eerder besproken niet-Abelse ijksymmetrieen kunnen worden 
ingebouwd. Dit opent de mogelijkheid dat alle bekende krachten uit een snaa. ihecrie kunnen 
worden verklaard. Of die mogelijkheid echt gerealiseerd is, is nog steeds een open vraag, 
maar het verklaart de enorme interesse voor snaartheorieen.

Snaartheorie in zijn meest eenvoudige versie geeft echter aanleiding tot andere inconsis- 
tenties. Deze problemen kunnen ten dele worden opgelost door het inbouwen van supersym­
metric in de theorie. Dit geeft de zgn. supersnaartheorieen. De overige inconsistenties kunnen 
slechts worden geelimineerd worden door speciale waarden van de parameters te kiezen. Een 
van die parameters is het aantal dimensies. Alle bekende consistente supersnaartheorieen ver- 
eisen negen mimtelijke dimensies, plus een tiende tijddimensie.

Er bestaan vijf verschillende supersnaartheorieen. Twee theorieen hebben maximale su­
persymmetric, maar geen niet-Abelse ijksymmetrie (althans niet in de storingstheorie). Dit 
zijn theorieen van gesloten snaren die men IIA en I1B heeft genoemd. De overige drie the­
orieen hebben wel niet-Abelse ijksymmetrie, en minder supersymmetric. De strenge con­
sistence eisen van snaartheorie maakt de keuze voor een ijkgroep echter beperkt: alleen voor 
SO (32) (een orthogonale groep) en E% x E% (een produkt van twee exceptionele groepen) is 
een consistente theorie mogelijk. SO(32) is de ijkgroep van een theorie van open snaren, die 
type I stringtheorie wordt genoemd. De twee overige theorieen zijn de heterotische theorieen. 
Dit zijn theorieen van gesloten snaren, en er bestaat een theorie met ijkgroep SO(32) en een 
andere met ijkgroep E% x Eg.

Hoe kan een theorie die in 10 dimensies leeft onze 4-dimensionale ruimte-tijd beschrijven? 
Er is geen tegenspraak als men aanneemt dat van de 10 dimensies er 6 zeer kleine (te klein om 
te meten met huidige technieken) afmetingen hebben. Dit is het idee van “compactificatie”: 
een aantal van de 10 dimensies vormen een “doos” van eindig (en zeer klein) volume. Als 
we 3 van de dimensies nemen en er een doos met periodieke randvoorwaarden van vormen, 
en ons realiseren dat consistentie vereist dat de ijkgroep orthogonaal of exceptioneel is, is het 
duidelijk dat de eerder beschreven resultaten van belang zijn voor snaartheorie.

De ontwikkeling van snaartheorie is echter verder gegaan dan we tot nog toe beschreven
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hebben. Al in de jaren 80 kwam men tot de ontdekking dat er relaties bestonden tussen 
verschillende theorieen. Als men bijvoorbeeld 1 dimensie periodiek neemt (er dus in feite een 
cirkel van maakt), blijkt dat de IIA en IIB-theorie dezelfde theorie zijn. Dit is mogelijk omdat 
gesloten snaren op een cirkel geclassificeerd worden door twee getallen, namelijk een impuls 
die de beweging op de cirkel beschrijft, en een windingsgetal dat beschrijft hoeveel maal een 
snaar oin de cirkel heen loopt. Het windingsgetal is een geheel getal, en quantummechamca 
vertelt ons dat ook de impuls een geheel getal is. Nemen we nu een IIA-snaar met impuls n 
en windingsgetal w op een kleine cirkel, dan blijkt dat we dat ook kunnen interpreteren als 
een IIB-snaar op een grote cirkel met impuls w en windingsgetal n, en vice versa. Ook de 
twee heterotische theorieen hebben een dergelijke relatie met elkaar. De type I theorie blijkt 
een zelfdc sooi i relatie te hebben met een andere theorie, maar de grondtoestand van deze 
nieuwe theorie bevat objecten waarvan de relevantie pas in de jaren 90 begrepen werd: de 
Dirichlet-brancn, of kortweg D-branen. Dit zijn objecten met een ruimtelijke uitgebreidheid, 
met de eigens. ,:ap dat de uiteinden van open snaren erop eindigen. Er zijn D-branen van 
allerlei dimensies, van puntvormige (D-deeltjes) tot D-branen die de gehele ruimte vullen. 
Terugredenerend kan men ook beargumenteren dat de type I theorien ook een achtergrond 
van D-branen heeft, van het type dat de gehele ruimte vult. Ook de IIA en IIB theorieen 
bevatten diverse soorten D-branen, maar daar maken ze geen deel uit van het vacuum. De 
type I theorie bevat ook D-branen die geen onderdeel uitmaken van het vacuum, maar wel bij 
eindige energie kunnen voorkomen.

In de jaren 90 realiseerde men zich dat er nog meer relaties bestaan tussen de verschillende 
snaartheorieen. Naast de parameters die de vorm van de kleine dimensies beschrijven, heeft 
elke theorie een parameter die de sterkte van de interacties weergeeft. Het is bijvoorbeeld 
mogelijk om deze parameter heel groot te maken. In dat geval kan men niet verwachten dat 
storingstheorie een goede beschrijving geeft van de theorie. Het is toch mogelijk een goede 
beschrijving te verkrijgen, voomamelijk dankzij supersymmetric. Naast snaren bevatten de 
snaartheorieen ook nog andere objecten, waaronder de eerder genoemde D-branen. De massa 
van zulke objecten hangt op een bepaalde manier van de interactieparameter af, en supersym­
metric garandeert dat deze relatie een eenvoudige vorm heeft die ook geldig blijft als we een 
storing-theoretische berekening van die massa niet meer kunnen vertrouwen. In het bijzonder 
kan je laten zien dat als de interactie-parameter groot wordt, deze D-branen heel licht kunnen 
worden, terwijl de massa van de oorspronkelijke snaren juist erg groot wordt. De theorie met 
grote interactie parameter is dus een theorie van D-branen. Een aantal snaartheorieen bevat 
een-dimensionale D-branen, die dan ook wel D-snaren worden genoemd. In de limiet van 
grote interactieparameter worden zulke theorieen dus beschreven door snaartheorieen! Deze 
“duale” theorieen zijn niet noodzakelijkerwijs gelijk aan de oorspronkelijke theorie, immers, 
de D-snaar is niet hetzelfde object als de oorspronkelijke snaar. Het blijken wel altijd bekende 
supersnaartheorieen. Tezamen met de eerder ontdekte relaties blijken nu alle 5 oorspronke­
lijke theorieen met elkaar verbonden, en in feite beschnjven ze dus 1 theorie in verschillende 
limieten.

Niet alle theorieen hebben D-snaren, en voor deze theorieen is de duale theorie dus geen 
snaartheorie. Beschouwing van deze theorieen leidt tot een nieuwe theorie die niet in 10, 
maar in 11 dimensies leeft. Dit is niet in tegenspraak met het voorafgaande omdat de groolte
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van de elfde dimensie gerelateerd is aan de interactieparameter. Is deze klein, dan is de elfde 
dimensie klein, en de theorie dus zo goed als 10-dimensionaal. Deze theorie, waarvan nog 
steeds geen volledige fonnulering bestaat, wordt M-theorie genoemd.

We hebben vermeld dat de IIA en IIB-theorieen geen ijksymmetrie hadden in storingsthe- 
orie, maar dat ze wel gerelateerd zijn aan theorieen met ijksymmetrie. Dit impliceert dat de 
IIA en IIB-theorie wel degelijk ijksymmetrie hebben, en dat deze gerealiseerd moeten zijn op 
een manier die buiten het bereik van storingstheorie valt. Ook in dit geval blijken D-branen de 
relevante objecten te zijn tezamen met een constructie die bekend staat als een “orientifold”. 
D-branen en orientifolds zijn ook te definifcren in de niet-supersymmetrische snaartheorieen, 
en leiden daar tot dezelfde ijksymmetrieen. Als men puur geinteresseerd is in de ijksymmetrie, 
is het mogelijk om de consistentie-eisen van snaartheorie te negeren en enkel de configura- 
ties van D-branes en orientifolds te bestuderen. De eerder genoemde nieuwe grondtoeslanden 
voor Yang-Millstheorieen (met periodieke en niet-periodieke randvoorwaarden) moeten dan 
een vertaling hebben in termen van dit soort configuraties. Deze configuraties zijn het onder- 
werp van hoofdstuk 5.

Nemen we echter de consistentie eisen van snaartheorie wel in beschouwing, dan wordt 
al snel duidelijk dat het overgrote deel van de nieuwe oplossingen niet naar de snaartheorie 
vertaald kan worden. De consistentie eisen gaan echter nog verder dan het eisc; van 50(32) 
of E% x Eg ijksymmetrie: zelfs configuraties die zijn toegestaan in bijvoorbecld Eg x Eg- 
ijktheorie, blijken inconsistent in Eg x Eg-snaartheorie. Ondanks de eliminatie van vele mo- 
gelijkheden, blijken er nog steeds een behoorlijk aantal mogelijkheden realiseerbaar in snaar­
theorie. Vanwege de relaties tussen de verschillende snaartheorieen en M-lheorie, moeten 
de realiseerbare mogelijkheden een vertaling hebben in de verschillende theorieen. Dit geeft 
een fascinerend netwerk van relaties tussen verschillende theorieen. Ook blijken de nieuwe 
oplossingen gerelateerd aan al bekende oplossingen, wat bijdraagt tot een compleet en rijk 
geschakeerd beeld, dat beschreven wordt in hoofdstuk 6.



List of publications

• Arjan Keurentjes
Non-trivial flat connections on the 3-torus I:
G2 and the orthogonal groups
J. High Energy Phys. 05 (1999) 001, hep-th/9901154.

• Arjan Keurentjes
Non-trivial flat connections on the 3-torus II:
The exceptional groups F4 and E^.ifi
J. High Energy Phys., 05 (1999) 014, hep-th/9902186.

• M. Marchevsky, A. Keurentjes, J. Aarts, and P.H. Kes 
Elastic deformations in field-cooled vortex lattices in NbSe2 
Phys. Rev. B57, (1998) 6061.

• A. Keurentjes, A. Rosly, and A.V. Smilga
Isolated vacua in supersymmetric Yang-Mills theories 
Phys. Rev. 1)58 (1998) 081701, hep-th/9805183.

• Arjan Keurentjes
Flat connections for Yang-Mills theories on the 3-torus
hep-th/9908164
Based on a talk given al NATO-ASI and TMR Summer school “Progress in String

Theory and M-theory” Cargese May 24 -June 5 1999

• Arjan Keurentjes
Orientifolds and twisted boundary conditions
hep-th/0004073
Submitted to Nuclear Physics B

. J. de Boer. R. Dijkgraaf, K. Hori, A. Keurentjes, J. Morgan, D. Morrison and S. Sethi

The moduli space of supersymmetric strings in d > 7
In preparation



I



Curriculum vitae

Ik ben geboren te Blade! en Netersel op 6 Juli 1969. In 1987 behaalde ik het diploma Gym­
nasium /J op het Van Maerlantlyceum te Eindhoven. In dat zelfde jaar begon ik de studie ster- 
renkunde aan de Universiteit Leiden, maar staakte deze later. In de periode 1989-1992 had ik 
diverse banen. In 1992 startte ik de studie natuurkunde aan de Universiteit Leiden, en in 1993 
behaalde ik de propedeuse. Mijn experimentele stage verrichtte ik in de “Metalen”-groep van 
prof. dr. Peter Kes. In augustus 1996 slaagde ik voor het doctoraal examen natuurkunde. Mijn 
afstudeeronderzoek betrof een literatuuronderzoek over het onderwerp “Electromagnetic dua­
lity”, o.l.v. prof. dr. Pierre van Baal. Per 1 September 1996 begon ik mijn promotieonderzoek 
aan het Instituut-Lcrentz voor theoretische natuurkunde te Leiden, o.l.v. prof. dr. Pierre van 
Baal, aanvankelijk s beurspromovendus, sinds 1998 als Assistent in Opleiding. In 1996 
verzorgde ik het v . rkcollege “Quantumtheorie 1”, in 1998 assisteerde ik bij het studenten- 
seminarium “Gravi uie”, in 1999 verzorgde ik werkcolleges “Speciale Relativiteitstheorie” 
en “Quantumfysica lb” en in 2000 het werkcollege “Quantumtheorie 2”. Daamaast was ik 
betrokken bij de organisatie van een activiteit om VWO-scholieren met de universitaire oplei­
ding natuurkunde te laten kennismaken. In het kader hiervan werd een hoor- en werkcollege 
“Speciale relativiteitstheorie voor scholieren” georganiseerd. Deze vond plaats in zowel 1999 
als 2000.

Ik heb deelgenomen aan de AIO winterscholen van de Landelijke Onderzoeksschool The­
oretische Natuurkunde in januari 1997 (Dalfsen) en 1998 (Nijmegen), en bezocht de NATO- 
ASI en zomerschool “Confinement, Duality and Non-perturbative Aspects of QCD”, in Cam­
bridge (Groot-Brittanie, 1997), de NATO-ASI en TMR zomerschool “Progress in String The­
ory and M-theory”, te Cargese (Frankrijk, 1999) and the “Graduate school on contemporary 
String Theory and Brane Physics” in Turijn (Italic, 2000).

Vanaf de herfst 2000 zal ik werkzaam zijn als postdoc op een gezamenlijk positie aan 
de Ecole Normale Superieure en de Universite Pierre et Marie Curie in het kader van het 
RTN-netwerk “The quantum structure of spacetime and the geometric nature of fundamental 
interactions”.



DU proefschrift

Dit proefschrift

Dit proefschrift, hoofdstuk 5

Dit proefschrift, hoofdstuk 6

1

Stellingen 
behorende bij het proefschrift

“New vacua for Yang-Mills theory on a 3-torus”

4. Voor de asymmetrische orbifolds van de heterotische snaartheorie, beschreven 
in hoofdstuk 6 van dit proefschrift, wordt een symmetric uitgedeeld die bestaat 
uit een translate over een cirkel, en een rotatie op een groepsrooster. Deelt 
men slechts de rotatie uit, dan laat de orbifold constructie de theorie invariant.

5. De beschrijving van D-branen op orientifolds voor torus compactificaties van 
ijktheorieen met orthogonale ijkgroepen leidt veelal tot de ambiguiteit dat 
niet ijk-equivalente compactificaties dezelfde orientifold beschrijving hebben. 
Consistentie van snaartheorieen laat ten hoogste een mogelijkheid over.

3. De moduli ruimte van vlakke Spin(n < 6) connecties op een 4-torus bcsraat 
uit 1 component. Voor n = 7, n = 8, 9 < n < 14, en n > 15 zijn er resp. 31, 
61, 31 en 32 (niet samenhangende) componenten.

1. Beschouw een periodieke vlakke connectie A voor een ijktheorie op de 3-torus. 
Indien de Chern-Simons invariant (7S{j4) voldoet aan (1 — det M)CS(A) 
2Z, voor een niet-singuliere 3x3 matrix M met heeltallige elementen, dan 
geeft X'(x) = A(Mx) een nieuwe vlakke connectie die in een niet met A 
samenhangende component van de moduli ruimte ligt.

2. Een vlakke connectie kan geschreven worden als Ap(x) = i'U(x)duU~l(x), 
waarbij U(x) waarden in de ijkgroep aanneemt. Onder de voorwaarden van 
de vorige stelling speelt g(x) = U{x)U~l(Mx) de rol van een topologiscn niet- 
triviale ijktransformatie.
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Campagnes om het studentenaantal bij natuurwetenschappe’ijke en 
studies op te vijzelen zijn tot mislukken gedoemd, zolang de exaete ' 
de middelbare scholen in hun huidige vorm worden onderwezen.

Het zwaartepunt is slecht gedefinieerd in ruimtes die tenminste een compacts 
richting hebben. Voor n deeltjes in een dergelijke ruimte, zijn er tenminste n 
punten die men als zwaartepunt kan nemen. In het algemeen zijn er on-J -uig 
veel kandidaten voor het zwaartepunt, die dicht in de compacts 
verdeeld liggen.

Arjan Keurentjes
29 juni 2000

In tegenstelling tot wat door E. Witten gesuggereerd wordt, is de eis dat de 
eerste en tweede Stiefel-Whitney klasse van een O(32)-bundel over een n- 
torus triviaal zijn, onvoldoende om te garanderen dat er een type I supersnaar 
compactificatie bestaat op de n-torus met deze O(32)-bundel.

Beschouw de n x n-matrix U met diagonaalelementen gelijk aan nul en overige 
elementen Uh = n~’{l — exp[27ri(I — fc)/n]}—*. Er geldt {exp(-2zrz77)= 
- expfTri/njdt-ij, voor k 0 1 en {exp(—2iriU)}u = - exp(7ri/n)<5„j.
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