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Introduction1

Perspective1.1

It has been appreciated for a long time that the interactions between elementary 
particles are described by gauge theories. In these theories matter particles, quanta 
of the matter fields, have an internal space on which a symmetry group acts. The 

field is quantised in bosonic gauge particles. When gauge particles hit a matter 
particle, the effect is a rotation in its internal space. In this way matter particles can 
influence each other by exchanging a gauge particle, which affects the internal spaces 
of both particles. The simplest example of a gauge theory is electromagnetism, where 
the internal space is a circle and the gauge group is the abelian group 1/(1), affecting 
the phases of the particles. For more general, non-abelian gauge groups, the order 
of successive group actions is of relevance, which is reflected in self-interactions of 
the gauge field. The gauge principle states that the physics is invariant under local 
symmetry group transformations of the particles’ internal spaces.

The matter particles, which are fermionic, are the leptons and quarks. Electrons, 
muons and neutrinos are examples of leptons. Quarks are the constituents of hadrons, 
of which there are two types, baryons and mesons. Baryons are particles like the 
proton and neutron, in which there are (on average) three quarks. Mesons consist of 
a quark and an anti-quark.

The electro-weak theory describes the weak interaction, responsible for radioactive 
decay, and the electromagnetic interaction. It is a spontaneously broken gauge theory 
where the Sl/(2) x t/(l) symmetry group is broken down to 17(1). The field describing 
the Higgs particle is responsible for the symmetry breaking, which gives the matter 
particles and some of the gauge bosons a mass. The gauge particles in the electro-weak 
theory are the photon, a massless particle mediating the electromagnetic interaction, 
and the massive W± and Z° particles, mediating the weak interaction.

The strong interaction that holds protons and neutrons together within the nu­
cleus and quarks within hadrons is described by an St/(3) gauge theory, quantum 
chromodynamics (QCD). The three directions in the corresponding internal space 
are labelled by three colours: red, green and blue. The gauge particles are called 
gluons, which are massless and of which there are eight different types. When hitting 
a quark, they transform it from one colour to another.

The electroweak theory and QCD together form the Standard Model for elemen­
tary particles. The Standard Model is renormalisable, i.e. infinities due to quantum 
fluctuations can be made to cancel in the calculation of physical quantities. This 
makes the theory well defined and scattering processes as studied in experiments 
with particle accelerators can be predicted with high accuracy within the Standard 
Model. In these calculations one uses perturbative expansions around the vacuum,
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equivalently distance scales

which

-

which is a reliable approximation for high momenta or 
smaller than the size of a proton.

At larger scales, or lower energies, QCD should explain how the quarks together 
with the gluons build up the hadrons. From experiments it followed that quarks are 
never observed as single particles: they always occur in a bound state in baryons and 
mesons. This phenomenon is called quark confinement. Perturbative techniques that 
worked so well in capturing the short-range interactions are insufficient to explain 
the long-range forces involved. Though progress has been made in this direction, a 
full understanding and an analytic proof of quark confinement is still lackin'.. <■ 
non-abelian nature of the gauge group and thereby the self-interactions of the 
particles are held responsible for the confinement process. Indeed, config’’. - u 
consisting purely of gauge particles (“glueballs”) exist in the theory and c, c in 
envisage a hadron as a system of quarks bound together by this glue, l or i r e 
calculations, one needs the full properties of the configuration space of the gauge 
theory, going beyond perturbation theory.

Part of these so-called non-perturbative effects can be studied by considering 
other stationary points of the gauge theory action than the vacuum state. These are 
the classical solutions. Instantons and monopoles, studied in this thesis and defined 
below, are examples of classical solutions. They feature at various places in the 
analysis of non-perturbative dynamics. Instantons are solutions existing in the pure 
gauge theory, whereas monopoles are solitons in the Yang-Mills-Higgs system. This 
thesis deals with periodic instantons, which interpolate between ordinary instantons 
and monopoles.

It is expected that at sufficently high energies, or sufficiently small scales -much 
smaller than the size of a proton- the various interactions become of the same strength. 
In the quest for a unified description of all interactions, including gravity, string 
theory is the most promising candidate. In string theory, one considers extended 
objects, rather than pointlike particles. For strings, the extension in dimension is 
one. Different vibration modes of these strings then represent the various elementary 
particles, including the graviton that mediates gravity. The interaction vertices in 
field theory Feynman diagrams, i.e. the points where the world-lines of interacting 
particles meet, in string theory get replaced by topologically nontrivial two-surfaces 
(world sheets) in which the interaction point is smeared out. This makes string 
theory diagrams finite, curing the divergencies that plagued earlier attempts toward 
a quantum gravity. To make string theory consistent, the dimension of the space­
time in which it is defined has to be larger than four. The way the extra dimensions 
are wrapped up to give back four-dimensional space-time, influences the effective low 
energy theory. There is not yet a compelling reasoning which singles out a particular 
compactification scheme leading to the Standard Model.

A recent development in string theory is the study of higher dimensional extended 
objects, generalising the particle and the string, for which the number of world­
volume dimensions can be higher than one (a particle) or two (a string). Examples 
are D-p-branes, extended objects with a p + 1-dimensional world volume, on



Gauge theories1.2 11

Gauge theories1.2
In this thesis we consider exact classical solutions in gauge theories defined on eu­
clidean four-manifolds M. The euclidean space-time described by M is obtained from

ordinary strings end, satisfying certain boundary conditions. Stacks of D-p-branes 
can represent gauge theories and other configurations in string theory have properties 
in common with monopoles and instantons. Certain D-brane configurations can be 
shown to be mathematically equivalent to monopoles. The non-trivial part of H- 
monopoles, a configuration in a low energy effective theory of heterotic string theory, 
is formed by periodic instantons. Classical solutions, featuring so prominently in 
gauge theories, also have a part to play in string theory.

Mathematically, gauge fields are the connections on principal fibre bundles. A 
principal fibre bundle consists of a base manifold, i.e. a set of points described by 
one or more overlapping charts (coordinate patches), for which each point has a 

copy of the gauge group. The coordinates on the overlap of two patches can 
b<- . ■ en in terms of coordinates on either patch, being related by smooth functions 

■rdinate diffeomorphisms). Going from one point to another, the corresponding 
I.. id gauge groups may be relatively rotated. This is probed by a matter particle, 
i.e. a vector acted upon by the gauge group, as a rotation of its internal space. 
How strongly the internal space varies from one point to another is measured by 
the gauge connection. The effect that the internal vector space may be rotated 
after going a round-trip, starting and ending in the same point, is measured by the 
gauge curvature: the field strength of the gauge field, generalising the electric and 
magnetic fields of electromagnetism. The internal space may vary in such a non­
trivial way that more than one coordinate patch is needed to characterise the gauge 
connection. The gauge transformation interpolating between the gauge choices (the 
transition functions or cocycles) on the overlapping coordinate patches can have a 
“winding”, i.e. can be topologically nontrivial. Instantons and monopoles have gauge 
connections for which this is the case. The solution space of instantons and monopoles 
is infinite dimensional as each new gauge choice gives a new solution. Dividing out 
this gauge ambiguity gives the space of gauge invariant parameters or moduli, which 
is finite dimensional for a specific type of winding. This so-called moduli space has 
a differential geometry of its own. Moduli spaces for instantons and monopoles are 
complex manifolds, i.e. the coordinate diffeomorphisms are analytic, guaranteeing the 
existence of a complex structure. Actually, they have even three complex structures, 
all three compatible with the metric on the moduli space and satisfying the algebra 
of the quaternions. This beautiful fact, which makes moduli spaces of instantons 
and monopoles so interesting from a differential geometric point of view, is called the 
hyperKahler property. It will play an important role in the analysis of metrics on 
moduli spaces.

The remainder of this introductory chapter is used to give some essential back­
ground material and ends with an outline of this thesis.
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(1-2.1)= 0,1,2,3.

ordinary space time by going to imaginary time, (x0 = it). Imaginary time is used 
in the analytic continuation of the field theory partition function to make it well 
defined. As M will have a fiat metric, there will be no difference between upper and 
lower indices. A pure gauge theory for gauge group G (SU(n) or U (n) throughout 
this thesis) in euclidean space-time is defined by the Yang-Mills action functional

S = - [ dfX^TrF^F^, 
Jm *

Here repeated indices imply summation and FpU is the field strength or cun autre 
associated with the gauge field or connection taking values in the Lie algc r < £i 
(usually su(n) or u(n)) of G,

FpU = 3PA„ - d„A,, + A„]. (1.2 2)

Finally, M denotes the euclidean space-time manifold of interest. In this thesis, 
M will be the euclidean flat space R4/.H, where H is the subgroup of transla­
tional symmetries under which the physics is invariant. We sometimes will adopt 
form notation, A = ApdXp, F = ^F^dx^ A <ir„, in which F = dA + A A A. As 

.DJ4], = 9^ + |A(i, ■] denoting the covariant derivative, the curva­
ture satisfies the Bianchi identity

^paD^Fpp^O, £0123 = 1. (1.2.3)

The equations of motion derived from this action, the Yang-Mills equations, read

D^Fp., = 0. (1.2.4)

Under the gauge action g : M —> G, the gauge potential and curvature transform as 
follows:

A„(z) -> te}Ap = g(x)(dp +Ap(xY)g \x),
Fpp(x~) -» b,FM1/(x) =g(x)FM„(x)g-1(x). (1.2.5)

The action is gauge invariant. Therefore, the configuration space containing the phys­
ically relevant degrees of freedom, and on which computations should be performed, 
is the quotient space A[Q, A being the space of all gauge connections Ap(x') and Q 
denoting the space of all gauge transformations g(x).

This space is highly non-trivial, not only because of the infinite number of dimen­
sions but also because of the existence of non-contractable loops. Following the action 
around such a loop, one may encounter a cycle vacuum V-energy barrier-vacuum V‘. 
V and V are gauge equivalent vacua, connected via a topologically non-trivial gauge 
transformation. It is the energy barrier, the fact that V and V are vacua and the 
nontriviality of the gauge transformation that makes the loop non-contractable. For 
small excitations of the field, the wave functional in a quantum-mechanical calculation 
will be localised around V whereas with increasing energy the wave functional will 
start to spread out and make excursions taking tunneling paths to vacua V' ,V",.. 
These tunneling paths are the instantons, to be discussed in the next section.
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Yang-Mills instantons and calorons1.3

(1.3.1)

where "Fz,(,

k —

(1.3.2)Tr

(1.3.4)= i^p3plog(l + )•

(1.3.5)ki = -ik = j.

(1.3.6)r3 =Ft = 0

(1.3.7)

0 
i

y d.t.rTrF„„ ’Fpp 

j d,\xdpc 'pppp

’Iop = -<5°- Vij = 
% = <5°> Vij =

1 0
0 -1

I p2^X>1 + 7-A2
|x-j/|2(|z-y|2 + p2) |x - J/|2

Here, fjpp is the anti-selfdual quaternionic’t Hooft tensor, defined as fjpl/ = ^(aMcrp — 
apap) = in terms of the basic quaternions. The basic quaternions are defined 
as <r„ = (12, -if) = (l,i,j,k) and ap = (l2,ir), with

i2 = j2 = k2 = -1, ij = —ji = k, jk = -kj = i,

The Ti are the Pauli matrices

( 0 i \ T' = 1 0 ) ’

The tensor rjpp = i(<7pct„ - = rfppaa is selfdual. Using these definitions, the’t
Hooft tensors take values

The Yang-Mills action can be rewritten as

S = — / d^x^Tr^F^ ± ’FMU)2 T 87r2fc, 
J M

\SiiupaFp, denotes the dual of F. The topological charge is defined by 

1 
16rr2 

1 
8tt2

^A„dpA„ + ^A„ApAa

and is indeed topological as it reduces to a boundary term. Eq. (1.3.1) shows that 
■ vithin a class of gauge potentials with fixed k the action is minimal if

F = ±‘F, (1.3.3)

in which case the Yang-Mills equations (1.2.4) are satisfied automatically. These 
selfdual (F = ‘F) and anti-selfdual (F = — *F) solutions are called instantons. For 
the action to be finite, the instanton should be localised in both space and time, 
i.e. the action density is concentrated around an instant. This is what the name 
instantons is derived from. On R4, these classical solutions have a clear interpretation 
as tunneling paths between vacua, as both for xq —* —00 and for Xq —» 00, the 
configuration approaches a vacuum, Fpp —> 0, for all x. It is because of this relation 
with tunneling paths that instantons, finite action solutions in the euclidean version of 
the theory, are important for the quantum theory in ordinary Minkowski space-time.

The standard SU(2) instanton [9, 50, 51, 87] on R4 is given by the SU(2) gauge 
potential
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(1.3.8)

3(Ddp(9m) ki
The corre-

= (1.3.9)

(1.3.10)

(1.3.11)

(1.3.12)

for which the action density reads

= -^1 log

k ~ 3/I2 
k - i/l2 + p2

Pp 
k-3/Pl2’

2p2r?pv
(|x — 3/|2 + P2)2

is clearly selfdual due to the selfduality of The action density,

48/
(Z + lx-yl^’

is calculated using = 4<5q(j, and reveals that the instanton is localised around 
ylt which therefore denotes the position of the instanton. The scale of the solution is 
set by p. Thus p and y are the parameters or moduli of the instanton. Integrating the 
action density reveals a value k — 1 for the topological charge. This is precisely the 
winding number of the gauge transformation that connects the behaviour near the 
origin to that at infinity: one quickly convinces oneself that <7(i)(z) = (x — t/)/|x — y\ & 
SJ7(2), as map from the unit three-sphere at infinity to S(7(2), sweeps once over the 
three-sphere, now considered as the group space of S<7(2). Thus the third homotopy 
class of the gauge group, the classification Tr3(S(7(2)) — Z of maps of the unit three 
sphere to SC7(2), gives the topological characterisation of instantons on R4. The 
topologically non-trivial nature of the solution is also read off from the fact that 
two coordinate patches rather than one, with an interpolating gauge transformation 
P(i), are needed to describe the instanton, when compactified to S4 = R4 U oo. This 
illustrates the notion of a principal fibre bundle. It should be noted that it is the 
combination of base manifold and gauge group that gives rise to possibly topologically 
non-trivial windings of the transition functions.

A generalisation of eq. (1.3.4) with charge k is given by the’t Hooft Ansatz

logd>(x), = 1 + 52

These values differ slightly from those in [50], as in the conventions chosen here time 
is labelled by x0 rather than x4. The unit quaternions are quaternions q for which 
|q|2 = q2 = 1. These form the group S17(2).

At infinity, the solution behaves like O(l/|x|3) and hence it has a finite action. 
In X,, = y,, there is a gauge singularity. It is removed by a gauge transformation 
<7(i)(x) = (x — y)/|x — t/l e St7(2), where x = x^a^ is a quaternionic notation of the 
position coordinate on R4. After this gauge transformation

a; =
 y}^

k - i/l2 + p2
and the potential manifestly approaches a vacuum at infinity indeed, 
sponding curvature
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(1.3.13)

|x| (1.3.14)A F oo.

(1.3.15)|z| —> oo, T-0,FA

outside the points yp. A profile now shows k lumps with scales pp located at yp, rep­
resenting k instantons of charge one, all of which having the same gauge orientation. 
This results in 5k moduli for the’t Hooft Ansatz. As will be explained later, there are 
8k — 3 parameters needed to describe all gauge inequivalent instantons on R4. The 
3k — 3 parameters missing in the’t Hooft Ansatz precisely correspond to the various 
relative gauge orientations. A complete construction of general S(/(n) instantons on 
R4 of arbitrary charge k was given by Atiyah, Drinfeld, Hitchin and Manin (ADHM), 
see chapter 3.

I sing the’t Hooft Ansatz, it is possible to construct examples of periodic instan- 
: . f or periodic instantons the base manifold M = R3 x S' = R4/H, H = Z.

p< Hod is the circumference of the circle S1 which will be denoted T. These 
/ ■ ’ uss first appeared in the context of finite temperature field theory, where there 

i. . natural period 7” = f) = (temperature)-1, and are called calorons because of this 
origin.

;. ire simplest caloron is built from an infinite array of identical instantons with 
scale p located at yp = y + pT, p 6 Z. This caloron due to Harrington and Shepard 
[42] is therefore given in terms of the’t Hooft potential

<p(j) 1 + _ £|2 + (Io _ yQ _ p7-)2
pt L>

np2 sinh^|x — y\
T|x - y\ cosh - y\ - cos y-(xQ - y0)'

The solution is characterised by a position y and a scale p. The limit T —> oo, 
corresponding to an infinite compactification circumference, gives back the standard 
instanton on R4.

For finite scale p, the asymptotics of the gauge potential and curvature is

J_ f ~ J_ 
|x|2’ l«l?

A dramatic transition occurs in the limit 7" —» 0, which corresponds to the circle 
S1 shrinking to a point, and therefore to the solution turning static. One can show 
the action density to indeed become time-independent whereas gauge potential and 
curvature become

J_ f L_ |x|’ ' |xf
which is the behaviour of a monopole. The T —> 0 limit is equivalent to the p —♦ oo 
limit, using classical scale invariance. Unlike the (7(1) Dirac monopole, this static 
solution is not pointlike. It is an extended object, regular near the origin. Actually, 
it can be shown to be gauge equivalent to the simplest monopole in the Bogomol’nyi- 
Prasad-Sommerfield limit [88], to be discussed in the next section. This limit reveals 
an important aspect of instantons on a compactified manifold: there are monopoles 
inside.
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Bogomol’nyi-Prasad-Sommerfield monopoles1.4

(1.4.1)S

(1.4.2)

H4-II =

(1.4.3)Q =

|z| oo,
(1-4.4)

The action of the Yang-Mills-Higgs theory, a gauge theory with a Higgs field <1’1 r ' is 
given by

= y -Tr(Z?^4>)(r>“‘"4>)

= - y d3x (TrB2 + TrZ??xi$D,ad$) ,

in the gauge where .Ao = 0. Here the magnetic field is defined as B, = — 
(The electric field is defined as E, = — F°"). The energy may be rewritten as

using the Yang-Mills equation for Q is a topological index, related to the winding 
numbers of the gauge transformation g describing the Higgs field at infinity in terms 
of the symmetry breaking Higgs vacuum expectation value

Bbps

FYom the instanton and monopole Emits of the Harrington-Shepard caloron we 
learn that calorons interpolate between instantons and monopoles. This will be an 
important aspect of calorons, which can be deduced from the topology of selfdual 
connections on R3 x S’ and which will be encountered at various places in this thesis.

Bbps

<&(!) ->
<?:S2 -> G/H~

Here Boo is the isotropy subgroup of G leaving the vacuum expectation value 
invariant. For gauge group Sl/(2), Q is an integer: the monopole charge. The winding 
numbers and the related magnetic charges are thus classified according to the second 
homotopy group ~ tt^F^). The topology will be discussed in detail in

^(lTr$'$-c2)2)

Here, and in the remainder of this section, we use real time (xa = t) and there 
is a difference between upper and lower indices, which are transformed into each 
other by the metric diag(l, —1, —1, —1). The Higgs field transforms in the adjoint 
representation of the gauge group, “$(z) = 9(x)$(i)9-1(x). The third term on the 
rhs. spontaneously breaks the gauge symmetry due to the Higgs field acquiring an 
expectation value $„ minimising the potential term in the action. When the Higgs 
self-coupling goes to zero (A —- 0, the Bogomol’nyi-Prasad-Sommerfield (BPS) limit), 
the only vestige of the symmetry breaking is a boundary condition for the asymptotic 
behaviour $„ of $. In that case the potential energy- of a static configuration is given 
by

y d3xTr ((Bi ± Dr*$)2) =F 8%Q||<M, 

y df2|x|xiTr (Bi$) , $ = HS-ooir1^
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Bi = (1.4.5)

(1.4.6)1 -

= 27rtdiag(p/2, —v/2), (1.4.7)

1.5 The geometry of the moduli spaces of selfdual 
connections

Part of the mathematical interest in selfdual connections, instantons and BPS mono- 
poles, lies in the fact that moduli spaces can be endowed with hyperKahler metrics.

up to an x dependent gauge rotation. The energy (or mass) of the monopole is 
proportional to this asymptotic value and amounts to 8tt2ia

The force between two monopoles of the same charge vanishes when they are far 
apart, because the electromagnetic repulsion is exactly balanced by the attractive 
interaction of the long-range Higgs fields [68]. Therefore, a system of well-separated 
monopoles is stable and a so-called multi-monopole can exist. As there is no in­
teraction energy involved, the energy of the multimonopole does not depend on the 
moduli. It is proportional to the integer monopole charge, cf. eq. (1.4.3), i.e. the 
number of constituent monopoles. This is similar to the case of instantons on R4, 
where the action is proportional to the winding number k which counts the number of 
constituent single instantons. It can be shown that there are 4Q — 1 gauge invariant 
parameters or moduli describing a charge Q SU(2') monopole [97]. These parameters 
may be interpreted as positions and relative phases of the Q constituent monopoles.

chapter 2. Within a class of configurations having the same topology the minimal 
energy is assumed by configurations satisfying the Bogomol’nyi equation

These static solutions are called monopoles, as the projection of B, on the Higgs 
field asymptotically approaches an abelian magnetic monopole configuration. It is 
now observed [69] that with Ao replaced by 4>, the selfduality equation eq. (1.3.3) for 
instantons becomes the Bogomol’nyi equation eq. (1.4.5) for monopoles. Therefore, 
th" static BPS monopoles may be considered R invariant instantons (or S' invariant 
t.dorons). The large scale limit of the Harrington-Shepard caloron in eq. (1.3.15) 
itlti-(rates this point of view [88] . Henceforth, wc usually denote the monopole Higgs 
field by Ao-

rhe simplest BPS monopole is the Q = 1 SU(2) monopole due to Bogomol’nyi, 
Prasad and Sommerfield [11, 86], given by

2 /
Aq = -x -t I 27ri/coth 2ttp|x|

= i XjTk_______________
2*jfc|z|2V sinh27rp|x|7’

For this configuration, the asymptotic value of the Higgs field is

27ri/|f|

i
2

i
2
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1.5.1

(1.5.1)(a,w) = ga0 +CS ■ 5.

This implies for R4,

(1.5.2)

(1.5.3)

(1.5.4)

In this section we discuss some basic notions of hyperKahler geometry and the ge­
ometry of moduli spaces. The moduli space is the space of solutions divided by the 
group of gauge transformations. It is the space to be integrated over when the cont ri­
bution of instantons to the partition function is determined. In this calculation the 
metric on the moduli space, defined below, enters naturally as the norms of the gauge 
zero-modes in the instanton background. For monopoles, the low energy' scattering 
can be described as geodesic motion on the monopole moduli space. As explained in 
section 1.5.3, the metric then enters in the kinetic part of the effective Lagrangian, 
having the moduli and their time derivatives as coordinates. This is called the mo.lull 
space approximation for monopoles, cf. [70, 92].

(j,di) = dx ® dx, 
g = ds2 = (dxM)2,

<3 ■ 5 — dx A dx = fj^dx,, A dx„ = (2dx0 A dx — dx A dx) • 5

Here, (da A dt)" = e,-7rdaJ A dbk. The’t Hooft matrices give a convenient splitting of 
the two-forms into selfdual and anti-selfdual combinations,

HyperKahler manifolds
Manifolds with metric g are hyperKahler if they have three independent i . x 
structures I,J,K that satisfy the quaternion algebra, IJ = — JI = K and cyclic, 
whose associated Kahler forms u/(-, -) = <?(•,/•), uiJ(-, •) = g(, J-), uK(•, ■) = </( . A ■) 
are closed. As will be outlined later, the moduli spaces of selfdual connections inherit 
their hyperKahler property' from the hyperKahler structure of the base space manifold 
M = R4/H, where H = 0,Z, R for instantons, calorons and monopoles respectively. 
The position coordinate on R4 will again be denoted as a quaternion, x = x^a^ and 
x = XpSp. Identifying the tangent space to the quaternions H ~ R4 with the vector 
space itself, the complex structures act on x as right multiplication with — i, — j, — k, 
such that (7,7,7<),,p = rf;2'3- It is sometimes convenient to combine the metric and 
Kahler forms into one quaternion,

^dr,, A dx„, ri^dx^ A dx,

The first occur in the description of the selfdual instanton curvatures whereas the 
second span the Kahler forms.

Many examples of hyperKahler manifolds emerge as hyperKahler quotients [47] 
Consider a hyperKahler manifold M acted upon freely by a group G (with algebra 
g) of isometries. The metric g then satisfies

(.Lxg),^ = Xxd>.9iiu + (3MA'A)gAu -I- (9„Xa)sma = 0,
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1.5.2

(1.5.6)

(1.5.8)(fl,<J)M(Z,Z') =
1 

4tt2
[ d4xTr(Z<(x)Z'(x)), 

J M

Metrics on moduli spaces
The metric on the moduli space M of selfdual connections on the manifold M = 
R4/H is computed as the L2 norm of its tangent vectors. These are gauge orthogonal 
variations of the connections with respect to their moduli. Specifically, ZM is tangent 
to the moduli space when it is a solution of the deformation equation (i.e. a variation 
of the selfduality equation) and the so-called gauge orthogonality condition requiring 
it to be a zero mode of the covariant derivative D^,

D$Z,} = ^a0D$Z0], D?WZ„ = 0.

Written in terms of quaternions, these equations are concisely expressed as

D^Z = 0, (1.5.7)

where £>“* = and Z = One then reads off the tangent space to admit 
three almost complex structures 7, J, K acting as —i, —j, —k on the right. Metric and 
Kahler forms read

L denoting the Lie derivative and X g 0. When G preserves the complex structures, 

(£xw)^ = + (5mXa)u3a. + (ft.X^.A = 0, (1.5.5)

the isometries are called triholomorphic. The moment map /7 : M —♦ 0* ® R3 can be 
defined as Xnwou = <Kpx ■

The moment map originates from symplectic geometry, used in classical mechan­
ics There, denotes the symplectic form defined on the tangent bundle to R3, and

— dxi A dp,. The moment map for translations in R3, defined by the vector field 
Y is then given by the momentum, p = p. For rotations, the moment map

i give:, by the angular momentum, jl = x x p.
i l.,e manifold /7_,(c)/G, with c 6 R3® Za (Z0 the centre of 0*) obtained by taking 

is- quotient of the level set /7-1(c) by G is then hyperKahler itself [47], Isometries 
<■ .tniiHliing with G descend to the quotient. When they are also triholomorphic, this 
property is preserved.

In this thesis, most examples start with a manifold parameterised by a coordinate 
y g IHI', with flat metric and Kahler forms dy^ ®dy, where y4 = y‘. The group acting 
triholomorphically usually consists of a product of C7(l)s, related to the monopole 
phases or it is identical to some gauge group. The relevant example is provided by the 
moduli space of ADHM data in the construction of charge k instantons on R4 for gauge 
group SU(n). to be discussed in chapter 3. The calorons will be constructed using an 
infinite-dimensional version of the ADHM construction and its moduli space can be 
obtained using an infinite dimensional hyperKahler quotient. In another example, the 
hyperKahler quotient will act on the caloron moduli space, which gives a monopole 
moduli space.
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(D^)2<br (1.5.9)

(1.5.10)

(1.5.11)d4xrif,t,Tr(i5rAlt6a A„),Jr,-a = -

1.5.3

(1.5.12)

The moduli space approximation for monopoles

The moduli space approximation for monopoles assumes that the motion of a system 
of many monopoles follows initially the geodesics on the multi-monopole moduli space 
[70], rigorously proven in [92] for the gauge group ST/(2). We follow [70, 98]. In this 
subsection we do not identify <40 as the Higgs field, but keep Xo and <t> separate. Like 
in section 1.4, we consider real time.

One of the Yang-Mills-Higgs equations, derived by varying in the action, is 
Gauss’s law. It reads in the — 0 gauge

DiAi + [<!>, $] = 0,

[ d4xT¥(<MM - D^(D^)-2Df6Ap-)2.
J M

-D^6rA„,

where Z, Z' are any two tangent vectors. Geometrically the gauge orthogonality as­
sures that the deformation has a vanishing projection along the gauge fibre, i.e. it is 
orthogonal with respect to the metric eq. (1.5.8) to all infinitesimal gauge transfor­
mations lI>'nr of the vacuum, fM d4xZpD^ii>'n! = 0. This guarantees the deformation 
to be horizontal, i.e. it has only a component along the gauge independent moduli, 
cf. [8]. See also the discussion in section 1.5.3, where the gauge orthogonality con­
dition is derived from Gauss’s law. Gauge orthogonality of a variation <5r.4,, of the 
selfdual connection with respect to the rth modulus can be achieved by applying ’.n 
infinitesimal gauge transformation 4>r,

z; = SrAp +

implying for the metric

1
9 ~ 4rr2

The hyperKahler property of the moduli space follows formally from considering 
it as the infinite dimensional hyperKahler quotient of the space of general connections 
A by the triholomorphic action of the group of gauge transformations £[3, 26]. The 
moment map is {Iq • a = *-e- t^ie projection of the connection on the
anti-selfdual forms. Hence the zero set is formed by the space of selfdual solutions, 
which quotiented by Q gives the moduli space. That this quotient is well defined 
follows from the invariance of the Kahler forms

under infinitesimal gauge transformations, which is seen by adding arbitrary
to the deformations, using D^S^A^fj^ — = 0- For calorons the boundary
condition is that their connections are periodic modulo a gauge transformation. This 
is consistent with complex structures acting as qpu. One therefore expects caloron 
moduli spaces to be hyperKahler. This hyperKahler property of instanton moduli 
spaces applies to BPS monopoles as well, as follows immediately when considering 
them S' invariant calorons.
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:(z,7(t))) = (1.5.14)

(1.5.16)

S = 4?r2 (1.5.17)

Here,
(1.5.18)9r. =

M — M x A4re,.

1.5.4 Relative moduli spaces

Moduli spaces of selfdual connections can usually be written as a product of the base 
space M, describing the centre of mass and the non-trivial relative moduli space A4rei,

(1.5.19)

= 7r(t)(Z?»d1>r + l9(^'l>)1^/l,BPS(f,7(«))) = 7rWZr(?,7(t)),

4>(x,t) = 7r(t)([$,#r] +
(77r

Here, <I>r = g(2,7(t))g^g~l(£,7(t)) and (ZJ,Zr) forms a tangent vector to the mo­
nopole moduli space corresponding to the variation of the rth modulus. Gauss’s law 
implies,

+ [$, ZJ] = 0, (1.5.15)
which is equivalent to the gauge orthogonality condition in eq. (1.5.6) when identify­
ing zlo with <!>. Inserting the time derivatives in the Yang-Mills-Higgs action in the 
gauge where /lo = 0,

S = J d4xTr (-A? - i2 + B2 + (Da<i<I>)2) , 

gives an action describing the dynamics on the moduli space, 

y dxogr,jrj, - EBPS.

A J d3xTr (z[f(f)Z’(£) + z;f(x)ZJ(x))

is the metric on the monopole moduli space, cf. eq. (1.5.8). The energy EBPS is 
defined in eq. (1.4.2). Clearly, the metric on the monopole moduli space has entered 
the effective Lagrangian in its kinetic part. The second term in the rhs. of eq. (1.5.17) 
forms the potential par t. It is constant as it is proportional to the energy of the static 
monopole system, which does not depend on the moduli. We finally note that the 
approximation becomes exact when 7 —♦ 0.

the dot denoting a derivative with respect to time. It constrains the dynamics of the 
fields. Assuming that during the slow motion of the multi-monopole system the fields 
still form a multi-monopole configuration, we can write down

A,(f,t) = l9<£'T'<t»UBPS(x,7(t)), 4>(£,t) = Wi'7(',)l4>BPS(x,7(<)), (1.5.13)

where y(t) denote the moduli of the monopole configuration (.4HPS(z, 7),'I>BPS(z, 7)). 
The time derivatives then read
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In the metric this corresponds to a part describing the flat metric on the base space 
M and one for the relative or centered metric on A4rei, containing the nontrivial 
part. In the moduli space approximation, the motion on M describes the motion of 
the centre of mass, whereas the motion on A4rei describes the internal motion of the 
multi-monopole system. Sometimes however, when we want to take limits, it will be 
preferable to work with the full metric on A4. In particular it will be worthwhile to 
consider the boundaries of caloron moduli spaces as monopole moduli spaces. This 
is realised by removing constituent monopoles from the caloron. An example of this 
procedure is given by the infinite scale monopole limit of the caloron with . ial 
holonomy, which can be seen as a massless monopole constituent being ri. ■ . : to 
infinity. When the constituent is removed from the caloron, what rem;.: the
elementary BPS monopole.

In this thesis we will be concerned with calorons. There are many reasons to study 
them. There is the obvious link with finite-temperature field theory. Moreover, they 
provide examples of selfdual connections over partially coinpactified four-manifolds. 
Most importantly, adjusting the size of the circle allows for a smooth interpolation 
between instantons and monopoles. This last aspect makes it obvious that the study 
of calorons adds to the understanding of both objects and the formalism to investigate 
them. They were used for this purpose in ref. [23]. The moduli spaces are interesting 
because of the hyperKahler property of the metric. The metrics of the calorons we 
will encounter also feature in the study of D-branes.

The main part of this thesis is devoted to the construction of caloron solutions, 
their physical characteristics, such as action densities and fermion zero-modes, and 
the geometry of their moduli spaces.

There are various methods to study instantons and monopoles. In this thesis we 
will be primarily concerned with the Nahm transformation. The Nahm transforma­
tion considers the selfdual connection from the point of view of Weyl fermions in its 
background. The Nahm transformation is thus like an inverse scattering method for 
solitons. It maps selfdual connections to selfdual connections on a dual manifold. 
From the mathematical point of view, the Nahm transformed connection is a con­
nection on a vector bundle over the moduli space of flat connections. The ADHM 
construction may be considered a special case of the Nahm transformation. It will 
turn out that it is possible to extend the range of the ADHM construction to calorons, 
by relating the two approaches by Fourier transformation. Thus we will profit from 
the advantages of both methods.

Calorons were studied before. Explicit solutions, generalising the Harrington- 
Shepard solution to higher charge and gauge group were found within the ’t Hooft 
Ansatz [42, 17]. These solutions do not exhaust the topological richness of connections 
on R3 x S1. As will be described in more detail in section 2.2, the topological 
characterisation of calorons is not only in terms of their instanton charge. Another
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topological label is given by the holonomy around S', measured at spatial infinity,

if 1*1 (1.6.1)oo.PqO,

Here, P stands for path-ordering and we used the periodic gauge, A^x+T) = Alt(x). 
The solutions within the ’t Hooft Ansatz all have trivial holonomy (Poo = 1). In 
this thesis we study calorons with arbitrary holonomy. It is this extension to non- 
. holonomy for which the full machinery of the ADHM and Nahm formalisms is

v and which gives the new and unexpected results. The most intriguing result 
t ,.■■■. that, a charge one SU(n) caloron consists of n elementary BPS monopoles. 
1demonstrated in the picture on the cover of this thesis, where we see three 
monopoles together forming the SC7(3) caloron. (The figure on page 114 at the end 
of tin,. thesis shows a genuine SU(13) solution.)

Phe outline of this thesis is as follows. In chapter 2 we will discuss the Nahm 
transformation. In chapter 3 we summarise the ADHM construction and the multi­
instant,on calculus within this formalism, used to obtain physical relevant quantities. 
This calculus will be used to derive the properties of the caloron. The charge one 
caloron St/(2) with arbitrary holonomy is presented in chapter 4. We use the ADHM 
construction with special periodicity constraints to rederive the Nahm formalism and 
to construct the caloron solution. Crucial is that we treat a caloron as a multi­
instanton of infinite charge. It is made as an infinite array of single instantons. 
Going from one instanton to another then gets accompanied by a gauge rotation, 
thus giving rise to non-trivial holonomy. This generalises the Harrington-Shepard 
caloron which has trivial holonomy. Moreover, we study its moduli space and use 
the metric properties of the ADHM construction to compute the caloron metric. The 
action density of the charge one SU(n) caloron and the energy density of a related 
SU(n) monopole obtained as its limit are computed in chapter 5, where the SU(2) 
techniques are generalised. Chapter 6 is devoted to the computation of the hyper­
Kahler metric for the moduli space of these objects. Again using the adaptation of 
the ADHM calculus to periodic objects, we compute in chapter 7 the Weyl fermion 
zero-mode density in the background of the SU(n) charge one caloron. This will be 
used to perform the explicit Nahm transformation for the S(7(n) charge one caloron. 
Chapter 8 contains a summary and a discussion of the results.

P(x) = P exp( [ A0(x, x0')dx0)
Jo
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The Nahm transformation2

General2.1

(2.1.2)

bi this chapter we discuss the Nahm transformation for selfdual connections. Initially, 
it arose as a modification by Nahm of the ADHM construction [1] for instantons on 
K'* co study BPS monopoles [75, 76]. Later developments culminated in the Nahm 
duality transformation for selfdual connections on generalised tori. It is also known 

the Mukai transformation [73] between holomorphic vector bundles and maps self- 
dmd fields on a four manifold to selfdual fields on dual four manifolds. It therefore 
forms a powerful tool for studying these solutions. Also calorons can and will be 
treated along these lines [77].

Consider a U(ri) bundle E with selfdual gauge connection on a four manifold M = 
IP.'1///, with instanton number k. Here H is a subgroup of translation symmetries 
under which the physics is invariant. When H is a four dimensional lattice, M will be 
the four torus [14], Other four manifolds are obtained by taking appropriate limits [6]. 
We demand the gauge potential to be invariant modulo gauge transformations under 
the action of H.

The essential ingredient in Nahm’s construction [76] is to add a curvature free 
abelian connection, — 2irizlzdxlz, to the gauge field and to study the Weyl operator

DZ(A) = a^D^A), £>*(A) =-aMD?(A), + A„ - 2rrfoM. (2.1.1)

As compared to usual conventions [14, 6], we replaced z by — z to facilitate matching 
with the ADHM construction. When A is without flat factors (meaning that the 
vector bundle E does not split in E' ffi L for any flat line bundle L), then DZ(A) 
will have a trivial kernel [26]. For such gauge fields Gt(x,y) = (£)*(A)£)2(A))-1 is 
well-defined. The index theorem [4, 16, 13] shows that there are k normalisable zero 
modes of the Weyl operator D*(A), for each value of z 6 M = R4/H, H = {z G 
IR41 z • y G Z, Vy G H}, cf. ref. [6]. We can therefore define a t/(fc) connection on the 
space M,

A^'(z)= [ dx ^(x)/-^'(x), 
J M OZH

where 'l'j'(x), m = 1,... ,k form an orthonormal basis for the Nahm bundle E of 
fermionic zero modes. This is called the Nahm transformed connection.

The Weitzenbock identity [26] states

DKAJP.M) = -(D^(A)^(A) + i^F^x)), (2.1.3)

where is the anti-selfdual quaternionic 't Hooft tensor defined in section 1.3. 
As F is selfdual, the second term will vanish, and hence P*(A)DZ(A) and Gz(x,y)
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(2.1.4)

(2.1.5)m = 1,... , n,

(2.1.6)

commute with the quaternions. This has profound consequences for the curvature 
associated to the Nahm connection. One finds [6]

Fpp(z) = 8rr2 [ dxdy 4>*(a:)Gz(x, y)^'!'-(y)
J MxM 

f d-4-jri / dSxfxjdy-—"P*(z)<7Aau)G;(z, y^S/Ay),
JdMxM

where 'J', denotes the matrix with the zero modes 'J'"1 as columns. Here we ■ 1 that 
Gz commutes with the quaternions. The first term is clearly selfdual due t elf­
duality of r/pp. The boundary term shows possible deviations from selfduah rich 
occur at the points z for which the zero modes do not decay exponent). the 
non-compact directions. In these directions the connection necessarily appt. -s a 
vacuum for the action to be finite. These vacua are labelled by the eigen wines of 
the Polyakov loops P, = Pexp Jc A^dx^ along the circles Ci corresponding to the 
compact directions. In the case that e2*lz* becomes equal to one of these eigenvalues, 
the component of Ap — 27riZp along C, in eq. (2.1.1) will develop a zero eigenvalue 
when approaching infinity. This gives rise to a surviving boundary term in eq. (2.1.4) 
and as a result a deviation from selfduality, precisely for these specific points. As the 
deviations occur in single points, they will be expressible in terms of delta functions. 
Hence, Ppp is selfdual almost everywhere. For the non-compact directions /r, the zp 
dependence of ^(x) is a plane wave factor, and hence A is zM independent. Note 
that the U(fc) symmetry in the space of zero modes associated to A is mapped onto 
a gauge symmetry for A. On the other hand, gauge transformations of A leave A 
unchanged.

For the four torus T4 the boundary terms are absent and instantons are mapped 
onto instantons. It can be shown, using the family index theorem, that under this 
Nahm transformation a U(n) connection with topological charge k is mapped onto a 
U(k) connection with topological charge n. The Nahm transformation on T4 squares 
to the identity [14]. More explicitly, the dual Weyl operator £>*(A) = —a^d^ + A^ — 
2-irix^) has n zero modes

Pl(4)*?(z) = 0,
in terms of which the original connection AM(x) is reconstructed

A”m{x)=Ldz
This suggests to use the Nahm transformation in the construction of selfdual connec­
tions on modified tori, in situations when one can explicitly find the dual connection 
A. The Nahm transformed connection and boundary terms are then referred to as 
Nahm data. Generally one expects such a construction to be feasible when the Nahm 
transformed bundle is simpler than the original, in particular when M is of lower 
dimension than M. In these cases one sometimes can solve A^ from the selfduality
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2.2

(2-2.1)

The Nahm transformation for calorons and mo­
nopoles

equation for F„„ in the presence of boundary terms. Another simplification arises for 
the case of topological charge k = 1, since in that case the Nahm connection A is 
abelian. Because of the boundary terms, the second Nahm transformation will have 
to be modified by properly handling the singularities. As will be discussed in detail 
in section 2.3.1, the extreme case is M = R4, H = 0. There the dual manifold M is 
just, a point and the pair formed by the dual Weyl operator and singularities reduce 
to matrices which precisely give the ADHM data [22, 77, 26, 6]. The Nahm transfor­
mation on R4/// thus encompasses the ADHM construction as discussed in section 
2.3J .o:d in more detail in chapter 3. The Nahm transformation for calorons and 

.i A is discussed in the next section, whereas the explicit Nahm construction 
of o « .; lentary BPS monopole is given in section 2.3.2.

■ i- c are two further properties of the Nahm transformation on T4, [14]. The first 
ion between the zero-modes of D and those of D via the Green’s function Gx. 

The second, related to the first, is a connection between the gauge zero-modes in the 
background of /fy and those of /fy which can be used to prove the preservation of the 
metric and hyperKahler structure under the Nahm transformation. This isometric 
property states that the metric on the moduli space A4 of selfdual connections on 
M is identical to that on the moduli space A4 of selfdual connections on the dual 
space M. The calculus to prove these statements is not unlike that needed in chapter 
3 where the fermion zero-modes and moduli space metric for instantons on R4 are 
calculated within the ADHM formalism.

We will now consider the Nahm transformation for calorons (using the classical scale 
invariance of the selfduality equations, we can choose the period T = 1 such that 
H = Z) and monopoles in the BPS limit (H = R). For the latter, Ao is interpreted as 
the Higgs field. Thus we can unify these two cases by considering them as connections 
on R3 x Sl. The connections for R3 x S1 are topologically classified according to their 
behaviour at the boundary, S2 x S1. We give a short summary of the classification 
presented in ref. [41].

For the action to be finite, it is necessary that the connections go to a vacuum 
at spatial infinity. Generally, gauge vacua are labelled by the conjugacy classes of 
representations of maps of the first homotopy group to the gauge group [26]. For 
S2 x S', we can characterise each vacuum by a gauge equivalence class of an element of 
the gauge group. Using a gauge transformation, this element can be chosen diagonal. 
The vacuum at infinity is related to the holonomy along the S1 (or Polyakov loop),

P(x) = P exp( [ A0(x,x0')dx0), 
Jo

in the periodic gauge. The difference of a closed Wilson loop evaluated along two
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(2.2.2)= exp[27ridiag(Mi,..., /x„)].

The eigenvalues can be ordered such that

(2.2.3)Mi < • ■ • < M„

i

n
Mn+1 = Ml + 1, 57 Mm = 0,

curves C and C is related with the flux through the surface swept out by the curves 
interpolating between C and C. Hence, at spatial infinity where the curvature van­
ishes, a small deformation of the path C around which the holonomy is measured 
does not influence T-’(x). Only the homotopy of C is important, and the eigenvalues 
of the holonomy at spatial infinity are topological invariants. Therefore, the gauge 
holonomy at infinity is diagonal up to an x dependent gauge transformat ion I

•pO 
r <x>

using the gauge symmetry and assuming maximal symmetry breaking for the moment. 
For later use, we define vm = Mmri — Mm, related to the mass of the mth constituent 
monopole. Asymptotically,

= 2a-f diag(Mi, ■ • ■ ,Mn) — f diag(fci, • • •, fcn)/(2r) + O(r 2), 57 fcj = 0, (2.2.4)

lim P(f)
|£|—oo

up to the gauge transformation V (i) that induces a map from S2 to the factor group 
SU(n)/with Hd the isotropy group of exp[27ridiag(Mi, • • • ,Mn)]- For SU(n) 
these maps V(z) —> SU^/H^ are classified according to the fundamental group 
of fifoo. Generically, consists of several <7(1) and SU(N), N > 1 subgroups. 
Each C7(l) gives rise to a monopole winding number, related to the integers k,. The 
enhanced residual gauge symmetry described by the SU(N) subgroups arises when 
there is non-maximal symmetry breaking, vm = Mm+i — Mm = 0 for some value(s) of 
m, giving rise to massless constituent monopoles. The non-trivial value of Px breaks 
the gauge symmetry. This makes calorons very similar to BPS monopoles, [75, 76] 
which fit in the above classification as S1 invariant selfdual connections, classified 
according to the magnetic charges (mi,... ,mn_i) [53], where m, = fci + ... + fc,.

The other topological quantum number is related to the homotopy class of the 
map dM = S2 x S1 —> SU(n) which occurs in the gauge transformation connecting 
the behaviour near the origin to that at infinity, which is classified by the instanton 
number k e itz(SU(n)) = Z. Gauge connections on R3 x S1 are therefore classified 
by Mi, mi and The SU(n) calorons studied in this thesis have no net magnetic 
charges, m; = 0, and their only nontrivial topological labels are the instanton number 
k and the eigenvalues Mm of the holonomy.

In the Nahm transformation for monopoles and calorons the z dependence of 
the fermionic zero modes is that of a plane wave, 'I'zo,z(x) = e2,r“'2'I'2o j(x) and one 
finds A to be z independent. Therefore, the dual manifold is one dimensional with 
coordinate zq = 2- The rank of the Nahm transformed connection is given by the 
appropriate index theorems. For periodic instanton with no net magnetic charges the

= v-p^v
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(2.2.5)

(2.2.6)

These are the celebrated Nahm equations, extended with source terms /3'' describing 
the matching conditions. There are additional boundary conditions at z = Mi if the 
dimensionality of the matrices changes [54], For monopoles, there are no matching 
data at the endpoints z = Mi,M>i- The field construction in the Nahm formalism from 
the Nahm data to the actual gauge potentials for monopoles and calorons can be 
found in [76, 54, 32], A special case for monopoles is considered in the appendix to 
chapter 6. Any A,,(z) obeying the Nahm equation of the right dimensionalities and 
singularity structure gives rise to a BPS monopole or caloron. For monopoles this 
is generally proven using twistor methods [76, 46], but for SC/(2) monopoles there 
exist direct proofs of the equivalence, without an intermediate twistor step [78]. For 
calorons the construction was formulated in ref. [77] and the twistor method for these 
periodic instantons was given in ref. [32], but a relation with existence theorems or 
a full circle reciprocity proof as it exists for monopoles and for instantons on R'1 and 
T'1 seems not to be present.

For the fc = 1 Sf/(n) caloron, Ap is a 1/(1) connection on the circle with n 
singularities corresponding to the holonomy. For SU(2) this holonomy is given by a 
unit quaternion, e2"*"'*, and there are two singularities Mi.Mz with M2 = — Mi — u 
and = |c3| 6 [0, j]. For the charge one caloron, the magnetic components of F 
vanish and hence non-zero values and singularities are only assumed by the electric

fermionic zero modes are associated to the instanton winding number k in the usual 
way. Hence, the rank of the Nahm transformed gauge potential is k. For non-zero m, 
there are additional zero-modes associated with the monopole content. The situation 
for the extreme case, k = 0, a static BPS monopole, is that the dimension of the space 
of fermionic zero modes depends on z: for z g (Mi,Mi+i) the dimension is given by m, 
and for z outside [MiiMn] the dimensions is zero according to the Callias-Bott-Seeley 
theorem [16, 13]. Jumps in the rank of the Nahm transformed connection occur 
exactly where z = Mn again according to the Callias-Bott-Seeley theorem [16, 13] 
(i he situation of non-maximal symmetry breaking, where two or more Mi coincide, is 
more involved).

Therefore, for calorons and monopoles, the dual space M is an interval on the 
real line. For monopoles, this interval is [mi,M»]> when we order m> < Mf+i- So, for 
monopoles. .17 is not the entire real line as one might expect. For calorons z is the 
coordinate on the dual circle and A is periodic, z = Mi and z = Mi + 1 are identified. 
The Nahm transformed curvature reduces to

Foi(z) = + [An A], ^(z) = [Ai,j4j].

Using the selfduality of the first term in eq. (2.1.4), and the fact that the second 
term of this equation is zero almost everywhere, except for possible delta function 
singularities at z = Mi corresponding to the holonomy, one finds

+ [Ao, A,] — |epk[^4j, At] = ^2/3f<5(z — mp)-
p



30 The Nahm transformation

Examples2.3

2.3.1

C./W m = 1,... n,

(2.3.4)

components FQi. By the Nahm equations A is forced to be piecewise constant. The 
explicit ADHM construction for these calorons will be given in chapters 4 and 5 and we 
will see among other things that all aspects suggested in ref. [77] arise automatically.

-> p(z)dpp i(x), (2.3.2)

where g has winding number k. The k fermionic zero-modes in the instanton back­
ground are then given by

= + O(kr"). 1=1,2,

The ADHM construction
In this section we review [22, 77, 6] how the Nahm transformation encompasses the 
ADHM construction for instantons on K4 . For these solutions, all zM dependence of 
the zero-modes of the Weyl operator is carried by a plane wave factor (all directions 
are noncompact)

m = 1,..., fc.

(2.3.3) 
I denotes the spinor index. That the zero-modes indeed assume this form at in­
finity follows from = 33M(3_1) asymptotically and the identity <r£5M(x|x[-4) = 
0, |x| 0. The matrix a describes the various orientations in spin and colour
space, ir is a normalisation factor. Using G-1(x)- = -D?- = -qd^(q-) at infinity and 
32(x|x|“2) =-4x|x|^4, we also find " "

= f^Smm-(r)oJ.7 + O(|x|'3).

The boundary term in eq. (2.1.4) is now evaluated using these asymptotics, in com­
bination with quaternion relations like = —2<r* and the fact that

® dflalxl XxXaXffX^ — yTJ (<5a^<l/3A 4" 4“

In this section we consider two famous examples. The first is a present '.’  f the 
ADHM construction of multi-instantons from the perspective of the Naim. ■ ’-for­
mation. The second is Nahm’s original formalism for the BPS monopole.

«>2(x) = e^-^^fx). (2.3.1)
These plane wave factors drop out in the expressions for the connection (2.1.2) and 
curvature (2.1.4) and therefore, the dual manifold M is just a point. As a result, the 
dual Weyl operator £>x = <tp(Am — 27rixM) is algebraic. Here, the Au are skewHer- 
mitean k x k matrices.

Asymptotically, the instanton gauge potential approaches a pure gauge transfor­
mation at infinity, |x| —» oo,
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for the three-sphere. The Nahm transformed curvature then reads

F„u = 87T2(«< (2.3.5)

(2.3.6)

(2.3.7)

(2.3.8)

(G^1) (2.3.9)

and the gauge field is given by

yUz) = (2.3.11)

The matrix £>£“ will be central to the ADHM construction, to be described at length 
in chapter 3. There the explicit field construction will be explained, in which the 
extension a features as a source term

■ i He denotes transposing with respect to the spinor index. We then obtain, using 
the Weitzenbock identity (2.1.3),

Oex.’pexl

D^x = -2ira'sx, = In

(2.3.10)

= — (4„ — 27rizM)2 + 27r2tr2at ® a.

r°a^Taa = — tr2(a* ® a) + 2a* ® a.

— 47r2a*d — (A,, — 27rizM)2 —
= 47r2o* ® a — (Am — 27rizM)2 + j’r2?7°p^pT“a,Tl’a
= 47r2a* ® a — (AM — 27rizM)2 — 2ir2Taa^Taa,

Due to the second term, this curvature is no longer selfdual. As a consequence, in 
the -now algebraic- second Nahm transformation D\DX no longer commutes with the 
quaternions, nor will the resulting connection be selfdual. To repair this, we extend 
the ’W ■ 1 operator to a {2k + n) x 2/c matrix

Here tr2 denotes the trace corresponding to quaternions or spinor indices. That the 
extension indeed repairs the commutation of D[bx with the quaternions now follows 
immediately: the Green’s function in the extended second Nahm transformation 
commutes with the quaternions,

indicating by ® that a tensor product rather than an inner product is taken with 
respect to the spinor indices. The last term is rewritten by applying the completeness 
property of the basic quaternions yielding

= 0, ) e cn+2k’n,
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(2.3.12)

Therefore

(2.3.13)(cosh 2tt|x|z — x • f sinh 2tt|£|z)

(2.3.14)(cosh2rr|x|z — x ■ rsinh27r|z|z),

The monopole gauge

(2.3.15)

(2.3.16)

/4o

tMz) oc e'

-h)' 
sinh27Tp|i|)

- 27rixM<7*)V>x(z) = 0.

2.3.2 The elementary BPS monopole
For the elementary BPS monopole, the Nahm transformation is easy to perform. As 
the gauge connection for the elementary BPS monopole is rotational invariant up 
to a compensating gauge transformation, the same holds true for the Weyl fermion 
zero-modes in its background. Therefore, choosing the origin as the centre of sym­
metry, the spatial components A, of the Nahm transformed connection vanish, cf. 
eq. (2.1.2). Choosing a particular linear combinations for these zero-modes trans­
lates into a particular gauge choice for the Nahm transformed connection. Thus one 
also can achieve Aq = 0. We will now prove that indeed, the elementary BPS mono- 
pole can be reconstructed from = 0 using the second Nahm transform;,’ The 
dual zero-modes are contained in the 2x2 matrix which is the solution ‘

e2nixoz

A. = _Le.w fl-. .27r^l?l.
2 'lk |z|* V

which is of the same form as eq. (1.4.6), up to the sign in /lo. This is related to the fact 
that the selfduality equation for monopoles with Xo = $ translates into Bi = — 
i.e. the Nahm formalism actually gives an antimonopole in the conventions chosen.

It follows immediately that the Nahm data for a monopole located at x = y is 
given by X; = 27rij/i, cf. eq. (2.1.2).

By the Callias index theorem, the interval on which the Nahm construction is per­
formed is restricted to [—1//2, iz/2], v being related to the Higgs vacuum expectation 
value (cf. section 1.4). The zero-modes of the dual Weyl operator are therefore given 
by 

/ 2?r|x|
y sinh 27tm|z|

whose norm squared integrated over [—p/2,i//2] yields one. 
potential and Higgs field is now retrieved from eq. (2.1.6),

,2nixo~ — 2itx tz __ ^2itixoz

= /* dz^x(z)-^-Tpx(z).
J\—u/2,v/2\

This results in the monopole connection

i
2
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3.1

(3.1.1)

A*(z)v(z) = 0, (3.1.2)B(z) = B — x,

u(z) = (-8* - zf) ‘A*, <t>(x) = 1„ + uf(z)u(z). (3.1.3)v(z)

v\x)v(x) = 1„.

Vang-Mills instantons on IR4

In this section we review the ADHM calculus for charge k instantons on R'1 with 
gauge group SU(n). It allows one to compute many quantities of physical relevance 
in explicit form.

The ADHM formalism for S<7(n) charge k instantons [1, 22] employs a k dimensional 
vector > (A;,..., A*,), where A| is a two-component spinor in the n representation
of SU(n). Alternatively, A can be seen as an n x 2k complex matrix. In addition 
one has four complex hermitian k x k matrices combined into a 2k x 2k complex 
matrix B — al2 ® With abuse of notation, we often write B = B^a^. Together A 
and B constitute the (n + 2k) x 2k dimensional matrices

and A(z), to which is associated a complex (n + 2k) x n dimensional normalised zero 
mode vector v(z),

A(*) = (b(z))’

Here the quaternion x = x^a^ denotes the position (a k x k unit matrix is implicit). 
Picking a particular gauge, we can solve v(x) explicitly in terms of the ADHM data 
by

= ( -1"
\u(z)

As <f>(x) is an n x n positive hermitian matrix, its square root (z) is well-defined. 
The gauge field is given by

Am(z) = vt(z)aMv(z) = ^_3(z)(u,(z)9/iu(z))^_’(z) + d^(z)dMtfH(z). (3.1.4)

Local gauge transformations arise from the U(n) symmetry v(z) —► v(x)g(x) in the 
solution space of eq. (3.1.2).

For Am(z) to be a selfdual connection, A(z) has to satisfy the quadratic ADHM 
constraint, which states that Af(z)A(z) = B*(z)B(z) + A* A (considered as k x k 
complex quaternionic matrix) has to commute with the quaternions, or equivalently

A*(z)A(z) = a0 ® (3.1.5)
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dA + zl A A.

3.1.6)

(3.1.8)

T e t/(fc),

(3.1.9)

1,2,3. The ADHM con-

where fx is defined as a hermitian k x k Green’s function. It is sufficient for this to 
hold at x = 0, i.e., A*A = B*B + A* A must be real quaternionic and invertible.

The second constraint is that (B — x) should have a trivial kernel, except for k 
values of x, where v(x) and, as a consequence, AM(x) are singular. These points can 
be shown to be gauge singularities. This implements the non-triviality of the bundle 
and reflects the topological nature of these solutions.

That the connection is indeed selfdual is best seen from using F 
With A = v*(x)dv(x) one finds

F = dt?(x) A dv(x) — dv*(x)v(x) A v*(x)dv(x)
= dv\x) A (1 — v(x) ® i?(x))dv(x).

As 1 — v(x')®vi(x) = 1 — P is the projection on the orthogonal con: id nt of 
the kernel of A*(x) (since A*(x)v(x) = 0), we can use that 1 — v(x) ;Ax) = 
A(x)/IA*(x). Substituting this in the expression for F and using that A*(x)dt>(x) = 
-dxpa^^v(x) = dx*(6tv(x)) (dx = dx^a^, lA = (0,1*), 6*11(1) = <f>~i (x)u(x)), we 
find [2]

F = (v*(x)6)dx A /Xdx*(6*v(x)). (3.1.7)
The crucial observation is now that the quadratic ADHM constraint implies that fx 
commutes with the quaternions and that dx A dx* = r/^dx,, A dx„, much like in the 
Nahm transformation where the Weitzenbock identity, eq. (2.1.3), guarantees that 
D*(A)D2(A) commutes with the quaternions. We thus find [22]

^m-(i) = 2</H(x)ut(x)r;MI,/Iu(x)dH(x),

which is selfdual due to the selfduality of r/^.
The quadratic constraint can be reformulated as 3(A*(x)A(x)) = 0, where = 

Sctm ® = ct, ® IV, (KU7 = 3?ctm ® IVP = Wo = rtr2W), and one obtains

ffa, ® B,J3„ + iro ® tr2(raA*A) = 0.

Note that this implies that tr2(TaA*A) is traceless for a = i 
straint is left untouched under the transformations

B —> TBT\ A— AT*, T e t/(fc), (3.1.10)
A-»pA, seU(n). (3.1.11)

The first leaves the gauge field invariant, whereas the second induces global gauge 
transformations.

There is a geometrical interpretation of the non-linear ADHM constraint. Before 
presenting it, we need a natural metric on the space of ADHM matrices which is 
induced from the metric on the instanton moduli space.

As explained in the introduction, this metric on the moduli space of instantons 
on R4 is computed as the L2 norm of its tangent vectors. These are solutions to the 
equations (1.5.6)
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ZP(C) = -v'(x')Cal,fxbjv(x') + vt(x)bfxaMCtv(x), (3.1.12)

(3.1.13)C

(3.1.14)

(3.1.17)C — SX + fix A

(3.1.19)

The tangent vectors can be computed within the ADHM formalism. A zero-mode is 
given by [81]

TrZ^Z; = i^Trtr2 (C^PCJ, + C’Cr/x) .

This is symmetric in (r, s) because eq. (3.1.14) implies symmetry of

_________________________ Trtr2(C?A(z)/xA*(z)C,).
1The expression given in [81] is incorrect for gauge group SU(n) and should be replaced by the 

one given here in eq. (3.1.19).

where C is a tangent vector to the moduli space of ADHM data,

provided C’ satisfies

(x)C<7-) = — tr2(C* A(x)aJ), tr2(A'(x)C) = tr2(C*A(x)).

'.i’heje ■ •■ditions on C follow from considering

D'^Z^ = (D^a^C^v — vtC(Dtla„)t + vtbfxKlvfxbv, 

where we defined the object aM = u

(3.1.15) 

fxap which can be shown to have the properties 

~ 0. bfx(Ba xQ) j~xT^^(Xa (3.1.16)

and the object = ag{Cf A(x))at (x)C}a\. Then the deformation equation 
is equivalent to the requirement of to be selfdual, implying the first identity in 
eq. (3.1.14), whereas the gauge orthogonality is equivalent to = 0, resulting in 
the second. Verifying eqs. (3.1.15, 3.1.16) requires manipulations similar to those 
leading to eq. (3.1.7).

Using an infinitesimal U(k} transformation (3.1.10) T = exp(—iSX), where SX = 
<5X\ the tangent vectors can be constructed as

 / 6X + iXSX 
~ \ SB + i[B, SX]

which automatically satisfy the deformation equation. Gauge orthogonality imposes 

tr2 (BtfB.iJX) - [Bt.iiXlB + 2MXAtA + A1 <5 A - <5A*A + B'SB - SB'B) = 0.
(3.1.18) 

The complex structures acting on tangent vectors Z extend to C in a natural way, 
Z(C)d-j = Z(Cd,), as is seen from eq. (3.1.12) and

There is a remarkable identity for the product of the gauge zero-modes due to 
Corrigan [20] 1
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(3.1.20)

(3.1.21)

(3.1.22)

(3.1.23)

(3.1.24)

(3.1.27)

are identical to curvature components,

Z^C™) = Zli(ba„') = F^. (3.1.26)

Using this fact, one may derive an expression for the the action density in terms of 
the ADHM data:

-TrF^F^ = tr2(b* cr^Pba^/r+ 4/xbti)
• = -28^Trtr2(2/xb,b-btA/xAtb/I).

A proof of this identity is not given by the authors of [20]. For gauge group SU(2), 
one is found in [27]. An adaptation of that proof to SU(n) is sketched here. Using 
manipulations as above and the fact that cr^xa^ = —2x and = 2tr2x, one can
derive the following relations

dpfz = + A'(x)ball)fx, d^fx = -4fxbhr2(P')bfx.
d,tP = + Pballfx^\x'),
%P = —4{P, bfxb'} + 4A(x)/Ib*tr2(P)b/xA’(x).

Direct substitution of these results gives

i^Trtr2 (C1(P + 1)C,/X) =
—2Trtr2 (O»{P,bfxb'}C,fx) + 2Trtr2 (OlA(x)/xbHr2(P)b/xAt(a-)C,/x) 
+Trtr2 (Cl(A(I)/xbtd(iP + Pba„fx^ (x))C,fx(b'a^(x) + A’^ba,,)/*) 

-2Trtr2 (Cj(P + l')C,fxbhr2(P')bfx) .

We introduce the notation (XMcrM)T = X^a^ and note that eq. (3.1.14) can conve­
niently be rewritten as

(At(s)C)T = A’(x)C = (C^x))’ ■

Inserting this at suitable places in eq. (3.1.21), e.g.

(A^xJC.ACjA^))1 = (CtAWAA^cy = (01(1 - P)Cr)T,

after some algebra one obtains

i^Trtr2 (Cj(P + 1)O,/X + Cj(P + 1)C„/X) =
—2'IYtr2(CjPCr + ClPC,)/xbttr2(P)b/x
—2Tr tr2(PCrfxb'(ClP)Tfxb' + O*Pb/x(POs)Tb/x).

This agrees with Tr(Z^Z’) obtained from eq. (3.1.12). As an aside, we realise that 
the zero-modes corresponding to the centre of mass of the instanton, for which

CM=bCT„, (3.1.25)
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On the other hand,

(3.1.28)

(3.1.30)

(3.1.31)

(3.1.32)

(3.1.33)

(3.1.34)

5jM(Z,Z') = iTrtr2 (YtY' + ctc' + c'»c) , 
uM(Z, Z'Y 3 = ia,Tr tr2df (Y*Y' + cfc' - c'fc) .

log det= —Tr (A^/71 - (/A/r1)2) .
which equals the rhs. of eq. (3.1.27), resulting in the remarkable expression for the 
action density [80]

p = |tr2 + A*A) a] .
Its zero set /Z-1(0) is formed by the solutions to the ADHM constraint

+ }ra ® tr^tiAtA) = 0.

Thus it is shown that an element A 6 M-1(0) corresponds to a charge k instanton 
solution. The gauge connection (3.1.4) is not affected by the C/(fc) transformations 
(3.1.10), which therefore have to be divided out to obtain the instanton moduli space 
fZ-l(O)/F(fc). The dimension of this quotient, the moduli space of ADHM data, 
is 4fcn. This follows from a counting procedure: Each matrix is described by k2 
parameters, resulting in 4fc2 parameters in total for B; 4nk parameters are associated

TrF^F^p = -d2d2 log det fx. (3.1.29)

Here f. is considered a k x k complex hermitean (non-quaternionic) matrix. 
Using the asymptotic behaviour

one > .ni readily evaluate the L2 norm in eq. (1.5.8) as a boundary term at x2 —► oo. 
Using in addition that Z(C)at = Z(Cct,) and identifying the tangent space to the 
ADHM data with the vector space itself, the (see [66]) hyperKahler isometric property 
of the ADHM construction is proven

fx = lk/x2, x2 —» oo,

Yang-Mills instantons on

A is hyperKahler. The <7(fc) transformations of eq. (3.1.10) leave (<7, <£>) invariant and 
therefore form a group of triholomorphic isometries of A. The associated moment 
map reads

The right hand side of eq. (3.1.31) gives a natural metric and Kahler forms on the 
space A of ADHM matrices A. By inserting eq. (3.1.26) in eq. (3.1.31), one readily 
retrieves the action of the instanton to be 8ir2k and hence that an ADHM matrix 
satisfying the ADHM constraint corresponds to a charge k instanton.

We now consider the geometry of the space A in its own right and notice that 
with metric and Kahler forms on A defined from eq. (3.1.31) as

g = |Trtr2 (dB'dB +'2dYdX) ,
uj • a = |cr,Tr tr2 a, (dB* A dB + 2dA* A dA) ,
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(3.1.35)

The reality constraint is similar to the vanishing of the imaginary quaternions in the 
Weitzenbbck formula, which leads to the selfduality of the Nahm connection. The 
symmetries in the ADHM construction can be traced back to the triviality of the 
gauge action in the Nahm transformation and the unitary symmetry of the fermionic 
zero modes. The matrix inverses are the analogues of the Green’s functions. Finally, 
the possibility to compute the instanton moduli space metric in terms of the ADHM 
data reflects the hyperKahler isometry of the Nahm transformation.

LT1 = A(z), 
Dx = B(z), 
lira = A, 

V’ext(z) = v(z), 
= u(z), 

Sx = 1„-

with A, giving 4fc2 + ink parameters for A. The diagonal of B* B commutes with 
H, hence the diagonal elements of A*A, which are hermitean 2x2 matrices, should 
commute with H. This gives 3k constraints. For the off-diagonal part of B*B + 
A*A to satisfy the ADHM constraint, 3 x 2 x ±k(k — 1) conditions should be met. 
Finally, the T symmetry further reduces the number of parameters by fc2. One then 
quickly arrives at a dimensionality of 4kn for the instanton moduli space As it is a 
hyperKahler quotient, the moduli space of ADHM data /z—1 (0)/t7(fc) is ley. rKahler 
[24, 26). Global gauge transformations of the instanton, A —» gX. g G SI 'Inch 
are included as moduli, form a triholomorphic isometry, as follows from < I 32). 
Since SU(n) acts on the left, it commutes with U(k) acting on the right ' ■ .-.efore, 
SU(n) descends as a group of triholomorphic isometries to the moduli space . A I -IIM 
data, the hyperKahler quotient /Z—1 (0)/C7(fc), reflecting the gauge syinu. the
instanton solution. As the ADHM construction is an isometry and the moo pace 
of ADHM data 1 (0)/t7(fc) is hyperKahler the same holds for the moduh space of 
instantons on R4. Note that for this to hold it was necessary to include the ST’(n) 
global gauge symmetry as moduli.

With the natural metric on the space of ADHM data, the conditions on C for it 
to be a tangent vector to the space of ADHM data, have a natural interpretation. 
The first equation is the deformation of the ADHM constraint whereas the second 
condition guarantees orthogonality of C to any infinitesimal T transformation with 
respect to the metric (3.1.32).

Many aspects featuring in the construction above have their counterparts in the 
Nahm transformation. This is not unexpected from the discussion in section 2.3.1. 
In fact, one can make a one to one identification of the objects in section 2.3.1 and 
those featuring here:
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Weyl zero-modes3.2

a^D^^x) = 0 (3.2.1)

(3.2.2)

where we used that all&*(x')ba)l = —26*A(x). Using charge conjugation

e<z*e = -ffp, (3.2.3)

(3.2.4)

(3.2.5)

This now results in the formulae for the normalised Weyl zero-modes

(3.2.6)

Weyl zero-modes in the background of the instanton solution play a central role in 
the Nahm transformation. It is therefore useful to have expressions for them within 
the ADHM formalism.

To find the Weyl zero-mode 4' solving

0 
-1

■ . iat (see eq. (3.1.20))

where the tilde denotes transposing with respect to the spinor indices, we can rewrite 
eq. (3.2.2) as the Weyl equation

-u,dp(v(u,6/I)<7p) = ut9p(veo-pefi,t/I) = (dp + bfx
= ea,lDllev,bfx — 0.

as follows from integration over R4, using the asymptotic behaviour of fx as given in 
eq. (3.1.30).

V(x) = -ev'bfx, 4',(z)4'(z) =

Therefore, zero-modes for the Weyl equation are given by ev^bfx. Viewed as a 
2n x k matrix, each column represents one of the k independent zero-modes. Us­
ing eq. (3.1.20), we find for the k x k normalisation matrix

(afo/jWW, = tr2 ({ev^bf^ev^bfx) = -^d?fx.

APba^fx) = v\dllP')ballfx + vjPbapfx(atlbjA,(x') + ^t(x)bcrll)fx 
= 2i? b<7„/zA' (x)bcrJx + 4v,6/I6tA(x)/I 
= 0,
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The k = 1 SZ7(2) caloron4

Introduction4.1

Instm.ions and BPS monopoles possess remarkable properties. They exist as ex­
act i L rions with arbitrary charges and with an action or energy, proportional to 
their integer charges. Therefore the multi-charge solutions can be seen as built from 
constituents of unit charge. Indeed, for BPS monopoles the absence of an interac­
tion energy can be understood - for large separation - as a cancellation between the 
electro-magnetic and scalar interactions [68, 72].

Instantons are selfdual solutions with finite action. For non-compact manifolds, 
the solutions must approach vacua in the non-compact directions. Due to the topol­
ogy of the base manifold, these vacua can be non-trivial and can give rise to extra 
parameters for these selfdual solutions. For periodic instantons on R3 x S1 (calorons), 
the vacuum label is given by the eigenvalues of the holonomy around S' at spatial in­
finity, cf. section 2.2. Equivalently, one may consider this vacuum as the background 
field on which the solution is superposed. In this respect, they are very similar to 
monopole solutions in broken gauge theories, a non-trivial vacuum generally breaking 
the gauge symmetry.

Calorons can be seen to have as constituents BPS monopoles [32, 63] (for charge 
one, n for 5(7(n)), as follows from Nahm’s work [77]. The constituents are such 
that the net magnetic and electric charge of the caloron vanishes. Unlike for the 
ordinary multi-monopoles, the BPS constituents are hence of opposite charge, and 
thus have an attractive electro-magnetic interaction. Nevertheless, also here exact 
solutions exist with an action that does not depend on the parameters, though the 
solutions become static only for large separations. In order to have this non-trivial 
situation the holonomy at spatial infinity has to be non-trivial, breaking the gauge 
invariance spontaneously. The eigenvalues of this holonomy uniquely fix the masses 
of the constituent monopoles. Their separation - not surprisingly - is related to the 
scale parameter of the caloron solution.

In this chapter we study periodic 5(7(2) instantons with topological charge one 
and arbitrary holonomy. Central to the success in providing explicit and relatively 
simple new solutions is the construction of the relevant Green’s function. In the 
context of the Nahm transformation, introduced here as the Fourier transform of the 
ADHM data, this can be reduced to a quantum mechanical problem on the circle with 
a piecewise constant potential and well-defined delta function singularities related to 
the holonomy. We will find compact expressions for the gauge field and action density 
of the solution and investigate the properties of the caloron. The moduli space is 
described in terms of the constituent monopoles, which in the approach taken here 
appear as explicit lumps in the action density. Furthermore, the constituent monopole
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(4.1-1)

(4-1.2)

_ 2*«3.f

nature of these instantons will be related to work by Taubes in which he showed how 
to make gauge configurations with non-trivial topological charge out of monopole 
fields [95].

Independently, the recent work in ref. [58, 59] has taken the constituent monopole 
description [32, 63, 77] as the starting point, suitably superposing two BPS monopole 
solutions to form a caloron solution.

Periodic instantons have been discussed first in the context of finite ten.; ' ure 
field theory [42, 41], where the period (T) is the inverse temperature in eucli- ■■■.: field 
theory, as discussed in chapter 1. A non-trivial value of the holonomy ■ ><lify 
the vacuum fluctuations and thereby leads to a non-zero vacuum energy > ■ .. y as
compared to a trivial holonomy. It was on the basis of this observation that ons
with non-trivial holonomy were deemed irrelevant in the infinite volume ! ,11].
It should be emphasised though, that the semi-classical one-instanton cal-■' . n is 
no longer considered a reliable approximation. At finite temperature Ao can be seen 
to play the role of a Higgs field and in a strongly interacting environment one could 
envisage regions with this Higgs field pointing predominantly in a certain direction, 
and nevertheless having at infinity a trivial Higgs field. Given a finite density of 
periodic instantons, in an infinite volume solutions with non-trivial holonomy (in 
some average sense) may well have a role to play.

In the construction of the charge one caloron with non-trivial holonomy, we pick 
a particular gauge. In the periodic gauge, the spatial components of the vacuum 
connection at infinity can be gauged to zero. The Ao component can only be gauged 
to a constant, e.g. Ao = • r, when the total magnetic charge is vanishing. This
connection has obviously a non-trivial holonomy at infinity

A„(x,x0 + T) = e2’ri;,%(x,xo)e-2’'"f,

with T the period in the imaginary time direction, i.e. the inverse temperature. 
Clearly, e2’""’’ = go(x) is the transition function or cocycle. Using the proper ex­
pression for the holonomy along a path traversing the boundary between coordinate 
patches [5],

T’(x) = P exp( [ Ao(x,xo)dxo)go(^)>
Jo

we find the same value for the holonomy in this gauge, the holonomy at infinity now 
solely being carried by the cocycle go(z). It is in this so-called “algebraic” gauge that 
we will calculate the generalised caloron solutions.

P(x) = P exp( [ A0(x,x0)dx0) —» e2’""’’.
Jo

Alternatively, connections on R3xS* can be formulated by embedding them in R4 and 
demanding periodicity modulo gauge transformations. Gauging with a non-periodic 
gauge transformation g(x, x0) = e2,r“0"'£, starting from the periodic gauge with zero 
Ai and constant Ao = 2rri<J • f at infinity, sets all gauge fields to zero at infinity. In 
that case we have
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The ADHM construction for 5/7(2)4.2
R4

(4-2.1)

(4.2.2)

(4.2.3)

where v(x) is a (k + 1) dimensional quaternionic vector, the normalised solution to 

£^(x')v(x') = 0.

TBT~', T e O(fc), 
g 6 SU(2),

A -» AT'1, B -
A —> gX,

The remainder of this chapter is organised as follows. Section 4.2 contains further 
details of the ADHM formalism special for gauge group SU(2) and necessary for 
the construction of the caloron in section 4.3. It is made evident how the ADHM 
approach to calorons is related with the Nahm formalism discussed in chapter 2 by 
Fourier transformation. By relying on the ADHM construction we profit from the 
vast knowledge on multi-instanton calculus within this formalism. Section 4.3 forms 
the calcuiational core of this chapter, in which we derive the gauge potential and 
a pertjcijhi: a. simple expression for the action density. The various properties and 
symrwof the caloron are unravelled in section 4.4. In section 4.5 the moduli 
space . i -1 caloron is described. Section 4.6 contains a discussion on the relation 
wii - less work, abelian projection [52] and possible applications to QCD.

both leave the quadratic ADHM constraint untouched. The first does not change 
Ap(x), whereas the second induces a global gauge transformation. One must di­
vide out these symmetries in order to obtain all gauge inequivalent solutions, cf. 
section 3.1. This reduces the dimension of the space of gauge inequivalent solutions 
to 8fc(—3), depending on whether or not the global gauge degrees of freedom are in­
cluded as moduli. Considering the g as moduli, the moduli space is an 8fc dimensional 
hyperKahler manifold.

The special form of the ADHM formalism for SU(2) allows for a more convenient 
form of the fields. With v(x) as in eq. (3.1.2), the gauge potential reads

There is a special version of the ADHM construction for St/(2) instantons on 
which reduces the number of initial parameters [1, 2] as compared to that in the 
exposition in section 3.1. The matrices Bp can be taken real symmetric, and a 
similar constraint on the elements of the 2 x 2fc complex matrix A allow these to be 
combined into k elements of the quaternions tensored over the real numbers. The 
data are then referred to as framed data.

The framed ADHM data thus consist of a quaternionic row vector A = (Aj, ■ ■ ■, A*,) 
and a quaternionic, symmetric k x k matrix B (Ap = Xf<7p and Bpp> = Bpp,crp, 
with A£ e R and Bpp, = B^, p 6 R). The symmetries in the ADHM data are now 
also slightly different, the group of T symmetries is O(fc) rather than U(k): The 
transformations
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To solve for v(z) in eq. (4.2.3), we introduce (a matrix of spinors) u(z), and obtain

u(z) = (B* -z,)-IA,1 (4.2.4)v(z)

where

(4.2.6)

(4.2.7)

oo

Gx—<t>~1(x)GxX^ XGx. (4.2.8)a = (<?;*+*’*) = GX
n=0

(4.2.9)

we

(4.2.10)

(4.2.11)

(4.2.13)

<t>(x) = 1 + AGjA* = 1 + u*(z)u(z) (4-2.5)

accounts for the normalisation of v(z). In terms of these quantities, the gauge po­
tential reads

-1 \ 
u(z)7 ’

Using — z*) 
get

g Hfcx'i

Ap(z) = <t> ’(z) AGI7)pu(B - x)„GxA*.

We substitute GxX^ = 4>(x)fxX\ eq. (4.2.9), and noting that

duf~' = duG~l = —2(B - x)v, (d,.f-')fx = —fx'd^fx, 

we arrive at the following compact result for the gauge potential (see also ref. [21])

AM(z) = i</>(z)3„ (A^/xA*) , (4.2.12)

using once again that fx commutes with the quaternions. When fj^ is moved through 
A, one finds an expression for Ap in terms of (derivatives of) “expectation values” of 
the Green’s function fx.

Ali(x) = |0 1 (z)(u*(z)3„u(z) - 3put(z)u(z)),

where it was used that 0(x) is a scalar function for SC7(2).
In the case at hand, eq. (4.2.6) is of little practical use as it stands. Wc -.nerefore 

rearrange it such that we can express Ap in terms of evaluations of the Green s func­
tion fx. To simplify the manipulations, a second Green’s function Gx is introduced. 
Together the Green’s functions read

fx = (A(z)’A(z))-1 e Rtxl, Gx = ((B - z)‘(B - z))

The Green’s functions fx and Gx are related, as can be seen from the expansion of 
fx in terms of Gx,

Acting on eq. (4.2.8) with A* on the right and/or with A on the left, yields

GXA» = 0(z)/xA», 0(z) = (1 - AAA*)-1.

= (B’ - zI)-1aM(Bt - z*)-1 = (B - z)GxdM(B - z)Gx,
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where

TrF2„(x) = -3^ log det/»,

TrF^z) = -Jdpd’logdetGx + 5*5* log0(z). (4.2.15)

The construction of the caloron4.3
In this section

are satisfied when

(4.3.1)uk(x + T) = ut_i(z) exp(—2?r«u • t),

A*+1 = B(x + T)m,n = B(i)m_i,,

where B(x) = J3 — x. It now follows that

(4.3.3)Bp+ijS+i — ^p.p1 +

as is seen from eq. (4.2.6). This is implemented by the periodicity constraints

(4.3.2)

is regular everywhere. It can be rewritten using eq. (4.2.8) and eq. (4.2.11) as

we describe the ADHM construction of caloron solutions with non­
trivial holonomy. This will be a two-step process. Crucial will be the interpretation 
of the ADHM data as the Fourier coefficients of the Weyl operator in the Nahm 
transformation. In the strategy taken here, the caloron is built as an infinite, peri­
odic (gauge-twisted) chain of instantons. It will be shown how we can realise this 
within the ADHM construction, by solving the quadratic constraint on the ADHM 
data. To find AM(x) we use again a Fourier transform to construct the
Green’s function of an ordinary second order differential equation, which allows for 
the determination of ^a/?(x) = (Aa/xA^), see eq. (4.2.13).

The boundary conditions AM(z + T) = e2’"“'"r Ap(x)e~2’"‘‘"T

The factor 1 is due to Gx being considered as a quaternionic and fx as a real k x k 
matrix. For the ’t Hooft Ansatz, 5* log det Gx vanishes, except for delta functions at 
x = Vk, and we retrieve the known result [51, 87], 1YF*U = 5*5* log<t>(x), which is 
indeed singular at these points.

0otf(x) = <tea(x) = (^a/xA‘ff). (4.2.14)
At this point we can make contact with the well-known ’t Hooft Ansatz [51, 87], cf. 
section 1.3. This forms a subclass of the ADHM construction with A real (Ap = cropp) 
and = 6Pip>yp diagonal, corresponding to k instantons with scales pp at positions 
yp. This 5& dimensional family trivially satisfies the ADHM constraints. In this 
simpler situation the gauge potential can be written even in terms of a single scalar 
potential d(z) =■ 1 + Y,PPi/\x ~ 16>l2 Ap(x) = irj^5„log^(x), since <^oo(x) = 
1 — <i-!(z).

Tire expression for the action density,
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Dx(z'),

(4.3.5)

p.p*

A(z) = <A(z) = A*(z)C, 
£up(x)e2’'”2=^(z).

F

All these objects are defined on S1, or more appropriately from the Nahm perspec­
tive, on R4/W = R4/(R3 x Z). Note that A(z) = <7pAM(z) = 2iri'^,pexp(2itipz)Ap, 
such that from the symmetry of Ap^ (implying Ap = A_p) it follows that Ap(z) is 
imaginary such that the differential operator Dx(x) is exactly the dual Weyl oper­
ator bx(A) introduced in section 2.1. Combining these features, we can interpret 
the Fourier transform of the ADHM construction as the inverse (or second) Nahm 
transformation.

The symmetries in the ADHM construction for periodic instantons lead to a 
1/(1) gauge symmetry for Ap(z). In order for eq. (4.2.1) to preserve the periodic­
ity constraint eq. (4.3.2), T has to be of a convolutive type, Tp^ = Tp_p<. Defin-

Spy We2"0" 
ptf

Dx(z) = <r„DJ(z) = -^- + A(z) — 2irix,
az

£Ape-2”>2 = A(z),
p

A(z) = (P+<5(z - w) + P_5(z + cu))C, P± = i(l ± Cj • f),
V A),Aj/e2’,<!’2'-’’'z> = A*(z')A(z) = <5(z - z')A(z),

Ap = e2K.^.T-c c = p?) Bp,p,=Tp5PJ, + Ap-p.. (4.3.4)

Here Q is an arbitrary quaternion. Its length p = |<(| is the scale parameter of 
the caloron. The SU(2) element q = CJ p describes its combined spatial :■ ■ ■ ■ uge 
orientation. The diagonal of App> is necessarily constant, App? = f, and : the
role of the position of the caloron. The ADHM data can now be readily inte; . i as 
describing a periodic array of instantons, with temporal spacing 7 and relai uge 
orientation e2”"T, with off-diagonal terms to account for the non-linear <■ - : ants. 
To simplify notations, we use the scale invariance of the selfduality equations to set 
7” = 1. On dimensional grounds one can easily reinstate the proper 7 dependence 
when required.

When we perform the Fourier transformation, B will be transformed into a Weyl 
operator, A and A'A into delta function singularities and u(z) into a spinor (to be 
more precise a 2 x 2 matrix with as columns cf. section 2.1 and eq. (3.1.35)):

6{z - z') 
2tti

the inhomogeneous part of which is solved by having ..., —27, — 7, 0, 7, 27,. . . on 
the diagonal of B. We still have to determine the remainder of B, called .4 (antici­
pating its interpretation as Nahm connection), that contains its off-diagonal entries. 
In order to satisfy eq. (4.3.2), A has to be of a convolutive type Ap,p = Ap-p, such 
that
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(4.3.6)

(4.3.7)

(4.3.8)

(4.3.9)

where (see fig. 4-1)
(4.3.10)

Bp,p'(x) = (p + < - x)6p,p' - & ■ 5Q (1 - V)- (4.3.11)

2C0

0 1-COco 1
-2CO-

Figure 4-1. The function

(cf. eq. (2.1.3)) we find

d 
dz

- 7r(C<u • a<)e„(*)],

cf. s<- '. Prom the Weitzenbock formula, 

bl(z)bx(z) = —(b^(z)b^(z) +

A(z) = = -%b\\z)bx(z) = 4tt29A(z)

= 27r2(£d> ■ t£)(<5(z — cu) - <5(z + <u)),

using eq. (4.3.6) and F\j(z) = 0. This leads to

A(z) = OpA^z) = 2ttz[<

^©<0

©u.(z) = (X(-k,m(2) -2(V).
Here X[a,t](2) = 1 if z € [a, 6]modl and 0 elsewhere. We have arranged 2ivi£ = 
f dz A(z), such that B(x) has a single zero mode for x = to agree with the inter­
pretation of £ as the position (centre of mass) of the caloron. Fourier transforming 
back, we retrieve the matrix representation of B(x)

sin(2rr(p — p')u>)
P-P1

The moduli space is thus parametrised by the caloron position f and by its scale and 
orientation Q — pq, with (q-GS1, (6 R3, p 6 R+ and q g SC7(2).

ing the periodic function p(z) = exp(2?ripz)Tp and using the fact that T is or­
thogonal (T“^ = Tp>_p and £p"^p'+p^p' = <S>.o)> one concludes that j(z) 6 77(1). 
A gauge transformation with j(z) leaves A,(z) invariant and transforms A0(z) to 
A0(z) — d\ogg(z)/dz. Note that A0(z) can be gauged away, apart from a constant 
(as the holonomy is gauge invariant). Hence we may choose A0(z) — 2itif,0.

The quadratic ADHM constraint can be formulated as 3'(A,(x)A(x)) = 0, or

3(£>*(z)Z>I(z)+47r2A(z)) = 0,
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fA^z") = X[-

' 1 d
,2iri dz

We end this first step in the construction by noting that the delta function sin­
gularities arise precisely as predicted by the general properties of the Nahm trans­
formation, discussed in section 2.2 and that ?4(z) constructed in this section solves 
the Nahm equations, whereby we will find all charge one selfdual solutions for gauge 
group SU(2) on R3xS*.

For the second step we have to find the Green’s function fx. For further notational 
simplification we absorb £ by a translation (we have already used the scale invariance 
to fix T = 1) such that after a Fourier transformation the definition of fx, eq. (4.2.7), 
can be cast into a differential equation for fx(z,z') = XLPP' f™' e2nt(pz-p'~'>

-Zo) +«2X[-^](z)+r2X|u,,i-^(2) + y(5(^-w) + 5(^-H^))jA(z,s')=

(4.3.12)

X|w,l-u,](^) (x^,i-^(2)/x(2-5'2'-2.5>r.w) + Xl-“',“.|(z)/I°(^',z,r, s,w)-) .

(4.3.15) 
In the following the diagonal component fx(z, z') is only defined strictly for z, z' G 
[—oi,ui] and the off-diagonal component /°(z,z') only for z 6 [w, 1 — w] and z' G 
[-w,o>]. For z or z7 outside of these intervals, one first has to map back to the 
interval [—u>, 1 — w], using periodicity.

r2 = jtr2(z • f - 2irwp2qu> ■ rg)2, s2 = |tr2(z • r + 2mjp2qu ■ fq)2, (u> = £ — w),
(4.3.13) 

and can be interpreted as the respective centre of mass radii of the two constituent 
monopoles of the caloron. Note that qw ■ fq shows how global gauge rotations are 
to be correlated to spatial rotations so as to keep the holonomy unchanged. We will 
come back to this in the next section. The symmetries of A*(z)A(z) imply for the 
Green’s function /x(z,z') the following relations,

/x(z.z') = /x(-z.-z')’ = /x(-?,-z) = /x(*»*. (4.3.14)

In particular we have /x(w,u>) - /I(-w,-it>) G R and fx(u>, -cu) = ^(-ui.ai)*. The 
Green’s function is that of ordinary quantum mechanics on a circle with a piecewise 
constant potential and delta function singularities of strength ip2 at the jumping 
points z = ±iu. It can thus be constructed in the usual straightforward (but tedious) 
method of matching the value of the Green’s function and its derivative (up to the 
appropriate jumps) at z = ±cu and z = z'. How this can be done in a systematic way 
is discussed in section 5.4. The result reads

f£(z, z\ r, S, w) = (rsV,)-l |e-2’rix„5ign(x-z')r sinh(27rs|z _ z'\)

Here, the radii r and s are given by
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■2irixo

(4.3.16)

= (1 -P2/x(w,w)) (4.3.19)

where

ij> = — cos(2ttxo) + cosh(47rru) cosh(47rsw) +

<t>03 = <l>30 — (4.3.22)Poo = |(1 ~4> 1 + Rex), - Rex),<t>33 = |(1 - <t>'

and (see eq. (4.2.9))

^(x) = (1 - A/xAt)

(r2 + s2 —?r2p4) 
2rs

sinh(4?rra?) sinh(4?rsw).
(4.3.20)

We now use eqs. (4.2.13-4.2.14) to determine The scalar functions <t>alj are all 
defined in terms of fx(u>, ±w). To get compact expressions, we introduce the complex 
function

X = p2£(o>, -w) = {e-2nixo

We choose cu in the z—direction and q = 1, which can always be achieved by per­
forming a suitable gauge and spatial rotation. We find for those functions <f>ap that 
are non-zero

—s 1 cosh(27rs(z+z')) [?rp2rcosh(47rrw) + i(r2 — s2+7r2p4) sinh(4xrw)] 
+< ' cosh(27rs(2o> — |z— z'|)) [?rp2r cosh(47rrcu) + |(r2+s2+tr2p4) sinh(47rnh)] 

+ sinh(27rs(2o> —|z —z'D) [rcosh(47rrd>) + trp2 sinh(47rrw)] 

z,7r(rsV’)“1 |?rp2sinh(27rr(l —z — w)) sinh(2irs(z'+w)) 

+r cosh(27rr(z— 1 +w)) sinh(27rs(z'+w)) 
—ssinh(2?rr(z—1 +w)) cosh(27rs(z'+o>)) 

[ssinh(27rr(z—u>)) cosh(27rs(z'—cu)) 

—r cosh(27rr(z—w)) sinh(27rs(z' — u>)) 
—7rp2sinh(27rr(z—w))sinh(27rs(z'—<u))j },

ij> = — cos(2?rxo) + cosh(47rrd>) cosh(4?rsw) + 

+?rp2 (s

In particular, 

fx(u, —w) = Tr(rsV')-1 e4’r,I°u' {e-2’"I°rsinh(4?rsa)) + .ssinh(47rru))} , (4.3.18) 
fx(w,u>) = 7r(rsV’)-1 |ssinh(4irru>) cosh(47r.s-cj)+r sinh(4?rsw) cosh(47rrw)

+tt/>2 sinh(4?rrw) sinh(47rso>) J

/°(z,z',r,.s.w) = e2’r»"('-

's 1 sinh(47rso>) + r 1 sinh(47rrcj)} . (4.3.21)

where we have introduced the scalar function
(r2+s2+?r2p4) . _. . . .---- ------- sinh(47rru>) sinh(47rsui) 

2rs
sinh(47rsw) cosh(47rru>) + r-1 sinh(4rrr<?) cosh(4?rs<u)) . (4.3.17)
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(4.3.23)

' 24)

where

sinh(47Tsu>) + r 1 sinh(47rru;)} . (4.3.26)s'

(4.3.27)

(4.3.28)

(4.3.29)

(4.3.30)

lira

A(z,z') «

a/,logdet/I = 3MI¥log/I = ^T¥PJ/I = l / dz lim D^z)fx(z, z'). 
7VI TTl J si z'—*z

where IY denotes the Hilbert space trace. We use point-splitting to define

in accordance with the Fejer theorem for the convergence of Fourier series, see eg. 
ref. [100]. In section 5.4 we will prove that

Tr D‘‘ fz = -nid„ log 

leading to the following miraculously simple result

-TYF^(z) = dffi log det fx = -d2d2 log

X = e~47rixow^ _ |e-2jrtx0

In this gauge we immediately read off the constant background field at spatial infinity, 
4[]er = 27riai-f6flo, responsible for the holonomy in the periodic gauge. This concludes 
the construction of the caloron solution.

To use eq. (3.1.29) for the action density we have to regularise the determinant, 
which for calorons diverges. However, dp log det fx turns out to be finite. With the 
help of eq. (4.2.11) we find

such that with the use of eq. (4.2.13) (for a matrix W, RelV = |(W + I4zt))

ap = log<f> - |<i>Re ((ff’„ - iff*„)(Ti + ir2)d„x) ■

For ui = 0 this reduces to the Harrington-Shepard solution of the caloron with trivial 
holonomy, since in that case x = 1 — Cf. eq. (1.3.13).

The selfduality of eq. (4.3.23) follows from eq. (3.1.8), but has also been checked 
numerically. In the asymptotic regime of large distances |£|,

2Le-2w|i||«-I'|+2«ix0(t-x')
1*1

(with |z —z'| the obvious distance function on the circle) from which it follow .4M 
tends to zero at spatial infinity. The holonomy at spatial infinity is then full . ied 
by the cocycle, and equals e2"“*,T as required. The non-trivial holonomy becomes 
even more transparent in the periodic gauge by performing a gauge transformation 
g(x) = e-2*“°"T. This yields

A^T = -^fjluT3d^}og<t>- |<jiRe ((rj‘„ - ir£„)(ri + + 4triu;5u,o)x) +<5M,o2triwr3(
(4.3.25)
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(4.3.31)£• = - trF A F = -

(4.3.32)

Properties of the caloron solution4.4

i 
8tt2

dffi log det Gx = - '^dl log V>, 
in accordance with eq. (4.2.15) and eq. (4.3.19).

d • r = qa> • fg = • r£/p2. (4-4.1)

When q is part of the t7(l) subgroup generated by Cj ■ f, it does not affect the 
orientation of the solution, and indeed can be pulled through in eq. (4.3.4), to be 
identified with the global gauge invariance of eq. (4.2.1) associated to this residual 
17(1). The dimension of the moduli space of gauge inequivalent solutions at fixed 
holonomy, including the position of the caloron described by is thus 7 for non­
trivial and 5 for trivial holonomy. A global residual 17(1) gauge transformation (or a 
global S<7(2) gauge transformation in case of trivial holonomy), however, does change 
the framing of the solutions and the moduli space of framed calorons is 8 dimensional. 
Including these global gauge degrees of freedom will reveal the hyperKahler structure 
of the moduli space, to be discussed in the next section.

Since a global gauge transformation leaves a invariant, we can best describe the 
parameters of the solutions for the choice where u> = e3, i.e. ui is pointing in the 
positive z3—direction. Due to the residual gauge group, to any point on the two

Note that </' is positive definite and smooth, despite its appearance. The same applies 
for eq. (4.3.30). The action density — )TrF^(r) takes its maximal value at x0 = 0. 
Eq. 4.3.30 was verified numerically, using eq. (4.3.23). Since the action density is 
a total derivative, one can express the total action in terms of a surface integral at 
spatial infinity. Using that cFlogi/i = 4tt/|x| + O(|z|-4), one easily verifies that for 
the topological charge

We first settle the issue of orientations in colour and real space. In general only the 
centre of the group of global gauge transformations will leave the gauge potential 
invariant. The framing - embedding of the solution in colour space - is in general not 
invariant under global gauge rotations. For non-trivial holonomy (a>u> 0 0, or P ±1 
at infinity), also the holonomy is not invariant under such global gauge rotations, 
except for a £7(1) subgroup generated by • f, which in the monopole terminology 
generates the unbroken gauge symmetry. For each choice of the holonomy - which can 
not change under continuous deformations - we have a separate caloron parameter 
space. It should be noted that the spatial orientation is given by the preferred axis 
that appears in the formula for the action density and in the definition of the two radii 
r and s, eq. (4.3.13). The action density has an axial symmetry around d defined 
through

J trF/\F= y d4x trF*„(x) = 1.

In , we give the expression for the Green’s function Gx, from which 
it follows i h;;1
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q = eir^e^-^e-^t (4.4.2)0 < T < 4tt, o < e < 7r,0 < V < 2?r,

(4.4.3)dS, — —i£,jfcE3- A S*.

In terms of the Euler angles these read

(4.4.4)

E(t) E(t)

-0.2 0.40.2 0.4 -0.4 -0.2 0.2

S 
w = 0.25 ,

sphere defined by the symmetry axes of the caloron solution, 
associated. This gives the Hopf fibration of S3 = SU(2) over 
[/(I). Using Euler angles we may choose the parametrisation

a full £7(1) can be 
S2, the fiber being

8
uj = 0 /

t 
o

which leads, for Cj = e3, to the axis of axial symmetry a= (cos 0, sin 0 sin <p, sin C cos -p). 
The variable T describes the residual U(\) gauge group generated by t3(= ‘ . With
q = q^H (|g| = 1) we can introduce the Maurer-Cartan one-forms

S] = — cos T sin 0dip 4- sin 'Yd0, 
E2 = sin T sin Odip 4- cos Td0, 
E3 = dT 4- cos 0d<p.

___ t_
0

Figure 4-2. Time evolution of the caloron solution. During one period (T =1), we plot the 
“energy” as a function of time, E(t) = -7^7 JR3 d3x trF2^, for p = 0.1,0.2,0.3,0.5,1.0,2.0. 
For small values of p, the caloron is short-lived and instanton-like, whereas for large values, 
p > 1, the profile flattens and the caloron becomes static and monopole-like.

In order to visualise the caloron solution, we can use eq. (4.3.30). A time-slice 
of the caloron shows that it generically consists of two lumps. In figs. 4-2 and 
4-3 the time dependence is studied for various values of p. For small p the caloron 
approaches the ordinary single instanton solution, with no dependence on u>, as p —* 0 
is equivalent to 7 —>00. For p = 0 the action density is concentrated in one point 
and we are dealing with an ideal, delta function like instanton. Finite size effects set 
in when the size of the instanton becomes of the order of the compactification length 
7”, i.e. when the caloron bites in its own tail. This occurs at roughly p = At 
this point, for u/cu 0 (i.e. the holonomy V ±1), two lumps are formed, whose
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Figure 4-3. Finite size effects: from instanton to monopole. Action densities in the z — t- 
planc for x = y = 0, w = |, p = i, |, and | in units of T (left to right and top 
to bottom) for the St/(2) k = 1 caloron. The maxima correspond to = 9.28 x 105,
1.98 x 104 , 2.05 x 103 , 560, 210 and 128.

separation grows as 7rp2/7" (cf. eq. (4.3.13)). These finite size effects are depicted in 
fig. 4-3.

At large p the solution spreads out over the entire circle in the euclidean time 
direction and becomes static in the limit p —» oo. So for large p the lumps are well 
separated, see fig. 4-4. When far apart they become spherically symmetric. As they 
are static and selfdual they are necessarily BPS monopoles. One can show in this 
limit that they have unit, but opposite, magnetic charges and that the two lumps 
have spatial scales proportional to respectively l/u> and l/o> (see sect. 4.6). Their 
action densities (or energy densities in this static limit) scale with d>4 and <u4. After 
integration, this results in monopole masses of respectively 167r2u>/7' and lfxn2uj/T for 
the two lumps, their mass ratio is therefore u>/u. The total energy, simply obtained 
by addition, indeed conforms with the unit topological charge of the solution. For
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p = 1.6

p=1.2

p = 0.8

MB

I

u = 0orui = j, the second lump is absent and the solution is spherically symmetric. 
For generic u>, the solution has only an axial symmetry around the axis a connecting 
the two lumps. For cu = i, the lumps are equally sized, and the solution has a mirror 
symmetry in the plane perpendicular to a, see fig. 4-5.

These aspects can be readily retrieved by inspecting eq. (4.3.23), and in particular 
eq. (4.3.30), for the limit of large p and realising that r and s are the centre off mass 
radii of the constituent monopoles. If p is small, the caloron is best described in 
terms of the instanton picture, whereas for large p the two-monopole picture is more 
appropriate. For the constituent picture of oppositely charged BPS monopoles to be 
correct, the field has to behave like a magnetic (and electric) dipole at large distances. 
Indeed one easily finds that the field strength decays as l/|z|3 for distances much 
larger than -np1 jT. Note that for a> = 0 we have the standard Harrington-Shepard

Figure 4-4. Shown are caloron profiles for ui = 0.125 (T = 1), with p = 0.8,1.2,1.6 (from 
bottom to top). This illustrates the growing separation of the two lumps with p. Once the 
constituents are separated, the lumps are spherically symmetric and do not change their 
shape upon further separation. Vertically is plotted the action density at xo = 0, on equal 
logarithmic scales for all profiles. They were cut off at an action density below 1/e2.
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caloron [42], which in the limit of large p was already shown by Rossi [88] to become 
the standard BPS monopole (after a singular gauge transformation), as discussed in 
the section 1.3.

Interpreting the Nahrn data (eq. (4.3.9)) as the juxtaposition of two sub-intervals 
of lengths 2m and 2w respectively, with constant Nahm connections A(z), leads to 
a more indirect way of understanding the composite nature of the caloron. Indeed, 
A = 0 gives the standard BPS-monopole, adding a constant merely translates the 
solution in space. This was described in detail in section 2.3.2. Thus, each interval 
gives rise to a BPS monopole on R3 x Sl, and we can in a good approximation 
add the two connections corresponding to the two sub-intervals. The p2 dependence 
of A(z) explains the large separation of the constituent lumps for large p. As the 
lengths of the intervals are given by the asymptotic Higgs vacuum expectation value 
of the corresponding monopoles, the mass ratio u>/ai of the lumps is easily explained

Figure 4-5. Profiles for calorons at w = 0, g, jffrom left to right) with p = T =1. The axis 
connecting the lumps, separated by a distance rr (for w 0), corresponds to the direction of 
d. The other direction indicates the distance to this axis, making use of the axial symmetry 
of the solutions. The mass ratio of the two lumps is approximately <u/u>, i.e. zero (no second 
lump), a third and one (equal masses), for the respective values of u>. Vertically is plotted 
the action density at xo — 0, on equal logarithmic scales for all profiles. They were cut off 
at an action density below 1/e.
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The moduli space4.5

(4.5.1)9m(Z, Z')

(4.5.2)

(4.5.4)

(4.5.5)Z^ — 4- Z?p4>r,

by noting that the mass of a BPS monopole is proportional to the Higgs vacuum 
expectation value. The above interpretation underlies the approach taken in ref. 
[58, 59]. The expression for the gauge potential given there is precisely the sum 
alluded to above, plus gauge-like terms and gauge transformations required for glueing 
them together.

The moduli space A4 of the caloron solutions has as its coordinates £ sue . The 
global gauge degrees of freedom (S(7(2) for trivial and (7(1) for non-trivial hoionomies) 
should be included, so as to make the solution space hyperKahler, cf. section 5.1. The 
moduli space of these so-called framed calorons is a product of the base 'Manifold 
R’xS1, parametrised by (, and the (Taub-NUT) space parametrised by G forming 
the non-trivial part of the moduli space and describing the relative coordinates of the 
two constituent monopoles, quite similar to that for the two-monopole moduli space 
[3]. It should be noted that £ —• — G corresponding to the centre of the S<7(2), leaves 
Ap(x) invariant, such that we have to divide out this symmetry to obtain the space 
of framed calorons.

As explained in section 1.5.2, the metric on this space is given by the Riemannian 
metric on the gauge theory configuration space, restricted to the space of solutions. 
The metric is then given by (g^ = <5'“' being the Sat metric on M = R3 x 5'1)

[ g^tr (Z^x)Z'(x)) 
J M

with and Z'^ two vectors tangent to the space of caloron solutions. The gauge 
structure requires them to be transverse to gauge deformations, thereby satisfying 
the background (or Coulomb) gauge condition

= 0.

The requirement that Ap + is selfdual leads to the so-called deformation equations

ttfZ,, = (4.5.3)

and in the algebraic gauge we have to require in addition (see eq. (4.1.1))

Z„(z + 1) = e2’r“%(i)e-2”i“f

The tangent vectors (zero modes) can be found by varying the caloron solution 
with respect to the coordinates £ and G which will automatically satisfy the deforma­
tion equation eq. (4.5.3) and periodicity eq. (4.5.4), but generally one has to apply 
an infinitesimal gauge transformation 4>r, compatible with eq. (4.5.4), to transform 
to the Coulomb gauge, eq. (4.5.2). Hence,
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(4.5.6)<5A

and

(4.5.12)C = 5A + JXA,

tr^A^C - CfA(z)) = 0, (4.5.11)
one has only the T invariance of eq. (4.2.1) available (i.e. the (7(1) gauge invariance 
of A), since a global gauge rotation would distort the framing. We write T 6 O(k) 
asT = exp(—<5X), with 6Xl = — dX. Like T, also 6X has to satisfy 6XPtPr = 6XP_P', 
and can be interpreted as the Fourier coefficients of an infinitesimal gauge function 
&)(z) on the circle. We now write the zero modes C in ADHM language as a variation 
of A plus a compensating gauge transformation,

5XA=

“ ( 5B ) - ( Y ) C’

and for the ca’«.r .■ns, in addition periodicity (eq. (4.5.4)) requires

FP.P- = TP^,P'-i, Cp+1 = e2^^. (4.5.7)

In terms of the deformation C of the framed ADHM data, the zero mode reads [81]

2,, = -i''(x)Cff,JIu(i)<i>hr) + ^_2(i)ut(r)/Io-pCtv(r). (4.5.8)

+ K|2(<5(z - <u) + <5(z + <v))5X(z) = - gP2(5(z — u») — <5(z + w))A • E,
(4.5.14)

Inserting this in eq. (4.5.11) we find
tr2 ((<5A»)A - Af5A - 25XA + [Bt.dX] B - B* [B, <5X]) = 0, (4.5.13)

cf. eq. (3.1.18). where we used that [A, <5X] = 0, since the gauge symmetry (de­
scribed by SX) is abelian. After Fourier transformation, with <5(z — z'}SX(z} = 
£p;/ Xp.p,(z')e2*'(pz~’’'2'>, this equation reads

__ 1 d25X(z')
4tt2 dz2

X6X \
[B,6X] J

where the label r indicates the parameters (or coordinates) of the moduli space. For 
the metric (eq. (4.5.1)) to exist, zero modes should of course be normalisable.

For instantons on IR'1, the zero modes can be determined within the ADHM for­
malism [81], as was discussed in section 3.1. Thus one can calculate the metric in 
terms of the ADHM data. This reflects the fact that the Nahm transformation (and 
the ADHM construction) is a hyperKahler isometry [26, 14]. We have, also for the 
framed data.

D^Z'\x) = ^'^(x)/.^ (C’A(x) - Af(x)C) ap/xu(x). (4.5.9) 
(Note that for IV = Wp(jp, apWap = 4W0 = 2tr2W.) Combining the deformation of 
the quadratic ADHM constraint (as the S part) with the Coulomb gauge condition 
(as the 3? part), imposes eq. (3.1.14) which for framed 5(7(2) ADHM data reduces to 

(Af(x)C) = (A^^C)'. (4.5.10)

To satisfy the Coulomb gauge condition, the 3? part of this equation being equivalent 
to
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(4.5.16)

: rinal

0
CO

-2CDCO

(4.5.18)

(4.5.19)

z - w)(5C + C5X„) + PS(z + w)(<5< - C<5XJ,
such that

c(z) = <5A(z) + A(z)<5X(z) = P+&{.

<•<«> - 5H(“W + E^W)
= <5< + rr • 5Q - <d> • S&Q + p2<l ■ E(1 + 87T2ww|(I2)-1) e„(z). (4.5.20)

z->
1-co Zi

Figure 4-6. The function Jo* 0u/(z/)dz/.

In order to evaluate the metric, eq. (4.5.1), it is sufficient to compute gw(Z, Z) 
for Z related to an arbitrary deformation of the moduli parameters, as determined 
by C in eq. (4.5.12) and eq. (4.5.16). For this we employ the relation (3.1.19) due to 
Corrigan, adapted to the Sl/(2) situation

IY(Z^x)^(x)) = -i92trTr (C’(2 - ^(x)fxS\x'))Cfx)

= -i32trTr (2(cfc + Y'Y)fx
- (c»A + Y'B(xY)fx(X'c + Bf(x)y)A) .

which is derived from eq. (4.5.8), making use of eq. (4.5.10). We introduce the Fourier 
transforms c(z) = 52pexp(27rtpz)cp and F(z), with

6(z - z']Y(z} = £ e2”i(p'-p'z')
py

using that with the help of the Maurer-Cartan one-forms, eq. (4.4.3), we can write 

tr2 ((<5C< - = 4<1«^^m<5C = 2p2<l • E. (4.5.15)

The solution to the differential equation for iA'(z) gives the infinitesimal gauge trans­
formations needed to go to Coulomb gauge. One finds

5X(z) = 27r2£p2w • E(1 + 87r2wwp2)-‘ Qu(z’)dz' 
Jo

which is a zig-zag wave (see fig. 4-6), vanishing at 2z e Z and taking its 
values at z = ±u»,

6XU = ±6A'(±w) = 4iir2u)u>p2w ■ S(1 + 87r2u><lp2)-1. 17)

Note that for the variations with respect to the caloron position, C no com .. iting 
gauge transformation is needed.

2C0tt> /v
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c*(z)c(z') =<5(z-z')cf(z) < c >, c’(z)A(z') = <5(z- z')c*(z) < A >,

with

(4.5.24)

(4.5.26)

(4.5.27)ds2

<c>]A(z,z)) (4.5.22)

■ x2

+ 16M2

We may use the special structure of c(z) and A(z) (eq. (4.3.5)) - formed out of the 
combinations J(z tu)7-±, with P± = P± and P±PT = 0 - to deduce

<h>= h(z)dz. 
Js' 

(4.5.21)
For calorons, this allows us to turn Corrigan’s identity into

tr2(Zt(x)Z„< ... -d2 dz tr2 ([y’(z)y(z)+ c*(z)

: . / dzdz' tr ([C(z) +X(z)]/I(z,z')[>'»(z') +Ct(z')]£(z',z)) ,

X(z) = (2iri)-1yt(z)OI(z), C(z) = c*(z) <A> . (4.5.23)
In the integration over space-time, the d° part does not contribute due to pe­

riodicity. The integral is therefore reduced to a boundary term at spatial infin­
ity, |rr| —► oo. In this limit p2 can be neglected and the two radii r and s in 
eq. (4.3.13) become equal. In particular in this limit the potential in eq. (4.3.12) 
equals |f|2, independent of z. From this one concludes that asymptotically /x(z,z') 
becomes a function of z — z' and therefore that DI(z)/x(z, z')D*(z') = 4tt2<5(z — z') + 
O(r-1). This can also be deduced from the asymptotic form of fx(z, z') in eq. (4.3.24), 
which implies fx(z,z) = rr/r + O(r“2). Thus fs, dz' tr2[54(z)/I(z, z’')yx{z'')fx(z, z')] 
= tr2[yt(z)y(z)/x(z,z)], to be combined with the first term in eq. (4.5.22). Us­
ing eq. (4.5.21), we also have fsidz' tr2[C(z)/x(z, z')Ct(z')/I(z, z')] = tr2[< cf > 
<AxA’> c(z)/2(z, z)] = O(r-2), and 2?ridz' tr2[y(z)/I(z, z')Ct(z')/x(z, z')] = 
Sa=±tr2[y,(2:)-Dx(z)/x(z,sw) < A* ><c> P,fx(sw,z)], which after integration over 
z is (9(r-2). Only those terms that are C?(r-1) will contribute and we obtain the 
following remarkably simple result

gM(Z, Z) = 2tr2tr(< Y]Y > +2 < c* >< c >).

Inserting eq. (4.5.20) gives the metric (we put d> = e3)

ds2 = 2tt2 {2d^d<“-t-(l+87r2wwp2) (4dp2+p2 (£2 + S2)) +p2(l+8ir2uu>p2)~lY,l} .
(4.5.25) 

The first part describes the flat metric of the base manifold RJ x $*, the remainder 
forms the non-trivial part of the metric. They separate because f Gu,(z)dz = 0, see 
eq. (4.3.10).

We introduce a “radial” coordinate X and “mass” parameter M

X2 = 8?r2p2, M~2 = 16oxv, 

and rewrite the non-trivial part of the moduli space metric as

= (1 + (dX2 + JX2(E2 + E2)) + JX2 (:
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/'tfr.n.ed = (R3 X S1) x Taub-NUT/Zj. (4.5.28)

ds2 =

ideal,

ftty2)) + 4M2 (1 +4- R2(dd2 + sin2 (dT + cos6d<f>)2,

(4.5.29) 
also familiar from the (spatial part of the) Kaluza-Klein monopole solution [90, 40]. 
Since T € [0, 4tt] we read-off from the asymptotic form of the metric that the 
compactification radius equals 4Af. At large p, Mtrimed is therefore of the form 
(R3 xS1) x (R3 x'S')/Z2. It is natural to view this as the product space of two single 
BPS monopole moduli spaces. The first R3 represents the centre of mass and the 
second the relative coordinates. The first S1 corresponds to xq and can be seen as a 
global t/(l). The other gives the relative £7(1) orientation on which the Z2 acts. This 
Z2 does not act on the positions, as the monopoles have in general different masses 
and are hence not identical objects. A similar description is valid for the SU{2) two- 
monopole moduli space, see ref. [36, 3]. At large separations its metric is precisely 
of the Taub-NUT form, but with a negative mass parameter M, as was shown by 
Manton [71], using the asymptotic form of the interactions. The complete metric 
was constructed by Atiyah and Hitchin (see ref. [3]) in terms of elliptic integrals, 
using its symmetries and hyperKahler structure. As is clear from the expression of 
the metric, the point p = 0 gives no singularity in the metric, which behaves like the 
flat metric on R4. However, as a Z2 has to be divided out there is a conic orbifold 
singularity, corresponding to the constituents sitting on top of each other when the 
action density is concentrated in one point. Then the size of the lump is no longer 
given by the inverse masses of the monopoles but by p itself, resulting in an 
delta function like instanton.

This metric is the Taub-NUT metric [79] as given in [45]. It is a selfdual Einstein 
manifold [44, 28, 38] and is hyperKahler [3, 47]. The latter property is inherited from 
the hyperKahler structure of the base manifold R3 x Sl, preserved by the selfduality 
equations [26]. Therefore, the SU(2) moduli space for calorons becomes

Note that Z2 corresponds with < = q = ±1, i.e. the centre of the SU(2) gauge group. 
With C —► — £ leaving the gauge fields unchanged, this gives rise to an orbifold 
singularity (at C = 0) and (R3 x S1) x Taub-NUT is a double cover of A4franied.

For small p or co, when X2/M2 —♦ 0, the metric becomes tbu of R4, since 
i(E2 +E2 +£3) (see eq. (4.4.3)) is the metric on the unit three-spheo W ith p —* 0 
corresponding to T —> 00, this describes the moduli space of a chai ':. . instanton 
on R4, whereas for = 0 we have the standard Harrington-Shepard ■? W on moduli 
space. In both cases this is parametrised by the scale and S[7(2) gro..o orientation 
(to make the moduli space hyperKahler) and A4framed = R4xR4/Z2, see ref. [26, 34].

For large p (i.e. large X), or equivalently for T —> 0, Taub-NUT space is a 
squashed S3, that is S2 x S1, with S1 a non-trivial (Hopf) fibration over S2. This is 
best studied by introducing a radial coordinate R through X2 = SM R, which brings 
the Taub-NUT metric to the form [44]

14~)(dR2 
K J

2M
R
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4.6 Discussion

Figure 4-7. The non-contractible loop is constructed from two oppositely charged monopoles 
by rotating one of them, as indicated on the left. On the right is a closed monopole line, 
rotating its frame when completing the circle.

We now recall briefly Taubes’s arguments for building gauge fields with topological 
charge one out of monopole fields [95, 94]. Although his construction was within the 
Standard Model with a genuine Higgs field, the same argument applies to the caloron 
case, using Aq as the Higgs field. As we saw in section 2.2 (eqs. (2.2.2,2.2.4)), non­
trivial St7(2) monopole fields can be classified by the winding number ki = — k2 of

Finally it is interesting to note that the moduli space of an SU(3) monopole with 
maximal symmetry breaking to t/(l)xt/(l) and charges (1,1) (see ref. [19, 35, 60]) is 
Taub-NUT with a positive mass parameter, as for the caloron. This is not surprising, 
as its Nahm data, see the appendix of chapter 6, are similar to those of the caloron. 
As the metric can be formulated in terms of the Nahm data, we would indeed expect 
the metric to be similar. More remarks on this issue can be found in 6.4.

1

The inte;; iation of the ADHM data for a periodic instanton as the Fourier coeffi­
cients of Uic ?<ahm transformed Weyl operator extends naturally to higher charges 
and other gauge groups [64] as will be exploited in the next chapters. For charge 
one calorons in SU(N) the determination of the Green’s function remains a problem 
of quantum mechanics on the circle with a piecewise constant potential (on n sub­
intervals, separated by delta functions), see chapter 5. Also the formalism to compute 
the metric on the moduli space will be generalised, in chapter 6. Due to the relation 
with the ADHM approach, one may wonder [63] whether there is some advantage in 
obtaining monopole solutions from the calorons by sending certain scales to infinity 
- in the limit of which the solution becomes static and constituents separate. Indeed, 
such a limit will be taken in section 5.5.1. For higher charges the Nahm bundle is 
no longer abelian and the construction is more complicated. For generalisations to 
further compactifications, e.g. R2 x T2 and R x T3 (see ref. [6]), note that the ’t 
Hooft Ansatz [51, 87] diverges when summing over more than one direction. This 
will correspond to all holonomies trivial and one may well have no solutions in that 
case. A dramatic particular example of a non-existence proof for charge one instan­
tons is T4, see ref. [14], a situation where indeed an existence proof of Taubes [96] 
does not hold.
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maps from S2 to S<7(2)/17(1) ~ S2. We consider at this point configurations at 
a fixed time t, {A,,(z)}. In the sector where the net winding vanishes, we study 
a one-parameter family of configurations, {A^x, t)} (the parameter can, but need 
not, be seen as the time t). When this configuration is made out of monopoles with 
opposite charges, in a suitable gauge the isospin orientations behave as shown in 
fig. 4-7, sufficiently far from the core of both monopoles. We note that th; arrows 
match in the “throat” of the configuration. This remains true if we rotate . ■ one 
of the monopoles around the axis of the throat. Clearly, the net magnetic ting 
remains zero, but the fields of two monopoles will no longer cancel when 
together, despite the fact that the long range abelian components do car: 
non-contractible loop is now constructed by letting t affect a full rotation.

Taubes describes this by creating a monopole anti-monopole pair, bring? . ■ hem 
far apart, rotating one of them over a full rotation and finally bringing them n; other 
to annihilate. The four dimensional configuration constructed this way is o -polog- 
ically non-trivial. Since an anti-monopole travelling forward in time is a monopole 
travelling backwards in time, we can describe the same as a closed monopole line 
(or loop). It represents a topologically non-trivial configuration when the monopole 
makes a full rotation while moving along the closed monopole line (see fig. 4-7). 
The non-trivial topology discussed by Taubes [95] S'2)) = Z) is just the
Hopf fibration, except that now it is more natural to see Sl as the base manifold and 
S2 as the fibre, which rotates (twists) while moving along the circle formed by the 
closed monopole line . The only topological invariant available to characterise this 
homotopy type is precisely the Pontryagin index. This link between instanton and 
monopole charges was generalised in [55] by Jahn.

It was mentioned that the short range components of the fields can not be fully 
cancelled due to the non-trivial “twist” along the monopole fine, so they have to be 
responsible for the Pontryagin index. Indeed, in the computation of the total topo­
logical charge of the new configurations as the integral over d2d2 log ip (eq. (4.3.31)), 
the massive component of the field gives rise to

ip = 2e4’<~+")(1 + O(|z|-’)) = 2e2’|£|(l + O(|z p1)), d2 log V- = 4?r/|z| + O(|zp“),
(4.6.1) 

and thus yields the surviving boundary term, but at the same time does not contribute 
to the action density, since 32|£p1 = 0.

We now inspect more closely the monopole content of the new calorons. For this 
we choose p/T large, such that the monopoles are well separated and static. There are 
two world lines of monopoles running in opposite directions (due to their opposite 
charges), closed due to the periodic boundary conditions. At smaller separations 
the solutions are far from static, with the attractive force driving the constituents 
together, after which they annihilate. In that case the world lines form a single closed 
monopole line, as mentioned above. It should be noted though, that for small p/T the 
constituents become rather extended. Nevertheless, such closed monopole lines are 
characterised by rotation of the local monopole field over precisely one full rotation 
when completing the circle, since the caloron has unit topological charge. It prevents
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i.e. ruj

8?r min(su»,ru>)) (4.6.2)<t> =

X =

(4.6.3)

Ek

(4.6.4)

47TSU>} (1 | £}(e~87r min(su»,ra>)})

we find the solution to be time independent and

2
Ak = --r3ekj3dj\og,<t>,

Bk = ekijd.Aj = - 1-t3 (dkd3 log <t> - Sk3d2 log <t>) .

r -

______ ______________ f
(r + s + ap2)2 Ve

Substituting this in eq. (4.3.25) 
abelian, up to exponential correction

2
Ao = - 2T3% log <t> + 27ria>T3,

2
Ek0 = ~^r3dkd3 log</>,

For convenience we rotate a to e3. Self-duality, E = B, requires log0 to be harmonic. 
We first note that when neglecting the exponential corrections, <f>~' vanishes on the 
interval —27rp2u> < x3 < 2np2u> at ij =x2 = 0 (we denote the characteristic function 
on this interval by Xw(x3))- A careful analysis reveals d2 log<p = — 47ri(x1)5(i2)Xu,(:c3) 
(that it vanishes away from the zeros of <p-1 follows by a direct computation). The 
term —%r36k3d2 log</> in the expression for the magnetic field corresponds precisely to 
the Dirac string singularity, carrying the return flux. One finds that dkEk = dkBk = 
%r3d3d2 log</> = 2vrir3(63(s) — i3(f)), when ignoring this return flux, which in the full 
theory is absent [48, 85] (indeed as noted before 0-1 has only an isolated zero at 
x = 0, corresponding to a gauge singularity).

Finally, to confirm our expectations it remains to identify the rotation of one of the 
monopoles so as to guarantee the topologically non-trivial nature of the configuration. 
Inspecting the behaviour in the core region of the monopoles, described by x in 
eq. (4.6.2), gives the following factorisation

X = e~2nix°xw(r') + x(2)(s).
While one of the monopoles has a static core, the other has a time dependent phase 
rotation - equivalent to a (gauge) rotation - precisely of the type required to form a 
non-contractible loop, as the phase makes a full rotation when closing by the periodic 
boundary conditions in the time direction.

Although interpreting Ao as 
in pure gauge theory, there are some

the Higgs field allows one to introduce monopoles 
subtle differences. In the static limit the BPS

the field from decaying to the trivial configuration. It is this “twist” that provides 
the closed monopole line its stability.

Before continuing, we observe that the calorons are given in a singular gauge, as 
is usual for the ADHM construction. The function ip (eq. (4.3.20)) has an isolated 
zero at x — 0. This can be traced to the zero-mode in B — x, responsible for the 
non-trivial topology of -.lie solution. This singularity is easily seen to be removed by 
a gauge trans-«. »mai'i locally of the form x/|x| (viewing x as a quaternion). We
now assume ", and consider the region outside the core of both monopoles,

1 an . l. In this region

4nru>e~2irixo sg —
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equations imply Fi0 = DiA0 and we would be tempted to call the solution a dyon. In 
the Higgs model dyons are constructed by taking Ao proportional to the Higgs field 
4> [11, 86, 56]. By a time dependent gauge transformation Ao can be gauged to zero. 
This gauge transformation is generated by Ao, precisely the unbroken generator, as 
Ao is proportional to the Higgs field. The resulting electric field is now given by 
doAj and is not quantised. In the Higgs model B, = D,i> and E, = In
pure gauge theory it makes, however, no sense to separate D,i> = D,A(J fr< cJoA,-. 
Gauge invariance requires that they occur in the combination Fio = DtA . >A,.
The electric field is necessarily fixed and quantised as soon as we interpre: the
Higgs field. Nevertheless, we can consider dyons also in pure gauge theorl' for
this we have to add a term proportional to 0F'F to the lagrangian [101]. Th. _■>< trie 
charge is now proportional to 0, so no longer quantised. But, unlike in i' :I:ggs 
model, it is the same for all monopoles.

It should be noted that in the Higgs model the construction of the non-contraclible 
loop generates an electric charge due to the (gauge) rotation along the closed mo­
nopole line, when interpreting the loop parameter as time. The electric charge is 
proportional to the rate of rotation and can vary along the monopole line. However, 
integrated along a closed monopole line the charge is fixed and proportional to the 
number of rotations, which hence plays the role of a winding number. In pure gauge 
theory this winding can not be read off from the long range field components, but 
for both cases the fields in the core are responsible for the Pontryagin number (an 
abelian field can not contribute to this topological charge).

There is a natural context in which the analogy with the Higgs model is more 
precise. For this we have to add time as a fifth dimension, such that four dimensional 
space is compactified on a circle. In the limit of zero compactification radius (7” —» 0) 
the new calorons become genuine monopoles and can obtain dyonic charges in the 
sense of Julia and Zee [56]. It is in this context that Taub-NUT metric describes the 
scattering of oppositely charged monopoles on R3 x Sl, in exactly the same way as 
the Atiyah-Hitchin metric describes the scattering of like-charged monopoles on R3 
[70, 3].

Monopoles appear also in the context of ’t Hooft’s abelian projection [52] as 
(gauge) singularities. The lesson learned from the above analysis is that in order to 
include the non-trivial topological charge, important for fermion zero modes, break­
ing of the axial C7(l) symmetry [50] and presumably for chiral symmetry breaking, 
one needs to keep some information on the behaviour near the core of these mo­
nopoles. This allows one to combine the attractiveness of the dual superconductor 
picture of confinement [49] in terms of monopole degrees of freedom, with the suc­
cess of the instanton liquid model [89]. There have been many attempts to make 
an effective monopole model for the long range confining properties of QCD, see e.g. 
ref. [91]. Also there have been many studies in lattice gauge theory, using the idea 
of abelian projection implemented by the so-called maximal abelian gauge [57], in 
order to extract the monopole content of the theory. It was observed that the string 
tension is saturated by the monopole fields [93, 84). More recently it was found that
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Appendix A:
is pre-

with r and s given

In this appendix the solution for the Green’s function Gx = (B^(rr)B(x)) 
sented, which after Fourier transformation satisfies the equation

,2^x0(l-t')7r(rs^)-l^e-2wix05ig„(2-z')rsinh(27rs|z_2,|)G*(z,z',r,s,w) = e;

as in eq. (4.3.13). Its solution is given by

Gx(z,z') = X(-u.^|(z') (x|-u,,u,|WGi(z,z',r,s,w) + X^.i-^'iG^z, z’,r, s,w))(4.A.2) 

+X(u,i-u.](z')) (x|u,,i-u>|(z)Gj(i-z, i-z'.s.r>^)*+X|-u<,w|(z)GJ(z',z,r,s,w)*) .

The Green’s function Gx

' 1 d 
2nidz X°

Like for fx the diagonal component Gx(z, z') is only defined strictly for z, z' e [— 
and the off-diagonal component G°(z,z') only for z 6 [u>, 1—o>] and z' 6 [—cu.iv]. For 
z or z' outside of these intervals, one first has to map back to the interval [—u>, 1— u>], 
using periodicity.

after abelian projection instantons contain closed monopole lines [18, 43, 12, 15). As 
emphasised in ref. [7], in the light of Taubes’s construction this was to be expected. 
Here we have shown in more detail how one can make fields with non-zero topological 
charge out of monopole degrees of freedom, with as example the well defined setting 
of calorons with non-trivial holonomy. What is minimally required is a frame associ­
ated to each monopole, whose rotation is a topological invariant for closed monopole 
lines. Such closed im ,,opole lines can shrink, but one will be left over with what 
represents an i,j-w, It would be interesting to build a hybrid model based on
the instanton ji.piict d monopoles, and see how successful it is in capturing the 
appropriate phe ;■■■.. . ogy.

To conclude it i :■ risible to take the monopole content of instantons serious in 
the broader con ehcd here. There is a somewhat destructive (but reversible)
gauge invariant method of investigating the monopoles inside an instanton. First 
the instanton is heated just a little. Then a non-trivial value of the holonomy is 
added at infinity, without disturbing the instanton significantly (true for T sufficiently 
large). Now it has to be squeezed (or heated) hard. Out come the two constituent 
monopoles, in a direction determined by the choice we have made for the holonomy at 
infinity (which does not change under heating). The new caloron solutions were also 
found on the lattice [30] using improved cooling techniques [29] and twisted boundary 
conditions.

^+s2X[-w,u,l(z)+r2x^,i-^(z)-y‘V-r(<5(z-w)-<5(z+w))jGI(z,z')

= i(z - z'), (4.A.1)
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(4.A.3)

e-2’“o

z — ui))sinh(2.>.<(z' Ftu))

+s-1 sinh(47rrw) prsp2w ■ rsinh(27rs(z + z'))

+|(s2—r2 + Tr2pi) cosh(27rs(z+z'))
+|(s2+r2—7r2p4) cosh(27rs(2u> — |z — z'|))j

+r cosh(47rrd>) sinh(2!rs(2u> — |z — z' |)) J, 

G°(z, z',r, s,w) = e2,"I°<=-I')?r(rsV>)~1 |^p2cj ■ f sinh(27rr(l —

+r cosh(2trr(z—l+u>)) sinh(27rs(z'+iu))
—ssinh(2?rr(z — 1 +cu)) cosh(27rs(z'+cv))

p sinh(27rr(z—u)) cosh(27rs(z'—w))

—r cosh(2?rr(z—w)) sinh(27rs(z'— a;))
+irp2u; ■ rsinh(27rr(z—w))sinh(2?rs(z'—ai))j j

In particular,

iu) = ei'"xoul {e-2”,I<>rsinh(47rsw) + ssinh(47trcu)} , (4.A.4)
Gx(±a>, ±u>) = 7r(rsV')_1 |ssinh(47rrd)) cosh(47rsw)+rsinh(47rscu) cosh(47rru>) 

±7rp2u>-rsinh(47rru>) sinh(4?rscj)}.

which can be used to verify eq. (4.3.19) as derived from eq. (4.2.5), and eq. (4.3.32).
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5.1 I.. • iction

5.2 The result

(5.2.1)= exp[27rtdiag(^i,..., /q.)],

Monopole constituents inside SU(ri) 
calorons

•pO 
' oolim P(x)=Poo = 

|S|—oo

The labels of the SU(n) calorons are given by the topology of the vacuum at spatial 
infinity the solution necessarily approaches for the action to be finite. This classifi­
cation was presented in section 2.2. We consider the calorons with no net magnetic 
charge, in which case the Polyakov loop (holonomy) (eq. (2.2.1)) at spatial infinity 
becomes constant. Its eigenvalues e2”1'*™ are part of the topological labels and will 
play an important role in the construction,

In this ch, generalise the results of chapter 4 for k = 1 calorons for gauge
group Sl\>. ■, cuge group SU(n). The most important qualitative result was the 
identification oi . - oppositely charged elementary BPS monopoles as constituents of 
the SU(2} i • .>n This composite nature forms a refinement of a more transparent 
compositeness that follows from the action of instantons and BPS monopoles being 
proportional to the winding numbers or charges describing the topology of these 
solutions, suggesting that they are composed out of elements of unit charge. We will 
find by computing the action density that charge one calorons for the gauge group 
Sf/(n) are composed out of n basic BPS monopoles [11, 86), whose magnetic charges 
cancel exactly, generalising the SU(2) situation. These n BPS monopoles will appear 
as explicit lumps in the action density profiles.

For clarity of the presentation, the result, which is surprisingly simple, will be 
given first, in the next section 5.2. The construction is then exposed in two subsequent 
sections. Section 5.3 contains the Nahm formalism for the caloron, which is -as for 
the SC/(2) case in section 4.3- derived from the ADHM construction using Fourier 
transformation. The construction of the caloron is thus reduced to a Green’s function 
problem, which is solved in section 5.4. The properties of the fc = 1 SU(n} caloron 
are discussed in section 5.5. In particular, it will be interesting to consider static 
limits of the caloron, obtaining multi-monopoles.
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(5.2.2)= 0,Hi

(5.2.3)

71

—cos(2ttxo)-

The ADHM-Nahm formalism5.3

(5.3.1)

(5.3.2)

V denoting a constant gauge transformation, cf. eq. (2.2.2). We recall that, making 
use of the gauge symmetry, we can choose the eigenvalues such that

Here rm 
of matrix multiplication is crucial, fJm

We will construct the caloron in the so-called algebraic gauge, related to the periodic 
gauge by the non-periodic gauge transformation

g(x,x0) = V'exp[27r!rodiag(g1,...

In this gauge, the background field 2rrt diag(Mi, ■ • •, pn) in eq. (2.2.4) is removed and 
we have the alternative boundary condition,

Ap(x, x0 + T) = P„A„(x, zo^oo1 •

As in the SU(2) case, the non-trivial holonomy will fully be carried by the cocycle, cf. 
eq. (4.1.2). Since in the absence of magnetic windings, Poo can always be gauged to 
a constant diagonal form, we assume henceforth P^ = P£, without loss of generality. 
The periodic instanton of charge one is obtained in the algebraic gauge (5.3.2) by 
taking an infinite array of elementary instantons, relatively gauge-rotated over Px.

= -5^^ log’/’-

where the positive scalar potential ip is defined as

^(x) = itr2n{(r0- |\/'cosh(27ri/mrm) sinh(27ri/mrm)
J \sinh(27ri/mrm) cosh(27ri/mrm)

(5.2.4)
|x — 3/m| denotes the centre of mass radius of the mth monopole. The order 

--m=l = An . . . Al-

71

. . • < Mn < /’n-1 — Ml T 1. * Mm
m=l

assuming maximal symmetry breaking for the moment. We define i/nl = Mm-H — Mm> 
related to the mass of the mth constituent monopole. Standard arguments, also 
following from the construction below, gives 4n instanton parameters for -.. cd Px, 
including the global gauge transformations that do not change Poo. 1 ■ 11 see
that 3n parameters can be interpreted as the positions (ym) of the constituents. 
The remaining parameters in this interpretation are the n — 1 phases related to the 
unbroken gauge group I/(l)"-1, on which the action density does not depend and 
the position of the caloron in time, which we fix to be 0 by translational invariance. 
Also we will use the scale invariance to set T = 1. Where needed, the proper T 
dependence can be reinstated on dimensional grounds. We will find the following 
surprisingly simple formula



5.3 The ADHM-Nahm formalism 69

u(x) = (B* — x’lfc) ’Af, </>(x) = ln + u\x)u(x),v(x)

= ?(x)(u*(x)dpu(x))<t> *(l) + 5(x).

For eq. (5.3.2) to hold, it is then required that

up+1(x + 1) = up(z)7’001, pGZ. (5.3.3)

This imposes periodicity constraints on the data

(5.3.4)Bp,p.(z + 1) = Bp-i.p'-i(x),Ap+i — 7^ooAp,

(5.3.5)

(5.3.6)

(5.3.7)

cf. eq. (3.1.35), and A*A into a singularity structure describing the matching condi­
tions for A(z),

-1„
u(x)

with B(x) = B — lit, which imply

Ap = Ppp1 ~ + Ap_p/i p,p E 2.

e-^^Ap = 52 e2’ip('1’"'‘)PmC = A(z), 
pez pez
A(z) = 52 ~ l*m')PrnC

mEZ/nZ

52 A’e2’ri(px-','z')Ap, = <5(z - z')A(z), 
P.P'GZ

A(z)= 52 5(z - ftnJf'Pp.C = CfA(zr).
m€Z/nZ

where (p is an n x n positive hermitean matrix. In terms of these, one obtains the 
gauge potential from eq. (3.1.4),

To implement this in the ADHM formalism we take the specific solution in 
eq. (3.1.3) for the zero mode vector v(x) in the ADHM construction,

52 Bp^x)e^-^ =
p,p'ez
Dx(z) - apDp(z) = -^ + A(z) - 2mx,

A(z) = <7pAp(z), Am(z) = 2m 52 e2,"pzApp,
pez

The off-diagonal part A is still to be determined. Fourier transformation translates 
the ADHM formalism to the Nahm language. B is cast into a Weyl operator,

S-^^-Dx(z'),
ZTTl
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and

(5.3.8)

where <H>= fSI H(z)dz. The quadratic ADHM constraint translates into

Dv(z)]t]^ = 4tt2GA(z), (5.3.9)

cf. eq. (4.3.6). We introduce a (7(1) fibration of C2

— C(m)C(m) ~ 2% (5.3.10)Pm — |Pml-

(5.3.11)

(5.3.12)

(5.3.13)

Here we introduced the projection operators Ptn = eme£n, where em is the mth unit 
vector, in terms of which

A/a) = 2*1 y 
mGZ/nZ

a,(z)6(z/) = 6(z — z') a(z)* <6>= <5(z — z') <a* > 6(z) 
= <5(z - z') y <5(z - nm)<JPm0, 

mEZ/nZ

y pm = trtrj^O = 6, 
mGZ/nZ

y 5(z-Mm)pi„ 
mGZ/nZ

which is abelian in the fc = 1 situation at hand, see [77]. As integration of eq. (5.3.11)
over S1 gives a constraint on £,

we can introduce vectors j/m,m 6 Z/nZ, such that pm = ym — ym-\- The vectors 
ym are to be interpreted as the constituent monopole positions. We now find for the 
spacelike components of A(z),

over R3 (cf. eq. (6.1.2)) to write

5^A»(2) = 2»ri

Poo= y exp(2xipm)Pm 
mGZ/nZ

Ap = y exp(2xippm)Pm(.
mgZ/nZ

The group index m £ Z/nZ is a cyclic variable. We also used that f : two
objects a, b of type <ip = P^a, p £ Z, the Fourier transforms defined >••■. ;s) = 
Spez exp(—27ripz)op, have the property

The €7(1) fibre arises due to the €7(1) phase ambiguity in defining C(m) from pm. This 
phase ambiguity is resolved later. Eqs. (5.3.9, 5.3.10) now lead to the caloron Nahm 
equation
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(5.3.14)

(5.3.15)

(5.3.16)

where

(5.3.17)km e Z,

(5.3.19)

' 1 d
,2ni dz

Note that the Nahm equations determine ym up to the global R3 x Sl position variable

? = / A(z)dz, (= 5?
Z7TZ J cl “7

* m€Z/nZ

We recall i/Tn -- ; — /im is related to the mass of the mlh constituent, so that £
is the centre of mass of the caloron. The T symmetry, eq. (3.1.10), in the ADHM 
construction ’•> ?>ped to a £7(1) gauge symmetry, with gauge group Q — {<j(z)|p : 
z —♦ 6. t . acting as

A(z) _ 4(2) + i±h(z), a

For calorons, g(z': ... periodic and can be used to set 40(z) to a constant. A piecewise 
linear 77(1) gauge function h(z) shifts the 77(1) phase ambiguities in ((m) to 4q(z), 
which thus becomes piecewise constant. Therefore, all 4n moduli are included in the 
following solution to the Nahm equations

4(z) = 27rt + Vm ■ 3),
rntZ/nZ m

= (t], ... ,rn)t takes values in Rn. Using the gauge function

9(z) — 52 X|,.m,em+1j(z)exp(27rt(z-^„)^), 
mGZ/nZ m

which leaves the £7(1) phases of Q unaffected, we can restrict r to the torus Rn/(4?rZ)n. 
In this gauge, the moduli describing the general caloron are the position vectors ym, 
comprised in y = (y\,...,yn) and the torus coordinate r describing the £7(l)n-1 
residual gauge symmetry and the temporal position of the caloron. Strictly speaking, 
these variables are coordinates on the cover of the moduli space of framed calorons. 
The true moduli space is obtained by dividing out the centre of the gauge group. 
This leads to orbifold singularities.

Under Fourier transformation, the Green’s function fx (eq. (5.3.18)) for calorons 
becomes fx(z, z') = ^2pp>eZ>fx,p'e2iri^pz~p>x'^ and is a solution of the differential equation

\2 ” 1 ” 1 *
— XoJ 4- ^lMm,Mm+il(2) rm + 2^ — j/m-11 ?/*(*> ^ )

' m=l m=l )

= 5(z - 2'). (5.3.18)

Here we took 40(2) = 0, obtained in the 77(1) gauge where 40 = constant by absorb­
ing <0 in Xo- Here rm = |x — rm| is the centre of mass radius of the mth constituent. 
Expressions for fx in other gauges are obtained by using that under the action of G, 
fx transforms as

A(z,z') — g(2)fx(.2,z")g(.z'yt g(z) e G-



72 Monopole constituents inside SU(n) calorons

Green’s function techniques5.4

,th

+ rmVx(z,z') = 0. (5.4.2)

= W(f>n,z)cmm,(z'),

,2jrtzo2 (5.4.4)

(5.4.5)

The delta functions at

For (2, z') e [/zm, /Xm+1] X [ftn1, Am'+i], the Green’s function is the sum of two exponen­
tials. Solving the total Green’s function then amounts to patching the exponentials 
together. We write the Green’s function and its derivative as a two-component vector

(
\ £/x(z,z')

where W is a matrix containing the two independent solutions to eq. (5.4.2) and their 
derivatives

g —2jtizqz 

4?rr
-e~2”rz 

^2nrz

In this section we discuss the necessary Green’s function techniques fo: r,i<’ k = 
1, SI7(n) caloron. The relevant Green’s function fx(z,z') is the solution t.o the 
differential equation (5.3.18). The symmetries in this equation imply the relations

(5.4.1)

subinterval

W(r,z) = e'

Z 6 [/Xm.Mm+l], z' 6 (5.4.3)

/x(z, z') = fx(-z, -z'Y = fx(-z', —z) = A(z', z)’.

The aim of this section is to calculate fx(z,z) and det fx. On the m' 
e Z/nZ, /I(z,z') satisfies

2iri dz 0

/ (27rizo — 2?rrz)e 2’Trz
—(27riz0 + 27rrz)e27rr2

z = appearing in eq. (5.3.18) give two matching conditions,

1™ /x(z,z') - lim /I(z,z') = 0,
xlPm xTMm

e2’rz e-2,rrl \
(27rtx0 + 2rrr)e2,rTl (27rix0 — 27rr)e-2’’rz )

and cmm'(z') is a two-dimensional column vector containing the z' dependent integra­
tion constants. For our purposes, we will only need /x(z,z') in the limit z' —> z, i.e. 
z and z! lie in the same interval. For z,z' e c£,m an<i cmm indicate z < z'
and z > z'The matrices W enjoy the following properties

det W = -4-zreinixa‘,

W-\r,z) =

The Green’s function in eq. (5.3.18) is a solution of a quantum-mechanical problem 
on the circle with a piecewise constant potential and delta function impurities. This 
solution is obtained by solving it on each sub-interval, where fx(z,z') is of simple 
exponential form. Starting at z = z' and matching properly at z = so as to 
account for the scattering by the impurity, we can go full circle to return at z = z' 
where one last matching accounts for the delta function at the rhs. of eq. (5.3.18). 
This programme will be carried out in the next section.
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/x(z, Z') = 27T|jZm - j7m-ll/(Pm, z'), (5.4.6)

(5.4.7)

Cn—2,m^n—l,m ,m

P2

rnTn—2T1 T2 Tm

(5.4.8)

0

(5.4.10)

= W '(n./zj)

(5.4.11)= UlCn,,

Here U\ satisfies

(5.4.12)det Ui =

Pi

z =P1

Pm+l

Pm+1

Pn

4-
Pn

Cl,m W(rn,px + l)c„,m

- W(rJ-_1,Mj)c3-i,m =

det Uj =

Special care should be taken at the matching where the circle is closed (z = /ii, /ti +1), 
which reads

1 0
2irpi 1

1 0
2irpi 1

Cl.m <£.,m
Pm+2pn-2 Pn-1 

4--4—I— 
pm+2pn—2 pn—1

^m,m

) VF(r„,^i)

d 
__ 1 ~r~ 
zTMm UZ

e2’r" 

0

The matching at z = pj, eq. (5.4.6), in the matrix form of eq. (5.4.3) reads 

0 0
2irpj 0 

and implies the recursion relation for j / 1 

( 2-rPj 1

0 
e-21rr"

lim -y-fx(z, z') — lim
JlMm dZ Z*“,„

whereas at z = z' we find

lim fx(z, z') - lim /x(z, /) = 0,

limA/i(2,20_inn^/i(2,?) = -4x2.

Let us assure.- : i : ,n, ^,n+1]. The following partition of the circle on which z lies is 
then approprr , e

c2.m

Pl
\n+l=Pl + 1

£71 =

^4trixo 
n

= (5.4.9)

where we introduced the scattering matrices Uj,j 1, which are time independent 
and have the property

e2™0

P3 Pm

—4 - - 4—
Z<2 P3 Pm
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(5.4.13)

and the recursion relations, eqs. (5.4.9, 5.4.11),

(5.4.14)

,5.4.15)

in which case we usually omit the star, and

(5.4.16)

The matching condition in z = z', eq. (5.4.7), implies

(5.4.17)= V.

(5.4.18)

(5.4.19)

m 

n u‘ 
J=m+2

mn
i=m+2

h
JJ Ai = Ah AiAn • Atl if Zi > l2.
i=h

h
JJ j4i s Xi, • • • Xi, if Z2 > ZL,
<=<>

cm,m ^An+lCm+l>»n,

cmm

Cm+l.m — ^m+1

The star denotes taking the product over representatives of Z/nZ, possibly ■ .‘mg 
over Z = n, and the order in the product is crucial,

= u-'+l

The necessary coefficient vectors for the Green’s function in eq. (5.4.3) near z = z' 
now follow from inserting this in eqs. (5.4.13) and (5.4.14),

m+1 

i- n « 
. l=m+2

W(rm,z')cbmm - W(rm,z")c>mm = ( _J%2 )

m+1

i- n u‘'
j l,=m+2

m+1 

i- n U 
, Z=m+2

We now solve c^,m and c^,m. This is achieved by writing both in terms of cffl+i 
using the matching condition at z = pm+1,

Um+lW~\rm,z')V,

Um+tW~l(rm,z')V.

This implements the full circle scattering process and <y,+ iim can now be solved in 
terms of V and W,
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(5.4.20)1 — Minor= det

(5.4.21)det

(5.4.22)

and

(5.4.23)

0 (5.4.24)Am —

We then obtain

(5.4.25)A, '

Hm—2

In terms of the scalar function

(5.4.27)
n

■0 = — COS 27TZo + 5tr2
1=1

m + ln
J'im+2

I

m

[J Ul = e^W-1{rm^m)
Z=m+1

2irrm A (
0 ) V

Ui^ , we note

‘ Hm+11 0
2ttp„ 1

1 0
2?rpm+i 1

1 0
27T0! 1

1 0
2rrpm 1

) =e2’ri’»tr2n7=i

Am = —
1~m

1 0
27r|3/m - 3/m+i| 1

It is convenient to introduce Hm and A,„ as

>-n«
n n

1 — tr2 n Ui + det JJ Ui = det

/ I'm |t/m 3/m+ll

\ 0 rm+1

X / cosh2rri/mrm sinh 27rizmrm X
J \ sinh2wi/mrm cosh 2tri6„rm J ’

1 0
27rpi 1

I m+1

i- n {/<
\ Z=m+2

Here we used 1 i :u 'or a 2 x 2 matrix det( 12 — X) = 1 — tr2^4 + det A, and hence

1 0
^Pm-l 1 J

(5.4.26)

To manipulate with (1 - n;"t,'+2

»n : : \

1- n
l-mn-2 !

( cosh 27ri/mrm
y 27rrmsinh 2rri/mrm

related to Hm via

t <i« 1 n„ _ f
1 "■ 11, (

For this, and later use, it is useful to note that

° 12rrrm 0 )

,+ l)I^ (tmjftn) 

sinh 27rizmrm/27rrm 
cosh 27ri/mrm



Monopole constituents inside SU(n) calorons76

we find
(5.4.28)det

(5.4.29)

= (10) J¥(r,

(5.4.30)

(5.4.31)/x(z.z') =

))

(5.4.32)

(5.4.33)

e-2’**<«”(«-*') sinh(2rrrm|z - z'|) +/x(z.z') =

tr2

I »7l ) n *
V Z=m+1

In terms of the Ai, using eq. (5.4.26), we obtain a relatively compact expression for 
the Green’s function for < z' < z < fim+i, 

fx(z,zr) = ' {e-2’“° sinh(27r(z - z')rm)+
(fm(2 ‘ ' -41^n ' ’ ^ml^m(2)) } ■

----- e2»ix„(.-^)e-2«»o ( sinh 27rrm(z - z') 
rmi!>---------------------- \

Um+t

_e-2irrmz
&2ivrmz

(5.4.34)

Bm(z + z', |z - z'|) JI -41 ) 1 ■
Z=m /

«l,(z) = -wj,(z) = sinh (27r(z-Mn.)rm), 
v^(z) = wj,(z) = cosh (2?r(z—pm)rm).

Using fzfZjZ') = fx(z',z)‘, eq. (5.4.1), we can derive an expression for the Green’s
function for unordered z,z' e [gm./WiL

%e2xixo(»-«')

Using the fact that for a 2 x 2 matrix A

b ) Minor(A) ( = ( d

we can rewrite this last expression as

( “

71 \

1 - n u>) = -2e2’“°V’.

by which we completed the construction of the coefficient vectors for the Green’s 
function in eq. (5.4.19). We can now evaluate the Green’s function in the region 
Mm < s' < z < Mm+l,

Uz,z') = (1 0)JV(rm,z)£m(z')
m+1

i- n u> 
l=m+2

Here the spinors vm and wm are defined by

7r

’’mV’
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(5.4.36)

(5.4.37)

(5.4.38)

(5.4.39)

(5.4.40)

7x(z,z)/2. (5.4.41)

(5.4.42)

over the circle

= —_Bm(2z, 0)/2. 
x'=z dz

■^(e J'>sinh(27rrm|z - z'|)) =

e-2x.x„sgn(z-x-)[_27rilol5(2 _ yj sinh(27rrm|z - z'|) + 

2?rrmsgn(z — z') cosh(2?rrm|z — z'|)J.

Integrating this expression using point splitting, we obtain 

-2,.^+/s^.

As /x(z,z) is a smooth periodic function, the integral of dfx(z,z)/dz
is zero. Therefore

Tr(~b-^- -z0)/x = -iflolog^.
2tti dz

d „ 
dz

For the first part of the z derivative of fx(z,z') in eq. (5.4.34), which is not smooth, 
we find

- (lim I dz[-£-fx(z, z' + e) + y-/x(z, z' - e)]/2^ 
V’-’OJSI dz /

As fx(z,z') = e2nix°<z-^Fx(z,z'),

- 2*ix0)fx(z,z') = e2^-^^Fx(z,z’).

The z derivative of a function of \z — z'| is given by

■^9(\z ~ 2'l) = s8n(z - z')s'(|z - z'|),

which yields zero when evaluated at z = z', provided that g(z) is smooth. Therefore, 
the part of the z derivative of fx(z,z') in eq. (5.4.34) is given by

,(z + z',|z - z'l) |

Here, B„,(z + z',z - z') = |wm(z))(wm(z')|. Equivalently,

B„(u,u')= (5.4.35)
1/,-sinh(2rrr„lu')+sinh(27rrm(u — 2jrm)) cosh(27rrmu')+cosh(27rrm(u — 2/rm))\
2\ cosh(27rr,„u') —cosh(27rrm(u — 2^m)) —sinh(27rrmu')—sinh(2rrrnl(u — 2/im)) J

To calculate d,, log det fx = ^TrlogA = -Tr(d,,fxl)fx = 2TrBll(x')fx we need 
to evaluate

— [ Dll(z)fx(z1z)dz. 
J s'

We first evaluate t lie me-component, /z = 0. The action of the z derivative appearing 
in Dq is defined by point-splitting,

^Tz^
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13)

eq. (5.4.24), and defining

(5.4.44)

A short calculation reveals

(5.4.45)

As the integral can be “pulled through the product”, it then follows immediately that

'D-/,B,(x)

Pm

One thus concludes from eqs. (5.4.42, 5.4.46) that

(5.4.47)

and therefore

-i'DrF^(x) = 13^ log det A = -i^logV’(i)- (5.4.48)

This completes the proof of eq. (5.2.3).

In the evaluation of the spatial components, p = i, it is worthwhile to rewrite the 
Green’s function,

0
1

1
27rpm

H, 
in

1 
2itrm 

0

1 0
2irpi 1

1 0
2rrpni 1

0 1
27rrm 0

1
2irpi 1

4?r dr,

7T 
= —tr2^rm

using the relation between Am and Hm,

^M„B,n(2z,0) (

(

/ cosh 27ri/mrm sinh27ri/mrm \ 
\ sinh 27rpmrm cosh2rri'mrm )

’)))

(5.4.46)

^—.t>i(z)fx(z,z)dz 
Z7TI

log det A = -^Trlog/j 1 = --Tri>M/x = -aMlogV»(x) 
7T

)n("’( 
l=m+l

fx(z,z) = ^-tr2Bm(22,0)’nX1 
l=m 

/ 0 1
\ 2rrrm 0 

x n (w, ( 
/=m+l

- s/m=l J

** fPm+1 / 1 \

= 52/ fx{z,z)<lz
m=lJ '

“ 4^rm 2

= -iSjlogV;

d
drm



79

5.5 Discussion

5.5.1

eq. (5.3.11), that At(z') lives

(5.5.1)

(5.5.2)lM£) = jtr2

th

0

• ■ • i as l/|x|4 - which
monopole- as opposed to l/|x|6 without removing the m

£(x) = -jTrF^x) = -iA2log^m(f), 

\ 71-2 1

' m=l )

(see [65] for some special cases). One easily verifies that it decays 
is the behaviour of a i 
constituent.

We briefly consider the properties of the SU{n) charge one caloron. From eq. (5.2.4) 
we see that the rnth constituent monopole can be located at arbitrary ym, with arbi­
trary mass 8?r2i/m/T, subject only to the constraint i/m = 1, choosing Poo, £ an(l 
C appropriately. As the action density, eq. (5.2.3), is expressed as a total derivative, 
the action is easily f.r-md by partial integration, with the expected result of 8tf2. The 
size of the insta* \ related to the differences in position of the constituent mono- 
poles. As we - of 7”, the situation of a small scale (nearby constituents),
corresponds to ■ : . .. . to an instanton on R4. At the other extreme one has well
separated lun. . .11 7”, i.e. in the static limit. In figure 5-1 we present a typical
5(7(3) caloron •!. ■ rcasing values of T using eq. (5.2.3).

When the lumps ;e far apart, they do not deform each other and become spher­
ically symmetric. Since the solution is selfdual, the constituents have to be ba­
sic BPS monopoles. This can be proven by carefully analysing eq. (5.2.3) for the 
limit where rni ri for all I m, in which case the action density approaches 
"■5^2^10g(sinh(27rz/mrm)/rm]. This is precisely the behaviour of the BPS mono- 
pole [88]. The other constituents need not be well-separated from each other for the 
above argument to hold.

The 5(7(2) results of chapter 4, eqs. (4.3.30, 4.3.17), are retrieved by putting 
Mi = — oj, M2 = and fi3 = 1 — u, such that = M2 ~ Mi = anc^ p2 = M3 — M2 = 
1 — 2cj = 2u». Furthermore one identifies = s, r2 = r and |t/i — Mol = I M2 — Mil = ™P2-

The (1,1,..., 1) monopole

When sending the mth constituent to infinity (i.e. |?7m| ~* °°) the caloron becomes 
static. What remains are n — 1 monopole constituents with a combined magnetic 
charge opposite to the magnetic charge of the mth constituent monopole that has 
been removed. As the solution is static in this limit one is left with an 5(7(n) BPS 
monopole. Indeed, for |?/m| “* 00 we see from the solution of the Nahm equation, 
eq. (5.3.11), that Ai(z) lives on an interval, rather than on the circle, as is appropriate 
for the 5(7(n) monopole [76]. From these Nahm data it is read off that it is the 
(1,1,..., 1) monopole. (See also the appendix to chapter 6). One readily obtains the 
energy density of this monopole by taking the limit |j/m| —+ 00 in eq. (5.2.4), to arrive 
at

5.5 Discussion
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f

Figure 5-1. Action densities for the S(7(3) caloron on a logarithmic scale, cut off at l/2e, 
for t = 0 in the plane defined by yi = (—j,—j,0), jfj = (0, |,0) and W = (j, — j,0), in units 
of T-1, for 1/T = 1, 3/2,2, 3 and 4 from top to bottom, (pi,M2,M3) = (“17, “2,19)/60. 
The constituent monopoles become manifest with decreasing compactification length and 
have masses 8tr2i't7T, (izi,r*j,i^) = (0.25,0.35,0.4).

Finally, we note that the (1,1,..., 1) monopole has only one magnetic winding, 
as explained in section 2.2. It is opposite to the winding of the removed monopole, 
and hence, we can apply the reasoning in [95] explaining how the instanton charge 
arises also for SU(n) from braiding two monopoles, cf. the S£/(2) situation discussed 
in section 4.6. Indeed, from the general formalism it follows that there is always 
a gauge in which the (1,1,..., 1) monopole formed by n — 1 constituents is time­
independent and where the last monopole carries the so-called Taubes-winding, even 
though its action density is time independent for well-separated constituents. This 
conclusion can also be drawn from the formalism developed in ref. [63, 58, 59], see
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also ref. [23].

5.5.2

In that case its centre of mass radius drops out of

(5.5.4)I'K', ■ ■ ■ , VK+N-2 = 0, P-k = ■■■ = Hk+n-i,

Here

(5.5.6)

|j/m 3/m+ll "h li/m Vm —11 

f*m+l ,

SK-\
CK-l

tk-i 
0

ISfrn-2/n.-ll'
I'm

Rc 

rK+N-i

n

II -*
m=l

0

nn
m'=K+N-l

l~N. The corresponding 
for the action and energy

corresponds to a trivial Polyakov loop, Poo = =tl, and the solution becomes that of 
Harrington and Shepard (42]. Hence the formula for the action density should also 
be valid for non-maximal symmetry breaking. More generally, we can consider, both 
for the caloron and for the (1,1,..., 1) monopole, the situation of TV — 1 monopoles 
turning massless

(5.5.3)
This was also observed for St7(2), in which case non-maximal symmetry breaking

rm li/m - 1!
< 0 1*m+l ?

) (

Non-maximal symmetry breaking

The results have been derived for the case of maximal symmetry breaking, pm 
Pm+i- The situation of non-maximal symmetry breaking corresponds to a constituent 
obtaining zero mass, vm — 0.
eq. (5.2.4), as follows from

resulting in an enhanced residual symmetry to SU(N) x f/(l)n 
centre of mass radii no longer appear in the expression 
densities, as follows from

K+N-l
Rc = |p/<| + ■■ ■ + IpK+W-ll = ’ttr2 57 C(m/(m)

m=K

denotes what is known in the monopole literature as the “non-abelian cloud” pa­
rameter [62], It is seen from the right hand side of eq. (5.5.6) that it is SU(N) 
invariant. The SU(TV) transformations mix the positions of the massless mono- 
poles, which therefore do not exist as individual particles. A way of seeing this 
physically is that the intrinsic length scales of the monopoles, proportional to their 
inverse masses, become infinitely large as their masses become small, so that they 
overlap and lose their identities, forming a cloud. This appearance of massless par­
ticles and infinite length scales illustrates a very general feature of systems near 
a transition to a more symmetric phase. In the situation of symmetry breaking 
to SU(Ni) x ••• x SU(Na) x [/(l)n-^‘---- there will be s cloud parameters,
T?ci,..., Rcs which are invariant under SU(Ni),..., SU(N3) respectively.
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5.5.3 Concluding remarks
Although the formalism can be extended easily to higher topological charges [64]. the 
appropriate Nalim equation (i.e. solving the quadratic ADHM constraint) becomes a 
non-abelian problem, and finding solutions requires more powerful tools. Neverthe­
less, it is interesting to note that it is natural to conjecture that k instantons (i.e. 
an instanton of charge k) can be built from kn monopoles, since each instanton can 
be considered as being built from n BPS monopoles. The monopole constituents 
are only well separated when T is small, where the 4kn instanton parameters can 
be interpreted as 3kn positions and kn phases (including exp(27ri^o/7')). It -ild 
be emphasised that this monopole constituent picture has also some interest:-.'; :ie- 
nomenological implications for the description of the long distance properties ; D, 
discussed in more detail in section 4.6.



The metric of the k = 1 SU(ri) caloron6

Moduli spaces of instantons and BPS monopoles have been subject to investigation 
for some time. The • : . iuli space, quotient of the set of selfdual gauge connections 
by the group ol ; : ansformations, is a subset of the configuration space and its
geometry there. ; physical properties of the system.

In this chap ■ r - ric of the moduli space of k = 1 calorons with no magnetic 
windings is stuc •<! for : gauge group St7(n), thus extending the analysis in section 
4.5. Calorons a c composed out of elementary BPS monopoles [63], as is seen from 
the action density, which was discussed in chapter 5. This becomes clear for small 
compactification lengths when the constituents are far apart. In particular, removing 
one of the monopoles to spatial infinity turns the k = 1 caloron into a BPS SU(n) 
monopole, as described in section 5.5.1. In contrast, the situation of all monopoles 
nearly coalescing -in appropriate units corresponding to an infinite compactification 
length- gives back the ordinary instanton on R4. These various aspects are respected 
by the corresponding limits in the metric. The form of the metric was conjectured 
by Lee and Yi [63], using considerations of D-brane constructions and asymptotic 
monopole interactions. This chapter addresses the explicit calculation of the metric 
for the caloron moduli space and its limits.

Metric properties of moduli spaces of selfdual connections play an important role 
in the study of non-perturbative effects of gauge theories. For instantons the metric 
appears through the bosonic zero modes in the background of the charge one SU(2) 
instanton in a calculation to study its physical effects [50]. The scattering of mono- 
poles can be described as the geodesic motion on the moduli space [70], relating the 
metric to the Lagrangian of the interacting monopole system [71].

The metrics on these moduli spaces are hyperKahler [47]. This property derives 
formally from the nature of the selfduality equations themselves [3, 26], cf. section 
1.5.2. It also appears in the ADHM construction of instantons of higher charge, as 
well as in the Nahm construction for monopoles, as a hyperKahler structure on the 
space of data [24, 25], cf. section 3.1.

The explicit computation of the metrics in this chapter is based on the isometric 
property of the Nahm transformation, known to hold for instantons on R1 and T4, 
as well as for certain types of BPS monopoles [78]. It is believed to hold generally. 
For most situations considered in this chapter, an explicit proof seems not to be 
present in the literature, and will be given here. This allows for a determination of 
the metric on the moduli space of Nahm data. For monopoles, such a calculation 
was first done in [19] showing that the metric of the (1,1) data is a Taub-NUT 
space with positive mass parameter. Considerations based on asymptotic monopole 
interactions [37] reproduced this result [35, 60]. For the (1,1,..., 1) monopole a 
similar equivalence was found [61, 74]. All these metrics are of so-called toric hyper-
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Toric hyperKahler manifolds6.1

g = itrjtdc’dc), • 5 = lcritr2djd<;, A dg. (6.1.1)

e“c, M = Jtr2(—i?\a) = if. (6.1.2)

(6.1.3)■0 6 R/(4tfZ),

with for example chosen real. A useful identity is

|tr2(<kta - = —i|f|w(f) • dr, (6.1.4)

where w(f) is the vector potential of the abelian Dirac monopole,

(6.1.5)

The complex structures act on c by right multiplication with —a;. There is a triholo- 
morphic 17(1) isometry with associated moment map

The level sets are tZ(l) fibres due to the phase ambiguity in defining c from f. This 
moment map and fibration also occurred in eq. (5.3.10). The C7(l) fibration becomes 
more manifest upon introducing new coordinates,

Vr-xw(f) = Vr-^.

Kahler type [33, 82, 83], and can be efficiently obtained as metrics on hyperKahler 
quotients [39]. An explicit calculation of the k = 1 SU(2) caloron is extended here 
to SC7(n), generalising the techniques in section 4.5 . An alternative derivation using 
the hyperKahler quotient will also be given. There we will greatly benefit from the 
formalism in [74, 39], which is possible due to the similarity between the caloron and 
monopole Nahm data.

The outline of this chapter is as follows. Some preliminaries are discussed in 
section 6.1. The caloron metric is calculated in section 6.2. The instanton and 
monopole limits of the caloron are discussed in section 6.3. A unified description of 
instantons, calorons and monopoles is thus achieved. Other aspects of the -.neon 
are commented on in the discussion. The appendix contains some technicalities on 
the (1,1,..., 1) monopole.

The manifolds encountered in this chapter are all of toric hyperKahler type, which 
property will be explained in this section. The simplest example is R4, where there 
is one torus (circle) variable arising from a frequently used 17(1) fibration over R3, 
physically interpreted as a monopole phase and position. It is presented in terms 
of complex row 2-vectors that feature in the ADHM matrix A and in the Nahm de­
scription of the k = 1 SU(n) caloron, cf. section 5.3. Specifically, for a 2-dimensional 
complex row vector <; = (<Ji,<2), describing R4, the metric and Kahler forms read
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In the present form, the Dirac string lies along the positive z axis, other gauz.o

ds2

(6.1.6)

dxa$ab ■ dxb +9

(6.1.8)

(6.1.9)for all a, b, c, i,j.

considerations of this kind that led to

6.2 The caloron metric

(~df2 + |f|(dV> + w(f) ■ dr)2 ) , 
\ln /

  1
2r

+ d£c
\ 47T

<5 = (^ + Qai, ■ dxb) A dx„ - i^atdxt A dx< 
47T

The potentials $ and Q are <pa independent, giving rise to N commuting triholomor- 
phic isometries d/d(pa, corresponding to shifts on the torus. Closure of the Kahler 
forms is equivalent to

" dx?'* = eiikd^*ab'
These equations are therefore called hyperKahler conditions [83, 33, 82], and gen­
eralise eq. (6.1.5). The metric in eq. (6.1.8) has an SO(3) isometry, acting on the 
vectors xa, that rotates the complex structures. Toric hyperKahler manifolds are 
torus bundles over (R3)N [37]. Physically, the R3 vectors xa are (relative) constituent 
monopole positions, whereas the torus describes the phases of the monopoles. In the 
Lagrangian interpretation of the metric, $ and Q denote retarded interaction poten­
tials for the constituents [37, 71] and it was -------------------------
the conjectures for the metric in [61, 63].

For practical computations of metrics the formal reasoning in section 1.5.2 is of lit­
tle use. Computing metrics on moduli spaces with the techniques presented there 
depends crucially on the construction of the Green’s function of the covariant Lapla­
cian and in the present situation, we do not even have an expression for readily 
available. We take a different route which uses multi-instanton calculus, suitably 
adapted to the caloron situation. This allows for calculating the metric in terms of 
the ADHMN data and makes it thus feasible to find a compensating gauge transfor­
mation or to perform the hyperKahler quotient.

in the present form, the Dirac string lies along the positive z axis, other gaug‘d. 
obtained by allowing for r dependent phase ambiguities. In terms of (r, t x, 
and Kahler forms on R4 read

1
4

I~< = (dt/r + w(f) • dr) /\df — ^df/\ dr.

The (7(1) isometry is imivalent to a linear action
16 —t/> + 2t, teR/(2rrZ). (6.1-7)

The general toric ir. perKahler manifolds [83] have coordinates consisting of - 
three-vectors x„ e R.!. oi = 1...., N, and N torus variables </>o, generalising the L ) 
in the previous example. Metric and Kahler forms read

(*"’)“* (^ + ^ud£d)’
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6.2.1

(5.2.1)

(6.2.2)

,2pi{pz-p'z") (6.2.3)

as

(6.2.4)

(6.2.5)

s>

+|^2tr2 /* 
Js'

Isometric property of the ADHM-Nahm construction.
We first recall that the computation of the metric on the moduli space of instantons 
on R4 can be entirely performed using ADHM techniques, as was explained in detail 
in section 3.1. Adapted to the SU(n) caloron situation, this will translate into the 
formalism to calculate metrics in terms of Nahm data. In this way, we generalise the 
results in section 4.5.

In employing the metric properties of the ADHM construction in be caloron 
case, one has -in addition to the deformation equation and gauge orthogee - the 
algebraic gauge condition eq. (5.3.2) to be satisfied

Z/1(i + 1)=PooZm(x)P-1.

The periodicity constraint requires for the tangent vectors to the ADIii'.' ■ ;ta in 
eq. (3.1.13) and the compensating gauge transformation in eq. (3.1.17)

Ip.p' Ip-l.p' —£p+l = ^■^p.p' " p'■

The compatibility of periodicity and nontrivial holonomy with the hyperKahler struc­
ture on the level of the ADHM-Nahm construction can be seen from the complex 
structures acting on Y and c as multiplication by —i, —j, —k on the right.

We define the Fourier transforms of the tangent vector

c(z) = y? exp(-27tipz)cp = y* 6(z - pm)c„, 
pEZ mEZ/nZ

8(z-z')Y{z) = £
P^EZ

and find after Fourier transformation of eqs. (3.1.14) the analogues of eq. (1.5.6) 
the deformation of the Nahm equation and a gauge orthogonality condition

J^(Z) = -i’t 52 tr2^KmCm + CmCm)5(2-Mm).

mGZ/nZ

^Vb(z) = 52 tr2(CmCm-4Cm)<5(2-Mm).

mEZ/nZ

To evaluate the caloron metric we use eq. (3.1.19) and closely follow the reasoning in 
section 4.5. By Fourier transformation, Corrigan’s formula is cast into

1¥Zt(x)Z;(x) =

-ia2tr2 I dz {[Y\z)Y\z) + f"’(z)y(z)+

cf(z) < c' > +c'f(z) < c >]/x(z,z)) 

dzdz' ((C(z) +J>x(z)]7I(z>z')[^»(z') + C'*(z')]/I(z',z)) ,
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where we introduced the shorthand notation

C(z) = c\z) <x>, = (27Ti)-1y*(z)£iI(z). (6.2.6)

(6.2.7)

+ < cf

c'fy»r' cf >< c'+

Xp exp(27ripz)

£W = 52 
m€Z/nZ

If

c >) , (6.2.8)

<c>).

6.2.2 Direct computation
In the direct approach a compensating gauge function 6X (z) = 23Pez 
has to be found to account for the tangent vectors

> - Mn.) , Y(z) = (&A{z) + .

(6.2.9)

In evaluating the integral over R3 x S'1, the 3q term gives no contribution because of 
periodicity. The term involving d? is evaluated by partial integration as a boundary 
term at spatial infinity, for which the asymptotic behaviour of the Green’s function 
fx(z,z') is needed. Sime '.he asymptotic expression for the Green’s function is inde­
pendent of n,

gM(Z,Zf) = itr2 (<?*?'
— |tr2<7i (

This proves that the metric and Kahler forms on the caloron moduli space can be 
computed as the metric on the Nahm data. In other words, for k = 1 SU(n) calorons, 
the Nahm construction is a hyperKahler isometry. A slightly modified proof shows 
this for monopoles of type (1,1,..., 1) and can be found in the appendix.

The isometric property is essential for what follows. The metric on the caloron 
moduli spaces can now be calculated in terms of tangent vectors to the space of 
solutions to the Nahm equations, with infinitesimal gauge transformations performed 
where needed. This method, used in section 6.2.2, is called direct as it concentrates on 
the gauge orthogonal tangent vectors to the moduli space. An alternative method, 
given in section 6.2.3, uses the fact that the moduli space of data is an infinite 
dimensional hyperKahler quotient. It proceeds by using part of the U(k) gauge 
symmetry to embed the moduli in a finite dimensional hyperKahler space. The metric 
on the moduli space is then found as the metric on a finite dimensional hyperKahler 
quotient, with the remaining gauge action to be divided out.

o' > + < c'f

2Le-27r|x||z-z'|+27rix0(z-z/) _|_ C?(|x|“2),
|®|

we can use, slight? v;..pted, the analysis for SU(2) in section 4.5. Combining the 
first two lines iu eq. (3.2.5) with the only surviving term of the third, we find the 
following gauge independent expression

A(^')==
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(6.2.10)

|Pmlwm(Pm) 'dpni | .

/ 1 \
1

(6.2.11)S =
1

(6.2.13)

Y = - ^-N^SiX. (6.2.14)

(6.2.15)

drm 
47Tl-m

^~On—1 

47Tl/m_i

small intervals [/rm

to be gauge orthogonal, eq. (6.2.4). The gauge orthogonality of Y(z) implies for the 
compensating gauge function <5A'(z)

1 <P6X(z)
2ir dz2

\-l 1 /

with unspecified entries zero. In addition we introduce the vector p = (pi, • • •, pn) € 
R3n (recall that y — (y\,... , 7/n) 6 R3n) and diagonal matrices

N = diag(i/1,...,i'„), W = ^-diag(wi(pi),...,wn(p„)), V
47T

+ 2<5X(z) <5(z — pm)|pm| =
mGZ/nZ

52 &(z~
m^L/nL

where we used eq. (6.1.4). This differential equation implies that <5X(z) is continuous 
and piecewise linear. Therefore, 6X(z) is fully determined by the values 6Xm '■■■ 1 ’akes 
at z — p,m, which are comprised in the vector 6X = (5Xi,. •., 6Xn) € . In 
the gauge chosen, all functions are either constants on the subintervals (p. ,., i), 
or fixed by values at z = pm. Therefore, the entire computation can conveniently 
be performed in terms of n dimensional vectors and n x n matrix operators ..cling 
thereon, at the cost of introducing some extra notation. For taking derivatives, we 
will use the n x n matrix

= 47rdiag(pi,.. • ,Pn)-
(6.2.12) 

Introducing the symbol V anticipates its later interpretation as potential. In the se­
quel, all matrix multiplications between n-dimensional objects are implicitly assumed. 
The transpose * acts only on the indices running from 1 to n.

The Nahm connection is now represented by the n dimensional vector

47T

where iAm is the value of A(z~) on (pm, pm-n). The Nahm equation reduces to p = S‘y. 
Similarly c(z) = EmeZ/nZ<5(2 - pm)c„, and T(z) = i Emez/nzX|M™.Mm+d(z)^n are 
fixed by

£m = &Qm + i^Xm,

Integrating the differential equation (6.2.10) for 5X(z) over
+ e], e 1 0, gives conditions on the values 5Xm. This yields

i (S'N^S + V-1) SX = (S1!'/-1— - V-'WS1 ■ dy), 
2tt 4%
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where

(6.2.17)

(6.2.18)

yty >= Y*NY using that each

yty

Ady • a.

(6.2.21)

i
47T Pm+1

m,rri G Z/nZ,
(6.2.22)

1+ ~ Pm+l

(6.2. W)
Eq. (6.2.15) is solved by

~ -- VS'G-‘^ - (1 - VS‘G~lS) WS‘-dy,

Equivalently writing

l,mz 
47rpm

-6Xm

we used that J —d26X(z)Idz2dz contributes

- <5X'(rtn-)) = - (7- (6*-"+l

+ GrrP".

dy)^ Ady-a,

VXXCVV l&X UliV  fixed. The metric and
moduli space of the uncentered caloron are now readily obtained 

ds2= dylG ■ dy + + W ■ dy)‘G~\^ + W ■ dy), (6.2.20)
47T 47T

drd) = 2( — + W ■ dy)‘ A dy — (Gdy)‘ A dy, 
4ir

G = N + SVS‘, W = SWS‘.

such that

Y = dy-5+A ------- -N~'S6X = dy • 5 + G-1(^ + SWS'dy),
4r 27f 4tt

where we defined G — X -f- SVSl. The integration over S1 to evaluate the metric 
on the Nahm data in eq (6.2.8) is carried out as < 1 - - - — — w
subinterval has length z/rn — pm+i — P-m- Thus we obtain

}tr2 < yty > = dy‘ ■ Ndy + (— + SWS‘ ■ dy)‘G~'NG~'(^~ + SWS‘ ■ dy), 
4tv 4tv

((Titrjji <y*Ay> = -±dy‘N Ady ■ a + ^JVG~‘(^ +SWS‘ ■ dy)')

Using the properties (6.1.4,6.1.6) of Cm, the contribution to the metric of c™ defined 
in eq. (6.2.14) is found. One obtains

tr2<ctxc>= (6-219)

dy1 ■ SVS‘dy + (— + SWS‘ ■ dy)‘G~lSVS‘G'1 + SWS‘ ■ dy),
4tt 47r

i<r,tr2ai <c*> A <c>=
-i(SVS‘dy)‘ Ady a + (sVS‘G~'+ SWS‘ ■

where it is used that in the gauge chosen the phases of C are 
Kahler forms on i

) - — (iXm - 6X,



The metric of the fc = 1 SU(n) caloron90

(6.2.23)

(5.2.24)m = 1,... ,n,

(6.2.25)

(6.2.26)Fc = (Sc,7Ve),

(6.2.27)

(6.2.28)m = 1,... , n, tc 6 R.7"m * ^~m 4" Vmtc,

= V, x W,

{d‘m = d/dyW which implies the Kahler forms in (6.2.21) to be closed and the caloron 
metric to be hyperKahler.

The metric has n commuting triholomorphic isometries,

a
drm'

reveals the form of G as given in [63]; thus we confirm the conjectured form for the 
metric in [63]. As is readily checked, from eqs. (6.1.5, 6.2.12) it follows that G and 
W satisfy the hyperKahler conditions (6.1.9)

~ 47r 52 r">e5'’ 
m€Z/nZ

of the caloron. Therefore, the caloron moduli space is a toric hyperKahler manifold, 
with dimension 4n. 3n coordinates describe the monopole positions and n phase 
angles parameterise the temporal position and residual t/(l)n“’ gauge invariance in 
the case of maximal symmetry breaking. FYom the uncentered caloron metric in 
eq. (6.2.20), all other metrics discussed in this chapter can be obtained by taking 
suitable limits. In the next subsection the caloron metric will be obtained using the 
hyperKahler quotient.

The non-trivial part of the metric is obtained by splitting off the centre of mass 
coordinate £ in eq. (5.3.14). To this aim, we express the metric in terms of £ and 
n — 1 relative monopole position vectors p,„, using that p„ = — P™ because 
of eq. (5.3.12). The two sets of coordinates are related by the n x n dimensional 
centering matrix Fc,

as G and W are r independent. The isometries correspond to shifts on lb- us 
Rn/(47rZ)n which describe the residual G(l)n~1 gauge invariance and the . :al 
position

(!)-'»

Here, the n x (n — 1) dimensional matrix Sc is obtained from S by omitting its 
last column, and we defined e = (1,..., 1)‘ e Rn. A tilde denotes from now on 
the restriction to the first n — 1 coordinates, e.g. p = (pi,... ,pn-\)‘■ New torus 
coordinates v = ., vn_i)‘ are introduced as well

The centered metric will be again hyperKahler, as splitting off the centre off mass 
metric amounts to taking the hyperKahler quotient under the 77(1) action
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l

6^-31
= Kam' + (W„1)mm' = wmm.+

\
^2

M M-' =F‘N~lFc =

its explicit form allowing one to take limits that correspond to massless

M = Ml,

1
4tr|p„r

/- + -
I n 11/1

*/1

that this action is a triholomorph;- . ■
mass of the caloron

(V„>)mm'

w„(A.)
4tf

FYom eqs. (6.2.20. 6.2.21) it is seen 
whose moment map gives the centre of

G’rei

<3 = 2df0 A df - df A d(+ 2(^ + Wtci ■ dp)' /\dp- (G„\dftf A dp. 
47T

The first terms give the centre of mass metric on 
the non-trivial part of the metric. Both are t..' 
invariance corresponding to spatial rotations.

_a R3 x Sl, the other terms represent 
toric hyperKahler, and have an - - ,

where m,m! = l,...,n-l, p„ = - £“=1 
as

The centered metric and Kahler forms now read

g = dCXe + dp‘G„t ■ d'p+ + )4>rel ■ d'p)‘G^(^- + • <W,
47F 47l

- 1 V- - -XX "’"S'"'- 4tr’
»nGZ/nZ

—1— + J-j

pm. The relative mass matrix .V is defined

Indeed, the phase • . .i . ; ■ are invariant under the t/(l) action and
coordinates on the i . whereas the fibre coordinate changes as Co

In the new ba> > e metric is expressed in terms of a relative
and relative intera< .ion . ^•utials

^mm' — (^m 4” ' * * 4” ^n — 1)(I ^m' * * * —l)

form > m', m, m'= 1,..., n — 1.

+

, GTe\ = M 4- Keb
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6.2.3

dA^ dA +2 dAt dX (6.2.34)

+2

M = Af/G. (6.2.35)

(6.2.36)

(6.2.37)Cm, ij) —> -0 + 2t, St,y

g = |Tr tr2 (dy'Ndy + 2d<fd<) , 
uJi = |Tr tr2 di (dy* A Ndy + 2dC} f\ d<() ,

HyperKahler quotient construction
We follow the approach in [74] for BPS monopoles of type (1,1,..., 1) and consider 
the right hand side of eq. (6.2.8) as the natural metric and Kahler forms on the space 
of caloron Nahm data A

dAf > A

Cm ->•

where t = (7i(^i),..., ft(/xn)) e Rn/(27tZ)n and = (^q,..., ^„)/(47rZ)n denotes 
the phases of Q. The lattices correspond to gauge transformations of type (5.3.17). 
Therefore the action of the restriction g0 of Q on Aq is equivalent to an Rn/(27rZ)n 
action on H" x C”'2. Thus we reduced the infinite dimensional hyperKahler quotient 
to a finite dimensional. This technique was also used for the (1,1,... ,1) monopole 
metric [74]. The metric on the moduli space of Nahm data can now be computed as 
a metric on a hyperKahler quotient of a finite dimensional euclidean space by a toric

as is natural from eq. (6.2.8). On Ao, the gauge action Q is restricted to the set 
So of gauge functions with piecewise linear and continuous logarithm. These are 
determined by the values h assumes at z = pm. Under these gauge transformations, 
A and Q change according to

u - — N y 2tt

As both Af and Q are infinite dimensional, it is not obvious that this procedure is 
well-defined. However, using the gauge action we can restrict to those solutions Afo 
to the Nahm equations which have constant A0(z) on the subintervals (/tn,gm+i). 
As the Nahm equations force A,(z) to be piecewise constant, there are n quaternions 
specifying the Nahm connection, denoted by y G H". The singularities (or matching 
data) are described by n complex two-component vectors Qm, denoted by £ 6 Cn'2. 
Hence, A/o is a subset of the space _4o = Hn x C"'2 of possible piecewise constant 
data, which has metric

9a = Jtr2 ( 

u/j = |tr2 a, (< dA* A dA

One then notes that the group of (7(1) gauge transformations on S' acts triholo- 
morphically on A. The zero set of the associated moment map is formed by the set 
Af of solutions to the Nahm equations, which after quotienting by the f/( i) gauge 
action g on the dual S1 gives the moduli space of Nahm data. By virtue of eq. 16.2.8) 
this quotient is isometric to the caloron moduli space,

>)• 

dX >) .
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(G.2.38)

(6.2.40

— +dylS -WV-'W ■ S'dy

4.7
+ S'N-'Sy'k^N-''^- - l-’H S'-.iy' 

4w
(6.2.®'

M = M/Q = Xo/So = /r1(0)/(Rn/(2rr)n).

The metric on /z-1(0) reads

ds2 = dy‘(SVSl + N) ■ dy ++ W • S‘dy)‘V-l(^ + IV • S'dy) + dj^.Vd^. 
4tt 47T

cj = 2(-----F VV • dy)* A dy — (Gdy)* A dy. (6.2.41
4?r

The n vector

group action. To do this we follow [39]. From the metric and Kahler forms on A>j. 
determined by inserting eqs. (1.5.2, 6.1.6) in eq. (6.2.36),

ds2 = dy^Ndy 4- dp*V • dp 4- ( —— 4- IV • dp)*V~x(^~ 4- IV • dp), 
47T 47T

= -(Ndy)* A dy + 2(NdyQY A dj/4- 2(^ 4- IV • dp)* A dp - (Vdp)* A dp.
47T

the action (6.2.37) is seen to be triholomorphic. The moment map for this Rny (2ttZ 
action reads

y ■ <7 = ~S‘(y — y) — SitfPC (6.2.39)
4 IT

where P = (Pt Pnj‘. and has a zero set /I-1(0) given by the solutions .4 cor- 
responding to p — S*y. Therefore, the space of piecewise constant solutions to the 
Nahm data is (A, Q G jV0 = M-1(0) C Aq. The moduli space of Nahm data is this 
set quotiented by the reduction of the gauge action in eq. (5.3.15). or equivalently 
Rn. Hence

T = S^- + Ny0, (6^.®
47F 47T

is invariant under the Rn/(27rZ)n action (6.2.37) and can therefore be used as coordi­
nate on the quotient p,~1 (0)/Rn = A4, together with y. Cotangent vectors in\'ol\"."£. 
di/j have a vertical component, i.e. lie along the Rn/(27rZ)n fibre. The hor:rcn:^C 
and vertical part of the metric are separated by inserting yo = -1(~ — Sv' ana
completing the squares to obtain

ds2 = dy‘G-dy+^N-'-'
4tt 4tt

dr
-(S‘N-'— - V'WS‘ ■ dy)‘(V4tt
+lp‘(V-1 + S‘N-'S)V>,

where the one-form denotes the component along the R"/(2<tZ)" fibre'

dib¥’=/ + (V
4rr

Horizontal projecting to the metric 
the last term in eq. (6.2.43) and

+ S‘N-'S)~lV-'WSt-dy-(V-' +S'N-'S) 'S*.V . (6.2.44)

on /7-1(0)/(R’*/(27rZ)M) amounts to di>vax\v.-.\< 
one obtains (after reorganising) (he met tie the



The metric of the fc = 1 SU(n) caloron94

Instanton and monopole limits of the caloron6.3

m = 1 n — • (6.3.1)F-'GCF-1)1 Pm * 0,

+ Wrel ■ d'p),

(6.3.3)

caloron moduli space M given in eq. (6.2.20). For the Kahler forms, this projection 
is generally not necessary: eq. (6.2.41) is precisely the Kahler form in eq. (6.2.21). 
This is a manifestation of the degeneracy of the Kahler forms along the gauge orbit, 
needed for the hyperKahler quotient to be well defined.

. . we 
elative

________________ .)•

resulting in the asymptotic form for the non-trivial part of the metric and Kahler 
forms

From the caloron metric, other toric hyperKahler manifolds can be obtained by • aking 
suitable limits. For large T or equivalently all pm small, one expects the >.?' ric to 
approach the moduli space for k = 1 SU(n) instantons on R4. To study this 
consider the centered metric eq. (6.2.33). For small pm, the elements of tb 
mass matrix M in eq. (6.2.30) are dominated by the p”1 terms in V^ehe

//limit = dplVTe\ • dp + (-— + VVrel • dp)1 V / ( — 
47T 47T

dJiimit = 2(^ + )A>rei • d'p)1 f\d'p- (Vnld'p)1 A, d'p. (6.3.2)
47T

The caloron with trivial gauge holonomy has the same limiting metric, as follows 
directly from taking the limit iq,..., i/„_i —> 0, i/n —♦ 1 of the caloron relative mass 
matrix in eq. (6.2.32). The phase variables are now given by vm = rm + ... + rn_j € 
R/(4ttZ), cf. eq. (6.2.27). The Kahler forms Wumit are closed, since the hyperKahler 
conditions (6.1.9) are satisfied

VpG,el = Vp X VVre|, 

hence the limiting metric for large T is hyperKahler. It is known as the Calabi metric.
This limit was discussed in [63] using indirect arguments. With the techniques 

presented in this chapter, it is easy to prove explicitly that the limiting metric is 
indeed the metric for both the ordinary fc = 1 SU(n) instantons on R4 and the 
calorons with trivial holonomy. It follows immediately when realising that the 4(n— 1) 
dimensional Calabi space can be obtained as the hyperKahler quotient of H" by 
a t/(l) action [39]. This quotient emerges naturally from both the construction 
of the charge one SU(n) instanton and the trivial holonomy caloron. First note 
that there is a one to one correspondence between the ADHM data of the fc = 1 
SU(n) instanton and the Nahm data of the trivial holonomy caloron in the G gauge 
with constant Ao(z). The latter are given in terms of (f,C) G H x Cn'2 as A(z) = 
2ivi£, A(z) = <5(z)C and directly translate into ADHM data X = Q, B = £ for the 
instanton. With only one subinterval, the metric on the Nahm data now reduces to 
the expression for the instanton (3.1.32). Having restricted to constant Ao(z), the

rel 
1
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(<7,<u) = (ffn.Wn) + (<7mi<S|n)-
Here the removed monopole is described by the metric </„

remaining transformations in Qa leave £ invariant, apart from confining to the circle- 
through g(z) = exp(27riZz), I e Z. For their action on the matching data only the- U< 1) 
formed by the values g(0) is relevant. Therefore, in both cases the nontrivial part of 
the moduli space is the quotient of C"'2 (with g = itrjdC*^, = Jtrj (&,dCt dC,)) 
by the 1/(1) action

Cm —e'\m, Vv, — f,„ + 2t. m = l,...n, t 6 R/(2rrZ). (6.3.4)
(Identifying C2 and IK. • hi • quoti. u'. is readily seen to be equivalent to that discussed 
in eq. (36) of [39]). Th-- :'•?.• . aiding moment map, zero set and invariants are 
given by

mGZ/nZ

Expressing the metric on the zero set in terms of invariants and the terms invoking 
dipn describing the fibre part, one obtains [39] the Calabi metric in eq. (6.3.2).

The Calabi metric has an SU(n) triholomorphic isometry, reflecting the SL (n) 
gauge symmetry of the k = 1 instanton and trivial holonomy caloron. As explained 
in section 6.1 for the instanton, it emerges as the SU{n) acting on C, in eq. (6.3.4) on 
the left, commuting with 1/(1), and descending to the quotient. A direct calculation 
using a compensating gauge transformation gives the same result.

In sections 4.5 and 5.5 it was explicitly shown from the action density that remov­
ing one of the constituent monopoles of the caloron to spatial infinity, |j/n| —> oc turns 
it into a static selfdual SU(n) solution, i.e. a monopole in the BPS limit. Indeed, 
this limit corresponds to the compactification length going to zero. The Nahm data 
suggest that the remnant is the (1,1,..., 1) monopole. We will show indeed that the 
metric in this limit has the required form.

Removing a constituent is described by a hyperKahler quotient. Consider the 
1/(1) action that changes the phase of the mth monopole in the uncentered caloron

Tm — rm +1, t e R/(4?rZ). (6.3.61
It is a triholomorphic isometry as follows from eqs. (6.2.20, 6.2.21). Its moment 
maP Mfix is exactly the position of the mth monopole, /7nx = j7m/(’l*r)- I herefonx the 
metric on the quotient, the caloron moduli space with the mth constituent fixed. is 
hyperKahler irrespective of its position. For finite |$n|, the resulting metric on the 
quotient fi^(ym)/^ is complicated, and no longer SO(3) symmetric. Removing the 
constituent, |?/m| —> oo, i.e. fixing it at spatial infinity, gives the hyperKahler metnc 
of the remnant BPS monopole, with a simple form and SO(3) symmetry restored

The metric and Kahler forms with the nth monopole far awj\y, in which ease 
Pi^Pn1 0» reads

and Kahler forms ujn = dr/(2tt) A dyn — i>ndyn A dy,„ and the remnant by

9m = dym‘Gm ■ dym + (^ I W,„ • d//,I
47T 4TT

0, vm = ipm - ipn, m=l,...,n—1. (6.3.5)
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(6.3.8)

where

-1
Sm = G Rn-l.n-2, (G.3.10)

1

/
P3

Kn — (6.3.11)
____ 1_

Fm = (Sm, i7Vmem ) eR"-1'"-1, (6.3.12)

= (^) (6.3.13)

The mass matrix in this basis is given by

(Pn-1))/(47T),

(6.3.9)

Ji
P2

■4 =

F^Fm = (

i(Gmdym)t A dym + (-^ + Wm • dym)‘ A dym,

Pn —2 Pn —1
1

8 1
Pn-l

Pn —1

The vector potential Wm has a similar structure. The metric in eq. (6.3.8) is that of 
the uncentered SU(n) monopole of type (1,1,..., 1). The calculation of the metric on 
its space of Nahm data was performed in [39, 74], Details on the Nahm construction 
of the (1,1,..., 1) monopole and a proof of its isometric property as well as an outline 
of the calculation of the metric can be found in the appendix to this chapter.

To connect with [61], we have to centre the monopole. We introduce

-J
More explicitly, the potential term in eq. (6.3.8) reads

Gm = Nm + SmVmS‘m, Wm = SH.WnA, 

KT1 = 4?rdiag(p2,... ,p„_i), lVm = diag(w2(p2),... ,wn 

Nm = diag(iz1,..., r-n-j),

J/m = Pm = (P2, ..,P„-1)‘, T„ = (Tj , . . . , Tn„; ■

\

where em = (1,..., 1)‘ e R"-1 and v = vm denotes the mass of the monopole. 
The relative position variables pm are reinstated and the centre of mass R3 position 
is separated off using

Mm*
V

± + ±P2 P3

( fZ ) ’ ~ V 'Wm'
' m=l
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"3"2

■C =
-1- + -^

(6.3.15)

^d^m • d£m + V d^Q'tn 9 m» (6.3.16)

6.4 Discussion

(6.4.1)

l/2

9m

where the nontrivial part

9m = dp^Mm + Vmydpm + (^ + Wm-dpm)\Mm+Vmr\  ̂+ Wm-dpm) (6-3.17) 
47T 47F

is the Lee-Weinberg-Yi metric [61]. It is of toric hyperKahler form. Thus we proved 
that the (1,1,..., 1) monopole is a limit of the caloron, identifying the static remnant 
in section 5.5.

£o,m — Tm- 
m=l

In the new coordinates, the uncentered metric is the sum of the centre of mass and 
relative metric

Tm - Fm Q™ ) ,

(P1 + ... + pm)(pm,+1 + ••• + i/„-i), form'>m.
(6.3.14) 

Furthermore. ; ii. - . r-e torus coordinates Xm = (X1.--.Xn-2) are introduced, as 
well as a global €7(1) phase (o,m>

Mm = K.

"2

+ u

Since the metric describes the Lagrangian for adiabatic motion on the moduli space 
[70], it reflects the interactions of the monopole constituents. The constituent nature 
of the caloron solution, easily extracted from the action density, eq. (5.2.3), should 
therefore also be reflected in the metric.

This density allow for an unambiguous identification of elementary BPS mono- 
poles as constituents of calorons, and (1,1,..., 1) monopoles, as in the limit where 
rm vi for all I / m the action density approaches that of the single BPS monopole, 
see section 5.5. The corresponding limit in the uncentered metrics reveals

= vmdym ■ dym + ~~dr^

for the part describing the mth constituent, as all interaction potentials approach zero 
with the other constituents far away. Eq. (6.4.1) is the flat metric on R3 x S'1, the 
twofold cover of the moduli space for the elementary BPS monopole. Therefore the
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Qfl ”2dp)2, (6.4.2)£/(/>) =

limit of the (cover of the) caloron moduli space -corresponding to all monopoles well 
separated- can be seen as a product of elementary BPS monopole moduli spaces.

We obtained the metric for the k = 1 SU(n) caloron assuming symmetry breaking 
to the maximal torus (7(1)"-1 with arbitrarily chosen holonomy eigenvalues pm In the 
situation of non-maximal breaking, some of the eigenvalues of the holonomy become 
equal, resulting in some monopoles acquiring zero mass. The form of the relative mass 
matrices defined as inverses suggests that dramatic things happen when one or more 
of the constituents acquire zero mass. However, as is clear from the explicit forms of 
M, Mm in equations (6.2.12, 6.2.32, 6.3.9, 6.3.14), all limits can be taken smoothly. 
This assertion was explicitly checked for the trivial holonomy caloron, with all b’.u ■ 
monopoles having zero mass. Therefore one can study most efficiently all s ..< ? 
breaking patterns, both for k = 1 calorons and for monopoles of type (1,1. -st 
by inserting the proper values for p,„, rather than having to calculate the rm . r 
each case separately. From the ADHM-Nahm construction (3.1.3, 3.1.4), tic- ■ - .'■•') 
symmetry is seen to leave the holonomy invariant. It will descend to the qir > 's :;1 
the hyperKahler quotient construction of the metric, and therefore, the r..- . will 
be SU(N) invariant as well, just like in the case of the trivial holonomy caloron. As 
the explicit form of the metric can readily be found by inserting eq. (5.5.4) in the 
mass matrices (6.2.12, 6.3.9), it will not be given here.

The fact that the SU(n +1) (1,1,..., 1) monopole and the k = 1 SU(n) caloron 
both consist out of n constituent BPS monopoles in combination with the fact that 
the former can be obtained out of an SU(n + 1) caloron, suggests a great similar ity 
between their metrics. We consider the relevant situation for quantum chromodynam­
ics, the SU(3) caloron. Removing one monopole to infinity gives the SU(3) monopole 
of type (1,1). There remain two constituents, of masses proportional to ^1,^2- The 
relative metric of the (1,1) monopole is Taub-NUT [19, 35, 60] with positive mass 
parameter, as follows from eq. (6.3.17)

gTN = U(p)dp2 + ■ dp)2, U(p) =
4tt 4tt 1/1 -I- Vz 4tt|p]

p denoting the separation of the constituents, <2 = 1. The relative metric for the 
SU{2) caloron is also a Taub-NUT space, as proven in section 4.5. (The metric 
obtained there in eq. (4.5.29) checks with eq. (6.4.2) apart from the normalisation 
4tt2, as up2, T in section 4.5 is related to |p|, V' in eq. (6.4.2)). However, the interaction 
strength, depending on the distance between the monopoles, for the caloron is Q = 2, 
twice that of the 57/(3) monopole. Both solitons can be considered as built out of two 
interacting constituent BPS monopoles, and have a four-dimensional relative moduli 
space. As each matching point in the Nahm construction gives rise to an interaction 
between monopoles of distinct type, this is to be expected. In [58, 59] this was 
attributed to the fact that the constituent monopoles in the 57/(3) (1,1) case are 
charged with respect to different 77(1), whereas for the caloron, they are oppositely 
charged with respect to the same 77(1), generated by • r.

However, the true moduli spaces of the k = 1 SU(2) caloron and the 57/(3) (1,1) 
monopole are different. In the relative moduli space of the k — 1 5(7(2) caloron,
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l»> - = 2

li/i — 3Z2I = 0

there is a Z2 to be divided out to obtain the Z2 orbifold of Taub-NUT space,

(6.4.3)S1

(6.4.4)

The singular point, the apex of the cone, corresponds to p = 0 when the constituents 
are on top of each other and one is dealing with an ideal instanton (as depicted in 
figs. 4-3, 4-4). Thus the orbifold singularity corresponds to the delta-function action 
density. For the St/(3) (1,1) monopole, the moduli space is [35, 60]

R x Taub-NUT
Z

^SU(2)

A4xr=K3x

= R3 x

Figure 6-1. Energy density profiles for the 5(7(3) (1,1) monopole with various inter­
monopole distances |j/i — j/2| = 2,1,0 on equal horizontal and different vertical scales. 
The asymptotic value of the Higgs field corresponds to (mi>M2,M3) — (—The 
maxima correspond to 8 = 125., 169. and 1039. respectively.

where R/Z replaces the 51 in eq. (6.4.3) and there is no such finite discrete sym­
metry to be divided out. We therefore can go smoothly to the origin of Taub-NUT

Taub-NUT
x Z2
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Appendix A:

A(2) = y? <5(2 - MmKm, Dx(z) = <z„£)£(z) = -y- + A(z) - 27riz, 
^2 dZ

(6.A.1)

(6.A.3)

(6.A.4)

(6.A.5)

Pm — (6.A.6)

with the inner product defined as in eq. (6.A.3). Performing all monopole calculations 
in terms of A(z) and v(z), we can copy the caloron formalism. In particular, it follows 
that for eq. (6.A.4) to be selfdual, At(z)A(z) should commute with the quaternions. 
This is equivalent to the monopole Nahm equation

Its solution A,(z) can be written in terms of n-1 position vectors ym, pm = 
comprised in ym = (yi y„)1,

n-l
= 27Tt 52 S(Z - Pm'lPln- 

m=2

v(z) = f -S* V 
\ iM*) )

where A(z) is now defined on [/z;, p„]. The Nahm construction is performed in terms 
of the normalised zero modes v(x) of A(z)

where ^x(z) = (V4(z),... , V>J(z)) contains the n two-spinors defined on the interval 
[/q,p„], and s G C"-2,n. (The equation for ii>™(z) is readily seen to have n solutions 
for fixed sx [54]). Though the monopole is a static solution, it is preferable to have 
Zo included as a dummy variable, the z0 dependence trivially being implemented by 
n(z) = e2ntx°zv(x), so as to write concisely

Ap(rf) = (4>(z), A(z)) = v,(z)i9a,v(z),

space. Indeed, an energy density profile of the (1,1) monopole reveals that the two 
constituents can be placed on top of each other while the energy stays finitely dis­
tributed. This is depicted in figure 6-1, which was constructed using eq. (5.5.1).

^£)t(z)^(z) + £ J(z- = 0, (6.A.2)
m'=2 

fMn
ut(x)v(z) = s*Sj + / dz^x(z')ipx(z') = 1„, 

•'Ml

The (1,1,..., 1) monopole
The Nahm construction of the (1,1,..., 1) monopole is similar to that of the A = 1 
SU(n) caloron. The main difference is that the circle is replaced by the interval 
[MiiMn]- For the (1,1,..., 1) monopole, the singularities reside at z = /z>.......Mn-i
[76, 54, 99]. Like for the caloron we introduce A* = (A*(z), AjZ)t(z)),
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implying

(6.A.7)

A(z) (6.A.8)m = 2,... ,n - 1,Gn

(6.A.9)

(6.A.11)

/x(2,2') =
0

Cn- 1

0

A> = 2tt; 52

Like for the caloron, there is a gauge action on the Nahm data

' 1 d
.27r? dz

](2)&

Am

7re2irix0(.z-z'')

rm4>

(A1,...,A„_I)‘ = 2W(A-1^ + j/nl-a),

whereas transformations to other gauges are realised by

/x(z, 2') -» S(2)/x(2. 2')s(2')*- ffW 6 &>•

The boundary condition for the monopole Green’s function is determined by the 
requirement that be a hermitean operator, therefore the eigenfunctions of the 
left-hand side of eq. (6.A. 10) vanish in the endpoints. This imposes by standard 
Sturm-Liouville theory

A(z) + dz

fX^Z,) = fX^n.Z,) = 0 (6A-12)

for the Green’s function. This boundary condition is automatically satisfied when we 
obtain the monopole Green’s function from the caloron Green’s function, taking the 
limit |i/n| —» oo. One obtains

----------An—2 ’ ‘ ,

(6.A.13)

with gauge group Qm - {f/(z)|<7 : z -► e"ih(z) G (7(1),p(mi) = p(Mn) = 1}- The 
condition at the endpoints is required for id/dz to be hermitean on the space of 
gauge functions. Hence, for the monopole = {<?(z)|<7 ■ z —♦ e~'h^ G t/(l),^(/2i) = 
P(Mn) = 1}- The £in action can be used to set Aq(z) constant, and to undo the t/(l) 
phase ambiguities in relating topm,m = 2,... ,n — 1, hence can be considered 
to have fixed phase. The monopole Nahm data can then be expressed in terms of 
n — 1 quaternions

denoting the value A(z) takes on
In the gauge with constant Aq(z), the Green’s function fx in the monopole Nahm 

construction is the solution to the differential equation

~Xo} + 57 rm + — 57 ^(z-p,m)\ym ~ j7m-l| ? fx(z,Z )

' m=l m=2 J

= <5(z-z'), (6.A.10)
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(6 A. 15)(ff,I5)(Zm,Zj =

(6.A.16)

(6.A.17)

(6.A.18)

(6.A.19)

dz 
[Pl.MnI

dzdz1 I S^CTn'Hz — fl,-ZuvAx) = [ I

= -tJT J2tr2CT‘(Ci.cm + c!XJ<5(c - Mm), 
m=2

4-^oW = -i’r^2tr2(Ct,cm-c*nCm)<5(z-^m).

m=2

To derive the analogue for monopoles of Corrigan’s formula we trade each matrix 
multiplication in eq. (3.1.19) for an integration over [/zj, /zn] or an inner product of 
type (6.A.3) and use the trivial Xq dependence of v(x) and fx(z, z') for the monopole 
to obtain

IYZl(i)Z^(z) =
- |V2tr2 /

^d3xTrZ^x)Z'm(x)

The formalism to compute the metric is copied from the caloron case. A tangent 
vector to the monopole moduli space is given by

in terms of a tangent vector to the moduli space of monopole Nahm data

C = ( , c(z) = J2c„<5(z - m™),

satisfying the deformation and gauge orthogonality equations

tm<) + ^(z)Y(z) I /I(z,z')o-M^I(z') - h.c.

for fim < z' < z < fim+i, m = ,n — 1. Here Am is defined in eq. (5.4.23),
vm(z) and wm(z) in eq. (5.4.33) and in eq. (5.5.2). Indeed, the monopole Green’s 
function in eq. (6.A. 13) satisfies the boundary conditions eqs. (6.A. 12).

The metric on the monopole moduli space is determined in terms of the L> norm 
of gauge orthogonal solutions Zm to the linearised Bogomol’nyi equations. With Ao 
identified as the Higgs field, and assuming all fields and zero modes being static, the 
conditions for a tangent vector to the monopole moduli space are identical to those 
for the tangent vector to an instanton moduli space, hence Zm satisfies

Cad’(A)Zn, =0, (fi. A. 14)

where do acts trivially, but is kept to make later derivations more transparent. Metric 
and Kahler forms read

([y*(z)y'(z) + y"'(z)y(z)

+c’(z) < c' > +c'f(z) < c >]/x(z,z))

+ |V2tr2 / dzd/([C(z) + 3>(z)]/^
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+
c'»c'+

(6.A.22)

'z - (<5Cm + i<m5X(pm)) , (6.A.21)cW = £,5(^-pm)e=£<5(. 
m=2 m=2

i £ X^+.lK. = (<5A(z) + ))

It vanishes in the endpoints z = p.\, z = fi„ and satisfies

1 <P6X(z)
2tt dz2

where now C(z) = £"~>2c^m6(z - y^z) = (2ni)-lY^z')Dx(z) and < H >= 
Compare eq. (6.2.5). The monopole metric is evaluated from eqs.

(6.A.15,6.A.19) by partial integration, along the lines of the derivation in section 
6.2.1. The monopole Green’s function fx(z,z') behaves as in eq. (6.2.7). Thus we 
arrive at the isometric property of the Nahm construction for (1,1,..., 1) monopoles,

9M(Zm, Z’m) = |tr2 (< T; Y' > + < c* >< c' > + < & >< c >) ,

+ < Cf >< c' >- <c'f >< c >) (6.A.20)

An infinitesimal gauge f - on 6X(z) is applied to obtain gauge orthogonality
of the tangent vector C

+ 2<5X(z)£<5(z-pm)|pm| 
m=2

= £ 6(z - Mm) - |pm|Wm(pm) • dp J .
“ [47ri/m 4?ri/m_i J

Therefore, it is piecewise linear and fixed by 6X = (5X2, • ■ ■> 5Xn-i)'> =
m = 2,..., n — 1 where

~(StnN~ISm + Vm-')<5X = ■ dym), (6.A.23)

(see eqs. (6.3.9, 6.3.10) for definitions). With the compensating gauge function 
found, the remaining manipulations to retrieve the uncentered monopole metric in 
eq. (6.3.8) from eqs. (6.A.20, 6.A.21) differ only in the m label and the dimensions 
of the matrices from those in section 6.2.2 and are therefore not repeated here.

To compute the metric using the hyperKahler quotient construction we follow and 
summarise the reasoning in [74, 39] and section 6.2.3. We have to find the metric on 

where is the subset of the space v4m of monopole Nahm data containing 
the solutions to the Nahm equations. Making use of the £7(1) gauge symmetry for 
the monopole in eq. (6.A.8), we can restrict ourselves to piecewise constant A(z), 
characterised by n — 1 quaternions corresponding to its values on the subintervals. 
Together with the n — 2 complex two-vectors giving the matching data, these form 
the space Am = HF’1 x Cn“2-2 9 (?/m, Cm)- This space has natural metric

g = |Trtr2 (dy]mNmdym + 2d(^d(m) • (6.A.24)
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(6.A.25)tm e R’

with moment map, zero set and invariants given by

Pm = S‘mym, (6.A.26)Zm 4tt iVmyom + Sm^i

V"m + 2tm,Vm * Vm n *^m£m,
Z7T

27r5",fm+2^’

A suitable notation being established, the algebra to obtain the metric and Kahler 
forms for the uncentered monopole in eq. (6.3.8) is now nearly identical to the hyper­
Kahler quotient construction of the uncentered caloron metric, and one readily re­
trieves eq. (6.3.8). Actually, one only has to insert the m labels at appropriate places, 
just realising that the dimensionalities of the objects are slightly different.

The set of piecewise constant solutions to the Nahm equations form A/o.m, which is 
a subset of -4om. The vector part of a piecewise constant solution to the monopole 
Nahm equation (i.e.A/'m.o) is fixed by eq. (6.A.6). We introduce the phases of 
as tl>m = (V’a, ■ • •, V'n-i)1. Having gauge fixed to constant A(z), the residual £7(1) 
gauge symmetry consists of gauge functions having piecewise linear and continuous 
logarithms, which vanish in the endpoints z = and z — p.m. This results in an 
Rn“2 action on Aom, characterised by



7 Fermion zero-modes and reciprocity

7.1 Fermion zero-modes

(7.1-1)

(7.1.2)'M* + 1) = VOQ'H.(x).

(7.1.3)

(7.1.4)

For the charge one caloron the zero-mode U'r(z) is the solution of

D’tyQ'I'^z) = -dp(c)M + - 27rizM)4'z(z) = 0,

subject to the periodicity constraint

*F(x) = 52 *?’(X + 1) = e
pGZ

is periodic up to a phase factor which is removed by a £7(1) gauge transformation.

#,(z) = e2’^o^(i) (7.1.6)

This is the relevant boundary condition for the Nahm transformation and compact­
ifications. Here is in the algebraic gauge, eq. (5.3.2). The z dependence can be 
trivially found as a plane wave factor,

The Weyl fermionic zero-modes in the background of the selfdual connection form 
the starting point in the Nahm transformation. The Nahm transformed connection is 
then calculated using eq. (2.1.2). In this chapter we will study these fermionic zero­
modes for the k = 1 SU(n) caloron and explicitly perform the Nahm transformation. 
We will thus retrieve A in rhe gauge with Ao — 0, using the Green’s function in 
chapter 5. As the Nahm data a;- .s .d as an ingredient in this calculation, we thus 
prove the involutive property of th-' Nahm transformation.

In the rest of this section we can ignore this z dependence and z denotes zq.
The caloron, considered as an instanton on R4 with infinite charge, has an infinite 

number of zero-modes, which can be computed within the ADHM formalism. They 
are given by eq. (3.2.6)

«'p(z) = l^-5(I)Ut(z)p,//:'’',e/J, *p(x+l)='Poo«'p-l(l), PCZ.
7T

differing from each other via multiples of the holonomy. The linear combination

(7.1.5)
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(7.1.7)= e'

4'*,(z)4'l(z) =

(7.1.8)

l^(z)|2 = (Um(z) | Am—1 * ' ' ' ^n] Wm(z)),

(7.1.10)

- z)rm]
/x(z, z) = (7.1.11)

Mm — Z < Pm+lt

(7.1.9) 
using that fx(z, z) is known from eq. (5.4.32). It should be noticed that the norms do 
not depend on the gauge, hence the results also hold for the purely periodic gauge, 
related to the algebraic gauge through a gauge transformation of type eq. (5.3.1) 
As a result one obtains the norms of the purely periodic 4'*+>(z) and antiperiodic 

zero-modes

l»(+M2 = -^A(o.o), l*M(*)l2 =
In figure 7-1 the norm squared of the fermion zero-modes in the background of 

an SU(3) caloron is plotted for various values of z, comprising the purely periodic 
(z = 0) and antiperiodic (z = |) cases. For comparison also the action density 
is given for the same configuration. Clearly, the zero-modes are localised around 
the monopole constituents that build up the caloron (cf. section 5.5), |'Pz(z)|2 has 
a maximum near j/m for pm < z < pm+1. This generalises the 51/(2) result of [31], 
where the zero-modes were localised around the two constituents. For z near the 
eigenvalues /in,, the zero-mode density becomes small and spreads out over the region 
connecting ym-i and ym. This is shown in figure 7-2.

The localisation can be easily established analytically in the limit of large |y,—y,+11 
for all i, in which case one finds, when z e [pm,Pm+i],

2tt sinh[2%(z - Pm)rm] sinh[27r(pm+1 
rm sinh[27ri/mr„]

making explicit that the location of the zero-mode is determined by the interval that 
contains the appropriate value of z. From the ordering in eq. (5.2.2) it follows that 
Hi <0 < fin, such that the periodic zero-mode is associated to the static constituent

is the solution to eq. (7.1.1) with the proper boundary condition. For finite temper­
ature applications one needs the anti-periodic combination

^-’(z) = e2’ri“O’l'®i(z)) «<">(z + 1) = -Pao^-Xx).

Combining eqs. (3.2.6, 7.1.6) results in

e2»i(p--p-.-')52yp,p' 

pp'

.Zn^'-^gZ^^y

e2x.xo(--'-z) ^2 e2’ri(P‘~P'2')’I>t(z)%,.(z) 

p.p*
1 2xixop'-x) 

4tt2

1 , 
-4ir2e'

from which one reads off the normalisation of the zero-mode
1
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I

< z = 0 < fi3 
periodic

H3 < z = 5 < + 1
antiperiodic

(in some gauge) at y,n, with < 0 < pm+i. This is precisely the condition for 
the existence of a zero-mode given by the Callias index theorem [16, 13] (see also the 
appendix of ref. [10]). Due to the static background (for well-separated constituents), 
time dependence of the zero-mode would be of the form exp(2?rifct) for k integer, 
shifting z = 0 by k, out of the interval that allows for a zero-mode.

Allowing for k = ±J, for which exp(2rriA:t) turns the periodic zero-mode anti­
periodic, we can have situations where this anti-periodic zero-mode is associated to 
one of the static monopole constituents. A specific example for St/(3) where this 
occurs is (pi,^2,M3) = (-0.48,-0.03,0.51), yielding (t'l.PS.i'a) = (0.45,0.54,0.01). 
Both the periodic and the anti-periodic zero-mode are associated to the 2nd con­
stituent. We note that, apart from the fact that the 3rd constituent is nearly mass-

Figure 7-1. Weyl zero-mode density: The action density (top) for the S£7(3) caloron, cut off 
at l/(2e), on a logarithmic scale, with (pi.pz.pa) = (—17, —2,19)/60 for t = 0 in the plane 
defined by jq = (—2, —2,0), y2 = (0, 2,0) and = (2,-1,0). Below the zero-mode density 
in the background of the 51/(3) caloron, for z = 1,0,—} (clockwise), on equal logarithmic 
scales, cut off below 1/e5. The zero-modes are localised around the constituent monopoles.

t I'J'.-f.-r)!2

Vi
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T I'fctol2

•A Cn—1 
0

less, both zero-modes are very broad since min(z — — z) = 0.03 for z = 0 and
0.01 for z = i. For St/(2) z = 0 is always midway between and /z2 and z = | 
midway between p,2 and p3 = 1 + /ri). When z coincides with the zero-mode is 
no longer normalisable, which is the origin of the delta function singularities in the 
Nahm transformation.

By removing one of the constituent monopoles to spatial infinity, the k = 1 SU(n) 
caloron is changed into the (1,1,..., 1) S£7(n) monopole, cf. section 5.5.1. Taking the 
corresponding limit in the Green’s function gives the Green’s function for the Nahm 
construction of the (1,1,..., 1) monopole as was shown in the appendix to chapter 
6), eq. (6.A. 13). It then follows immediately that the density of the Weyl fermion 
zero-mode in the background of the (1,1,..., 1) monopole is given by

Figure 7-2. Weyl zero-mode density for z — —± e (e = 3.33333 x 10“') at a logai it ;.:mic 
scale, cut off below 1/e6. The zero-mode density is considerably smaller than in lig’.r.v 7-1 
and is spread out over the region connecting monopoles 1 and 2.

-An~2 ■ ■ ■ A,„ | wm(z)),

(7.1.12) 
for < z < m — 1, ...,n — 1. Here Am is defined in eq. (5.4.23), um(z) 
and wm(z) in eq. (5.4.33) and in eq. (5.5.2). As for the caloron, the zero-modes 
are localised around the constituents, according to the Callias index theorem. The 
analytic proof for localisation in eq. (7.1.11) is valid for the (1,1,..., 1) monopole as 
well.

The adjoint fennion zero-modes 4'“i(z) in the background of the caloron and 
(1,1,..., 1) monopole, ?(1£>Jd4'ad(z) = 0 are given by the gauge zero-modes which 
were used in the computation of the metric in chapter 6, 'J'ad(:r) = <zMZM(z), cf. 
eq. (1.5.7). Corrigan’s formula in the form in eqs. (6.2.5, 6.A.19) gives an expression 
for the norm of these modes.



7.2 Nahm reciprocity 109

7.2 Nahm reciprocity
Performing the Nahm transformation amounts to calculating the integrals

d4x (7.2.1)

A(c) = -

(7.2.3)

A, , (7.2.4)

which also implies

(7.2.5)

(7.2.6)oo.

The Nahm transformed connection is then readily obtained from eq. (7.2.2),

A^z) = 2«ym, (7.2.7)

for Mm < Z < Mm+1-

up to terms that are exponentially suppressed or of higher order in |x|-1. FYom the 
asymptotics of the various factors in eq. (5.4.32) now follows the asymptotics of the 
Green’s function,

V>(x) = *tr2-4„ • ■ ■ Ai -> Je2’^

d.fx’l't(x)-^-'I'z(x), At(z) = 2ttz [
JR3xS‘

• «/4i ^4n • ■ •

40(z) = f
JR3XS«

I •Am — 1 '

up to terms that are exponentially suppressed or of higher power in |z| This follows 
from a multipole expansion of the product of Am matrices,

I'm rm

••XMn- -Xm|WmW) -

using that the 9q term does not contribute to the integral over the circle. To evaluate 
the boundary term, we need the asymptotic behaviour of /x(z, z) in the limit of 
|£| —> oo. This requires a careful analysis.

The scalar potential il> has the asymptotic behaviour

A(z,z)^i^ + i|-iim)(l + O(lC2,e-|'’|f|1)) for |x|

m ^m^m

1 + |Pm-l • iff
1 - lMrn-1 • iff

[ d4x XidtfAz, z) 
27r

lim / dQdx0\x\2 (iifx(z,z) - XjXtdjfAz^)^ , (7.2.2)

as follows :r,,m eqs. (2.1.2, 7.1.3). The spatial components of A are evaluated by 
partial integration as a boundary term,

1 + ipm-i ■

1 - }Pm-l ■ jff
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(7.2.8)

AoW = 0. 7.2.9)

For the evaluation of Ao we use eq. (7.1.8)

= J™ rfp'I'lM'Mz)

-4jri(z' - z)eI*“o(2'-*)5b/I(z, z')
—(2rri)2(z' - z)2e2’r““<’'-l)/I(z,z')}.

We see that we have reconstructed the caloron Nahm data in eq. (5.3.16) le C. 
when the caloron is localised at the origin (see the discussion just below eq. (5.3. i ■ '). 
In this way we proved the full circle reciprocity: from the caloron Nahm data we 
reconstructed the Weyl zero-modes in the background of the caloron, which when 
used in the first Nahm transformation give back the original Nahm connection.

The contribution of the first term on the rhs., which is evaluated by partial integration 
can be shown to vanish. One just uses the asymptotic behaviour of dfx(z, z')/</;’ 
which is similar to that of A(z,z'). Also the other terms have zero contribution as 
follows after integration over the circle or in the limit (z' — z) —> 0. Therefor ti>e 
time-component of the Nahm transformed connection is zero,
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In this thesis periodic Yang-Mills instantons (or calorons) on R3 x S' were studied. 
In the introduction some elementary properties of instantons and BPS monopoles, 
classical solutions in gauge theories, were discussed. Instantons are selfdual Yang- 
Mills connections. BPS monopoles are selfdual static solitons in spontaneously broken 
gau;;? theories. When the circumference of the 51 is varied, the caloron interpolates 
bet-.  instantons (large circle) and monopoles (circle shrunk to a point) and it is 
ther.’fs that calorons are objects worthwhile to investigate. Other motivations for 
th?i 1; presented in the introduction were their relevance for finite-temperature 
fielc . and their serving as a toy-model for instantons on compactified spaces.

i' ■ ilorons were studied using a suitable combination of the Nahm transfor- 
mati.m and the ADHM formalism for multi-instantons. The Nahm transformation, 
which maps a selfdual connection onto a selfdual connection over a dual space, was 
treated in chapter 2 where it was explained how it maps calorons, selfdual connec­
tions on 1R3 x 5', to gauge fields living on a circle. The charge one calorons studied in 
this thesis are mapped to abelian gauge fields, which greatly simplifies their analysis. 
The Nahm transformation preserves the metric on the moduli space. The ADHM 
construction translates the study of multi-instanton solutions and their physical prop­
erties into a calculus of matrices satisfying a quadratic constraint that takes care of 
the selfduality. It was discussed at length in chapter 3.

In chapter 4 the detailed derivation was presented of the charge one periodic 
calorons with non-trivial holonomy for gauge group 5(7(2). A suitable combmation of 
the Nahm transformation and ADHM construction was used, in conjunction with the 
multi-instanton calculus in the ADHM formalism. This led to a quantum-mechanical 
scattering problem defined on the circle with a piecewise constant potential and 
delta-function impurities. The results rely on the feasibility to compute explicitly 
the relevant Green’s function for this problem in terms of which the solution can be 
conveniently expressed. Using the explicit form of the Green’s function, an expression 
for the gauge potential and action density could be derived for the 51/(2) k = 1 
caloron. Action density profiles reveal two lumps, corresponding with elementary 
517(2) BPS monopoles. The two constituents can be placed at arbitrary positions. 
Their masses are related to the eigenvalues of the holonomy. The magnetic charges 
of the two constituents are opposite, and therefore the caloron has no net magnetic 
charge. The instanton charge can be seen as arising from a subtle braiding of the two 
monopole worldlines. This revives an old argument due to Taubes. Also discussed 
were the properties of the moduli space, B’xS’x Taub-NUT/Zj, and its metric. 
The Taub-NUT mass parameter is determined by the eigenvalues of the holonomy. 
Further issues dealt with were how to retrieve topological charge in the context of 
abelian projection and possible applications to QCD.
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The techniques developed for SU(2) could be generalised to the gauge group 
StJ(n). It was profitable to keep to the calculations formal. Thus the corresponding 
Green s function problem could be tackled and a compact expression could be derived 
for the action density of the St/(n) charge one caloron with arbitrary non-trivial 
holonomy at spatial infinity. This was presented in chapter 5. It was shown explicitly 
that there are n lumps inside the caloron, each of which represents a BPS monopole. 
The masses of these constituents are related to the eigenvalues of the holonomy The 
constituents can be positioned at arbitrary locations and can have arbitrary phase. 
Removing one of the constituents, i.e. putting it at spatial infinity, corresponds to 
shrinking the circle to a point: the static monopole limit. What remains is the 
(1,1,..., 1) SU(n) monopole, whose energy density was determined by ir-.kmg. the 
corresponding limit in the expression for the caloron action density. This fon-an 
extension of the Rossi limit [88] to the gauge group SU(n). The magnetic ...arge 
of the remnant is opposite to the magnetic charge of the removed monopo-'. ! lie 
case of non-maximal symmetry breaking was considered, arising when two or more 
of the eigenvalues of the holonomy coincide. The main effect is the emergence of 
massless monopoles, which make up the so-called non-abelian cloud [62]. The non- 
abelian cloud parameter, featuring in the action and energy density and invariant 
under the enchanced unbroken symmetry group, is related to the relative positions 
of the massless constituents which themselves loose their identities.

Chapter 6 was devoted to the calculation of the metric of the charge one SU(n) 
caloron, discussed in chapter 5. The calculation was based on the isometric property 
of the ADHMN construction. This allowed the calculation to be performed on the 
space of Nahm data, rather than using the gauge connection. This is a considerable 
simplification. The result was a metric of toric hyperKahler type, in accord with gen­
eral principles and a conjecture by Lee and Yi [63]. An alternative approach mapped 
the calculation of the caloron metric to that of a metric on a finite dimensional 
hyperKahler quotient, giving the same result. The fact that the caloron consists 
of monopoles could be read off from the metric and by taking suitable limits, vari­
ous toric hyperKahler metrics could be obtained. In particular the Lee-Weinberg-Yi 
metric [61] for the (1,1,..., 1) monopole could be retrieved, for which the isometric 
property of the Nahm construction was proven as well. The instanton and monopole 
limits of the k = 1 SU(n) caloron were considered as an example of the interpolation 
by calorons between instantons and monopoles.

In chapter 7 the fermionic zero-modes in the background of the charge one SU(n) 
caloron were considered, which play a central role in the Nahm transformation. Us­
ing the ADHM calculus of chapter 3, the zero-mode density was given in terms of 
the Green’s function derived in chapter 5. The main result is that for well-separated 
constituents the fermion zero-mode is localised around a single constituent. For 
SU(2) the anti-periodic zero-mode is always associated to the constituent that car­
ries Taubes-winding. For SU(n > 2) this is also typically true in particular when the 
zero-mode is well localised. However, exceptions exist where both the periodic and 
anti-periodic zero-mode are associated to (possibly the same) static constituent(s),
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although this tends to be accompanied by nearly massless constituents, and rather 
delocalised zero-modes. By taking the monopole limit, the zero-mode density for the 
(1,1...., 1) monopole was derived. Using the zero-mode density, the Nahm transfor­
mation discussed in chapter 2 could be performed for the charge one SU(n) caloron. 
Thus the Nahm connection, input in the calculation of the zero-mode density, was 
retrieved. This demonstrates the notion of reciprocity and showed the Nahm trans­
formation to be an involution: when applied twice, it gives the identity.
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An atypical S(7(73) (1,1,..., 1) monopole
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Samenvatting

In de hoge-energiefysica onderzoekt men de elementaire deeltjes en hun wisselwer- 
kingen. Er wordt onderscheid gemaakt tussen krachtvoelende en krachtvoerende 
deeltji-s !.r krachtvoelende deeltjes zijn de materie-deeltjes. Deze zijn onderverdeeld 
in de leptonen en de quarks. Elektronen, muonen en neutrino’s vormen voorbeelden 
van leptonen. Quarks zijn de bouwstenen van de zg. hadronen. Dit zijn de baryo- 
nen, deeltjes zoals het proton en neutron, bestaande uit drie quarks, en de mesonen, 
bestaande uit een quark en een antiquark.

De deeltjestheorieen beschouwen de deeltjes als excitaties of quanta van velden. 
Het gebruik van velden vindt zijn oorsprong in de theorie van het elektromagnetisme 
en de zwaartekracht. De wisselwerkingen tussen elementaire deeltjes worden be- 
schreven door ijktheorieen. In deze theorieen hebben de materie-deeltjes een interne 
ruimte. Op deze ruimte werkt een groep van symmetrie-transformaties. Het ijkveld 
is gequantiseerd in ijkdeeltjes: de krachtvoerende deeltjes. Wanneer ijkdeeltjes een 
materie-deeltje raken, wordt de interne ruimte van het materie-deeltje gedraaid. Op 
deze wijze kunnen materie-deeltjes elkaar beinvloeden door een ijkdeeltje uit te wisse- 
len. Dit beinvloedt de interne ruimtes van beide deeltjes. Het eenvoudigste voorbeeld 
van een ijktheorie is elektromagnetisme. Hier is de interne ruimte een cirkel en de 
ijkgroep is de groep t7(l) van draaiingen op de cirkel. Die draaiingen veranderen de 
fases van de ijkdeeltjes. De volgorde van deze draaiingen doet er niet toe. De 1/(1) 
ijktheorie heet daarom een zg. abelse ijktheorie. Voor meer algemene groepen is deze 
volgorde wel van belang, bijvoorbeeld voor de groep van draaiingen van een pijl in 
een drie-dimensionale ruimte. (Beschouw voor dit laatste voorbeeld een pijl die in de 
positieve z-richting wijst. Na draaiingen over 90° om de y-as gevolgd door een om 
de z-as wijst de pijl in de positieve y-richting. Wordt de volgorde omgedraaid, dan 
is het eindresultaat een pijl die in de positieve z-richting wijst. De volgorde doet er 
dus duidelijk toe.) Deze ijkgroepen heten niet-abels. Het feit dat de volgorde van 
de draaiingen in een niet-abelse theorie van belang zijn vindt zijn weerslag in zelf- 
interacties van het ijkveld. Het ijkprincipe luidt nu dat de fysica invariant moet zijn 
onder plaatselijke ijkgroep-transformaties van de interne ruimten van de ijkdeeltjes.

Radio-actief verval wordt veroorzaakt door de zwakke wisselwerking. Samen met 
de elektromagnetische wisselwerking wordt deze binnen het kader van een theo­
rie beschreven door de zg. elektro-zwakke theorie. In deze theorie is de ijkgroep 
SU(2) x (7(1) gebroken naar C/(l), wat wil zeggen dat er een voorkeursrichting in 
de interne ruimte is. De overgebleven ijkgroep is nu kleiner dan de oorspronkelijke. 
Het veld dat het zogenaamde Higgs-deeltje beschrijft is verantwoordelijk voor de 
symmetrie-breking die de materie-deeltjes en sommige ijkdeeltjes hun massa’s geeft. 
De ijkdeeltjes in de elektro-zwakke theorie zijn het foton, dat massaloos is en die de 
elektromagnetische wisselwerking doorgeeft, en de massieve W*- en Z°-deeltjes, die
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verantwoordelijk zijn voor de zwakke wisselwerking.
De sterke wisselwerking die protonen en neutronen bijeenhoudt binnen de atoom- 

kern en de quarks binnen de hadronen wordt beschreven met een SU(3) ijktheorie, 
quantum-chromodynamica (QCD). In de bijbehorende interne ruimte zijn er drie rich- 
tingen, aangegeven met drie kleuren (die overigens niets zeggen over hoe de deeltjes 
er “uitzien”), rood, groen en blauw. De bijbehorende ijkdeeltjes worden de gluonen 
genoemd. Gluonen zijn massaloos en komen in acht typen voor. Als ze een quark 
raken, voeren ze dit van de ene kleur in een andere over.

De elektro-zwakke theorie en QCD vormen gezamenlijk het Standaard ' t '■ oor 
elementaire deeltjes. Het Standaard Model is welgedefinieerd en botsing n
zoals bestudeerd in experimenten met deeltjesversnellers kunnen er met t. ",w- 
keurigheid mee voorspeld worden. In deze theorie gebruikt men storingstr.: le
ontwikkelingen rond het vacuum, wat een betrouwbare benadering is, in Qt.'D i-ivn 
voor afstandsschalen kleiner dan het formaat van een proton.

Op grotere schalen eist men dat QCD verklaart hoe de quarks tezamen met de 
gluonen hadronen opbouwen. Uit de experimenten volgde dat quarks nooit als losse 
deeltjes worden waargenomen: ze komen altijd voor in een gebonden toestand in 
hadronen. Dit verschijnsel noemt men quark-opsluiting. De storingstheorie die zo 
goed dienst deed bij het beschrijven van botsingsprocessen werkt niet goed genoeg om 
het te verklaren. Een voiledig begrip en een wiskundig bewijs voor quark-opsluiting 
ontbreken nog. Wei is duidelijk geworden dat het niet-abelse karakter en daarmee 
de zelf-interacties verantwoordelijk zijn voor het quark-opsluitingsproces. Een aan- 
wijzing hiervoor is het bestaan binnen de theorie van configuraties die slechts uit 
ijkdeeltjes (de gluonen) zijn opgebouwd. Men kan zich nu een hadron voorstellen als 
een systeem van quarks bijeengehouden door een kluwen van gluonen. Voor dit soort 
berekeningen moet men de volledige ijktheorie beschouwen en verder gaan dan de 
storingstheoretische benadering.

Deze zogenaamde niet-perturbatieve effecten kunnen deels al bestudeerd worden 
door naar de klassieke oplossingen van de theorie te kijken. De klassieke oplossingen 
kan men onderzoeken door louter het golfkarakter van de elementaire bouwstenen 
te beschouwen en voorbij te gaan aan het deeltjeskarakter. Men onderzoekt dan de 
oplossingen van de bijbehorende veldvergelijkingen. Instantonen en monopolen, het 
onderwerp van dit proefschrift, zijn voorbeelden van klassieke oplossingen.

Instantonen zijn oplossingen binnen de imaginaire-tijdversie van de pure ijktheo­
rie. Imaginaire tijd verkrijgt men door de gewone tijdscobrdinaat te vermenigvuldigen 
met de eenheid i voor complexe imaginaire getallen, waarvoor geldt i2 = —1. Het 
gebruik van imaginaire tijd heeft bepaalde voordelen in een bepaalde beschrijving van 
de theorie. Hierbij sommeert men over alle mogelijke geschiedenissen die een deeltje 
kan volgen van het een punt in de toestandsruimte naar een andere. Dit is het zg. 
padintegraal-formalisme. Padintegralen houden bij welke effecten belangrijk zijn en 
welke niet en bevatten alle informatie over de dynamics van de theorie. Instanton­
oplossingen zijn paden die lopen van de ene vacuiimtoestand naar een andere . Tussen 
deze vacua bestaat een energiebarriere. Instantonen gaan niet over de barriere heen
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In de gebruikelijke theorie van het elektromagnetisme zijn magnetische monopo- 
len afwezig, hoewel ze wel toegestaan zijn in een enigszins uitgebreide versie van de 
theorie. De magnetische monopolen (enkelvoudige ladingen) fungeren dan als bron- 
nen voor magnetische veldlijnen. In een ijktheorie met een Higgsveld bestaan tijd- 
onafhankelijke oplossingen waarvan een bepaalde projectie asymptotisch een abelse 
magnetische monopool benadert. Zo’n configuratie heet kortweg een monopool. Een 
bepaald type monopool heeft behalve een magnetische lading ook een exact gelijke of 
exact tegengestelde elektrische lading. Deze (anti-)zelfduale oplossingen heten BPS- 
monopolen naar Bogomol’nyi, Prasad en Sommerfield. De Bogomol’nyi vergelijking 
die de BPS-monopolen beschrijft kan men zien als een speciaal geval van de zelfduali- 
teitsvergelijking voor instantonen, wanneer men de juiste identificaties van de velden 
maakt en statische oplossingen beschouwt. Dit verklaart voor een deel al de verwant- 
schap tussen instantonen en monopolen. Een belangrijke eigenschap van monopolen 
is dat een configuratie van diverse monopolen stabiel is. Dit komt doordat de elek- 
tromagnetische krachten de krachten gerelateerd aan het Higgsveld precies opheffen. 
Dit verklaart het bestaan van de zg. multi-monopolen. Later zal blijken, als een van 
de belangrijkste resultaten van dit proefschrift, dat een instanton gezien kan worden

maar gaan er “onderdoor”. Dit is in feite een quantum-mechanisch golf-effect en heet 
tunnelen. Instanton-oplossingen zijn de belangrijkste bijdragen aan de padintegraal 
bij deze tunnelprocessen. Voor ijktheorieen zijn instantonen die oplossingen waarvoor 
het elektrische veld precies gelijk is aan het magnetische (de veldsterktetensor is dan 
zellduaal) of precies tegengesteld hieraan (de veldsterktetensor is dan anti-zelfduaal). 
Instantonen bestaan als “kronkels” in de ruimte-tijd en verweven op een subtiele ma- 
nier d-'cnii'i'jen in de ruimte-tijd en draaiingen in de interne ruimte die gerelateerd 
is aan !<• :theorie. Men kan hierbij denken aan de Mobius-band, verkregen uit een 
Strom; , j . waarvan een van de uiteinden gedraaid is alvorens de uiteinden aan 
elka >: p n. De grote cirkel -de hartlijn van het systeem- representeert dan de 
ruinin ichting dwars erop is de gedraaide interne ruimte. De Mobius-band
is een envoudigste niet-triviale voorbeelden van de wiskundige structuur die
install 1..; ■■n beschrijft, die van een hoofdvezelbundel. Instantonen hebben een lading, 
het windingsgetal van de interne ruimte. Hun naam ontlenen instantonen aan het 
feit dat ze geconcentreerd zijn zowel in ruimte als in tijd: het zijn excitaties van het 
ijkveld rond een bepaalde plaats rond een bepaald moment in de imaginaire tijd. 
De zelfdualiteitsvergelijkingen voor de veldsterkte zijn een stelsel gekoppelde niet- 
lineaire differentiaalvergelijkingen en daarmee lastig oplosbaar. De niet-liueariteit is 
een gevolg van de zelf-interacties van het ijkveld. Door Atiyah, Drinfeld, Hitchin 
en Manin (ADHM) is er een constructie gevonden die het probleem afbeeldt op een 
stelsel vergelijkingen voor quaternionische matrices, dat veel eenvoudiger oplosbaar 
is. Quaternionen vornien een uitbreiding van de complexe getallen. Ze worden opge- 
bouwd uit combinaties van de eenheden 1, i, j, k, waarbij i2 = j2=k2=—1, ij=k=—ji, 
jk = i=—kj, ki=j=—ki. Quaternionen spelen een belangrijke rol in de beschrijving 
van instantonen en hun oplossingsruimte. Uitgaande van de ADHM-constructie is 
het mogelijk diverse fysische grootheden eenvoudig uit te rekenen.
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als een tijdafhankelijke multi-monopool.
Een aanpassing van de ADHM-constructie om monopolen te construeren is ge- 

vonden door Nahm. De Bogomol’nyi vergelijking wordt dan vertaald in de zg. 
Nahm-vergelijkingen voor de set van zg. Nahm-matrices die gedefinieerd zijn op 
een interval op de reele rechte. De Nahm-matrices worden geconstrueerd uitgaande 
van het gedrag van fermionische deeltjes in de achtergrond van de monopool. Deze 
zg. Nahm-transformatie kan ook geformuleerd worden voor instantonen op diverse 
vier-varieteiten met periodieke richtingen. Instantonen worden dan onder de Nahm- 
transformatie afgebeeld op zelfduale ijkvelden op een duale ruimte, afgezien van ••nkele 
singular! teiten.

Caloronen zijn instantonen op een vierdimensionale ruimte met een pe.i< . c-'ke 
richting, R3 x S1. Is de straal van de cirkel groot, dan hebben we van doen met •••••n 
instanton op R4. Is de straal van de cirkel daarentegen klein, dan wordt de oplossing 
statisch en het caloron wordt een BPS monopool. Caloronen interpoleren dus tussen 
instantonen en monopolen.

De ruimte van de parameters die oplossingen van de zelfdualiteitsvergelijking be- 
schrijven (de zg. moduli-ruimte) is ook het bestuderen waard. De oplossingsruimte 
is een complexe varieteit, d.w.z. dat de coordinate!! die in de beschrijving gebruikt 
worden complexe getallen zijn en dat cobrdinaattransformaties bepaalde eigenschap- 
pen hebben (holomorf zijn). Er is dan een zg. complexe structuur, d.w.z. er is een 
actie op de raakvectoren die equivalent is met vermenigvuldiging met i. Ook blijkt 
dat moduli-ruimten gekromd zijn, wat wil zeggen dat er een niet-triviale afstands- 
maat is (zoals op het oppervlak van een bol). Deze zg. metriek is uit te rekenen 
en blijkt een bijzondere eigenschap te hebben. Deze bijzondere eigenschap bestaat 
hierin dat de metriek verenigbaar is met de complexe structuur. Dit is de Kahler 
eigenschap. Maar er is meer, de moduli-ruimte is hyperKahler, wat wil zeggen dat er 
drie complexe structuren zijn, I, J en K. De metriek is dan compatibel met alledrie 
de complexe structuren (m.a.w. is Kahler m.b.t. alledrie de complexe structuren) en 
de complexe structuren gehoorzamen aan de quaternion-algebra. Het is wegens deze 
hyperKahler eigenschap dat moduli-ruimten van zelfduale ijkvelden interessant zijn 
vanuit het oogpunt van de differentiaalmeetkunde. De metriek op de moduli-ruimte 
is ook om fysische redenen interessant. Voor instantonen kan de bijdrage aan de 
pad-integraal uitgedrukt worden in termen van de metriek op de moduli-ruimte. De 
dynamica van langzaam bewegende multi-monopool systemen gaat in goede benade- 
ring langs paden in de moduli-ruimte die de kortste afstand hebben in termen van de 
metriek (m.a.w. het systeem volgt de geodeten op de moduli-ruimte).

Na deze inleidende opmerkingen volgt nu de eigenlijke samenvatting van dit proef- 
schrift. In hoofdstuk 1 worden de hiervoor genoemde begrippen in meer exacte be- 
woordingen ingevoerd. Hoofdstuk 2 omvat een beschrijving van de Nahm-transforma­
tie en de topologie van ijkvelden op R3 x S'. De ADHM-constructie voor instantonen 
en de berekening van fysisch relevante grootheden voor deze objecten wordt beschre- 
ven in hoofdstuk 3.

In hoofdstuk 4 worden caloronen bestudeerd met topologische lading een voor de
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Hoofdstuk 5 vomit een generalisatie van hoofdstuk 4 naar de ijkgroep SU(n). 
Wederom wordt via Fourier-transformatie het Nahm-formalisme voor het lading een 
caloron met willekeurige niet-triviale holonomie afgeleid uit de ADHM-constructie. 
De Greense functie is nu die van een quantum-mechanisch probleem op de cirkel met 
een stuksgewijs constante potentiaal met n strooicentra. Deze kan in gesloten vorm 
opgelost worden. Dit maakt het mogelijk een coinpacte uitdrukking af te leiden voor 
de actie-dichtheid van het lading een SU(n) caloron. Deze actie-dichtheid wordt ge- 
geven in termen van n positie-vectoren en zwaartepuntsstralen van n samenstellende 
objecten. Ook komen er n massa-parameters in voor die gerelateerd zijn aan de eigen-

ijkgroep Sf/(2) met willekeurige niet-triviale holonomie. Dit laatste wil zeggen dat 
de oplossingen periodiek zijn op een ijktransformatie na, m.a.w. als men eenmaal 
de cirkel rondgaat is de interne ruimte gedraaid. De holonomie meet hoever. In een 
equivalent© beschrijving is er een achtergrond-ijkveld waarop de oplossing is gesuper- 
poneerd. Dergelijke oplossingen waren tot dusver niet onderzocht. In hoofdstuk 4 
wordt gebruik gcinaakt van een geschikte combinatie van de Nahm-transformatie en 
de ADHM-constructie. In het bijzonder wordt aangetoond dat de twee beschrijvingen 
met elkaar vt : bonden zijn via Fourier-transformatie. Singulariteiten die in de Nahm- 
trausform.H i voorkomen kunnen zo exact vastgelegd worden. Door deze tweeledige 
beschrijving kan geprofiteerd worden van de voordelen van beide methoden, i.h.b. die 
van de muhi-instanton calculus binnen het ADHM-formalisme. Centraal staat een 
Greense functie op de cirkel waarop de Nahm-data zijn gedefinieerd. Coinpacte uit- 
drukkingen voor het ijkveld en de actie-dichtheid kunnen zo worden gevonden. Pro- 
fieleu van het caloron, geconstrueerd m.b.v. de uitdrukking voor de actie-dichtheid, 
vertonen twee opeenhopingen van de actie. Deze kunnen worden geidentificeerd als 
twee elementaire BPS-inonopolen met tegengestelde ladingen. De groottes en, om- 
gekeerd evenredig hieraan, massa’s hangen af van de waarde van de holonomie. De 
afstand tussen de monopolen is gerelateerd aan de schaal van het caloron. Is deze 
schaal klein, dan is het caloron gelocaliseerd rond een punt in de ruimte-tijd. De twee 
monopool-wereldlijnen worden pas zichtbaar als de schaal van het caloron toeneemt. 
Tegelijkertijd wordt het caloron meer en meer tijdonafhankelijk. Andere moduli zijn 
de ruimtelijke orientatie van het systeem, het zwaartepunt en de residuele t/(l) ijk- 
vrijheid die de holonomie invariant laat. In totaal zijn er acht parameters die het 
caloron karakteriseren. Door te bewijzen dat de metriek op de moduli-ruimte van 
het lading een SU(2) caloron identiek is aan die op de ruimte van Nahm-data die het 
beschrijven kan de metriek op de caloron-moduli-ruimte bepaald worden. Het blijkt 
dat de relatieve moduli-ruimte een orbifold is van de Taub-NUT-ruimte, waarvan de 
massa parameter gegeven wordt in termen van de waarde van de holonomie. Van 
de Taub-NUT-ruimte is bekend dat deze een hyperKahler metriek heeft. Het beeld 
dat een instanton is opgebouwd uit monopolen blijkt ook de instanton-lading te ver- 
klaren. De instanton-lading van het lading een SU(2) caloron kan gezien worden als 
de vervlechting van de twee tegengesteld geladen magnetische ladingen van de twee 
monopolen die het caloron opbouwen. Dit idee is afkomstig van Taubes en vindt een 
directe realisatie in het lading een SU(2) caloron.
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waarden van de holonomie. De n objecten zijn weer te identificeren als elementaire 
BPS-monopolen. waarvan de magnetische ladingen elkaar exact neutraliseren. De 4n 
moduli zijn nu de n willekeurig te kiezen posities van de samenstcllende monopolen, 
de positie in tijd enn-1 relatieve fasen. De configuratie benadert een instanton als 
de monopolen dicht op elkaar zitten. Een kleiner wordende cirkel S' komt overeen 
met een benadering van de statische limiet en wordt gerealiseerd door een grotere 
afstand tussen de monopolen. De statische limiet wordt al bereikt als een van de 
monopolen op oneindig zit, d.w.z. uit het caloron is verwijderd. Wat overblijft is een 
statische zelfduale configuratie, ofwel een BPS-monopool. Uit de Nahm-data is af 
te leiden dat dit de zg. (1,1,..., 1) monopool moet zijn. Door de overeenkor ■; ■ ;e 
limiet te nemen in de uitdrukking voor de actie-dichtheid kan de energie-dici i ! 
van de (1,1,..., 1) monopool bepaald worden.

De metriek op de moduli-ruimte van het lading een SU(n) caloron wordt I nd 
in hoofdstuk 6. Evenals in hoofdstuk 4 is de berekening gebaseerd op het , i 
de Nahm-transformatie voor SU(n) lading een caloronen een hyperKahler isoi u s 
is (d.w.z. dat de metrische eigenschappen van de caloron-moduli-ruimte gelijk zijn 
aan die van de corresponderende Nahm-data). Op twee manieren worden vervolgens 
de metriek en Kahler-vormen op de moduli-ruimte van Nahm-data en daarmee op 
de caloron-moduli-ruimte bepaald. De eerste methode vormt een generalisatie van 
de techniek in hoodstuk 4. De tweede maakt gebruik van het hyperKahler quotient. 
Door gebruik te maken van de symmetrieen in de ADHM-constructie wordt het op- 
lossen van de Nahm-vergelijking en het bepalen van de moduli-ruimte gereduceerd tot 
een probleem op een eindig-dimensionale quaternionische ruimte. De moduli-ruimte 
van caloron-Nahm-data en de caloron-moduli-ruimte is hiervan een hyperKahler re- 
ductie. De twee methoden geven hetzelfde antwoord en het resultaat bevestigt een 
vermoeden van Lee en Yi. De moduli-ruimte is van het zg. torische hyperKahler type, 
waarbij de torus de fasen van de monopolen beschrijft en de overige coordinaten de 
posities. De instanton- en monopool-limiet van het lading een SU(n) caloron worden 
weerspiegeld in de metriek. Zo wordt de S(7(n)-invariante Calabi-metriek terugge- 
vonden voor het lading een SU(n) instanton en de zg. Lee-Weinberg-Yi-metriek voor 
de (1,1,..., 1) monopool.

Tot slot worden in hoofdstuk 7 de Weyl-fermion-zeromodes in de achtergrond 
van het lading een S(7(n) caloron bestudeerd. Deze spelen een centrale rol in de 
Nahm-transformatie. Met behulp van de technieken in hoofdstuk 3 wordt de zero- 
mode-dichtheid uitgedrukt in termen van de Greense functie uit hoofdstuk 5. Een 
interessant resultaat is dat de zero-mode-dichtheid geconcentreerd is rond de mono­
polen die het caloron opbouwen. Rond welke monopool hangt af van de spectrale pa­
rameter in de Weyl operator, op een wijze in overeenstemming met de index-stelling 
van Callias. Uitgaande van de uitdrukking voor de zero-mode-dichtheid wordt de 
Nahm-transformatie voor het lading een SU(n) caloron expliciet uitgevoerd. De oor- 
spronkelijke Nahm-data worden dan teruggekregen. Dit is de involutie-eigenschap 
van de Nahm-transformatie, d.w.z. wanneer de Nahm transformatie twee keer wordt 
uitgevoerd, geeft dit de identiteit.
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STELLINGEN

Het Nahm-formalisme

H = -

Dit proefschrift, §5.^.

- jTrfjt = -i<9252 log v>,

waarbij de positieve scalaire functie i/> gedefinieerd is als

Dit proefschrift.
K. Lee and P. Yi, Phys. Rev. D56 (1997) 3711.

behorende bij het proefschrift
Periodic Instantons and Monopoles
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voor caloronen is af te leiden nit een Fourier-transformatie van 
1; \i iyah-Drinfeld-Hitchin-Manin-constructie voor instantonen.

Dit proefschrift, hoofdstuk 4 en 5.

5. De Nahm-transformatie voor SU(n) caloronen met instanton lading k en netto mag- 
netische lading mil is een hyperKahler isometrie.

6. Voor SU(n) caloronen met instanton lading k en netto magnetische lading nul is 
de reciprociteit van de Nahm-transformatie met behulp van een storingstheoretische 
aanpak te bewijzen.

4. De actie-dichtheid voor een lading een SU{n) caloron met niet-triviale holonomie 
exp(27ridiag(/21,... ,^n)) wordt gegeven door

•'-ij gegeven een Schrodinger-probleem op de cirkel met een stuksgewijs constante po- 
t cm iaal gescheiden door N delta-functie-strooicentra met bijbehorende Hamiltoniaan

h2 cP 
2m dz2 +

•^rn

de mde

V>(z) = jtr2(X„ ■ -4m ■ ■ -41) - cos(27rz0)>
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In deze uitdrukking is m 6 "LfnlL en rm = |x — Vml de zwaartepuntstraal van 
monopool, met positie ym en massa 87r2i/m = 8rr2(pm+1 — p,n)-

Dit proefschrift, hoofdstuk 5.

1. Het draagt bij aan het begrip van Yang-Mills instantonen deze opgebouwd te denken 
uit Bogomornyi-Prasad-Sommerfield monopolen.

Hierbij liggen z en Zj, j 6 Z/7VZ, op de cirkel R/Z en x is gedefinieerd als (z) — 1 
voor z 6 [a, 6] en 0 elders. De Greense functie f(z,z‘), oplossing van Hf(z,z') = 
6(z — z'), kan in gesloten vorm gegeven worden.



8. De functie d(z.z'), gedefinieerd op (R/Z)2, als

re-2»ix„Sign(J-z-)sinh27rr|2</>(z,z') =

— sinh 27rr|z - z'| cosh 2~r + cosh 2~rjz - z'| sinh 2ttr ,

heeft de eigenschap dat

M d_ A 
\ 2r dr )
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dzj ■ ■ ■ /

J[o

^j-g2?rix0(z z ) 

r(cosh 2irr — cos 2-s0)

N

dzN<t>(z, zi)0(zb z2) • ■ ■ 0(zN_i, zw)^(zA-, z') 
'[0,1]

(-1)"
(TV)!

/o,i]

9. Het tijd-frequentie-onzekerheidsprincipe heeft een muzikaal analogon in de zin dat 
synchroniciteit en toonzuiverheid voor vocale en sommige instrumentale ensembles 
lastig gelijktijdig te realiseren zijn. In het midden van het gebruikelijke frequentie- 
bereik wordt een voor het muzikaal gehoor aanvaardbare bottengrens gegeven door 
AtAy < 5 x 10~2 .

7. Bij de numerieke implementatie van het Nahm-formalisme voor SC/(2) caloronen 
verdient het aanbeveling niet alleen de duale zero-modes >3T(z). maar ook de afge- 
leiden via numerieke integrate van een eerste-orde differentiaalvergelijking
te bepalen, in plaats van deze laatste met behulp van eindige-differentiemethoden te 
benaderen.
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