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1 Introduction

1.1 overview

The experimental discovery of the stripe phase in insulating nickelates and high Tc super­
conducting cuprates has sparked a new momentum for the race towards understanding the 
mechanism of high Tc superconductivity. Although the theoretical prediction of this phase 
was made only few years after the discovery of the high Tc superconducting cuprates, it 
is only recently that it has been considered for extensive studies. Many groups working 
in this field believe that the stripe phase will play a central role in our understanding of 
the mechanism for high Tc superconductivity. Some theories explaining high Tc supercon­
ductivity depending on the existence of the stripe phase, have already been put forward 
[37], Even those who do not possess this view believe that this stripe phase deserves to be 
studied extensively, as it competes and, most probably, coexists with the superconducting 
phase. In this thesis 1 will address some of the physics of the stripe phase in the cuprate 
superconductors, the physics of a single stripe and the role both the static and dynamical 
stripe phase play in the quantum magnetism of these materials.
Superconductivity is the disappearance of electrical resistivity below a critical temperature 
Tc. Below this temperature the material also acquires special magnetic properties. This 
phenomenon was first discovered by Kamerlingh-Onnes in the beginning of this century 
in metallic materials ( conventional superconductors). The critical temperature Tc of these 
materials is usually a few kelvins above the absolute zero. High Tc Superconductivity was 
discovered in the mid eighties of the last century by Bednorz and Muller. As the name sug­
gests, Tc for the high Tc materials is much higher. Typically one to two orders of magnitude 
higher than that of the conventional materials, and could reach up to 2: 160/f. These tem­
peratures are temptingly high and raises hopes that one day we may be able to manufacture 
materials that superconduct at room temperature Consequently a great amount of research 
was and is being done on the cuprates materials.
The mechanism of superconductivity for the conventional superconductors is essentially 
the phonon mediated attractive interaction between the quasi particles charge carriers, or 
electrons in this case. The BCS theory, which describes the superconducting instability of 
the Fermi liquid in the presence of a small attractive interaction between quasi-particles, 
proves to be quite successful for the conventional superconductors. The critical temper­
ature depend linearly on the phonons Debye frequency of the material. However for the 
high Tc superconductors the BCS theory is inapplicable and fails to explain the physics 
of these materials specifically the large critical superconducting temperature. In fact the 
normal state of these materials is itself quite anomalous. A strong case can be made that 
the behavior of some physical properties, like the resistivity, shows that an approach based 
on the existence of quasi-particles is inapplicable! 1 ]. This rules out any approach based on
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Figure 1-1. (a) Typical phase diagram of High-T( superconductor, (b) Crystal structure of La,Ba,CuOj.

Landau-Fermi liquid theory. Furthermore it can actually be argued that in this case strong 
interactions play a central role. In addition, since these materials are layered with a quasi 
two-dimensional structure and have a low density of charge carriers, fluctuations play a 
much more important role. This rules out the BCS theory as a possible explanation for the 
high Tc superconductivity.

The cuprates are a group of ceramic compounds having in common stacks of CuOs planes. 
The other elements forming these materials are mainly rare-earth elements. These elements 
together with oxygen and sometimes copper atoms occupy the interstitial regions between 
the planes. A typical example of a high Tc compound, and the first to be discovered, is the 
“214” La2CuO4 material. In figure 1-1 (b) we depict the chemical structure of this com­
pound. The CuO2 planes have a square lattice structure, where the Cu atoms occupy the 
sites of the lattice. Band structure calculations showed that the states close to the Fermi 
surface are related to the CuO2 planes[6]. This fact suggests a quasi two-dimensional de­
scription of the material. In fact the couplings in the CuO2 planes are much larger than 
those between the planes.

The La2-.vSrrCuC>4 material is an insulator with a rather large band gap (« 2eV). Super­
conductivity arises upon replacing some of the trivalent La atoms by atoms of divalent 
elements such as Ba or Sr. This amounts to doping the material with holes and one gets the 
doped compound La2-.iSrvCuO4. The undoped material has a half-filled Cu-band, equiv­
alent to one electron per Cu-site in the planes. From the band structure one would expect 
a metallic behavior. However, due to the strong interactions between the electrons inside 
the planes a charge gap opens at the Fermi surface and the material is insulator. Such 
interaction-induced insulators are known as Mott insulators.

In figure 1-1 (a) we show the phase diagram of this La2-xSrxCuO4 material as a func­
tion of doping ,v and temperature T. This phase diagram is quite general for all the cuprate 
high Tc materials. At zero-doping the material is an antiferromagnetically ordered insulator 
with a rather large Neel temperature. Upon doping the magnetic order disappears rapidly
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1.2 Models for the High T, cuprates. 9

1.2 Models for the High Tc cuprates.

The Model that is believed to capture the physics of the CuC>2 planes is the single band 
Hubbard model. This is one of the simplest models designed to reach beyond the indepen­
dent electron approximation and it was designed to study the effects of electron correlations

and at low temperatures the material enters a region with properties associated with spin­
glass behavior. A spin-gap or pseudo-gap has also been observed in this region and at a 
high temperature T*(.v) (depending on the doping) this gap disappears. At a higher doping 
(.v ~ 0.06) the material enters the superconducting phase. The critical temperature is max­
imum at the so called optimal doping (.r « 0.15 — 0.2). At dopings higher than this the 
superconducting region is called overdoped. The underdoped region lies between the onset 
of superconductivity and the optimal doping. Due to doping, the region with a pseudo-gap 
have a nonzero conductivity, however the physics of this region is quite different than nor­
mal metals which are well described by the Fermi liquid theory. Experiment suggests that 
this pseudo-gap and the superconducting gap originate from the same physics, both gaps 
have a d-wave symmetry and evolve continuously into each other[2]

An anomalous suppression of superconductivity occurs at at a range of dopings around 
v = i where the material turns into insulator. This occur when partially substituting a rare 
earth element like Niodinium (Nd) or Europeum (Eu) for La. A structural transition also 
takes place, where the crystal structure is changed from the Low Temperature Orthogonal 
(LTO) phase to the Low Temperature tetragonal (LTT) one and a buckling in the provoskite 
C11O2 planes occurs. The suppression of superconductivity is due to the stabilization of the 
static stripes phase, where the stripes get pinned by the LTT structural change.

The stripe phase is a novel collective phase whose basic ingredient is a many-particle bound 
state: a charge domain wall where the charges (holes) binds together and form anti-phase 
charged magnetic domain walls in the 2-dimensional antiferromagnetic spin background. 
Microscopically these domain walls, in two dimensions, consists of holes bound in a linear 
string-like fashion, separating antiferromagnetically ordered regions. Across a domain wall 
the antiferromagnetically ordered spins point in an opposite directions. Figure 1-2 is a 
cartoon picture of an ordered stripe phase.

The stripes need not be static. In fact inelastic neutron scattering data revealed that strong 
dynamical stripe correlations persist in the metallic and superconducting phase fora num­
ber of High Tc cuprate materials[25, 26. 27, 28, 30]. The doping .v = | is not singular, but 
in fact static stripes can be stabilized by the LTT buckling along all dopings up to the end 
of the superconducting concentration^?, 28].

This thesis is entirely devoted to the study of aspects of this stripe phase. In the following 
sections of this introductory chapter I will review first the physics of the antiferromagnets, 
then show that stripes are a generic feature of doped antiferromagnets. The experimental 
status of the stripe phase in the High Tc cuprates will be discussed in the last section.
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Figure 1-2. An ordered stripe state.

(1.2.1)

(1.2.2)

in such narrow-band systems and Mott insulators. Although the Hubbard model in two di­
mensions is easily written down, however despite a long lasting immense effort nobody has 
succeeded to arrive at a general solution for this problem. The Hamiltonian of the Model 
reads;

The number operator ma = c-acia measures the number of electrons in site i with spin a. 
The first term in H describe the kinetic energy due to the overlap of electron orbitals of 
the Cu-atoms (bandwidth). The second term is an on-site Coulomb interaction: a doubly 
occupied site costs an energy U.
At half filling and for large U (U 2> z) doubly occupied sites are expensive. Therefore, in 
the ground state every site is singly occupied and the electrons are localized on the lattice 
sites. The kinetic term gives rise to virtual excitations, where doubly occupied sites are 
present with an energy cost U. A gap of order U towards charge excitations will open up
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(1.2.3)

(1.2.4)

where is a Pauli spin-matrix.

-°.) (1.2.5)

>claCj,a + (1 ~"J.K-j

(1.2.6)

1.3 Two dimensional quantum antiferromagnets

and the system becomes an insulator of the Mott-Hubbard kind. This leaves the spins of the 
localized electrons as the only low-energy degrees of the system. The effective Hamiltonian 
of the remaining spin system is the antiferromagnetic Heisenberg Model

Away from half filling, electrons can move without causing doubly occupied sites. The 
Hubbard model in this case transforms into the much studied t — J model, with a Hamil­
tonian given by;

As mentioned above, undoped cuprates are antiferromagnetic insulators at half-filling. The 
physics of the antiferromagnets are precisely, captured by the spin-| antiferromagnetic 
Heisenberg model. This model, therefore, describes the spin degrees of freedom of the 
undoped cuprates. This model has been extensively studied. Although the model lacks an 
exact solution, a solid and strongly agreed-on picture emerges from a number of tech­
niques. Analytical theories such as the spin wave theory, Schwinger boson mean-field the­
ory and renormalization-group calculation as well as numerical techniques such as Quan­
tum Monte-Carlo and exact diagonalization.

; a= = ( J; ay = (

The operator (I — /i/.-a) in the first term projects out doubly occupied sites. The exact 
derivation of this Hamiltonian from the Hubbard model in the limit of large U gives rise to 
an additional term which is a combination of a spin-spin interaction and a hopping process. 
This term is usually neglected.

)<<,

H = J £ S,-- Sj.

The superexchange integral J is related to the parameters of the Hubbard model by J = 
2r2/U. A constant term is left out. The spin operators S read
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(1.3.1)

The Quantum non Linear Sigma Model.1.4

The Quantum Non Linear Sigma Model (QNLSM) is an effective continuum field theory 
describing the low-energy, long wavelength physics of the quantum Heisenberg antiferro- 
magnets, as introduced in the above section.

On the (bipartite), square lattice and at zero temperature, the above Heisenberg model 
shows long range order, Neel order. This means that the ground state of the system is 
ordered and the order parameter is the staggered magnetization given by

r r

where m; = (- l)r+-v(S,) is the local staggered spin magnetization. The Heisenberg model 
is rotationally invariant. This means that the Hamiltonian of the model is invariant under 
global rotation of all spin-vectors. The Neel state break this rotation invariance. This is a 
manifestation of spontaneous symmetry breaking, which is a specific feature of systems 
with an infinite number of degrees of freedom and which possess a continuous global 
symmetry. The local order parameter is smaller than the absolute value of the spin (|). 
This reduction is due to the presence of quantum fluctuations on the ground state, which 
are, however, not severe enough to destroy the order.
The direction of the order parameter is not specified and can be freely chosen. This freedom 
of rotation of the order parameter gives rise to low-energy collective modes known as the 
Goldstone modes. In the present case they are the wave-like spatial modulation of the 
local order parameter zn;, or spin-waves. Goldstone modes are generic features of systems 
exhibiting spontaneous breaking of a global continuous symmetry. The low-energy physics 
of the ordered state is completely dominated by these Goldstone modes.
At non-zero temperatures the long range order of the system will be eventually destroyed 
by thermal fluctuations. A theorem due to Mermin and Wagner[3] states that at any finite 
temperature in the case of 1 and 2 dimensions, the Goldstone modes destroy completely the 
order of the symmetry-broken state. It is therefore not possible to have spontaneous break­
ing of a continuous symmetry in a model with short-range interactions at non-zero temper­
atures in 1 and 2 dimensions. This theorem implies that the two dimensional Heisenberg 
model can not explain the existence of a finite Neel ordering temperature in the undoped 
cuprates. That it nevertheless happens is due to small magnetic couplings between the 
CuOj planes[4). The existence of such additional interactions give rise to 3-dimensionality 
of the system, or they break the SU(2)-invariance of the Hamiltonian. These contributions 
are however small and can be included in a mean field way after a more accurate treat­
ment of the two dimensional problem[90]. The low temperature properties of the quantum 
Heisenberg model are well described by the Quantum Non Linear Sigma Model (QNLSM) 
which will be discussed in the next section.
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2 = Tre~pH (1.4.1)

(1.4.2)2

with the action

(1.4.3)S

P° = JS2 ; (1.4.4)

Motivated by the success of the classical non linear sigma model (CNLSM) in describing 
the long wavelength physics of the classical Heisenberg spin lattice models, Chakravarty, 
Halperin and Nelson introduced in 1988 the QNLSM as a generalization of the classical 
version[7].
To derive the QNLSM one assumes that there is at least short-range Neel order. The order 
parameter n introduced in Eq.( 1.3.1) represents the local spatial average of the staggered 
magnetization. There are now longitudinal and transversal fluctuation of this order param­
eter. The longitudinal fluctuations will be integrated out and the result is an effective action 
for the long-wavelength transversal degrees of freedom of the order parameter. By taking 
the continuum limit one arrives at the QNLSM. In essence the model describes interacting 
spin-waves.
The standard derivation of the QNLSM employs the path-integral formulation of the 
problem[8]. At finite temperature the equilibrium properties of a system are determined 
by the partition function

1 Cd dTrLvd>’ x±

= y Dn["p(H?- l)e“5/\

(g) +P?(VH)2 ,

while periodic boundary conditions in the spatial and the imaginary time direction should 
be imposed. The ^-function in the integration measure is needed in order to fix the length of 
Ji, , which does not change due to transversal fluctuations. This constraint introduces non­
linearity into the model. p° and yj are the bare spin-stiffness and uniform perpendicular 
susceptibility. They are related to the parameters of the Heisenberg model, in the large S 
limit and for two dimensions, by [5]

xl = —, 87

where fl = , Ab is the Boltzmann constant and T is the temperature. In the path-integral
one splits fl in many infinitesimal intervals t = and writes the above finite-temperature 
partition function as an infinite product over the infinitesimal imaginary time slices r. This 
will map the problem to an equivalent classical statistical mechanical in a space of one 
dimensional extra as compared to the original quantum problem. At non-zero temperature 
this extra dimension will be finite with an extent ~ hfl.
Using this formulation and taking the continuum limit, the partition function of the 
QNLSM is given by,
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(1.4.5)SO =

In the large S limit the bare coupling constant go is given by

(1.4.6)

1

Renormalized
Classical

Quantum 
disordered

2x/2 
go =

This coupling constant controls the amount of quantum fluctuations in the system. Note 
the larger the spin S the smaller is go and that go vanishes in the classical limit S -> oo.

In figure 1-3 we show the cross-over phase diagram of the 2D QNLSM as a function of 
the coupling constant g and temperature. There are three distinct regions with qualitatively 
different behavior. At zero temperature and for small g the system possesses long range 
order and the correlation length is infinitely large. At a finite critical value g = gc the 
system undergoes a quantum phase transition to a quantum disordered state characterized

where a is the lattice spacing. These parameters are the ones defined at the lattice scale. 
The spin-stiffness and susceptibility measured experimentally, e.g. by neutron scattering, 
are related to the renormalized parameters.

The QNLSM can be written in a Lorentz invariant form. In this case the number of pa­
rameters is reduced to only one parameter: the dimensionless coupling constant[8], usually 
called g. It is related to the spin-stiffness and perpendicular susceptibility by
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Stripes as generic feature of doped antiferromagnets.1.5

The doped cuprates can be considered as a 2D doped quantum antiferromagnets. As said 
before, the t — J model and the Hubbard model at large U and filling of less than half, 
are the ideal model for studying doped antiferromagnets. A huge amount of research was 
and is devoted to the understanding of the physics of these models. Recently, theoretical 
and numerical work suggest that both in the t — J and Hubbard model there is a novel 
collective phase where the charges (holes) condense and collectively order in a stripe like 
structure and the spins occupy the region between the stripes. Across the stripe the anti­
ferromagnetic order parameter points in opposite directions. This phase is the stripe phase 
seen experimentally in the High Tc cuprates and the nickelates.
To see why such a structure might occur, consider for simplicity the t — J: model, where 
the exchange term in the spin-spin interaction is neglected. The ground state of the model 
when undoped is obviously a Neel ordered antiferromagnet (it is the Ising model). Now 
let us dope this state with one hole. If the hole moves away from its initial position, it will 
create a line of oppositely ordered spins. This will cost energy which will be proportional 
to the distance between the initial position of the hole and its new position. This linear 
potential will pull the hole back and confine it near its initial position! 13] (Fig. 1-4). Upon 
doping with another hole, the two holes will prefer to sit on nearest neighbor sites as this 
will minimize the number of broken bonds. In a stripe structure as in figure (1-2), the num­
ber of broken bonds is minimum, furthermore the holes can lower their kinetic energy by a

by a finite correlation length and a spin gap. Upon increasing the temperature from zero, 
the three depicted regimes evolve naturally from the T = 0 states. The region above the 
ordered state is coined renormalized classical. Here the system does not possess long range 
order because of the finite temperature. However, exponentially large patches of correlated 
spins exist. The correlation length is therefore exponentially long and depends on the tem­
perature as: 5 ~ exp(T*/T). Since g is small in this region, quantum fluctuations are not 
too important. It is then possible to integrate out the imaginary time dependence and obtain 
an effective 2D classical model with renormalized parameters. This is the reason for calling 
this region renormalized classical.
The quantum disordered region is the region above the quantum disordered state as charac­
terized by finite correlation length at T = 0. As the T =0 state is gapped, the correlation 
length in this region is only weakly dependent on the temperature.
The most interesting region is the region evolving from the quantum critical point, gc, 
where the quantum phase transition takes place at T = 0. Here the only relevant scale is the 
temperature and there is no other energy scale. The correlation length is given by f ~ l/T. 
This leads to a highly universal behavior. At some high cut-off temperature the correlation 
length becomes of the order of the lattice constant. Above this temperature a continuum 
description is not valid. The physics is governed by the non-universal microscopy at the 
lattice constant scale and the QNLSM does not apply.
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1.6 Stripes in High Tc Cuprate superconductors
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The momentum-space structure of the stripe phase and its doping dependence can be 
probed by the neutron scattering technique. The N6el state at half filling gives rise to mag­
netic Bragg peaks centered at (rr, n) in the Brillion zone. In an ordered charged domain­
wall array as in figure 1 -2, the staggered order parameter has in addition a long wave-length

f I f I 

f I f I

collective motion of the whole stripe or along the stripe without costing exchange energy. 
This suggest that both static and dynamical stripes phases are stable phases of the doped 
antiferromagnet. In the calculations for the Hubbard or / — J models the situation is not 
as simple as in the above picture, however the final conclusion still survive. Prelovsek and 
coworkers have shown that in the full t — J model the holes have a strong tendency to con­
dense in a connected trajectories corresponding with dynamically fluctuating stripes[38]. 
In the Hubbard model, Zaanen and Gunnarson[9] in 1989, have shown that the static stripes 
phase is the semiclassical (Hartree-Fock) solution of the model. Here, the density of holes 
forming the stripe is more spread, that is to say, although the stripe might be centered 
along one line however its width is not one lattice constant. The density of holes inside the 
stripe is found to be one hole per stripe unit length. This conclusion has afterwards been 
confirmed by different groups] 10].

The sophisticated density matrix renormalization group (DMRG) calculation, carried out 
by White and Scalapino[40], have shown that stripe are low energy stable solutions of the 
t — J model at the superconducting dopings. Around ‘x = | the stripes are bond centered. 
This means they occupy two neighboring lines. The density of holes inside the stripe is not 
one hole per stripe unit length but could be half a hole per unit length.
Other sophisticated analytical treatments showed that the stripe might have a rich structure 
inside them[ 10]. Some other groups believe that the Hubbard model or the t — J model can 
not account alone for the presence of the stripes and one may need to include a long range 
Coulomb interaction to stabilize the stripes[37]. However the Coulomb interaction as well 
as the electron-phonon interaction are shown to favour the formation of stripes[10].

Figure 1-4. Example of a hole moving in antiferromagnetic background. A linear potential <b) is developed 
as the hole moves away from its initial position (a). Al the hole position the superexchange energy is lost by 
a factor of 4 (a) while the loss is reduced as the holes comes nearest neighbor (c).

t I I I f |
Q' |

f I f I f I
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These types of stripes are quite similar to the one predicted by Zaanen and Gunnarson[9] 
and other groups on the basis of the mean field analysis of the Hubbard model and the 
t — J model. Although the density of holes, in these calculations, is more spread in these 
calculations, quite a number of features of the nickelate stripes can be understood rather 
well from the semiclassical calculations. These include the insulating feature of the stripes.

In 1994 Tranquada and coworkers published results of a neutron scattering experiment! 1 •] 
performed on the nickelate La2-.tSrvNiO4 compound, which is a spin-1 insulator with the 
same structure as that of strontium doped 214 cuprate superconducting compound, except 
that copper is replaced by nickel. They observed superlattice peaks corresponding to mag­
netic and charge peaks at incommensurate wave-vectors. The interpretation of their results 
corresponds with the existence of a static stripe phase, with a spin modulation period twice 
the period of the charge modulation. This gives the ratio 1:2 for the discommensuration 
periods. The hole density along the stripes is one hole per site and it is found to be site cen­
tered. The stripes are oriented diagonally along the (1,1) direction, however if one makes 
use of a unit cell with axes rotated 45° with respect to the Ni-O bond, then in reciprocal 
space the magnetic peaks are split about the antiferromagnetic position (1,0) along the (1,0) 
and (0,1) direction. Another feature of the nickelate stripe that is worth mentioning is the 
large spin magnetic moment which is found to be approximately 85% of the value found 
in the undoped antiferromagnetic insulator phase. This shows that the holes must be well 
localized within the domain walls.

modulation with a period twice the domain wall separation d and the first harmonic peak is 
located at the incommensurate position [(1 ± 5)rr, rr] or [rr, (1 ± 5)rr], as indicated in fig­
ure 1-5. Moreover, because the (1,0) and (0,1) direction are equivalent, the incommensurate 
peaks will show up in both directions in the zone.

Figure 1-5. The location of the peaks corresponding to staggered spin modulation (filled circles) and charge 
modulation (open circles) in the Brillouin zone, for a diagonal (a) and horizontal (b) striped phase.
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1.7 Organization of the thesis

In this thesis I will address some aspects of the physics of the stripe phase. In chapter 3 and 
4 I will address the physics of a single stripe. A strong coupling model for a single non- 
metallic stripe will be introduced and investigated rather extensively firstly and secondly 
we will discuss the consequence of introducing stripe metallicity. Ramification of the re­
sults with respect to the physics of the stripes in the cuprates will be discussed. In chapter 5 
we will consider a spin-only model for the static stripe phase. The aim is to investigate the 
role of the static stripes on the magnetic properties of the cuprates. As dynamical stripes 
persist in the cuprates High Tc materials, in the subsequent chapter, chapter 6,1 will address 
the problem of dynamical stripes living in a spinful background. Firstly we will review and 
discuss the problem of a stripe liquid/gas uncoupled to the spins, then I will introduce a 
model for dynamical stripes in a spinful background.
Most of the treatments for the models studied in this thesis are numerical. To give the reader 
insight about these treatments I will give a brief introduction to the numerical techniques 
used here in chapter 2.

the density of holes along the stripes turned to be also one hole per site along the stripe and 
the stripes are indeed site centered. Because the nickelate spin is rather large, it is expected 
that semiclassical analyses give rather good predictions.
As said before stripes correlations has also been observed in Cuprates, by both elastic and 
inelastic neutron scattering measurements. However, the bulk of the observations reveal 
dynamical stripes correlations in the underdoped and optimally doped region[28, 30, 31]. 
Static stripes in the cuprates can be stabilized by introducing pinning potentials. This can 
be done in several ways. One of them is to induce buckling in the perovskite planes. This 
is done by replacing La atoms by a rare earth element such as Eu or Nd. that give rise to a 
structural transition in the lattice from the LTO to the LTT structure. Zinc doping can also 
act as pining potential for the stripes.
The cuprates stripes at the superconducting doping concentrations are oriented horizon­
tally along the (1,0) or (0,1) direction. The density of holes inside the stripes is here 1 hole 
per two stripe’s unit length which means that they are half filled stripes. Furthermore it 
can be argued that the cuprate stripes are bond centered. These features can not be under­
stood from mean field calculation, which underestimate the role of quantum fluctuations. 
Because of the reduced spin value of the cuprate, quantum fluctuation are more significant 
in this case than in the nickelates. The stripes found in the t — J model using the DMRG 
calculation capture a number of feature of the cuprate stripes. They are bond centered and 
near ,v = | doping they are indeed half filled. However, the structure inside the stripes, in 
this case, is more complicated and can be related to the formation of d-wave pairs. Below 
the superconducting doping the cuprate stripes are oriented diagonally.
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2.2 Exact diagonalization techniques

2 Numerical techniques in strongly correlated 
electron systems

Exact diagonalization techniques are typically zero-temperature methods. They are used to 
calculate the ground state wave function and the low-lying excitation spectrum for a finite 
size system with a very good accuracy. In some cases they can also be used to calculate 
finite temperature properties. Two methods are widely used: the Lanczos algorithm and, 
more recently, the density matrix renormalization group (DMRG) technique! 12]. DMRG 
works exceptionally well for one dimensional systems. It can also be applied to higher 
dimensional systems, but with some difficulties and it is harder to obtain accurate results 
in this case. The advantage of the DMRG in one dimension is its ability to handle a rather 
large system, reducing finite size errors. Lanczos methods can in principle be applied to 
any dimension] 13]. However, in practice it is used for one and two dimensions only. It 
works for systems of up to about 108 states. This restriction leads sometimes to difficulties 
with finite size scaling. Here we will describe the Lanczos method, which is used in the

The study of models for strongly correlated electrons is a difficult problem. There are 
no well-controlled analytical techniques to analyze them in two dimension. Mean field 
and variational approximations are self-consistent, but it is difficult to judge whether they 
actually describe the properties of the ground state of the system or of an excited state. Even 
in one dimension, although quite a number of analytical techniques prove to be successful 
in determining the solutions of ID models and much of its properties, it is still difficult to 
calculate thermodynamic quantities and correlation functions. These difficulties have led 
numerous groups to study these models using computational and numerical techniques. 
As computer power is increasing, results from numerical techniques are getting better and 
increasingly accurate.

Many techniques are currently being used to study and investigate numerically the mod­
els for correlated electrons systems. However, the vast majority of the work done in this 
field can be grouped into two methods, exact diagonalization techniques and the quantum 
Monte-Carlo methods. All the computational work presented in this thesis is done using 
exact diagonalization and quantum Monte-Carlo simulation. In this chapter I will provide 
a brief introduction to both techniques.
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2.2.1 Lanczos Technique

(2.2.1)I0o> ■I0i) = |0o> —

(2.2.2)101) - I0o> .I02> = -H|01> -

(2.2.3)|0„+1) = H |0„) - an |0„) - b„ 10/j—i),

bl = (2.2.4)a„ =

0

(2.2.5)H =

next chapter to obtain some of the ground state properties of a model for the fluctuations 
of a single stripe (the quantum lattice string model)

The basic idea of the Lanczos method is that one can construct a special basis where the 
Hamiltonian has a tridiagonal representation. This is carried out iteratively, as will be 
shown below. First one select an arbitrary vector |0p) in the Hilbert space of the model 
being studied. If the Lanczos method is used to determine the ground-state energy and 
wavefunction, it is necessary that the overlap between the actual ground state |0o) and the 
initial state |0o> be nonzero. If no a priori information about the ground state is available, 
this requirement is usually easily satisfied by selecting an initial state with randomly cho­
sen coefficients in the basis that is being used. If some other information about the ground 
state is known, like the subspace to which the ground state belongs, then it is convenient to 
initiate the iterations with a state already belonging to this subspace (and. if possible, with 
random coefficients within this subspace).
The special basis is found as follows. After |0o> is selected, we can define a new vector by 
applying the Hamiltonian H to this initial state. Subtracting the projection over |0o), we 
obtain

0
0

0
0

(0ol I0o)
(0ol0o>

satisfying (0ol0i) = 0. A new state that is orthogonal to the previous two can be con­
structed as,

<011 7/ 101) .  <01101)
(01 101) ' <0O|0O>

It is easily checked that <0ol02> = <01102> = 0- The procedure can be generalized by 
defining an orthogonal basis recursively as

ao
bi at b2

bi a? bj ...
0 by <?3 ...

where n = 0. 1,2, ..., and the coefficients are given by

_ (0„|H|0„) 2 = (0„I0„)
(0,.l0n) " (0,,-110,,-t)’

supplemented by bo = 0, 10—i) = 0. It follows directly from 2.2.3 that the Hamiltonian 
matrix is represented in this basis by the following tridiagonal form
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2.3 Quantum Monte-Carlo

(2.3.1)(2) =

where S is a system configuration, Q is any physical quantity e.g. energy, magnetization 
or spin-spin correlation and Z is the partition function, defined by Z = 22$p(S), while 
p(S) is the relative probability distribution or Boltzmann weight of a particular state or 
configuration of the system.
A Monte-Carlo simulation approximates the sum over all states of the system by a sum over 
a smaller set of states chosen using its Boltzmann weight as a criterium. A Monte-Carlo 
process that samples p(S) is usually generated by means of the generalized Metropolis 
algorithm [16]. This algorithm can be formulated as follows:
Suppose a configuration S is given at some time t of the Monte Carlo process. A new 
configuration S at time t + 1 is generated by means of a stochastic process that consists

There are two categories of quantum Monte-Carlo methods. The first one is for the finite 
temperature case, which is usually called path-integral Monte-Carlo. The second one is for 
the zero temperature case and is usually referred to as the projector quantum Monte-Carlo 
method. Only the first case will be reviewed here.
The average properties of a physical system can be expressed by

Es QP(5)
Z

As expected, the Hamiltonian is tridiagonal. Once in this form the matrix can be diago­
nalized easily using library subroutines (e.g. NAG library subroutines). However, to diag­
onalize H completely, a number of iterations equal to the size of the Hilbert space (or the 
subspace under consideration) are needed. In practice, this would demand a considerable 
amount of CPU time. However, one of the advantages of this technique is that enough ac­
curate information about the ground state of the problem can be obtained after a relatively 
small number of iterations (typically of the order of ~ 100 or less). Thus the method is 
suitable for the analysis of the ground state properties of the model.
To understand the rapid convergence to the ground state, it is convenient to consider a 
variation of this technique known as the modified Lanczos method[14, 15]. In this method, 
the diagonalization proceeds using “2 x 2 steps”; i.e., first the Hamiltonian in the basis 
I0o> and |</>|) (defined before) is diagonalized. The lowest energy state is always a better 
approximation to the actual ground state than |0o). This new improved state can be used 
as the initial state of a next 2x2 iteration, and the procedure is repeated as many times 
as needed to reach convergence. It is then clear that the modified Laczos method or in fact 
the original proposed Lanczos version, can be described as a systematic way to improve a 
given variational state that is used to represent the ground state of the system. It is therefore 
not surprising that the ground state properties can be obtained accurately well before the 
rest of the matrix eigenvalues are evaluated.

2.3 Quantum Monte-Carlo
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/’(SIS) =

The Markov matrix P is designed to satisfy detailed balance

P(S'|S)p(S) = P(S|S')p(S'), (2.3.2)

A(S |S) = min (2.3.3)

(2.3.4)

The Metropolis algorithm can be used to estimate the expectation values (Eq.2.3.1) as the 
average over Monte-Carlo “time”,

A(S\SyP(S\S') for S'/S
1 “ £s"#s^(S"|S)P(S"|S) for S' = S '

The limitation of the Metropolis method is that it generates a time series of configurations 
with serial correlations. Consequently, the number of independent configurations contained 
in the time series Si Sl is not given by L, but roughly by Leff L/r where r is an 
appropriately defined auto-correlation time of the series. The variance of the finite-! time 
average featured in Eq.(2.3.4) is not given by var(X)/! but approximately by var(X)/!f/y-

, P(S'|S)p(S)~
’ P(S|S')p(S') ■

so that if the process has a unique stationary distribution, this will be the p(S) as desired. 
In principle one has a great freedom to choose the proposal matrix P, but it is necessary 
to satisfy the requirement that transitions can be made between (almost) any pair of states 
with non-vanishing probability (density) in a finite number of steps.
The choice of the proposal matrix P is limited only by the requirement that the first step 
of the algorithm can be executed efficiently. Once a proposal matrix P is selected, an 
acceptance matrix is defined so that the detailed balance, Eq.(2.3.2), is satisfied,

of two steps. These steps are defined in terms of the so-called proposal and acceptance 
transition probabilities P and A. Assume that the probabilities P and A are given. The 
procedure is::

1. An intermediate configuration S" is proposed with probability P(S"\SY
2. S becomes S with probability p = >1(S |S); the proposed configuration is accepted;
3. S becomes S with probability q = 1 — A(S |S); the proposed configuration is rejected 
and the old configuration S is kept at time t + 1.

More explicitly, the Monte Carlo sampling is generated by means of a Markov matrix P 
with elements P(S |S) of the form:
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(2> = (2.3.5)

2.3.1 The Suzuki-Trotter path-integral transformation

ex(A+B) = |im (c*/te«By . (2.3.6)

or more generally.

(2.3.7)

For classical systems the interaction are local and p(S) is given in terms of the classical 
Hamiltonian of the system as p(S) = where p = \/KT. For quantum mechani­
cal systems one encounters many difficulties. The expectation value of a physical quantity 
of a quantum mechanical system is defined as

TrQe~^H
Z

Upon taking the trace of (2.3.7) using some orthogonal complete sets diagonalizing the 
partial Hamiltonians independently, the problem of calculating the partition function Z for 
the d-dimensional quantum system is reduced to that of calculating the partition function 
of the corresponding (d + 1 )-dimensional classical system[19, 20]. This transformation 
is called the Suzuki-Trotter (ST)-transformation. This equivalent classical problem can 
be simulated with a Monte-Carlo method and this is the quantum Monte-Carlo method. 
Some new types of many-body interactions appear and consequently the corresponding 
algorithms are usually far more complicated than in the classical case.
This equivalence of a d-dimensional quantum system to a d + 1-dimensional classical sys­
tem is known from the Feynman path-integral formulation of quantum mechanics, and the 
Monte-Carlo methods based on this transformation are usually called path-integral Monte- 
Carlo. The extent of the extra ‘time’ or ‘Trotter’ direction represent the temperature at

with Z given by Z = Tre~BH. We have therefore to diagonalize the Hamiltonian matrix, 
which is practically impossible for large systems. Because the quantum coherence length 
ranges over the whole system, even if the interaction term in the Hamiltonian is local, the 
effect of the term is non-local. One has to find a way to properly define p(S) in terms 
of local quantities. In the following two sections I will review two methods, used in this 
thesis, for studying quantum systems. The central idea is to map the quantum problem to 
an equivalent classical one. The definition of the relative probability distribution p(S) will 
then become straight forward.

In many cases the Hamiltonian of a quantum system H is composed of some partial Hamil­
tonians {Hj}, and each is easily diagonalized independently. In this situation the so- 
called Trotter formula] 17. 18] is very useful.
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2.3.2 World-line algorithm

H (2.3.8)

diagonal

({5^)1^-1(5?,)). (2-3-9)

where /ij and hnj represent the diagonal and off-diagonal part of H, respectively. Note that 
2L time slices were introduced, where L is the Trotter height, because neither H\ nor Hi 
is diagonal in this basis.

The convenience of this choice is that 'H\ and Hi consist of independent two site pieces. 
Thus the matrix elements factorizes into,

■',"‘,|(5;1})({S,22}|e'

= E [y^v+t + +^s.?s/+t

z = E^((^)k
4

The world-line simulation is formulated by discretizing = LAr in the partition function. 
The Hamiltonian is decomposed such that the matrix elements of the partial Hamiltonians, 
which arise after the introduction of a complete set of states can be evaluated easily. The 
most convenient choice in this case is the “checkerboard” decomposition^ 1 ]. Here one 
first divides the Hamiltonian into two pieces , H = H\ 4- Hi where in H\ one sums over 
odd sites and in Hi over even sites. Introducing a complete set of states which are 
in the z component of spin, the partition function takes the following form.

The world-line method employs directly the above path-integral transformation. The re­
sulting classical degrees of freedom are the eigenvalues of the original quantum operators 

appearing in the Hamiltonian operator. The World-line algorithm follows the evolution 
of these eigenvalues in the imaginary time direction, r. For instance in a spin problem one 
can choose the z component of S‘(r) of spin n for a set of quantum spins and the X — Y 
term in the partial Hamiltonians will connect these degrees of freedom along the imaginary 
time direction r form the world-lines. One of the most attractive features of this approach 
is precisely that these world-lines trace the variables which are associated with the opera­
tors in the original quantum Hamiltonian and therefore allow a intuitive real space picture 
of the correlations in the system.
Consider the 1-D quantum XXZ Hamiltonian

which the system is simulated. At zero-temperature the system becomes truly d 4-1 dimen­
sional.

Many Monte-Carlo methods utilize the ST-transformation: the World-line, the Monte- 
Carlo power, the auxiliary-field and the loop cluster methods, to call the most popular ones. 
The infinite n limit is taken by simulating the system for a number of finite /t’s to subse­
quently extrapolate to infinite n. The loop cluster method can be implemented directly in 
the time-continuum limit.
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where (hnd)i is the of-diagonal hamiltonian between site i and i + 1. Now one must only 
evaluate the corresponding two site expectation values. The diagonal part of the Hamilto­
nian can be written as a product of terms representing the two sites between adjacent time 
slices and then included with the above off-diagonal term. Hence, the partition function 
can be written in the following useful form:

I 5i,/+i52,/+i

Figure 2-1. The “checkerboard” decomposition. The Hamiltonian act on the shaded squares. We 
also show an example of two world-lines on it and a typical Monte-Carlo move which pulls a 
world-line across an unshaded square.

I~Ii=odd

(Si.2lSi+1.2l | S?2/+l\r+12/+l) '

ip^+W)/|^.2/+2^+1.2/+2) (2.3.11)

Fl j=cven I 

'j.2/+lSJ + 1.21+l

(■^1/^2/ ' ' ' $NI 5N./+1) —

(Si.lSi+\.l |e'

In fig. 2-1 we picture the structure of the checkerboard break-up by drawing the (1 + 
l)-dimensional array of spins and shading the squares corresponding to the bonds across 
which a piece of that the Hamiltonian acts. Because the total z-component of the spin is 
conserved, only configurations satisfying ;+Sj / = +^2./+i in a shaded square are
allowed. These conservation laws can best be visualized as follows: draw lines connecting 
the sites of the up spins. Since the number of up spins is conserved from time slice to time 
slice, the result is a set of continuous “world-lines”. The world-lines can cross only the 
shaded squares of the checkerboard, since it is only on these squares the Hamiltonian acts.

0 1

— Ei/, n/ ri/Lorfrf
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2.3.3 The Loop cluster Algorithm

The world-line method suffers from many problems. When the simulations move towards a 
critical point, the autocorrelation time r become extremely large rendering the simulations 
inefficient. Another limitation is that it can only be used in the canonical ensemble, which 
means that one can not simulate system with varying magnetization or occupation number. 
For a number of models these problems were solved by using cluster algorithms. The clus­
ter algorithm for quantum spin systems is the loop cluster algorithm[96]. The algorithm 
constructs closed loops of spins and flips them simultaneously. This algorithm possesses 
a number of features making it extremely powerful for studying quantum spin systems. 
These feature are:

unshaded
; allowed.

Figure 2-2. Example of a loop update on the "checkerboard" decomposition. The thick solid line 
denotes a single worldline, the dot-dashed line shows a possible loop. By flipping the spins on all 
sites along the loop the original worldline will be deformed into the dashed one. Note that this 
update is nonlocal.

The product of the matrix elements for each "classical” spin configuration or world-line 
configuration defines the relative probability distribution or the weight p(S) for the config­
uration.

The only allowed local Monte-Carlo moves which preserve all local conservation laws 
resulting in a non-zero weight are those which "pull” a world-line across an t 
square of the checkerboard lattice assuming that the original configuration was 
Four spin variables are changed in such an update, and the values of the matrix elements 
on four of the plaquettes are modified. This means that the decision making process is local. 
An acceptance-rejection step using the Metropolis algorithm can be carried out. Here the 
move is accepted with probability p = max(l, /?), where R is the ratio of the product of 
new and old values of the matrix elements on the four modified plaquettes. This method 
satisfies the detailed balance, and will generate spin configurations with Boltzmann weight 
equal to the product of all the matrix elements.
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(2.3.12)p(A,)p(A,/Aj) = p(Aj)p(Aj/Ai)

• The autocorrelations between successive Monte-Carlo configurations are signifi­
cantly reduced. This will reduce, by orders of magnitude, the number of Monte-Carlo 
sweeps needed for a given system.

• One can simulate systems in the grand-canonical ensemble (e.g. varying magnetiza­
tion, occupation number, winding numbers).

o It is also possible to take the continuous time limit in the Suzuki-Trotter formula. 
This will eliminate the Trotter approximation.

• The errors in the measurements can be significantly reduced by using the so called 
Improved Estimators.

The algorithm constructs loops. Once a loop is constructed, a new configuration is proposed 
by flipping all the spins on the loop. The power of the loop algorithm is that this new 
configuration is accepted with probability 1. Here I show how loops are constructed for the 
case of the Heisenberg chain and show how this construction obeys the detailed balance. 
Having the above “checkerboard” decomposition in mind, a loop is constructed by first 
selecting at random a point (x.t) in the 1 + 1 dimensional lattice. The extra dimension is 
along the Trotter axis, which we will refer to as the Euclidean time. The spin s(x, r) belongs 
to two plaquettes of interaction, see fig 2-1, one at Euclidean times before t and one at 
Euclidean times after/. When s(x, r) is up, one has to consider the plaquette interaction at 
the later time, and for a down s(x. /) the plaquette interaction at earlier times is considered.

The spin configuration on the plaquette considered is characterized by the spin orienta­
tion at the four comers /I = [s(x, r), s(x + <5x, f). s(x, t + St), s(x + Sx, I + <5z)]. The 
next point on the loop will be one of these four comers depending on the spin config­
uration. For configurations A, = [1, 1, 1, 1] or [—1, —I, —1. —1] the next point is the 
nearest neighbor of (x, t) on the plaquette along the Euclidean time direction. For config­
urations A2 = [I, -1, —1, 1] or [—1, 1, 1,-1] the next point along the loop is again the 
nearest neighbor of (x, /) on the plaquette but now along the space direction. For configu­
ration Aj = [1,-1, 1, —1] or [-1, 1,-1, 1] the next point on the loop is with probability 
p = 2/(exp(rJ) + 1) the nearest neighbor of (x,r) along the time direction, and with 
probability 1 — p the nearest neighbor of (x, r) along the space direction. Once the next 
point on the loop is found the process is repeated until the loop closes. As said before, the 
new configuration is found by flipping all the spins on the loop simultaneously.

The algorithm obeys the detailed balance, in this case it is,

where p(A,) = 1, p(A2) = ^exp(rJ) - 1, p(A3) = |(exp(rJ) + 1 and as before 
p(Aj/Aj) is the transition probability to go from a plaquette configuration A,- to Aj. This 
can easily be checked.
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(2.3.13)

(2.3.14)

= 22,ec(—0'S; and N is the Trotter dimension.S,-. Mc.s,ag

Amp =

where Oc is the value of the observable O in the loop C and |C I is the size of, or number 
of points in, loop c.

Unfortunately this technique does not work for all observables. For example the internal 
energy can not be calculated in this way and one has to calculate it in the usual way. How­
ever the spin-spin correlations, uniform and staggered susceptibilities can all be calculated 
with the improved estimator method. The improved estimator formulae for the uniform and 
staggered susceptibilities in the 1 dimensional Heisenberg model are:

x‘mp

where Mc =

One of the principle advantages of the loop cluster algorithm is that it allow for the use of 
so called improved estimators for observables[97J. This technique drastically reduces the 
statistical errors of measurements.

In this technique, the thermal average of an observable is calculated from the generated 
loops considering each loop as an independed system with a certain weight. For example 
for an observable O the improved estimator for its thermal average is given by

2/V \|C|/

P {Mi,lag 
2N \ |C|



3 The single stripe problem

3.1 Introduction

i

Because stripes are linelike objects, the charge sector of the electronic state of the high 
Tc cuprates might be looked at as a quantum string liquid[32, 34, 35]. Little is known in 
general about such problems, and theoretical analysis is needed. In order to address the 
problem of many interacting strings, it is first necessary to find out the physics of a single 
string/stripe in isolation. A string is an extended object, carrying a non-trivial collective 
dynamics — in contrast to particle-like problems, the elementary constituent of the string 
liquid poses already a serious problem. The physics of quantum strings is a rich subject. 
This is most easily discussed in terms of path-integrals. In d+1 dimensional Euclidean 
space time, a particle corresponds to a world line, and so the quantum string corresponds 
to a “worldsheet”. The statistical physics of membranes is a rich subject, which is still 
under active investigation[36].
The debate on the microscopic origin of the stripe instability is far from closed[9, 10, 37, 
38, 39, 35, 40], Nevertheless, in this work we will attempt to isolate some characteristics 
which might be common to all present proposals for the microscopy, to arrive at some 
general considerations regarding the quantum meandering dynamics. From those we will 
abstract a minimal model for the string dynamics. The phase diagram of this model can be 
mapped out completely, and turns out to be remarkably rich.
These characteristic features are: (i) It is assumed that the charge carriers are confined 
to domain walls. This is the major limitation of the present work and it is hoped that at 
least some general characteristics of this strong coupling regime survive in the likely less 
strongly coupled regime where nature appears to be. (ii) In addition, we assume that do­
main walls are not broken up, as sketched in Fig. 3-1/?, as this would lead to strong spin 
frustration. (Hi) Most importantly, we assume a dominant role of lattice commensuration 
on the scale of the lattice constant. Configuration space is built from strings which consist 
of “holes” which live on the sites of an underlying lattice. An example of such a string 
configuration is sketched in Fig. 3-lc. This automatically implies that the microscopic dy­
namics is that of kinks along the string (Figs. 1 c,d), and this leads to major simplifications 
with regard to the long wavelength behavior of the string as a whole. Note that there is 
ample evidence for the importance of lattice commensuration: the scaling of the incom­
mensurability with hole density x forx < I/8[28], the special stability atx = 1/8(26], the 
LTT pinning mechanism[25]. (iv) It is assumed that the strings do not carry other low lying 
internal degrees of freedom, apart from the shape fluctuations. Physically this means that 
localized strings would be electronic insulators. The data of Yamada et al.[27] indicate that 
this might well be the case at dopings x < 1 /8 (the linear dependence of the incommen­
surability on x indicates an on-domain wall charge commensuration), but it is definitely
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Figure 3-1. (a) A charged domain wall separating spin domains of opposite AFM order parameter, 
(b) Breaking up domain walls causes spin frustration, while (c) “kinks" do not. (d) Kinks can gain 
kinetic energy by moving along the domain wall, (e) A typical rough wall, (f) An example of a 
directed string.
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Here z(/) is the transversal displacement at point / on the string, and fl(/) its conjugate 
momentum defined through the commution relation [n(/), ?(/')] = i8(/ - /'), and c is the 
transversal sound velocity. The first two terms in Eq. (3.1.1) describe a free string, while 
the last term is reponsible for the lattice commensuration effects: every time the string is 
displaced by a lattice constant, the potential energy is at a minimum. This model is well 
understood[45). When the strength of the nonlinear interaction exceeds a critical value 
(8 > 8c). the interaction term is relevant and the string localizes. The excitation spectrum 
develops a gap and it is characterized by well-defined kink and anti-kink excitations. When 
8 < 8c the sine term is irrelevant, and although the dynamics is at least initially kink­
like on microscopic scales, the string behaves as a free string at long wavelength. The 
latter is the most elementary of all quantum strings. It follows immediately that the relative 
transversal displacement of two points separated by an arclength I along the string diverges

4 4 4 4 
4P

violated at larger dopings where the strings should be metallic[40, 41.42, 43].
Given these requirements, one would like to consider a quantum sine-Gordon model[45] 
for the string dynamics.

4 o-o t
4 4 4 4

(e)
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as ((z(/) — z(0))2) ~ In Z[32]. The string as a whole is therefore delocalized, and this is the 
simplest example of a “critical” string.
A central result of this work is that Eq. (3.1.1) is, at least in principle, not fully representa­
tive for the present lattice problem. More precisely: starting from a more complete micro­
scopic kink dynamics model (section II) a richer infrared fixed point structure is found. The 
phase diagram incorporates phases associated with the quantum sine-Gordon model fixed 
point, but also includes additional phases which are intimately connected with the effects 
of the lattice and of the nearest neighbor interactions between the holes. In section 3.3, 
we derive the path integral representation of our model. It turns out that the worldsheet of 
this siring in Euclidean space time corresponds with two coupled restricted solid-on-solid 
(RSOS) surfaces[46], each of which describes the motion of the string in either the ,v or y 
direction on the two dimensional lattice.
The bare model is invariant under rotations of the string in space. As discussed in section 
3.4. we find indications for a generic zero-temperature spontaneous symmetry breaking: 
for physical choices of parameters, the invariance under symmetry operations of the lattice 
is broken. Even when the string is critical (delocalized in space), it acquires a sense of 
direction. On average, the trajectories corresponding with the string configurations move 
always forward in one direction while the string might delocalize in the other direction, see 
Fig. 3-1/. This involves an order-out-of-disorder phenomenon whichis relatively easy to 
understand intuitively. Quantum mechanics effectively enhances the fluctuation dimension 
by stretching out the string into a world sheet in the time direction, and the enhancement of 
the effective dimension increase the effect of fluctuations. Thermal fluctuations destroy this 
directedness. but they do so more effectively when the string is less quantum mechanical.
This directedness simplifies the remaining problem considerably. It will be shown that the 
directed string problem is equivalent to a well known problem in surface statistical physics: 
its worldsheet is equivalent to a single RSOS surface. At the same time, this model is easily 
shown to be equivalent to a generalized XXZ quantum spin chain problem. The particular 
model studied is actually equivalent to the S = 1 spin chain, which has been studied in 
great detail. The RSOS surface problem and the quantum spin chain problem are therefore 
also related to each other.
A large part of this chapter (sections 3.5- 3.8) is devoted to a study of this directed string 
model. Some powerfull statistical physics notions apply directly to the present model, and 
these allow to arrive at a complete description of the phase diagram of the quantum string. 
This phase diagram is surprisingly rich: there are in total ten distinct phases. In the context 
of the quantum spin chain/RSOS surfaces, already six of those were previously identified. 
However, viewing this problem from the perspective of the quantum string, it becomes 
natural to consider a larger number of potentially relevant operators and the other four 
phases become obvious.
Compared to strings described by Eq. (3.1.1), a much richer behavior was found but this 
is limited to the regime where lattice commensuration dominates over the kinetic energy 
so that the string as a whole is localized — we use “localized” here in the sense that 
the transversal string fluctuations of two widely separated points remain finite, ((z(£) —



32 The single stripe problem

3.2 Model: The meandering lattice string

z(0))2> -> const, as £ —> oo. Besides the different directions the purely classical strings 
can take in the lattice, also a number of localized strings were found, which have a highly 
non-trivial internal structures: the “disordered flat’’ strings, characterized by a proliferation 
of kinks, but where the kink flavors condense so that the string as a whole remains localized. 
On the other hand, the quantum-delocalized (critical) strings are all of the free field variety 
and as we will argue in the final section, this might be a very general consequence of the 
presence of a lattice cut-off.

Whatever one thinks about the microscopy of the stripes, in the end any theory will end up 
considering the charged domain walls as a collection of particles bound to form a connected 
trajectory, or such a model will be an important ingredient of it. Moreover, these trajectories 
will communicate with the crystal lattice, because the electrons from which the strings are 
built do so as well. This fact alone puts some strong constraints on the collective dynamics 
of the charged domain walls.

Firstly consider the string configuration space. On the lattice this will appear as a col­
lection of particles living on lattice sites, while every particle is connected to two other 
particles via links connecting pairs of sites. The precise microscopic identity of these parti­
cles is unimportant: they might be single holes (filled charged domain walls[9, 10] as in the 
nickelates[48]), an electron-hole pair (the charge density waves of Nayak and Wilczek[35], 
or Zaanen and Oles[39]), or a piece of metallic-[41] or even superconducting[49] domain 
wall. All what matters is that these entities have a preferred position with regard to the un­
derlying lattice (site ordered[9], or bond ordered[40]). Quite generally, curvature will cost 
potential energy and a classical string will therefore be straight, oriented along one of the 
high symmetry directions of the lattice. Without loss of generality, it can be assumed that 
the lattice is a square lattice while the string lies along the (1,0) (‘a’) direction. Denoting 
as Ny the number of lattice sites in the y direction and assuming periodic boundary con­
ditions, this straight string can be positioned in Ny ways on the lattice. Obviously, such a 
string will delocalize by local quantum moves: the particles tunnel from site to site[38, 50]. 
Moving the whole string one position in the y direction involves an infinity of local moves 
in the thermodynamic limit, and the different classical strings occupy dynamically discon­
nected regions of Hilbert space.

This is analogous to what is found in one dimensional systems with a discrete order 
parameter[51]. In the case of, e.g., polyacetylene the order parameter is of the Z2 kind: 
the bond order wave can be either----- A — B — A — B------ or-------B - A - B - A------
{A single bond, B double bond), while a single translation over the lattice constant trans­
forms the first state of the staggered order parameter into the second kind of state. This is 
a discrete operation, because the lattice forces the bond-order to localize on the center of 
the bonds. Such an order parameter structure implies the existence of topological defects, 
which are Ising domain walls:----- A-B-A-B-B-A-B-A------ (“kink’’) and
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I

■■■ — B — A — B — A — A — B — A — B — ■■■ (“antikink”). When they occur in isolated 
form, these are also genuine building blocks for the quantum dynamics, because although 
their energy is finite, it involves an infinity of local moves to get rid of them (topological 
stability). In the particular problem of polyacytelene, these kinks only proliferate under 
doping (charged solitons). Although topological quantum numbers are no longer strictly 
obeyed when the density of topological defects is finite, it has been shown in a number 
of cases that they nevertheless remain genuine ultraviolet quantities as long as they do not 
overlap too strongly[52, 53],

If one considers a (locally) directed piece of string, the string is analogous, except that the 
symmetry is now Zyvv: on the torus, a half-infinity of the string is localized at y position 
n v, and the other half can be displaced to ny + 1. ny + 2, ■ • • n v — I ■ Hence, in total there 
are A - 1 distinct kink excitations with the topological invariants corresponding with the 
net displacement of the half-string in the y direction. Because the kink operators can occur 
in many flavors, this problem is therefore in principle richer than that of one dimensional 
solids.

Clearly, kinks with different flavors have to be dynamically inequivalent. Since there is 
apparently a reason for the particles to form connected trajectories, it should be more fa­
vorable to create a kink corresponding with a small displacement than one corresponding 
with a large jump. In this thesis we will focus on the simplest possibility: only kinks occur, 
corresponding with a displacement of one lattice constant in the y-direction. This restric­
tion is physically motivated by the fact that the string is thought to separate two antifer­
romagnetically ordered states; so, if the displacement of successive holes would be larger 
than one lattice constant, the antiferromagnetic ordering would be strongly suppressed — 
after all. this is the very reason that holes tend to line up in stripes. In addition, only the 
“neutral” string will be considered here. It will be assumed that the string is characterized 
by a gap in its charge and spin excitation spectrum, so that the strings with kinks contain 
the same number of particles as the classical reference configurations. The model we will 
consider might apply literally to the charge commensurate stripes of the nickelate[48]. In 
the cuprates, it might be better to consider the stripes as one dimensional metals or su­
perconductors, characterized by massless internal excitations. In these cases, it remains to 
be demonstrated that eventually the transversal string fluctuations decouple from the inter­
nal excitations for the present model to be of relevance. An attempt to justify this will be 
discussed in the next chapter.

Given the above consideration, we propose the following strong hole (particle)-binding 
model for quantum domain walls (stripes), the quantum lattice strings. These are connected 
strings of holes on the two-dimensional (2D) square lattice. The string configuartions are 
completely specified by the positions of the particles (holes) r, = (a/, yi) on the 2D square 
lattice. Two successive particles / and / + I should either be nearest neighbours or next 
nearest neighbours. Therefore they can only be apart by distances of either 1 or \/2 lattice 
constants, i.e. |r/+i — r/| = I or s/2. We will call these connection between successive 
particles links. Two classes of links, those of length 1 (flat links) and those of length V2 
(diagonal links) exist. Taking the order of the particles into account there are 8 distinct
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4>. (3.2.1)

(3.2.2)

Such that

W = Ea'J'a (3.2.3)

J

( p' / ( 0 )' ^ence’ t*le configuration space is

and the wave functionals of the strings are

Where H is the string Hamiltonian. In the thermodynamic limit, the motion of the guider

corre-

- A-.,;

/ \ I _------------------------- _

( I to this guider particle, followed by a move of the guider parti- 

orthogonal space of string

particle xv becomes unimportant and the dynamics of the link vectors { 
sponds to a 1 dimensional problem.
In Euclidean space time, the string will trace out a surface (world sheet). One way to 
approach this problem is by identifying the classical surface problem which corresponds 
to the quantum string via the transfer matrix or the Suzuki-Trotter mapping. This will be 
done in the next section.

We turn to a site representation of the string configuration space. We define variables ij/ 
and rjj, integer numbers denoting the ‘height’ above the x and y-axis, respectively, of the

links. We assume that the number of particles in the string is fixed. Therefore the arc length 
along the string can only change by increasing the density of diagonal links relative to the 
density' of flat links. The Hilbert space is spanned by all real-space configurations satisfying 
the above string constraint. The string delocalizes by nearest neighbour hops of individual 
particles under the condition that the initial and final configurations are in the set of allowed 
string configuration.

Strictly speaking, such a string problem lives in 2+1 dimensions. However, in the ther­
modynamic limit it reduces to a 1 + 1D problem as long as no other objects are present. 
Consider an arbitrary string configuration X connecting sites. Single out an arbitrary 
point on this trajectory xv = (xo, yo)*{M (Which we refer to as the guider particle). The 

remainder of this trajectory is now completely specified by the set of — 1 vectors

the links, with / = 1, Nx — 1, representing directed links. Both £/ and v/ can take the values 
1, 0, -1, but they can not be both 0 :

build up by first choosing the particular guider particle xv and attaching all possible string 
configurations {

cle according to the hopping prescription. This will lead to an 
configurations. The Hilbert space is thus spanned by the basis,
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string’s particle at site /,

(3.2.4)

- '!/) I'? ■ (3.2.5)

where |tj) = |jj) and

= «(lwl - l) + 6(|p/|-72). (3.2.6)

(3.2.7)

where is a single link interaction given by,

(3.2.8)

(3.2.9)

K. discriminates between diagonal and flat links. It has a clear physical interpretation in 
terms of a commensuration energy. If K. is large and positive, the string will tend to orient 
along (1,0),(0,1) directions, while diagonal(l,±l) directions are stabilized by K. « 0.
The two-link interactions can be written in the following compact form,

1/ — -<o + 22 £/' 

'll = >’o + 22v'/'

Eq. 3.2.5 ensures that neighbouring particles are not farther apart than 1 or V2 lattice 
constant.
The Hamiltonian ~H consists of a classical part and a quantum hopping part. In writing the 
classical Hamiltonian we will assume short range interactions. We write the interactions 
as a sum of nearest and next nearest neighbour local discretized string-tensions, where the 
energies will depend on the distances between successive particles and the curvature, or 
the angle in the string, al a certain particle. In terms of links, assuming that the interactions 
between links are short range we can consider the classical Hamiltonian to be a successive 
sum of a single, two, etc, link interactions. Thus,

\ J] (si rings)) = J~]P(jJ/+I 
l

in terms of the link vectors and the guider particle. String configurations can be projected 
out from the total space of points ij/ = (rf, t//) using projection operators

H'd = I - O’Ct - n}\ - 1)
/

hci = h'ci + h1ci + ....

2

= 52 22 £'75(lty+2 “ ” Z)5(|^+2 - - A
/ /.y=0
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(3.2.10)

(3.2.11)

P(^) = «(lnz|- 1) + 3(lb/l - s/2) .

I

.M ^(tf - 
Ij^m

with Cij — Cji.

These two-link interactions correspond to discretized curvature energy. £qo stabilize con­
figurations where the string returns to its origin after two links. In the present context we 
will require that strings do not cross i.e. two particles can not occupy the same site. There­
fore such configurations will be projected out. Negative £io stabilizes steep and sharp 
(tt/4) comers. These represent strings with an extreme curvature and arc therefore un­
physical. We will exclude such strings (£j0 -> oo). The remainder of these interactions 
stabilize string configurations which makes sense as charged domain wall configurations. 
C\\ measures the energy of a tt/2 ‘comer’. In a mean-field calculation by Viertid and 
Rice[50], it was concluded that the state of a diagonal domain wall with an additional hole 
is more stable than the diagonal one. Such a stable configuration can lead to configurations 
where jt/2 ‘comers’ are presents. It looks natural to include such configurations. £20 and 
£22 discriminate between configurations which have a net orientation along the horizon- 
tal/vertical or diagonal, respectively, on a scale of two links. £20 can be set to zero if a 
straight, horizontal/vertical string is taken as the energy reference. Finally £21 is needed 
to discriminate between isolated kink configurations (a diagonal link with a neighbouring 
horizontal/vertical links or vice versa) and the double kink configuration.
In addition one can include interactions involving a larger number of links. However, it 
seems safe to neglect those in the light of the rather localized nature of the underlying 
microscopic problem. On the other hand, self avoidance is a serious problem. Physically, 
one would not like the strings to self-intersect forming a closed loops. At the crossing points 
the direction of the string is ill defined. We will therefore add to the classical Hamiltonian 
the crossing term,

and then take the physically relevant limit M -> 00, so that particles do not occupy the 
same site (£00 is now irrelevant). Therefore the model is parameterized by /C. £11. £21 a°d 
£22- The various local configurations and interaction energies are shown in Fig. 3-2.
Quantizing the string amounts to allowing the particles to hop to nearest neighbour po­
sitions in either the x or y direction, with the constraint that these hops should occur 
within the string configuration space. This is accomplished by associating with the inte­
ger “height” variables rf of particle / operators 77“ (cz = x, y) and then introducing the 
conjugate momenta 7r“,

= iSl.mSa.0-

The operator e,njIi acts as a ladder operator in the space of height states, i.e. it will cause 
particle / to hop a distance n in the a-direction. Therefore, the quantum term of the Hamil­
tonian in its simplest nearest neighbour form is,
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(a)

K+L22 K Ln

(b)

(3.2.12)

where P“,r(l') is a projection operator which, in terms of ij" is given by.

T’s.rd') = - iDPtiff - ni+0 (3.2.13)

3.3 Relation to RSOS-like surface models

= T ^2 («'*' + + e'*'
I

O 
t

0-0-0
0

Figure 3-2. (a) Energies (of the central hole) and (b) tunneling amplitude of various local-bond configura­
tions. The tunneling process is between the dashed configuration and the one drawn in full.

W®" is therefore the kinetic energy operator of the string. The holes in the string can hop 
one lattice unit upward, downwards, to the left or to the right with a hopping amplitude I, 
while the projection operators P impose that these movements are only allowed as long as 
the resultant configuration is in the string configuration space.
Equations (3.2.8,3.2.9,3.2.10 and 3.2.12) define a general quantum model for the charged 
domain walls, the quantum lattice string model.

K/2+L12

The problem introduced in the previous section can be reformulated as the classical prob­
lem of a two dimensional surface (worldsheet) embedded in 2+1 dimensional space, us­
ing the Suzuki-Trotter mapping. The model can be seen as two coupled RSOS (restricted 
solid-on-solid) surfaces. The solid-on-solid models[46] are classical models for surface 
roughening. They describe stacks of atoms of integer height in two dimensions, with an 
interaction between adjacent stacks depending on the height differences. With this con­
struction overhangs are excluded. In the restricted SOS models these height differences are 
limited to be smaller or equal to some integer n. In the present case, the two RSOS models 
parametrize the motions of the world sheet in the spatial a- and y directions, respectively, 
while the (strong) couplings between the two takes care of the integrity of the world sheet 
as a whole.
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n
(3.3.1)

(3.3.2)

(3.3.3)

For Hq a few more steps are needed.

(3.3.4)

'H'ff
l.k

Z = lim Tr n—*oc I e n e n I

To show the relation with RSOS models, we will cast the transfer matrices T in the form 
of a two-dimensional classical effective Hamiltonian. This implies writing the matrix ele­
ments of the T-matrix between configurations {r,} in terms of an effective classical energy 
depending on the worldsheet positions {r/j-}, where k is the imaginary time index running 
from 1 to n with periodic boundary' conditions. Schematically,

lim ({r/ltle^Kr/Ji+i) ->■ e«<//(W*-lr/h+i).
n—*oc

({r/hk"we|(r,)t+1)

= <(r,hl £ -^(^rHr/h+i) 
Z—' mi n
m=Q

= ((r/h|l + — Ur/k+i) + O(-^)

=n n (i(«z,t+i - «/.r)
/ a=.r.y

The expression in the last line is of course only valid for states in which the a/’s in succes­
sive time slices differ by at most one unit. Combining these two energy contributions we 
arrive at the following classical problem,

Z = lim Tre^'ff
n—►oo

= ~— -*■/.*! - O«(lyt+i,* - y/.*l - ’)
ik L”

In the Suzuki-Trotter[54] or Feynman path integral picture (section 2.3.1) one writes the 
finite temperature partition function as an infinite product over infinitesimal imaginary lime 
slices. In this limit the commutators between the various terms in the Hamiltonian vanish 
like l/?r, where n is the number of Trotter slices, and the partition function can be written 
as.

Since He/ is diagonal in the real-space string basis, it is already in the required form, 

lim ((r/hk"Wc' -» eiWc'<,r'w((rz)t|. 
n—»oo

4—5(|a/,x-+t - “/.ill - 1)) n
_ eY.i ,n(j)p(kf.*+i--x/.tl-l)+5(|y/.4+i-y/.*l-O]
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(3.3.5)

3.4 Spontaneous orientation of the quantum lattice string.

i

This classical world sheet is constrained to |.rz.t+t — .vz.r1 < 1 and lyz.t+t — yt.kI  I> and 
the interactions are anisotropic. The above classical model can be viewed as two coupled 
two-dimensional RSOS surfaces, and yz.r- The ,v coordinate of hole / at the time slice 
k is now identified as the height of an RSOS column positioned at (/, X.) in the square 
lattice. In a similar way the y coordinates define a second RSOS surface, coupled strongly 
to the first by the above classical interactions. Since the steps A.v can at most be equal to 1, 
the RSOS sheets are restricted to height differences 0, ±1 between neighboring columns. 
The classical model as defined above is not unique. While the above mapping allows us 
to exploit the connection to other models most efficiently, for the numerical Monte-Carlo 
calculations a different decomposition is used, which allows for a more efficient approach 
to the time continuum limit. This is further discussed in the appendix.

It is actually not easy to find any similarity of the statistical physics problem of the previ­
ous section with any existing model. RSOS problems are well understood, but it should be 
realized that in the present model the two RSOS problems are strongly coupled, defining 
a novel dynamical problem. When we studied this problem with quantum Monte-Carlo, 
we discovered a generic zero temperature symmetry breaking: although the string can be 
quantum delocalized, it picks spontaneously a direction in space. This symmetry break­
ing happens always in the part of parameter space which is of physical relevance. At first 
sight, one might expect that the quantum fluctuations (kinetic energy) would tend to disor­
der the string, i.e„ to decrease the tendency for the string to be directed. That the opposite 
effect happens, can be seen as follows. A first intuition can be obtained by considering 
the analogy with surface statistical mechanics. As showed in the preceding section, the 
quantum string problem can be formulated as a classical problem of a two dimensional 
surface (world sheet) in 2+1 dimension, where the third direction is the imaginary time 
direction. The larger the kinetic term, or the smaller the temperature, the further the world­
sheet stretches out in the time direction. At zero temperature, the worldsheet becomes 
infinite in this direction as well. The statistical physics of a string is then equivalent to that 
of a fluctuating sheet in three dimensions. Now, it is well known from studies of classi­
cal interfaces[55] that while a one-dimensional classical interface in two dimensions does 
not stay directed due to the strong fluctuations, for a two-dimensional sheet the entropic

+ / . ----^(l-'7+i.r — xz-l.tl - <)5(|yz+t,* — yz-l.*l - J)
t.j=o n
M

3---- > 3(xz,<- - x„,.1)5(y/.t - ym,t)
ni

7"
4- ln(—) [$(|xz.*+t — xz.tl — 1)

+«(l>z,i+i - yi.k\ - 1)] •
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(3.4.1)

(3.4.2)dx2 + dy2 .

where every state in the string configuration space (!{*/, y/})) corresponds to a trajectory 
(v(f), y(r)]. Consider first the case of a continuous string. For every configuration, the total 
string arclength is given by

l*o) = “o({-v/, y/))|{.v/, y/)) ,
(x/.y/l

fluctuations are so small that interfaces can stay macroscopically flat in the presence of 
a lattice[56, 57] — for this reason, the roughening transition in a three-dimensional Ising 
model is properly described by (i.e., is in the same universality class as) a Solid-on-Solid 
model in which overhangs are neglected[56. 57]. In other words, even if microscopic con­
figurations with overhangs are allowed, a classical interface on a lattice in three dimen­
sions can stay macroscopically flat or “directed”, in agreement with the findings from our 
specific model which we will present here. In the present context, we will show that the 
directedness is caused by an order-out-of disorder mechanism: in order to maximize the 
fluctuations transversal to the local string directions, overhangs should be avoided on the 
worldsheet. It remains to be seen if this mechanism is of a more general application.
The string model introduced in section 3.2 is invariant under rotation of the string in space. 
As will be discussed below, we find that for physical choices of the parameters the invari­
ance under symmetry operations of the lattice is broken. The siring acquires a sense of 
direction in space. This occurs even when the string is critical (delocalized in space). The 
string s trajectories, on average, are such that they move forward in one direction while the 
string might delocalize in the other direction.
Let us now discuss the numerical results. It is clear that the directedness property is a 
global quantity. For a string living in 2D lattice with open boundary conditions, directed­
ness means that if it starts at, say, the left boundary it has to end at the right boundary and 
will never end at the top or the bottom boundaries of the lattice. Although in the above 
model one can introduce a local order parameter to measure the directedness of a string, a 
more general quantitative measure for this global property can be constructed. This mea­
sure is not easily evaluated analytically but it can easily be calculated numerically; most 
importantly it illustrates clearly and effectively the directedness phenomenon. Every string 
configuration s defines a curve in the 2D space [_v(r), y(r)J, where t could for instance 
be the discrete label of the successive particles along the string. When this curve can be 
parametrized by a single-valued function x(y) or y(.v), we call the string configuration di­
rected. The quantum string vacuum is a linear superposition of many string configurations. 
When all configurations in the vacuum correspond to single valued functions x(y) or y(.v), 
the string vacuum is directed. At zero temperature, the ground state wave function of the 
string is

Min, >7i),OI=y ds=y
Consider now an indicator function gy(x) which equals 1 when the string is single valued 
when projected onto the x-axis, and zero otherwise, and analogously a function g.r()’)
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1 +

(3.4.3)

(3.4.4)

(3.4.5)

which equals 1 when the curve is single-valued when projected onto the y-axis, and zero 
otherwise (see Fig. 3-3). The total directed lengths in the ,v and y directions are defined as

Ndir<-°')= 52 l“o((A7,y/))|2 
(n.»)

^,r(7') = 52^<£"-£o)^r(n)> 
n

Figure 3-3. Illustration of the way we measure the directedness of a string in the continuum case (a) 
and on the lattice (b). The heavy solid parts of the string indicate the parts where the projection of 
the string onto the ,r axis is single-valued, and for which the indicator function gy(x) equals 1.

f-({-'7, yi 
£(-'/. yitiot

where /V^yfzt) is the directedness density of an excited string with energy E„.
To study the directedness property we performed exact diagonalization and quantum 
Monte-Carlo studies. Although the quantum Monte-Carlo study is the more extensive one

and q = ,v, y. On the lattice, one measures the directedness in analogy with the above defi­
nition, except that we just count the number of directed bonds, irrespective of whether they 
are oriented diagonally or horizontally. The finite temperature measure of the directedness 
density is simply given by thermally averaging the above definition.

^-({-'7, yiY)dir.x = j dx gyM

The measure of directedness is then defined as the larger of /VJlr(O) and N%!r(0), where

= fdy^l + (^) •
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(a) (b) (c)

(d) (e)

3.5 Directedness at low but finite temperature

I

Table 3-1. Tunnelling probability at different points in the parameter space (A.. £12. £22) (a) (0.0,0). 
(b) (0, -0.25, -1.0), (c) (6.0, -3.0, -2.0). (d) (7.0, -4.0. -6.0), (e) (3.0. -3.25. -3.0).

Lat.
3x3
5x5
7x7

Lat.
3x3
5 x 5
7x7

Lat.
3x3
5x5
7x7

Lat.
3x3 
5x5 
777

Prob.
- IQ-2
- IQ-4
- 10“6

Prob.
- 10~‘
- KT4
- 10-7

Prob.
- IQ-1
- 10“-’

- 10~y

Prob.
- 10~2
- IO"5
- 10'1(1

Prob.
- 10*'
- 10"5
- 1Q-"

Lat.
3x3
5x5
7x7

we start by discussing the exact diagonalization results, as it will give a clear indication for 
the symmetry breaking directly at zero temperature. Here we consider an N x N lattice. 
We think of a string living in such a finite lattice as part of an infinite one and therefore 
the ends of the string should live on the boundaries of the cluster. To fix the length of the 
string inside the cluster, we take as a criterion that the energy per particle be minimum. 
We plot the energy per particle versus the number of particles in the string. The minimum 
defines the optimal length of a string in the cluster. Upon setting the parameter C\ 1 to zero 
and investigating different points in the parameter space, we found that the optimal length 
one should consider is the linear dimension of the lattice. Therefore in an N x N lattice we 
will consider a string of length N. Such a string can be directed along the _v (horizontal) 
or y (vertical) direction. If the directedness assumption is fulfilled, the Hilbert space will 
effectively split into two subspaces: strings directed along the ,v direction and those along 
the y. If nondirected strings are present there should be a non-zero tunnelling probabil­
ity between the two sectors. By measuring the probability to tunnel from the .v- to the y- 
sectors as a function of the linear dimension of the system, it should be possible to see 
the tendency towards spontaneous directedness symmetry breaking in the thermodynamic 
limit. Table 3-1 gives this tunnelling probability for different points in the parameter space. 
For all cases we set C\\ =0. The choice of these points was motivated by the directed 
string problem[34]. The data are shown for lattices up to 7 x 7. For a 9 x 9 lattice the 
tunnelling probability turns out to be less than the accuracy of our numerical technique.

These results clearly indicate that in the thermodynamic limit there is no tunnelling be­
tween the two sectors and the string should be directed either along the ,v or the y direction.

We subsequently used quantum Monte-Carlo to calculate the directedness density as a 
function of temperature. Eq. (3.4.5) can be straightforwardly calculated using quantum
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Figure 3-4. A Monte-Carlo result for the directedness density Ndir(T) at 4 points, (a) The XY point 
(Triangles) where all curvature energie are zero. Two points in the flat phase, with AC = 1.8 (crosses) 
and AS = 4.0 (filled squares) the rest of the curvature energies are zero, (b) Inset: A point in the 
middle of the gaussian phase with parameters AS = 0.5, £21 = —0.25, £22 = —1.0, £n = 0 (open 
circles). The full line in both figures is the result for a classical string where only flat bonds and y 
comers are present with £M = 1.
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Monte-Carlo. A Monte-Carlo snapshot defines a stack of coupled string configurations 
along the imaginary time direction (the Trotter direction). We calculate Nfiir for every 
Trotter slice by calculating the fraction of the string length in this configuration which is 
single valued in the x-direction. This is given by the number of bonds which step forward 
in the x-direction divided by the total number of bonds in the string. We then average 
this quantity over the string world sheet (Trotter direction) and then over the Monte-Carlo 
measurements. The same is done for N^ir(_n). The larger of ^jjrCn) ^dir^ *s ^en 
the density of directedness at the given temperature.

In Fig. 3-4 we show results of typical Monte-Carlo calculations for the density of direct­
edness as a function of temperature Ndir(T)- We have considered four points in parameter 
space; as will be discussed later, these points are representative for phases with interest-

.
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ing quantum fluctuations, and serve to clarify our conclusion. In Fig. 3-4(a) the triangles 
(dashed line) are the result for the density of directedness at the point where all the classi­
cal curvature energies are zero, i.e., corresponding to the pure quantum string. The crosses 
(dotted line) and the filled squares (dashed-dotted line) are the results for points where 
/C = 1.8 and AS = 4.0, respectively, and the rest of the classical curvature energies are 
zero. In terms of the phase diagram for the directed string problem of Fig. 3-8 in section VI 
and Table 3-4 in section VII, the first point corresponds to a Gaussian string and the other 
two correspond to flat strings. The point AC = 1.8 lies just inside the flat string phase II 
where significant quantum fluctuations are still present, while the point AC = 4.0 lies deep 
inside the flat phase. The fourth curve in Fig. 3-4(a), given by the full line, is the result 
of a Monte-Carlo calculation for a classical string (T = 0) where only fiat segments and 
?r/2 comers are allowed (no diagonal segments). This same classical result is shown again 
in Fig. 3-4(b) together with the result of the directedness density for a point in the middle 
of the Gaussian (XY) phase, phase IV, [AC = 0.5, £2i = -0.25, £22 = -10, £n =0 
corresponding to D = 0 and J = —0.5], which correspond to a critical siring.
Consider first the classical limit ( 7” = 0, and for instance the energy of the tt/2 comer 
£ 11 = !)• At zero temperature the string would be straight, running along (say) a (1,0) 
direction. A local ‘comer’ configuration of the type shown in Fig. 3-2a would be an excita­
tion with energy L\\ (alternatively, one could consider two kinks). Clearly, a single comer 
suffices to destroy the directedness of the classical ground state. At any finite tempera­
ture, the probability of the occurrence of at least one comer is finite: P = N exp(— 
Hence, directedness order cannot exist at finite temperatures, for the same reasons that long 
range order is destroyed at any non-zero temperature in one dimension. In the simulations 
the string is of finite length, and the infinite temperature limit of N(Hr(T) is therefore not 
zero but rather a small but nonzero value[74] (~ 0.03 for a domain wall of length 50). 
Ndir(T) is already close to this value for all temperatures of order C] i and larger. For an 
infinitely long domain wall N(nr(J") drops very fast to zero with increasing temperature. 
At the other limit, for low T where T £\\, Njir(T) grows very rapidly to 1. Again 
because the string is of finite length, it becomes directed already at a finite temperature: for 
all temperatures such that Lexp(—&£\\) < 1 the string configurations in our simulations 
are typically completely directed. An infinitely long classical string becomes directed only 
al = 0, course, since at any nonzero temperature always some comers will occur in a 
sufficiently long string.

For the quantum string, all the curves look strikingly similar to the classical one. When the 
temperature is very much higher than the kinetic term, T T, all curves merge together 
and the classical limit is reached. At low T, where T « T, Ndir(T) again grows very 
fast to 1. as in the classical case; it reaches this value at a finite temperature for the finite 
length string. This is even true for the purely quantum string at the XY point, where all 
classical microscopic curvature energies are zero (see the dashed line in Fig. 3-4(a)). We 
can understand this in terms of an effective comer or bend energy C that is produced by 
the quantum fluctuations. As in the classical case the probability for the occurrence of a 
bend is proportional to ~ exp(—/3£). At zero temperature no bend is present and the string 
becomes directed. A finite length string effectively becomes directed already at a temper-
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ature such that L exp(—/?£) < 1. At intermediate temperatures, where the temperature is 
of the order of the kinetic term, things are more difficult and it is far from obvious what is 
going on. Especially in this region, all the various classical curvature energies may play a 
role, and the interplay of these on the directedness is unclear. Nevertheless, as is clear from 
the data of Fig. 3-4(a), this region connects the high and low temperature limits smoothly. 
Moreover, by comparing the results for the three quantum strings in this figure it is also 
clear that Njii CD is higher when the string is more quantum mechanical.
I end this part by giving a brief qualitative description of observations concerning sponta­
neous directedness at low but finite temperatures in regions of the phase diagram where the 
directed string has other type of ordering than that already discussed above. All the results 
apply to C\ i =0. and we refer to Table 3-4 in section 3.8 for a quick introduction to the 
various phases of the directed string problem and for the numbering (I-X) of the varous 
phases.
— The entire zero temperature phase diagram of the directed string is reproduced.
— Phase I is very stable with respect to bends. With “stable” we mean that strings 
do not change their appearance when increasing the temperature from zero to a moderately 
small temperature, of the order of 0.1 T.
— Deep in the horizontal phase II (large positive AC) quantum fluctuations are strongly 
suppressed, and at the same time the string becomes susceptible to tt/2 comers. On the 
other hand, when we approach from phase II the boundaries with phases IV and V, the 
fluctuations increase and the string stiffens, Fig. 3-4. This is in agreement with the picture 
sketched before that quantum fluctuations orient the string.
— Deep inside phase III the string changes constantly between horizontal zigzags and 
vertical zigzags. A tt/2 turn costs no extra energy. Again close to phase V quantum fluctu­
ations have the effect of removing bends.
— The Haldane phase V and the rough phase IV are very robust, and a considerable frac­
tion of ti/2 bends occurs only at relatively high temperatures of the order of 0.2 T.
— In the slanted phase VII high temperatures are needed before down diagonal links come 
in. On the other hand horizontal links are easily replaced by vertical ones. This only in­
creases the energy very slightly, but the entropy gain is considerable. A typical low tem­
perature string is shown in Fig. 3-10 in section 3.8. To zeroth order the horizontal and 
vertical links can be thought of as spinless fermions moving coherently along the string. 
In the dilute limit these links have only a weak interaction. The order of the links is con­
served, and at zero temperature the ground state has only horizontal links. However our 
simulations indicate that for a small range of negative Lu values a diagonal string with 
alternating horizontal and vertical links is favoured. It is again the kinetic energy of the 
horizontal and vertical links that keeps the string oriented in the (1,1) direction.
The conclusion we draw from the above extensive Monte-Carlo studies of the behavior 
in several parts of the phases space, is that apart from some extreme classical limits, the 
general lattice string model at zero temperatures is a directed string. The phase diagram 
of the general string model introduced in section II will essentially be the same (apart from 
special limits) as the corresponding phase diagram of the simplified directed string model. 
In the coming sections of this chapter we will therefore focus on the phases and phase

3.5 Directedness at low but finite temperature
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transitions of the directed string.

Although we have not found yet a formally rigorous description of the directedness sym­
metry breaking, we can offer a qualitative explanation at least on the level of our specific 
model. As we showed in the previous sectrion, the string problem can be mapped on the 
problem of two strongly coupled classical RSOS surface problems. The symmetry break­
ings of a single RSOS surface will be discussed in great detail later, but for the present 
discussion it suffices to know that such a single surface can be fully ordered, as well as 
(partly) disordered. Because of the strong coupling, it would a priori appear questionable 
to discuss the dynamics of the full model of Section II in terms of the dynamics of the two 
separate RSOS subproblems. However, in the context of directedness it is quite convenient 
to do so. When both the a* and y RSOS problems would be fully disordered, it is easy to 
see that the string vacuum would be undirected. This is illustrated in Fig. 3-5ct: two kinks 
moving the string from a (1,0) to a (0,1) direction in the lattice correspond with one kink 
which can move freely in the horizontal part of the string, and one kink which can move 
freely in the vertical part of the string. On the other hand, when both RSOS problems are 
ordered, the string is also ordered. For instance, the (1,0) string can be thought of as a 
combination of an RSOS surface which always steps upwards in the a direction, and one 
which is horizontal in the y direction (Fig. 3-5/?).

Figure 3-5. (a) An undirected string with two kinks propagating along different directions. Note that 
the bend blocks the propagation of kinks, (b) a (1,0) string and the corresponding two (coupled) 
RSOS surfaces along the a and the y directions respectively. The numbers correspond to A (y) 
position of hole / at imaginary time t. (c) a disordered directed string and the corresponding ordered 
and disordered RSOS surfaces

■ i.

sffi
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Lastly, it is obvious that the directedness order is rather fragile. It cannot exist at any finite 
temperature. When temperature is finite, the width of the worldsheet in the imaginary time 
direction becomes finite as well, and the long wavelength fluctuations of the string becomes 
a 1D statistical problem, which cannot be directed.

Figure 3-6. Illustration of the fact that a bend blocks the propagation of links along the string. Note 
holes 1 and 2 cannot move.

What is the source of the condensation energy? As we already stated, violation of directed­
ness implies that tt/2 bends occur on the string, equivalent to overhangs on the worldsheet. 
As can be easily seen, these bends block the propagation of links along the chain. Close to 
the bend itself the particles in the chain cannot move as freely as in the rest of the chain. 
This effect is shown in Fig. 3-6. Therefore, the presence of these bends increase the kinetic 
energy associated with the kink propagation, and it makes no difference whether the bend 
consists of a single tt/2 comer or two tt/4 comers. This kinetic energy cost disappears 
when one of the two RSOS surfaces straightens and this drives the directedness conden­
sation. It might be called a quantum order-out-of-disorder mechanism and it is suspected 
that a theory of the Hartree mean field type can be formulated catching the phenomenon 
on a more quantitative level (with the kinks playing the role of electrons and the second 
surface offering the potentials). To emphasize the order-out-of-disorder aspect, it is easy 
to see that in the classical case, T = 0, in many regions of parameter space the problem 
becomes that of a self-avoiding walk on a lattice in the limit T —> 0 which does not exhibit 
the directedness order.

A third possibility is that one of the RSOS subproblems is ordered, while the other is 
disordered. Dismissing crumpled phases (like condensates of the Ln type comers), the 
only possibility remaining is that one of the RSOS problems steps up always, while the 
other is disordered, as illustrated in Fig. 3-5c. This results in a disordered directed string 
vacuum: the string steps always forward in, say, the _v direction while it freely fluctuates in 
the y direction. Hence, the local order parameter underlying the directedness corresponds 
with the diagonal flat order (Phase I of fig. 3-8) of at least one of the two RSOS surfaces 
describing the string.

3.5 Directedness at low but finite temperature
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It is clear that the directedness simplifies the model considerable. The directed version can 
not self-intersect, and the excluded volume constraint is satisfied automatically. Further­
more the £n-type of configurations are not allowed, thus the directed model is specified 
by three parameters and the temperature (T = 1). Because of the preceding considerations, 
Eq. (3.6.1) corresponds with a 1 + 1 D problem, which is actually equivalent to a general 
quantum spin-1 chain.

We identify the spin with the string height difference y/+\ — y/, which can be either 0, 1 
or —1, see Fig. 3-7. These link dynamical variables specifying the string can be directly 
identified with the ms = 0. ±1 variables of the spins living on the sites of the spin chain. 
Defining the latter using hard core bosons b'nh. the spin operators for the S = 1 case become 
S- = h}b\ — S+ = s/2(/>j/?0 4- and by comparing the action of the spin- 
and string operators on their respective Hilbert spaces one arrives at operator identities[47). 
A quantum hop from y to y + 1 increases the height difference on the left of / by one. and 
decreases it by one on the right, as is easily seen by inspecting the two hopping terms in

Quite generally, the string problem does not simply reduce to that of the internal dynamics 
of the worldsheet, because of the requirement that the worldsheet has to be embedded in 
D+l dimensional space. However, in the presence of directedness order and in the absence 
of particle number fluctuations(42] the string boundary conditions are trivially fulfilled 
and the string problem is equivalent to that of a single “world sheet “ in 1 + 1 dimensions. 
Assume the string to be directed along the ,v direction. Since the siring steps always forward 
in this direction, the number of particles in the string has to be equal to the number of lattice 
sites in the .v-direction, and every directed string configuration will connect the boundaries 
in this direction. The string is still free to move along the y direction. Instead of labeling the 
positions in the 2D plane the string is completely specified by the list of links, for which 
there are only 3 possibilities (in the (1, 1), (1,0), or (1, -1) direction), and the position 
of a single “guider point”. As a guider point we can take the position r of any one of the 
particles, which, together with the relative coordinates given by the links, fixes the position 
of the entire string. Since the guider represents just a single degree of freedom, and since 
the thermodynamic behavior of a chain is determined by the link interactions, the guider 
coordinates will be irrelevant for the behavior of the chain. Apart from this guider degree of 
freedom the directed string problem reduces to a one-dimensional quantum problem with 
three flavors.

From Eq. (3.3.5) one directly deduces the Hamilton!;
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Spin 10 ++ 0

Figure 3-7. The relation between spin-1 and directed strings, Sj — yi+i yi-
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The E term is new. It is a quartic Ising term. 
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(S;)2 + (S;_,)2-2(SiSi_l)2,

«(lM+t - M-il - 2) = ^S;S;_,[1 + S/S;+,], 

are easily checked. The directed string problem can now be reformulated in spin language 
as,
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3.7 The phases (E=0)

I

The zero temperature phase diagram of the above spin-1 model has been discussed in 
detail in the literature. [58. 59, 60. 61,47] In the next section we will briefly review the six 
phases found for this model, from a string perspective. Then we will show that a nonzero 
E parameter leads to the appearance of four extra phases in section VII.
Den Nijs and Rommelse [47] discuss a direct mapping between the spin chain and the 
RSOS surface. We stress that this mapping in fact involves two steps: First the RSOS 
model is mapped on a string problem, using the T matrix. Then the spins are identified as 
shown above. Thus the quantum string is a natural intermediate of the two other models. 
Den Nijs and Rommelse make use of the freedom in the choice of the T matrix to define 
a mapping which is slightly different from ours, since they introduce a transfer matrix 
along a diagonal, while we introduce one along the a -direction. As a result, in their case 
there are only interactions between next nearest neighbors along the (1.1) direction, while 
our choice allows for interactions between next nearest neighbors along the x-direction. 
Therefore, our RSOS model differs slightly from theirs.

The RSOS representation is more transparent than the quantum model. The spin-1 phases 
and the nature of the phase transitions all have a natural interpretation in space-time. For 
instance the Haldane phase, or AKLT wavefunction, with its mysterious hidden string order 
parameter is identified as a “disordered flat” RSOS surface [47] with a simple local order 
parameter. The height representation, dual to the spins, gives a similar local order parameter 
for the quantum string.

In this section we will simplify the general string Hamiltonian by leaving out the quartic 
Ising term (E = 0 in Eqs. (3.6.4) and (3.6.5)). The string problem is now equal to the spin- 
1 XXZ model. The zero-temperature phase diagram of the string problem is surprisingly 
rich, and even for the case E = 0 there are 6 phases and a large variety of phase transitions. 
These phases can be classified in three groups: classical strings localized in space, quantum 
rough strings of the free variety, and partly delocalized phases of which the disordered 
flat phase is a remarkable example. In this section we will briefly review the six phases 
as discussed in the literature on the spin-1 XXZ problem (3.6.6). The problem will be 
addressed from the quantum string perspective. For more details we refer to Ref. [47]. 
In the next section it will be shown that with a finite E > 0 four additional phases are 
stabilized.

The phase diagram of the quantum string is shown in Fig. 3-8, as a function of D and 
J. The XXZ model parameters, defined in Eq. (3.6.5), have been used such that the phase 
diagram can be compared directly with the spin-1 literature [58, 59,60,61 ] and in particular 
with Fig. 13 of Ref. [47]. The various order parameters that have been introduced in this 
reference to distinguish the six phases in this phase diagram will introduce below. The 
relation between the more general (E 0) string and spin phases will be clarified in the 
next section.
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There is first of all a horizontal and a diagonal string phase. In the diagonal phase I no 
quantum fluctuations are allowed, since a diagonal string does not couple to other states 
by ( this is illustrated in Fig. 3-13 of the appendix, to which we refer for further 
details). This phase is stabilized by a large and negative £22, so that since E = 0 also 
J = £12/2 = £22/8 is large and negative. A suitable variable introduced to define order 
parameters, following Ref. [47], is the Ising spin variable ai = (—1)>;, which identifies 
whether a given height is in an even or odd layer. This underlying spin model can have 
“ferromagnetic” or antiferromagnetic” order, and so we introduce the corresponding order 
parameters [62]

Here the brackets denote the ground state expectation value as well as an average over 
string segments /. In (3.7.1), we have also included the order parameter pstr discussed 
below. In the horizontal phase II one particular height is favoured, thus the order parameter 
p is nonzero here. This phase is stabilized by a large positive fC, which suppresses diagonal 
links. However 7{q causes virtual transitions from two horizontal links into two diagonal 
ones, see Fig. 3-2. On the 2D worldsheet these fluctuations show up as local terraces that 
do not overlap and thus do not destroy the long-range order. In both phases the elementary 
excitations are gapped.
Upon lowering AS the terraces grow and at some point they will form a percolated network

P = (07), pslas = ((-l)'cr/) .
Pstr = - yi\) .

3.7 The phases (E=0) 

Figure 3-8. The phases and phase transitions of the directed quantum string as a (unction of the 
on-site anisotropy D and the Ising interaction J of the corresponding spin-1 XXZ model. The 
parameter E is set to zero.
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Figure 3-9. Vertices (thick dots) on the space, imaginary time string worldsheet. The numbers corre­
spond to the heights y/j. Arrows are drawn when the heights of neighbors differ. When four arrows 
occur at a crossing point this is called a vertex.

I
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the string has become disordered in both space and imaginary time. Via the well-known 
Kosterlitz-Thouless roughening transition[56] phase IV is entered for J < 0. This phase 
belongs to the well known XY universality class, characterized by algebraic correlation 
functions and gapless meandering excitations. The roughness, however, is extremely “soft’ 
and the height difference diverges only logarithmicly, ((y/ — yw)2) ~ In |/ — The 
transition from the Gaussian phase, which is rough and on average oriented horizontally, 
to the frozen diagonal phase is a “quasi first-order” KDP transition[47].

For large negative K, diagonal links are favored over horizontal ones. There is a transition 
to a second rough phase (phase VI). It is distinguished from the first by the order parameter 
Pstag, which is zero in phase IV. In this phase horizontal links are virtual and occur in 
pairs. As we will discuss later in section 3.8, for large negative K the model can therefore 
be reduced to an effective spin 1/2 problem.

For negative K, and positive J (=£22/2) the string becomes a (physically unlikely) zigzag 
with alternating up and down diagonal pieces. Excitations to pairs of horizontal links are 
gapped. Again pstag = ((— 1)”'(T/) serves as an order parameter. Upon increasing K. the 
islands formed by pairs of horizontal links start to overlap and there is an Ising transition 
into the Haldane or disordered flat (DOF) phase.

The point J = 1, D = 0 belongs to the gapped DOF phase, in agreement with Haldane’s 
educated guess[63, 64] that integer spin chains are gapped at the Heisenberg antiferromag­
netic point. In this “disordered horizontal” string phase the prototype wavefunction, equal
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to the AKLT valence bond state[65], has every up diagonal link followed by a down link, 
with a random number of horizontal links in between. The height yi takes just two values, 
say 0 and 1. The local order parameter is, pstr> defined in (3.7.1). This order parameter 
measures the correlation between the next step direction and whether one is in a layer of 
even or odd height. When psfr = 1, the string just steps up and down between two layers, 
but the steps can occur at arbitrary positions. Note that the height is a global quantity in 
spin language, i.e., it is the accumulated sum over spins, yi = Because of this
the above order parameter becomes non-local when rewritten in terms of the “string of 
spins. Therefore, it is often called the string order parameter. This name will also be used , 
but it should be stressed that the “string of spins” to which this name refers should not be 
confused with the general strings which are the basis of the model, and that the other order 
parameters are nonlocal as well in terms of the original spins S.

This phase diagram can be rationalized by writing the RSOS problem as the product of 
a 6-vertex model and the 2D Ising model of 5 spins on the 6-vertex lattice, as discussed 
in detail by Den Nijs and Rommelse [47]. The horizontal, diagonal, zigzag but also the 
second rough phase VI all correspond to Ising order: p = (07) is nonzero in the horizontal 
phase II, while pslaf, = ((— 1 )zcr/> is nonzero in the diagonal phase I, the zigzag phase III 
and the rough phase VI. The six-vertex part is defined on the crossing points of steps on 
the surface — see Fig. 3-9. This is a (sometimes highly) diluted set of points. The Ising 
degree of freedom disorders on the transition between the phases HI and V, and between IV 
and VI, while the six-vertex part remains unchanged. Therefore these transitions are Ising 
like. Transitions I -> IV, I -> VI , IV -+ V and III -► VI are related to the six-vertex part 
becoming critical, and these KDP and KT transitions are known from the quantum spin-1/2 
chain. The transition II to IV is related to the famous surface-roughening transition, of the 
Kosterlitz-Thouless type.[56, 57] The subtle transition between phase II and V, is coined 
“preroughening transition” by den Nijs. It separates two gapped phases. At the transition 
the gap closes and the system is Gaussian, with varying exponents along the transition 
line.[58, 59, 60,61]

Almost all the phases can be distinguished by the above order parameters p, pstag and Psir*

Table 3-2. Order parameters that distinguish between the six different phases in the phase diagram 
for E = 0. A + entry in the table indicates that the particular order parameter is nonzero.
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t

Figure 3-10. A typical low temperature string in the slanted parameter region VII.

Table 3-3. Spin 1 S seen as a combination of two spins 1/2, a and 5.
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except that these do not discriminate between the diagonal phase I and the rough phase VI. 
These two phases can be identified by also introducing an order parameter which detects 
the presence of an average slope, psiope = (y/+1 - yi). In Table 3-2 we list the various 
phases for E = 0 and the order parameters.

As we shall see in the next section, in the general case E /= 0 it is more convenient to intro­
duce slightly different spin variables to identify all the ten different phases that occur then. 
The choice of Ref. [47] discussed here is somewhat more convenient for understanding the 
universality classes of the various phase transitions.

As mentioned above the quartic Ising term with prefactor E generalizes the XXZ Hamil­
tonian and leads to extra phases. Below it will motivate that four extra phases are to be 
expected, and show that they are stabilized by a positive E parameter. The most disordered 
phase is still the Gaussian phase.

Using a similar decomposition as above, one can determine how many different phases 
to expect for a general spin-1 chain with z-axis anisotropy and nearest-neighbor 
interactions[66]. Think of the spin 1 as consisting of two spins see Table 3-3. The first is 
Ct- =| when the spin 1 has S: = 0 and ct2 when S: = ±1, similar to the Ising degree 
of freedom defined above. This spin thus indicates the presence or absence of a step. The
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(3.8.1)

second spin | s, is defined as = S:/2 when S: = ±1 and is absent when S: = 0. 
This is related to the diluted vertex network discussed by den Nijs and Rommelse, in that 
if there is a step, the z-component of s indicates whether this step is up or down. The spins 
s can have ferromagnetic (F) or antiferromagnetic (AF) order, or they can be disordered 
(D). For cr the two ferromagnetic cases correspond to different physical situations, and we 
have to distinguish ferromagnetic J, (F2), a horizontal string, from ferromagnetic f (Fl). 
When cr has F2 order, s becomes irrelevant (or better — there are disconnected finite ter­
races of s spins with short-range correlations). Therefore one expects 10 phases, depending 
on the order of the two spin species: 1 F2 phase, 3 Fl phases, 3 cr-disordered phases, and 
3 cr-antiferromagnetically ordered phases. These are listed in Table 3-4. An example of a 
phase diagram in a case in which all ten phases are present is show in Fig. 3-12, which 
corresponds to the case E = 5. The detailed of how this phase diagram was obtained will 
be discussed below.
There are four new phases, VII to X, compared to the phase diagram discussed in the 
previous section. All four are stabilized by a positive E parameter in Eq. (3.6.4). Three 
phases , VIII to X, result from an antiferromagnetic order of the o spin. This corresponds 
to alternating horizontal and diagonal string links (see Table 3-4). The diagonal links can 
be either all up (FM, phase VIII), altematingly up and down (AFM, phase X) or disordered 
(phase IX). In phase VII the a spin is disordered, while the s spin is in the FM phase. 
This is a diagonal wall diluted with horizontal links. These links coherently move up and 
down along the wall, lowering the kinetic energy. The wall can take any average angle 
between —jt/4 and jr/4. and this angle is fixed by the value of the parameters. This has 
been called the “slanted” phase[22]. In terms of the decomposition into an Ising spin model 
and a six-vertex model of den Nijs and Rommelse it is easy to see that the horizontal links 
change the orientation of the Ising spin and act like a Bloch wall. The Ising spin is therefore 
disordered. The six-vertex term is irrelevant for the existence of the slanted phase in the 
case of a single horizontal link, i.e., on the boundary between the slanted and diagonal 
string phase, there are no vertices.
As shown in Ref. [22], a large part of the phase boundaries can be estimated exactly, almost 
exactly, or to a fair approximation. Here it will be shown how this is done and later I will 
summerize the numerical analysis results used to fill the details of the phase diagram.
Firstly, focus on the classical phases. The diagonal, horizontal and zigzag phases have the 
following energies in the classical approximation in which there are no fluctuations, as is 
easily verified.

Ei = L(K +£22) = M£> + / + £),
E// % 0,

£/// - LK, = L(D - J 4- E) .

where L is the length of the chain. The first-order transitions will therefore occur close to 
the lines K, = —C22 (D = —J — E) between phases I and II, £22 = 0 (J = 0) between 
phases I and III, and K, = 0 (D = J - E) between phases II and III. These transitions 
become exact in the classical or large-spin limit.
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The transition between phase I and VII, the diagonal and slanted phase, can be found 
exactly. The transition is of the Pokrovsky-Talapov. or conventional 1D metal-insulator 
type (see, for instance. Ref. [46]). The horizontal link can be seen as a hard-core particle 
or a spinless fermion, with the parameters determining an effective chemical potential. For 
a critical chemical potential equal to the bottom of the band of the hard-core particle the 
band will start to fill up. The transition occurs when the diagonal string becomes unstable 
with respect to a diagonal string with one horizontal link added. This single link delocalizes 
along the string with a momentum k and a kinetic energy 2T cos(Z). The minimal energy is 
(Z. — 1)0+(L — 2)£22 + 2£|2 — 27”, and the transition occurs when £ = 2(jC 12 — C12-T) 
or, with T = 1, when

1 to VII transition: D = —2(7 + E + 1) .

The transition between phase III and V will occur when horizontal link pairs unbind in the 
zigzag background. A rough estimate, neglecting fluctuations, is obtained by comparing 
the energy of a single horizontal link with that of a perfect zigzag. In the same way as 
above one estimate the phase boundary to be close to D = 2(7 — E — 1). Similarly the 
transition from phase II to V or IV is determined by the energy of a single diagonal step in 
a horizontal wall, which becomes favourable when D = 2. This last estimate turns out to 
be very crude, in that it largely underestimates the stability of the flat phase.

Table 3-4. A schematic representation of the different phases. Also shown is the long-range order 
of the two spins 1/2. s and a as defined in the text. F = ferromagnetic. Fl = up-spin ferromagnetic. 
F2 = down-spin ferromagnetic, AF = antiferromagnetic. D = disordered
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Figure 3-11. The various phase transitions (as given in Ref. [22]), obtained from semic-orca­
estimates. exact arguments and perturbative mappings to spin 1/2.
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The above estimates seem to suggest that the line J = 0 is special. The results. o« the 
merical analysis[22] showed that it describes lhe transition between III and \ I 
but also the transition between IV and V This agrees with lhe arguments given IV V 
and Rommelse[47] that lhe Kostcrlitz-Thouless transition between IV and \ xhxHt'd \Wv 
precisely at the J = 0 line.
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3-8 The full phase diagram

For large negative /C the horizontal links are strongly suppressed, and the string era re 
mapped perturbatively on a spin 1/2 chain. Identify S: = I (diagonal upward) with =’ 
and S’ = — 1 (diagonal downward) with s: =|. Via a virtual (0,0) spin pair (two KxircrEL. 
links) the spins can still fluctuate. (!.-!)—► (0,0) -> (-1,1). One finds, using seeemi^-5^ 
perturbation theory in T/KL.
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(3.8.4)

and, after rescaling and putting T 1,

(3.8.5)

The single stripe problem

He// — D 2j(cr;‘ + -)

+(J + E) ^2(a,2 + + 1)

+T 12 (CT/+<T/+l + o7~ct/+1’) •
/

with the field h = (D + J + E)/2 and Ising coupling A = (J + E)/2. On the line h = 0 the 
number of up diagonal links equals the number of horizontal links. The average tilt angle 
is thus 22.5° in this approximation. The phase diagram of the spin 1/2 chain in the //-A 
plane was discussed by Johnson and McCoy[67]. For h = 0 there are three phases. The 
ferromagnet corresponds to phase I, the antiferromagnet with phase VIII, and the gapless 
disordered phase translates to the slanted string phase VII. Increasing the field h in the 
AFM phase will cause a transition to the gapless phase with a finite magnetization. In the 
approximation that down diagonals are neglected, it follows from the results of Johnson 
and McCoy[67] that the point A = 1, h = 0 or J = 2 — E is the point with the most 
negative value of J where phase VIII is stable. For E = 0 (as well as for small values of 
£) this occurs in the positive J side of the phase diagram, meaning that phase VIII to X will 
in fact not be stable: for positive values of J, down steps in the original model proliferate. 
To have a phase diagram with all 10 phases present, in Ref. [22] E was set to be equal to 5.

In Fig. 3-11 the various phase-boundary estimates given above are summarized. The topol­
ogy of the main part of the phase diagram has now become clear. In the centre of the figure 
for E = 5 the Johnson-McCoy phase diagram is inserted. The estimates suggest that at 
least phase VII and VIII are stabilized by taking E = 5. The dotted line through phase VIII 
is the line where the effective field h is zero, and the number of diagonal links is (nearly) 
equal to the number of horizontal ones.

The slanted phase consists predominantly of up diagonal and horizontal links. Neglecting 
down diagonals altogether, which turns out to be a good approximation, one can again map 
the string or spin-1 chain on an effective spin 1/2 system. Now the relevant degree of free­
dom is the ct Ising degree of freedom. Because ct =j (a diagonal link) is not symmetrically 
equivalent to ct =| (a horizontal link) the spins will feel an effective magnetic field, which 
regulates the density of horizontal links. Rewriting Eq. (3.6.4) gives.

= * 12°/ + 4^2 <70^-1 
I I

+ 2 (a/+or/+l + °'z a*,) ,
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3.9 Discussion and conclusions

suspect that a strong universality

Motivated by stripes, a lattice string model for quantum domain walls was introduce an 
its full phase diagram was mapped out. A generic zero temperature symmetry breaking was 
shown to occur: the string acquires a direction in all cases. The main reason is that ben s 
in the string prohibit the quantum transport, or, vice versa, the quantum motion of kin s 
straightens out the string (the “garden hose” effect of Nayak and Wilczek[35]). We arrive at 
the counter-intuitive conclusion that for increasing kink quantum disorder the orientational 
preference of the string grows. The directed string problem which remains appears to be 
related to a well understood surface statistical physics (RSOS) model and simultaneous y 
to a 5 = 1 XXZ quantum spin chain with single site anisotropy. Motivated by the string 
interpretation, we found a number of phases described by this class of models whic were 
previously not identified.
Physically, the phases fall in three main categories: classical (flat worldsheet), Gaussian 
(rough worldsheet) and ‘disordered flat’ phases. The phases are further distinguis e y 
the direction they take in the embedding space. Besides the flat strings in the horizontal 
and diagonal directions, we find that the disordered flat phases show here a nc a 
ior. Apart from the known phase with horizontal direction, which is associate wit t e 
incompressible phase of the spin model, a new category of disordered flat phases whicn 
take, depending on parameters, arbitrary directions in space (the slante P ases was 
identified.
Although this does not apply to the localized strings, we

Figure 3-12. The phases and phase transitions of the quantum string for £ — 5 as a function of r. 
On the axis are the on-site anisotropy D and the Ising interaction J.
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principle might apply to the delocalized strings: At least away from the phase boundaries 
to the localized phases, the underlying lattice renders the delocalized strings to be de­
scribed by free field theory. The reason is simple: regardless of the terms that one adds to 
the lattice scale action, the problem remains of the XXZ kind and the massless phases fall 
into the 1 + 1D 0(2) universality class. For instance, one can add other kink-kink interac­
tions. etcetera, and these can be all described by products of S’ operators. Although these 
operators determine the nature of the localized phases, they turn into irrelevant operators 
in the massless phases. The kinetic sector is more subtle. For instance, one would like to 
release the constraint that kinks only occur with ‘height flavor’ ±1. This means in surface 
language that one partially lifts the restrictedness of the RSOS model, or in spin language 
that one increases the total spin: e.g., S = 2 means in string language that kinks occur de­
scribing height differences of ±2 as well. Although increasing the magnitude of spin has an 
influence on the localized phases, it does not change the fact that the massless phase away 
from the phase boundaries is still obeying XY universality. A point of caution is that the 
holes in principle could change their order when larger excursions are allowed. However, 

these ‘exchange loops’ are strictly local and therefore irrelevant for the long wavelength 
behavior as long as the string is internally an insulator. These could represent more of a 
problem for strings which are internally superconductors or metals.
It should also be stressed that it follows from the arguments of den Nijs and Rommelse[47] 
that the occurrence of a gapped Haldane type phase for strings is not a peculiar feature of 
the spin 1 representation, but a general consequence of the existence of further neighbor 
interactions between the holes in strings.

Do these findings bear any relevance to the stripes in cuprates? At least they do bring up 
some interesting questions:
(a) Is the stripe solidification in for instance the LTT cuprates[25] in first instance driven 
by a single string effect or by a collective transition of the string liquid? In the end it has to 
be the latter, since a single string cannot undergo phase transitions at finite temperatures. 
However, it can be well imagined that the effect of the LTT-pinning potential is to stabilize 
(1,0) directed stripes over (1,1) stripes. In the language of this paper, this amounts to an 
increase of the parameter K which could move the stripe from the Gaussian phase into the 
horizontal flat phase. At zero temperature, this would tum individual stripes in straight rods 
which are obviously much easier to order than meandering strings. At finite temperatures, 
this could increase the single string persistence length substantially, so that stripe-stripe 
interactions become more effective in stabilizing a stripe solid at finite temperatures[71 ]. 
Further work is needed to establish if these single stripe transitions are of relevance.
(b) Do the ‘disordered flat’ string phases exist? The simplest disordered flat phase is the 
horizontal one (phase V) corresponding with the Haldane phase of the S = 1 spin chain. 
In string language, this is nothing else than a localized string along the (1,0) direction 
in the lattice which is however not site-centered (as phase II) but, on average, bond cen­
tered. Bond centered stripes show up in the numerical study of the t-J model by White 
and Scalapino[40], which shows that the ground state of this model at finite dopings is a 
stripe phase. A main difference with the mean-field stripes is that these t-J stripes are bond 
centered. In first instance, one could be tempted to think that this has a truly microscopic
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reason: charges in t-J prefer to live on links. However, it could also be due to a collective 
string effect — it could be “our” phase V. This can be easily established by measuring 
the appropriate (string) correlators. Is it the case that on equal times the charges live on 
sites while the kinks take care of delocalizing the stripes over two lattice rows, or is it so 
that on all times the charges are living on the links? This is obviously an important ques­
tion in the light of recent works relating the bond centering via Hubbard-ladder physics 
to superconductivity[43]. We also notice that there are experimental indications for bond­
centering in the nickelates[72] where disordered flatness could possibly also play a role.
(c) If well developed stripes exist in the superconductors and/or metals, these have to occur 
in the form of a quantum disordered stripe phase, or a ‘quantum string liquid . What is 
learnt in this regard from the present study of a single string? A prerequisite for the exis­
tence of a quantum string liquid is that a single string is delocalized. If our conjecture that a 
single critical siring is described by free field theory turns out to be correct, this amounts to 
a considerable simplification. In Euclidean space time, the single free string worldsheet is 
like a Gaussian membrane and a system of strings becomes a system of interacting Gaus­
sian membranes, embedded in 2+1 dimensions. Because the single string is directed, these 
membranes will be directed along both the imaginary time direction and the .v — y plane. A 
limiting case of such a problem is studied exploiting its connection with a hard core bose 
problem. This problem will be reviewd in chapter 6.
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Block A:

Block B:

Block C:

Block D:

3.10 APPENDIX

3.10.1 Transfer matrix formalism

The transfer matrix is constructed as follows. The partition function is

(3.10.1)

(3.10.2)Ta = exp

Figure 3-13. The four subblocks of the local r-matrix. The other equivalent, symmetry related blocks 
are obtained by rr/2 rotations and reflections in the .r or y axis.

In the above formula I is the identity operator, in our case a complete set of string config­
urations. We have chosen to split the T-matrix into a contribution from even and odd sites, 
or A and B sublattice (checkerboard decomposition).

and a similar expression for the odd sites. ?{(2/) is the Hamiltonian of the even string 
element 21, equal to Eq. (3.2.7) or (3.2.12) without the sum over string links. L is the

2 = TreWc,+Ho
= lim Tr(lTAlTB)n. n—*oo

1L/2 
7,^ 

l=\

The single stripe problem

CI.21 + Hq.2/) ,

In this appendix the specifics of the numerical calculations will be discussed. This includes 
(a) a transfer matrix formalism which is quite efficient numerically and (b) some specifics 
regarding the updates.
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(3.10.3)

(3.10.4)

(3.10.5)

(3.10.6)
H =

is easily diagonalized. The eigenvalues

t

111

number of links in the chain. Because of the sublattice decomposition. Ta is 
product of local T-niatrices and 2 becomes,

2 = lim 
n-*oo

K.
T 
0

a simple

r/.*’ r/+l.t’ '>■

02 03 \
'22 02 I .
02 T’ll /

+ N2eE+/" + NleE-'".

Each timeslice is split in two subslices, r and r'. The notation {r/k denotes the set of 
positions r, at the given time slice with index k. Note that the i matrices are independent 
of I and k . and these indices only label the position of the t matrix in the 2D world sheet. 
The local t matrices, r and tn. depend only on three positions. For instance,

' '(r/)j.) = (r2/-i.tr2r.tr27+t,*kA '*k2/-i.*r2/.*r2/+i.t)

with the restriction r-y- m- = r2/-i,t and r2/+1.* = r2/+i.e Since each link has 8 different 
orientations, the local t matrix connects in general 8 x 8 = 64 possibilities. However most 
of the t matrix elements are zero, and it decomposes into subblocks, of which the biggest 
one is 3 x 3. The states which are connected via the local t matrix, or the Hamiltonian, are 
listed in Fig. 3-13. The local r-matrix at position / and Trotter slice k is defined as,

/ hi
I h2 
\ h3 

1JCM 
2

n L/2

{«■/.*.r\ k} *=1 /=1

are K., E+ and £_. The r-matrix is,

(n-i.*. r/.t, r/+|.*| exp n

The matrix elements depend on the positions of three members of the string, I — I, I and 
/ + 1. The positions of / — 1 and / 4- 1 are required to be identical = ■/-i,*1/-!,* *n 
the two Trotter subslices involved, due to the checkerboard decomposition, but the position 
of member / can be different, leading to off-diagonal matrix elements. The matrix elements 
of the r-matrix are easily found by first diagonalizing and expanding the basis vectors 
in terms of the eigenvectors.
Block A: This block contains three configurations, see Fig. 3-13. We use the same order for 
the states as in the figure. Note that only half of the energy /C of the diagonal link between 
/ — 1 and / and the link between / and / + 1 should be contributed to /. The Hamiltonian,

T 0
0 T
T K,
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'12

1 (3.10.7)«±

(3.10.8)D

(3.10.9)

(3.10.10)

Figure 3-14. Two additional Monte Carlo operations used for the simulations of the general string. 
The 90 degree rotation (a) around position 1 in this example turns a non-directed string into a di­
rected one. The minor operation (b) is important to quench defects in diagonal strings (mirror plane 
indicated by the dashed line).

The single stripe problem

Block C contains a single configuration of two diagonal links, and the energy and z-matrix 
therefore contain £22.

t = exp(-----F ----- ),
n n

Block D consists of a square comer between one horizontal and one vertical link, and £11 
is involved.

,■£11' 
t = exp(---- ),n

E- = 2*
£± - fC 

T

e°sinh(7”/n) \ 
eDcosh(T/n) )

Here zt is the number of Trotter slices and IC, £12, £22, £11 and T are the string model 
parameters.
Block B contains two configurations, each with one horizontal and one diagonal link. Re­
peating the above procedure one finds,

 / eD cosh(TIn)
' \ eD sinh(T/zt)

£ £12
2n + n

= N\a+eE+l" + N^a-eE~ln,

Z13 = — + N^eE+l" + N‘LeE~,n,

'22 = N2a2+eE+/" +NleE~'",
•JK2 + 8T2

2

(b)
(a)
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3.10.2 Global Monte-Carlo moves

_____

For the Monte-Carlo program to produce sensible results it is crucial to have operations 
that add and remove bends easily. We added global mirror and tt/2 rotation operations 
illustrated in Fig. 3-14. In the latter case half of the string is rotated around any of the sites 
/ € 2..L — 1. This means that for instance the position of all holes ni > I are replaced by 
Um, y,„) -► (x/. y/) + (yw - y/, ~(xm - x/)). Such operations turn out to be very efficient 
— completely wrapped high temperature strings unwrap in just a couple of Monte Carlo 

steps at low temperature.
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4

4.1 Introduction

Metallic stripes: Separation of spin, charge 
and string fluctuations

In this chapter we will consider the problem of a one-dimensional metal living on a de­
localized trajectory in two-dimensional space: the metalic lattice string. A model is con­
structed with maximal coupling between longitudinal and transversal charge motion. The 
model nevertheless renormalizes into a minimal generalization of the Luttinger liquid: be­
sides the spin and charge modes an independent set of string modes has to be added to the 
long-wavelength theory, with a dynamics governed by the quantum sine-Gordon model.

A series of experimental evidences appeared recently indicating that the superconducting 
state in the cuprates is closely related to, and is in a tight competition with, the stripe phase. 
In this stripe phase the active charge degrees of freedom live on the antiphase domain 
walls in the antiferromagnetic background, the stripes. This occurs over most of the doping 
range[29, 27, 24]. There are also evidences that the stripes are internally charge compress­
ible and it can then be argued that the stripes might be internally like one-dimensional (ID) 
metals. Several theoretical works have appeared taking this “self organized’’ one dimen­
sionality as a starling point.[75] However, compared to conventional one dimensional met­
als, stripes are at the least qualitatively different from electrons in one dimensions as one 
has to account for the possibility that the trajectory on which the metal lives is itself delocal­
ized in the two space dimension, obviously so because static stripe order is absent in either 
the superconducting or the normal state. Actually inelastic neutron measurements yield 
compelling evidence for strong dynamical stripe correlations in the superconductors[27]. 
This implies the presence of additional collective excitations to the one dimensional elec­
tronic’ excitations: the ‘string fluctuations’, driving the quantum meandering motion of the 
stripes as a whole. The question arises as to what can be said about the general nature 
of a quantum string which is internally a metal. According to the Luttinger liquid theory, 
the generic theory of one dimensional metallicity, all what matters at long wave-length 
are the collective charge and spin oscillations (holons and spinons) which are governed by 
quantum sine-Gordon field theories [76]. As was discussed in the preceding chapter, the 
presence of the crystal lattice leads to considerable simplifications in the ’string theory 
describing the motion of the stripe as a whole in space, and it can be demonstrated that 
quantum delocalized lattice strings exist which are governed by a free string fixed point: 
the long wave-length dynamics of the string can be parametrized in terms of its transversal 
sound excitations, described by a quantum sine-Gordon theory as well.
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4.2 Construction

Our construction rests on the assumption that a reference string state exists which is at 
the same time localized in space and internally charge-incompressible due to a charge 
density wave (CDW) instability. The CDW solitons emerging under doping make the string 
position fluctuate and the resulting charged kink gas maps on a spin-full fermion problem 
with a Luttinger liquid long wavelength regime.

Although the microscopies of the stripe instability is not yet understood in detail, some 
general characteristics can be directly inferred from experiments. For cuprates, it appears 
that a state exists where (a) the electronic system on the stripe has solidified becoming 
insulating, and (b) the stripe as a whole is localized. We refer to the state at x = 1/8; 
the stripes are localized along the (1,0) or the (0,1) directions in the cuprate planes, and 
one hole stabilizes a length twice the domain wall unit length. This later on-wall charge 
commensurability is not an accident, Yamada et al found that the incommensurability e of 
the dynamical stripe fluctuations scales linearly with x for all x < l/8[27] or the average 
stripe separation d decreases like I/x in this doping regime. This shows that at least on 
average this charge commensurability holds in a large doping regime and this is possible 
only when the electron system on the stripes is charge incompressible. At the same time, 
the static stripe phase shows a special stability at x = 1/8; which reflects a tendency 
towards localization of the stripe. For modelling purposes we assume the electronic system

Here we will demonstrate that a fixed point theory exists which is a minimal generalization 
of the Luttinger liquid theory: a metallic string can be like a Luttinger liquid, except that, 
next to the decoupled spin and longitudinal charge modes governing the internal metallicity 
of the stripe, a set of independent string modes, governing the transversal motion of the 
stripe, should be added for the theory to be complete. This involves the extrapolation of 
the principle of charge spin separation to the separation of spin, charge and string modes. 
As in the spin and charge sectors, this transversal dynamics is described by a sine-Gordan 
field theory. In a conventional one dimensional metal, an external electron, or hole, decays 
into the charge and spin modes of the Luttinger liquid. The same is true here, except that 
part of the electron is carried away as well by the transversal modes of the siring.

In the absence of a microscopic theory of metallic stripes it is impossible to proceed rig­
orously. Instead we will lean heavily on the principle of adiabatic continuation, which has 
proven itself in the one dimensional context. We will construct a model which incorporates 
next to the general requirements imposed by symmetry the fact that the charge carriers 
are confined to a connected trajectory. Deliberately we construct the model in such a way 
that both the coupling to the underlying lattice, and the lattice scale coupling between the 
transversal string dynamics and the internal charge dynamics is maximal. This model can 
be looked at as being representative for the strong coupling limit of this problem and at least 
as long as the system renormalizes towards weak coupling, its long wavelength behavior 
should be representative for a less strongly coupled microscopic physics.
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If the string does not delocalize, the remaining problem of a doped 4A> charge density 
wave is well understood[79, 80], generically, charge and spin separate. A representative 
model, in the sense of adiabatic continuity, is the extended Hubbard model with both U 
(on-site repulsion) and V (nearest-neighbor repulsion) large compared to the bandwidth. 
At low doping, lattice commensuration dominates and the relevant lattice scale physics is 
that of half-charged solitons. Using simple kinematics, Kivelson and Schrieffer[81 ] pointed 
out that the injected hole splits apart into propagating soliton- and anti-soliton excitations, 
both carrying half the charge of the hole (fig. lb). Since the solitons are subjected to a hard­
core condition, while the soliton flavor does not carry physical consequence, the soliton

What can happen when the half-filled wall is doped? In the Id crystal, all what can happen 
is that the charge density increases and because of the charge commensuration there is a 
restoring force (half the energy gap). The stripe can. however, respond in a different way. 
because its shape is not fixed from the onset, but instead a dynamical quantity of its own, 
it can relax the cost of enhancing the density by letting the charge escape in the direction 
transversal to the stripe, which amounts to a shape fluctuation. Alternatively, the charge 
commensuration can be looked at as a rule that every hole adds a fixed length to the string. 
The additional length coming with the doped hole can be stored by deforming the string, 
at the expense of a curvature energy.

In addition, we assume that the charge-commensurate string is localized in space. As we 
discussed extensively in the last chapter, in contrast to continuum strings such classical 
strings are allowed on general grounds because they live on a lattice. Microscopically, the 
string fluctuation is driven by hole motions on a minimum scale of the lattice constant and 
the resulting kinks carry therefore a non-zero energy which has to be overcome by their 
kinetic energy before their proliferation causes a quantum melting of the string. Finally, it 
is assumed that the 2D spin system in which the string moves remains in the Neel state. 
As will be discussed later, the on-wall dynamics is not directly influenced by this vacuum, 
but this could be different in a non-classical spin background[37]. This choice of N6el 
background is motivated by the experimental observation that the spin-spin correlation 
length is large compared to the length scales of relevance to the string dynamics. Notice 
that the spins inside the half-filled walls are not necessarily ordered. However, on general 
grounds the correlations between these spins are expected to be antiferromagnetic and the 
Neel ordering in Fig. 4-la is only introduced for counting purposes. Finally, it is assumed 
that the spin system separates at the very beginning and can be ignored all along. Since the 
stripe sweeps through a spin-full background, the neglect of spin is certainly not justifiable, 
and further work is needed on this fascinating problem.

on the stripe is dominated by short range repulsive interactions, implying that the c*iar® 
order on the stripe to be of the site centered 41^ CDW type as suggested by aya an 
Wilczek[78] (Fig. 4-la). This is mainly for modeling purposes. Bond centered stripes wi 
internal superconducting, and 2k p charge ordering tendencies are more comp icate 
not necessarily qualitatively different in the present context.
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dynamics is described in terms of a spinless fermion problem:

(4.2.1)

(4.2.2)

Hcdw = +'^V'(ij)ninj .
U H

H p.ren - f dx + -^-(aA0p)2 + gstn(a0p)^

where .v is along the stripe, vp and Kp correspond with the charge velocity and charge stiff­
ness, respectively. In terms of the field <pc, the charge density is poU ) = (1 /tt)3v0(a')- At 
quarter filling the sine term (originating in the Umklapp scattering) is relevant and a charge 
gap developes. Away from quarter filling, this theory is in the weak coupling regime (the 
sine interaction is an irrelevant operator) and the long wavelength dynamics is governed 
by free field theory (Luttinger liquid), completely specified by the renormalized stiffness 
and velocity. Alternatively, at finite but small dopings the system might be considered as a 
low density' gas of solitons and antisolitons (domain walls in the CDW), each carrying half 
the hole charge. These parameters have to be calculated numerically, and their behavior is 
well documented for the extended Hubbard model[79, 80].
The most elementary physical interpretation of the quantum sine-Gordon model. Eq. 
(4.2.2), actually corresponds with a free string moving on a lattice: the field 0 is the 
transversal displacement (z(/)) at point / of the string, while the cosine term describes 
the lattice washboard on which the string moves (a<pc —> 2ttz(Z)/<7). The weak- and strong 
coupling limits are easily understood as a freely meandering string and one which is fully 
localized due to the lattice potential, respectively. As was discussed in detail in the preced­
ing chapter[77], this notion is of relevance in the context of fluctuating insulating stripes. In 
analogy with the charge density wave problem, the relevant lattice scale dynamics is that of 
transversal solitons or ‘kinks’. Consider the vicinity of the string delocalization transition. 
Because the lattice potential dominates, the microscopic configurations tend to be those of 
Fig. 4-Id, where the string is localized on a particular lattice row n, and the exceptions are 
where the string jumps to neighboring rows n ± 1. The origin of the collective motions of 
the string lies in the microscopic dynamics of these kink-excitations. The tightly localized 
kinks of Fig. 4-1 are assumed to be a legitimate starting point to discuss string fluctua­
tions, in the sense that they are connected by adiabatic continuation to more realistic string 
microscopies.

The existence of a localized stripe with internal 4kp density wave allows for a simple 
unification of the microscopic string- and internal charge dynamics. Obviously, the fixed 
ID electron trajectory assumed in the Luttinger liquid is no longer a given for electronic 
stripes. For a fixed trajectory, it costs an energy equal to the jump in the thermodynamic 
potential 5/z to dope the charge density wave with an additional carrier. On the stripe,

Where c+ creates a soliton and n = c*c. Solitons are is subject to short range hoppings (J1) 
and (repulsive) interactions (V'). It is well established that, using bosonization techniques, 
this problem is dual to a bosonic quantum sine-Gordon theory with action.
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this (‘longitudinal’) energy cost can be reduced by letting the charge escape ‘sideways , 
causing a transversal displacement, at the expense of paying a curvature energy. Hence, 
when this curvature energy becomes less than the energy cost associated with compress­
ing the charge, the doped holes will ‘carry a string fluctuation’. In terms of the strong 
coupling kinks/solitons, the microscopic mechanism of transversal relaxation is obvious: 
the doped hole corresponds with a double kink in the string which is at the same time a 
soliton-antisoliton pair in the on-string charge density wave — see Fig. 4-1. Starting from 
the CDW/localized string reference state, the kinks and the solitons are the same objects. 
This scenario corresponds with the strongest possible microscopic coupling between the 
on-string metallicity and the string fluctuation. Due to the string fluctuation, the CDW soli­
tons acquire a transversal flavour, the soliton/antisoliton can move the string either in an 
‘upward’ (f) or ‘downward’ (J,) direction (Fig. 4-lc,d). This transversal freedom is like a

Figure 4-1. Soliton dynamics in a strongly coupled doped 4A/. stripe, (a) The reference state: local­
ized stripe with 4A> charge density wave, (b) If the stripe is rigid, the doped hole separates in a left- 
and right moving soliton, both carrying half the electron charge, (c) When the curvature energy be­
comes less than the charge compressibility energy, the hole can escape ‘sideways’, (d) As a result, 
the solitons now carry a transversal (step up/down) flavor, which is like a spin degree of freedom. 
Holes tunneling through the stripe lead to fluctuations in the transversal flavor, see (c).
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4.3 The Model

(4.3.1)

= 52^Cn+loC',<’ + c/i<7c"+l.<r) 
na

where ao is the lattice constant and ct(x) = — is the position of the
m-th kink). As long as this quantity is conserved the string remains localized. For U —> co 
there is no kinetic exchange, and Ising isospin terms do not cause fluctuations in //(/) either. 
In order to make the string displacement fluctuate, the isospins should be exchanged and 
this is possible if and only if two kinks recombine into a hole, because the hole can tunnel 
through the string, see Fig. 4-lc. The simplicity of the argument is deceptive: this is an 
explicit realization of the idea of topological confinement^!]. Because of their topological 
nature, the kinks are strictly limited to the ID string trajectory. In order to sweep the string 
through 2D space, the kinks have to pair up in holes, because the latter can propagate in 
2D.
In isospin language, the hole tunneling corresponds with spin-flip (XY) terms ~ +
h.c.. Notice that the energy barrier involves the difference in curvature energy and the 
charge-compression energy. This might well be a small number, and the hole-tunneling 
rate can in principle be large. Assuming everything to be short ranged, we arrive at the 
following model,

The qualitative nature of the long wavelength physics can be inferred from the strong cou­
pling cartoon of Fig. 4-1, leaving the non-universal parameters of the theory to be deter­
mined from a more realistic microscopic theory. We seek a generalization of the spinless 
fermion model, incorporating the string flavor in terms of isospin labels f for ’upward 
and | for ’downward’ kinks, attached to the fermions (see Fig. 4-lc,d). As a first guess, 
one could take the spin-full version of Eq. (4.2.1) with a hard-core (U —> oo) condition: 
the string flavor is conserved under the hopping of the solitons. However, this neglects the 
specifics of the transversal sector: (i) curvature energy is associated with the order of the 
iso-spins. Obviously a isospin configuration of neighboring solitons involves a differ­
ent curvature energy than parallel configurations. These curvature energies can be absorbed 
in isospin-only Ising terms ~ SfSj ($, = T2aP c^a)aPcip). (ii) The overall transversal 
string displacement u after arclength r becomes.

s = \/2 iso-spin degree of freedom. In the CDW case, solitons can be described in terms of 
spinless fermions. However, on the string solitons acquire an additional two-valued flavour 
and the dynamics relates to a spinfid fermion system. Since the string dynamics is like the 
spin dynamics in a standard ID metal, it follows that the separation of charge- and string 
dynamics is generic.

//(r) — w(0) = ao [ dxa:(x) , 
Jo
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<nm>

(4.3.2)

4.4 Discussion

show that the asymp-

+y E'1«n'i+1 + U 52n«tnnJ. + J// S"S™
n n

+y E (s+s-+ S„-S+).
<nm>

where c'a create a soliton/antisoliton with ae{ t, 1} and the notation is standard otherwise 
(// = The first term describes the hopping of the kinks with hopping amplitude t.
This hopping, obviously, conserves the string flavor (Fig. 4-Id). The second term describes 
the ‘string neutral’ soliton-soliton repulsions with strength V. The third term has to be 
added to strictly enforce the hard core condition: kinks of different flavor cannot pass each 
other and U should be taken to infinity. The fourth and fifth terms describe the curvature 
energy and the hole tunneling rate, parametrized by ./// and J±, respectively.

Although we are not aware of explicit calculations on this particular model, the structure 
of the long wavelength dynamics can be deduced directly from the work by Luther and 
Emery[83] (see also ref. [4]). When J// = Jj_, Eq. (4.3.2) is like the extended Hubbard 
model model with finite U, at a low carrier density. The general case J// corre­
sponds with an interacting electron system with a spin-orbit coupling causing uniaxial spin 
anisotropy. Charge and string flavor will separate always and the charge dynamics is de­
scribed by the QSG model, Eq. (4.2.2). Away from the quarter-filled point, Umklapp scat­
tering becomes irrelevant and the charge dynamics at long wavelength is described by free 
fields characterized by the fully renormalized charge-velocity and -stiffness, vp and Kp 
which will behave similarly as to the ones of the extended Hubbard model in the strongly 
coupled regime.
A crucial observation is that the gross behavior in the string sector is determined by the 
‘isospin-only’ problem. The isospin dependencies of the interactions are explicit in Eq. 
(4.3.2), and the isospin-only problem is nothing else but a XXZ problem with S’ = 1/2, 
which has been solved a long time ago[84]. If — 1 < J///J± < L the Ising interaction is 
irrelevant and the system falls in the XY universality class, as described by free-field theory 
- the free string is recovered. When \ J//\ > I A. I the Ising anisotropy takes over and the 
string modes acquire a mass — metallicity is a necessary but insufficient condition for the 
string delocalization. Physically, strings in this regime are of the ‘disordered flat variety 
(see section 3.8)[77). Although kinks proliferate and delocalize, their internal string flavor 
(isospin) is ordered, as a compromise between kinetic energy and lattice commensuration 
energy. The ‘ferromagnetic’ case (*/// < |Jj_|) corresponds with a ‘slanted phase (see 
section 3.8)[77]: the string is still localized, but it takes some direction in space determined 
by the density of kinks. For J// > |JjJ the string is on average bond centered: this phase 
is related to the hidden order present in Haldane spin chains[77].
The most interesting phase is the delocalized string, and we will now 
totic structure of Luttinger liquid theory implies a rather weak influence ot the string-
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(4.4.1)

The spin-spin correlation function of a one dimensional metal has the asymptote behavior.

(4.4.2)

((t<(r) — h(0))2) = — 2agC\ ln(r/rc) + const. (4.4.3)

(4.4.4)

metallicity on the string fluctuation. A quantity of physical interest is the mean square 
transversal displacement of the string[32], using Eq. (4.3.1).

<a--(A)q--(0)) = £l + C2CO5(2^v) 
X2 |xp

with a constant coming from short wavelength physics and where rc is a microscopic cut­
off.

Although not often discussed, the amplitude C\ of the uniform component of the spin-spin 
correlation is also in the metal entirely determined by the spin sector, which implies in 
the present context that the strength of the string fluctuation is determined primarily by 
the transversal sector. This can be easily understood from the insight by Schulz[85] that 
the charge sector of the Luttinger liquids is nothing else than a ID harmonic (‘floating’) 
Wigner crystal of (in our case) solitons. To every soliton a spin is attached and Schulz 
shows that by factorizing (cr:(z)o-(0)) in a spin- and a charge correlator and by treating 
the charge sector on the Gaussian level, it follows that the exponent zj in the staggered 
component of Eq. (4.4.2) is the sum of the charge- and spin stiffnesses Ka and Kp because 
the spin system ‘rides’ on the harmonically fluctuating charge solid. Following the same 
alley, it is straightforward to show that this charge fluctuation is invisible in the uniform 
correlations responsible for the string delocalization.
We are now in the position to completely quantify Eq. (4.4.3). Using Haldane’s expres­
sions for the Luttinger liquid correlation functions[86] and realizing that the cut-off rc 
corresponds with the lattice constant a of the soliton Wigner crystal, we get

((z/(r) — m(0))2) = ~ ° \vdrjd) + const.
2.71-

— w(0))2) = Oq [ dxdx'(o:(x)cr (a')) 
Jo

where z? = Ka 4- Kp and Ka, Kp are the spin and charge-stiffness respectively. Although
— h V can be less than 2; in this case the staggered component of the spin-spin correlator 

could become important for the string correlator, Eq. (4.4.1). However, it is easy to see 
that in the additional integrations in Eq. (4.4.1) the staggered component behaves as if it 
falls off by one power more than z; (f dxcos(2kFx)/xn -> f dx\/x’l+1). Since z? > I it 
follows that the large r asymptote of Eq. (4.4.1) is governed by the uniform component 
~ Ci in Eq.(4.4.2). Using that dxdx' f (a - a') = fLr(2r ~ 1*1) f (*) ancl lhe facl that 

dA(cr-(A)a-(0)) = 0 it follows that the metallic string behaves asymptotically as a 
free string[32],



4.5 Conclusion 75

(4.4.5)?c =

4.5 Conclusion

8a - 1

The doping density only enters in the prefactor via the trivial soliton-lattice constant rescal­
ing, while depends exponentially on the stripe separation and the transversal scales. 
Hence, the metallicity induced long-wavelength string fluctuations can only play a deci­
sive role in the quantum melting of the stripe phase if the factor in the exponent becomes 
of order unity. Because of the various numerical factors, this only happens if the string 
sector is very close to the “ferromagnetic' point J///Jl —* — 1. It appears as very unlikely 
that such a fine tuning occurs in cuprates so we conclude that on-string metallicity is not 
an important factor for the quantum melting of the stripe phase.

e(d/a0)2[jr2+27t arcsin(////J±)]

The problem of a lattice string which has been internally a metal is addressed. Starting 
from a specific microscopic assumption inspired by cuprate stripes, it has been shown that 
the long wavelength dynamics of a metalic string is a straightforward generalization of 
the Luttinger liquid where the usual theory has to be extended with a sector of transversal 
sound modes corresponding to the string transversal mode fluctuations. Although intended 
as a demonstration of the existence of a fixed-point (with probably a finite basin of attrac­
tion), a literal interpretation of the microscopic model shows that the string fluctuation is 
quite insensitive to the internal metallicity of the stripe. As applied to cuprates, this obser­
vation offers a rational for the surprising insensitivity of the static stripe phases in e.g. LTT 
materials against stripe doping.

Let us now assume that the above model applies litterally to cuprates. Assuming that finite 
range string-string interactions are unimportant, a measure for the importance of the single 
string quantum fluctuations is the quantum collision length £c, obtained by demanding that 
the r.m.s. displacement of a string becomes of order of the mean string-string separation d 
(— 4<7o)[32]: <(«(^c)“M(O))2) = d2. Using that the soliton lattice constant a = oq/(3x — 1) 
in terms of the doping density x, together with the expression for the spin stiffness[84]

= 1/2 4-(l/jr) arcsin(J///Jj_), we obtain





5 Quantum magnetism of the static stripe phase

5.1 QNLSM description of the static stripe phase

In the previous chapters we have presented a detailed study of a model for the fluctuation 
of a single stripe. The stripe phase is complicated by the fact that stripes live in a spinfull 
background. For the single stripe model (the quantum lattice string) the spin background 
was neglected. In this chapter we will present a study of a model for static stripes in the 
antiferromagnetic background. This will be a model for the charged-ordered stripe phase. 
Our goal is to investigate the anomalous spin dynamics of the charged-ordered stripe phase 
in the cuprates. The spin ordering temperature of such a stripe phase appears to be strongly 
suppressed compared to half-filling, the undoped case. The Neel temperature Tn for the 
charged ordered stripe phase can be as low as 3K while Tn for the undoped material is 
around 300K. For quite some time, before the discovery of the stripe phase, it was believed 
that this anomalous spin dynamics of the high Tc superconducting cuprates originates in the 
proximity to a quantum critical point [87, 88] and it was even conjectured that the relevant 
field theory would be the (7(3) quantum nonlinear sigma model (QNLSM), describing the 
collective dynamics of a quantum anti-ferromagnet[7]. Actually the available experimen­
tal data suggest that this anomalous spin dynamics is characterized by a close proximity 
to the QNLSM zero-temperature transition. As this is a theory for a spin-only dynamics 
at long wave length, it was asserted that at low energies spin-charge separation should be 
complete. This final conclusion is very much questionable and has never been supported 
experimentally. However the discovery of the stripe phase[25] and of a strong dynami­
cal stripe correlations in the cuprates superconductors opens a new perspective on these 
matters. Below the stripe-charge ordering temperature, charge fluctuations have to become 
inconsequential and the remaining spin dynamics should fall automatically in QNLSM uni­
versality class. The main purpose of the study presented in this chapter is to put forward 
a strategy by which the spin-only aspects of the magnetic dynamics in the cuprate high Tc 
superconductors can be disentangled, exploiting the charge ordering associated with the 
stripe order.
The enhancement of the quantum-spin fluctuations as compared to the half-filled antifer- 
romagnet can have a variety of microscopic sources. Here we will focus on the possibility 
that these are due entirely to the charge-ordering induced spatial anisotropy in the spin sys­
tem. Although the influence of spatial anisotropy is well understood on the field-theoretic 
level[89, 90], the charge can be bond-ordered or site ordered[9] and this links the spin 
physics of the stripe phase to that of coupled spin ladders[91, 92, 93]. At optimal super­
conducting doping concentrations, bond- and site order translate into coupled two-leg and 
three-leg spin ladders, respectively. An in-depth quantitative analysis of both problems 
will be presented, showing that spatial spin-anisotropy has to be largely irrelevant for site-
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K jC

j’ j j’

Figure 5-1. Schematic distinction between site ordered (a) and bond ordered (b) stripes.

5.2 The coupled spin ladders model
The increase of the coupling constant go, controlling the long wavelength fluctuations of 
the quantum non linear sigma model, originates in some microscopic phenomenon. A lim­
iting case is the one in which charge can be regarded as completely static even on the scale

(b)! I oo | I
I |OO| I 
I I oo I I 
Mooli

ordered stripes, while it might well be the primary source of quantum spin fluctuations in 
the bond-ordered case. Specifically, it will be shown that it might well be that much of the 
increase of the quantum-spin fluctuations can be attributed to the transversal (spin-only) 
sector alone if the stripes turn out to be bond ordered. Conversely, if the stripes are site 
ordered, microscopic charge fluctuations are bound to play a crucial role in the spin sector 
as well. A strategy will be presented to disentangle these matters by experiment.
Let us first comment on the available information regarding the stripe phase spin sys­
tem. The spin ordering temperature appears to be strongly suppressed as compared to 
half-filling[25). A first cause can be a decrease of the microscopic exchange interac­
tions. However, the more interesting possibility is that some microscopic disordering 
influence has moved the antiferromagnet closer to the zero-temperature order-disorder 
transition (quantum critical point). The few data available at present seem to favor 
the second possibility. We specifically refer to the ESR work by Kataev el al.[94] on 
Lai.99_r_vEuyGdo.otSrrCu04 exploiting the Gd local moments to probe the spin system 
in the CuO planes. Quite remarkably, little change is seen in the spin-lattice relaxation rate 
(1/T|) at the charge ordering temperature, Tco — 70K. Above Tco the 1/T, is quite similar 
to that in La2-.tSrvCuO4 where it is known from e.g. neutron scattering that the mag­
netic correlation length £ is already quite large at the temperatures of interest: since the 
width of the incommensurate peaks is smaller than their separation, the correlation length 
is larger than the stripe spacing[95]. It follows that at T ~ Tco a continuum description of 
the spin dynamics should be sensible. Below Tro 1/Tj starts to increase exponentially upon 
lowering temperature, signalling the diverging correlation length associated with the renor­
malized classical regime. Taken together, this fits quite well the expectations for a quantum 
antiferromagnet which is rather close to its quantum critical point, with a crossover tem­
perature from the renormalized classical- to the quantum critical regime T* ~ Tco.
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5.2 The coupled spin ladders model

of the lattice constant, such that its effect is to cause a spatially anisotropic distribution of 
exchange interactions. The relevant model is that of a regular stripe structure as depicted in 
Fig 5-2. This simple picture is considered by various groups[89, 90]. The physics of such 
a model is similar to that of the Hubbard model at half-filling. At low-energy, the relevant 
degrees of freedom of the system are the transversal fluctuations of the antiferromagnetic 
order parameter in the spin system. The interaction between neighboring spin domains is 
generated by the virtual excitations across the stripes, spins hops back and forth across 
the stripes generating an effective antiferromagnetic interaction between spins on different 
sides of the stripe. The unique antiphase-domain spin structure of the stripe phase seen in 
the experiment is then recovered, Fig. 5-2. The spin-spin interaction J' across the stripe 
will obviously be smaller than the interaction in the spin domain J. This weakness of the 
exchange interaction across the stripes will have a disordering influence on the stripe spin 
system. To see this, consider the following two limiting cases. At J' = J, the spin system is 
equivalent to an isotropic two -dimensional Heisenberg system, which possesses long range 
order at T =0. On the other hand, for J' = 0 the system is effectively one dimensional 
and according to the Mermin-Wagner theorem long range order can not develop even at 
T = 0. The system can be switched between the two physically different cases by tuning 
the parameter a = J'/ J.
As indicated in Fig. 5-1. there are two options[9]: the stripes can be bond or site ordered. 
It is expected that the spin dynamics associated with the hole-rich regions is characterized 
by a short time scale and the magnetic ordering phenomena are therefore associated with 
the magnetic domains. The spin-only model of relevance becomes either a spin 5=1/2 
Heisenberg model describing three-leg ladders (site ordered) or two-leg ladders (bond or­
dered) with uniform exchange interactions (J), mutually coupled by a weaker exchange 
interaction coupling (otJ, a < 1). This model is explicitly,

XL ^+ix+aJ XL ^7+4,- 
‘x^pni'iy ix—Pnl<‘y

o 4
O 4 
o t 
o 4
O 4

J’ J

where i = runs over a square lattice, Sx — (1.0), Sy — (0, !)• "I measures the
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(5.2.2)

(5.2.3)

(5.2.4)

width of the ladder and p counts the ladders.
Since the interest is in non-universal quantities as related to the non-trivial lattice cut-off, 
the model Eq.(5.2.1) is studied numerically. We used a highly efficient loop cluster algo­
rithm Quantum Monte-Carlo method[96], Cluster algorithm has the ability to completely 
eliminate the critical slowing down problem. Moreover, as discussed earlier a significant 
advantage of the loop algorithm is that it allows for the implementation of a technique 
known as the improved estimators technique[97]. The use of the improved estimator re­
duces the time for collecting statistically independent measurements by a few orders of 
magnitudes. It is quite efficient in calculating all quantities that can be reduced to the cal­
culation of spin-spin correlations. A rather detailed description of the loop cluster algorithm 
and the idea of improved estimators is provided in section 2.3 in chapter 2.
Although the loop algorithm can be implemented directly in continuum time, we used the 
discrete version of the algorithm[99J. In terms of accuracy there is actually no advantage 
in using the time continuum version, but one gains time since no extrapolation is required. 
We, however, carefully checked that the systematic errors were not exceeding the statistical 
errors, which turned out to be quite small relative to the required accuracy. The advantage 
of using the discrete version, in our case, will become clear later, (chapter 6) where we will 
generalize the present model to one where the stripes are not static but rather dynamical. 
A generalization of the discrete loop algorithm to include dynamical stripes will there be 
considered.
To keep track of the various finite temperature cross-overs we focussed on the temperature 
dependence of the staggered correlation length in both the directions parallel- (£y) and 
perpendicular (fx) to the stripes. To ensure complete thermalization, we typically insisted 
on 3 * 104 loop updates for equilibration and for measurements we generated up to (2 — 
3) * 10s loops updates. To get rid of finite size effects, the spatial extend of the system in 
the ,v and y directions is always kept at >6* fer.y [98], Although this rule has proved 
to be quite good, we have also checked that increasing the system size does not lead to a 
noticeable improvement in the accuracy.
To determine the correlation length, one has first to compute the staggered spin-spin corre­
lation function, defined as

C(t,;) = (-l)J,gn<'-') (s.-Sj),

where sign(i. j) is 1 if the spins at i and j are separated by an even number of exchange 
bonds and -1 if they are separated by an odd number. Due to translational invariance, the 
staggered correlation function depends only on the distance separating the two spins and 
not on their specific location. This translational symmetry can be exploited to write the 
correlation function in the form,

C(F) = (-l)r’+''>(s,+r-Si),

At large distances, r/£ 3> 1, C(r) decays exponentially,

C(r) = r-ze-r/5.
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C(r) = A(r~'/2e~r/* + (L - r)-l/2e“(L“r)/5). (5.2.5)

(5.2.6)5(T)a

where T* = 2nps in terms of the spin stiffness ps(a). When go

(5.2.7)T' =

(r = (r, 0), L = L.v) 
have omitted the first

cy 
f/T -► 0)’

with X = 1/2, which is equivalent to the two dimensional Omstein-Zemike (OZ) form. For 
a finite lattice with periodic boundary condition one should in fact use the OZ expression 
defined on a 2 dimensional torus,

eT^/T

27'* + T’

where T* = 2nps in terms of the spin stiffness ps(pt). When go > go the ground state 
is quantum disordered (QD) as signalled by £ becoming temperature independent, and the 
crossover temperature T' between the QC- and QD regimes is estimated from the approxi­
mate relation [100],

To extract the correlation length from the measured staggered spin-spin correlation, we 
fitted the measurements to the above OZ form, separately for the .v- 
and y (r = (0, r), L = £v) directions. To ensure asymptoticity, we 
few points.

We checked our results against the known results for both isolated ladders by Greven et. 
al.[ 100] (a = 0, n/ = 1.2, 3) and the low temperature results for the isotropic (a = 1) 
Iimit[97, 99].
Since 0(3) universality is bound to apply at scales much larger than any lattice related 
cross-over scale, universal forms for the temperature dependence of the correlation length 
can be used to further characterize the long wavelength dynamics. The absolute lattice cut­
off is reached at a temperature (TTOaA) where the correlation length parallel to the stripes 
(£v) becomes of order of the lattice constant. However, the problem is characterized by a 
second cut-off: when the correlation length is less than the lattice constant in the direction 
perpendicular to the stripes (av), the dynamics is that of Nx independently fluctuating spin 
ladders. We define 7b as the temperature where — ax being the cross-over temperature 
below which the system approaches 2+ID 0(3) universality. In this latter regime, further 
cross-overs are present. When the effective coupling constant (go) >s less l^an l^e cr’t*ca^ 
coupling constant (gc) a cross-over occurs from a ‘high’ temperature quantum critical- 
(QC) to a low temperature renormalized classical (RC) regime. In the QC regime ~ 1/7’ 
while the cross-over temperature T* to the RC regime can be deduced from the exponential 
increase of the correlation length at low T, using[7, 98, 101],

where cy is spin wave velocity in the strong direction.
We determined the various cross-over lines as function of a for the cases /i/ = 1,2 and 
3 (anisotropic Heisenberg, coupled two- and three leg ladders, respectively). To determine 
7q, we used for a close to 1 the same criterium as for the Tmax determination in the isotropic
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problem (£t(T°) = 0.7 — 0.8). This becomes inconsistent for small a where one better 
incorporates the width of the ladder (£t(7"o) = n/ x (0.7 — 0.8)) and we used a linear 
interpolation to connect smoothly both limits. We checked that below the To, determined 
in this way, both and exhibited the same dependence on temperature after an overall 
change of scale, demonstrating that the collective dynamics is indeed in a 2+ID regime. 
We have also checked that, along the stripe direction the one dimensional OZ form (X = 1) 
fits better to our data than the two dimensional one above To-

In Fig. 5-3 we summarize our results in the form of a cross-over diagram as function of a 
and temperature, both for the 1- and 3-leg (Fig.5-3a) and the 2-leg (Fig.5-3b) cases. Con­
sistent with analytic predictions(92], the behavior is radically different for the half-integer 
spin 1- and 3 leg cases on the one hand, and the ‘integer spin’ 2-leg case on the other 
hand. Let us first discuss the former. Here the ground state remains in the renormalized 
classical regime for any finite or. The reason is obvious. In isolated ladders (a = 0) with 
an uneven number of legs the ground state is a Luttinger liquid exhibiting algebraic long 
range order, meaning that the spin-spin correlation function behave algebraicly, (see Eqs. 
5.2.8 and 6.3.2 in section 6.3). Now for such a system any finite ladder-to-ladder cou-

Figure 5-3. Crossover temperatures as a function of anisotropy a for the coupled three-leg (a) 
and two-leg (b) spin-ladder models. The lines and points refer to the analytical- and numerical re­
sults, respectively, for the various scales. Notice that the 1 -leg ‘cut-off’ (1D-2D cross-over) follows 
closely the results for T*.

RCQC

<b) 
----2-leg QNLSM 

cut-off

<a)
------- 1 - leg QNLSM
------- 3-leg QNLSM

3-leg cut-off
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(5.2.8)(S(.v)S(O)) (l/x)exp(-x/$i),

(5.2.9)kBT° ^atf/MT0)

(5.2.10)<»>1 = £1(T°)0,

where <t> ] is the staggered magnetization of the a patch of spins of length £i and is given 
by

with ~ \/T, signals the approach to the Gaussian fixed point: within the thermal length 
£1 the system exhibits algebraic long range order. For finite a the crossover temperature 
T°, from the I + 1D behavior to the 2+1D behavior, can be found using the standard mean­
field consideration: at T° temperature becomes of order of the exchange interaction, per 
unit length, between two patches of correlated spins on neighboring chains. The size of 
these patch is of the order of the correlation length £i. Therfore we have.

0 being the Neel order parameter or the microscopic staggered magnetization. Taking 0 
to be independent of a would yield the erroneous result that T° ~ y/a. The subtlety is 
that when a is sufficiently small, the quantum dynamics within the correlation volume 
is already in the 2+1D regime[90J. Using the T = 0 result in the 2+ID derived by Affleck 
and Halperin that 0 ~ x/a[93], we recover T° ~ a, a << 1.
The other feature worthwhile mentioning is that T° and T* are identical for the 1- and 
3-leg cases for small a’s. This is in line with the observations by Frishmut et al.[102] 
that these spin ladders renormalize in identical Luttinger liquids when the ladder exchange 
interactions are isotropic.
In the two-leg ladders case (Fig.5-3b) the quantum order-disorder transition occurs at a 
finite value of a, ac = 0.30(2). This is in line with the qualitative expectations (see also

pling/interaction will suffice to transform this algebraic behavior to/and stabilize true long 
range order at T = 0[92, 93] in (2+1) dimension. A simple argument to understand this 
is as follows: The quasi long range order implies that an infinitely large number of spins, 
in each ladder, behave collectively. Coupling such a long patchs of collective spins is like 
coupling an infinitely large spins. Obviously any finite coupling of infinitely large spins 
will lock them together.

This in turn implies that T* should be finite, so that the classical nature of the ground state 
becomes visible. Interestingly, our calculations indicate that T* and T° basically coincide 
for any a for odd leg ladders. This means that at the moment the system discovers that it is 
2+1 dimensional, the classical behavior sets in.
Our finding that T0 increases linearly with a for small a (Fig.5-3a) confirms the scaling 
theory by Affleck and Halperin for this problem[93]. The behavior of the spin-spin corre­
lator for an isolated chain.
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5.3 Comparison with renormalization group analysis

for m = 2
cx = aco (5.3.1)

for nt = 3

c, = co (5.3.2)
for ni = 3

(5.3.3)

where

gcM =

(5.3.4)

and ps is the spin stiffness for a = 1. Moreover, they found the following dependence
of the crossover temperatures scales, T*, 7° and T', on the a. T* = 2nps(a), T° =

4?r y/CQ/Cy

(3+a) 
4

3(7+3«) 
2(13+2a)

(3+<y) 
2(1+a)
9(7 4-3a)

2(l+2a)(13+2a)

for ni = 2
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Q + ^■(cyarsinh[ct/cv]/ct 

+ln[cv(l + ^1 +c?/c2)/ct/(l + >/2)2]))

[ 103. 104]). Since the isolated two leg ladders are incompressible spin systems, the ladder- 
to ladder interaction has to overcome the single ladder energy gap before the two dimen­
sional lock-in can occur. This critical a is rather large, and in addition, the 1+1 D -» 2+1 
D crossover temperature T° shows the upward curvature (T° ~ y/a) previously predicted 
from a scaling analysis of the anisotropic QNLS model (AQNLS)[90J. As a ramification. 
T° and T' (as well as T') separate and a large, genuinely 2+1 D quantum critical regime 
opens up around ac. This is in marked contrast with the isotropic Heisenberg model where 
the renormalized classical regime sets in essentially at the lattice cut-off[106, 107].

The gross a dependences of the various cross-over temperatures can be understood by 
considering the anisotropic quantum nonlinear sigma model (AQNLSM) model relevant 
for the coupled spin-ladders problem. This is obtained by taking the naive continuum limit 
for the ladder problem. An average staggered field </> is introduced for a block of 2 x n/ 
sites. Integrating out the quadratic fluctuations[ 108], the effective action for <p becomes the 
AQNLS model with anisotropic spin wave velocities.

cx(l - z^j)

where co is the spin wave velocity in the isotropic limit. The coupling constant go is a 
independent and the same as for the isotropic model.
Van Duin and Zaanen carried out a complete scaling analysis for the spatially anisotropic 
quantum non-linear sigma model. Ref.(90]. According to their analysis the renormalized 
spin-stiffness becomes in terms of the velocities cx,y.
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Figure 5-4. |yT versus temperature for the 2-leg system, when the a’s are close to critical point. 
Results for a = 0.0 (isolated ladders) and 1.0 (isotropic limit) are added for comparison. The 
vertical bar indicates the 1 D-2D cross-over temperature.

2^P$cr(go/(47rco) + (1 - go/gc)/cy) and T' = const. |p,(a)|. It turns out that for the bare 
coupling constant g° as determined for the isotropic case (gQ = 9.1), the order-disorder 
transition occurs at a somewhat small value of a = 0.08, which is not surprising given 
the approximations involved (one-loop level). However, by adjusting go to shift otc to its 
numerical value (go = 11 0). we find a very close agreement between the numerical- and 
analytical results for the various cross-over temperatures (Fig.5-3b). As can be seen from 
(Fig.5-3a), the above analysis also works quite well for the three-leg ladders for ot > 0.4. 
Remarkably, it seems that T* switches rather suddenly from the AQNLS behavior at large 
ot to the linear behavior expected for the Luttinger liquid regime, as if the topological terms 
start to dominate rather suddenly.

Besides its intrinsic interest, the above does have potentially important ramifications for 
the understanding of the quantum-magnetism in cuprates: bond ordering of stripes would 
imply that already at rather moderate values of the anisotropy a, spin-ladder physics alone 
would enhance the quantum spin fluctuations substantially. This can be further illustrated 
by comparing the temperature dependence of T^V(T) for the isotropic spin system a = 1 
with that of the coupled two-leg ladders in the vicinity of the critical a (Fig.5.3). This 
quantity can be directly compared with the spin-spin relaxation rate I/T^g and, with some
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caution, also to 1 /T\ [106, 109] (adynamical critical exponent z = 1 is only strictly obeyed 
in the QC regime). As compared to the isotropic case, the exponential increase of T| (sig­
nalling the renormalized classical regime) is shifted to a low temperature, while over most 
of the temperature range T^(T) is constant, as is found in cuprates. It is noted that the 
quantum-critical signature’ £ ~ 1/T extends in the temperature range above the dimen­

sional crossover temperature T°. Since this regime is non-universal this should be regarded 
as a quasi-criticality. This is no more than suggestive. However, it points at a simple strat­
egy to clear up these matters by experiments involving the static stripe phase. It should 
be established if the stripe phase is site- or bond ordered which can be done by NMR. 
Next, the a should be determined from neutron measurements of the spin-wave velocities, 
Eq.(5.3.2). Using these as an input, the temperature dependence of the correlation-length, 
as well as the NMR relaxation rates, can be calculated to a high precision starting from 
a microscopic spin-only dynamics. Comparison of these quantities to experiment should 
yield insights in the microscopic origin of the peculiar spin dynamics in doped cuprates.



6.1 Introduction

6.2 The Quantum string gas

In chapter 3 we concluded that a single stripe is directed and moreover, depending on the 
curvature energy, it can either be classical, disordered flat or Gaussian. The most interesting 
of these are the Gaussian strings, as they are delocalized and could be possible ingredients 
for a string liquid. In chapter 5, a model of static stripes in a spin background is considered. 
These are either bond-centered or site-centered. The spin dynamics was studied and it was 
shown that for bond-centered stripes much of the spin fluctuations will originate in the 
spin sector. An interesting quantum phase transition takes place at a finite charge induced 
anisotropy. For site-centered stripes the charge should play the central sole for the quantum 
spin fluctuations to be present. An interesting question is what happens when the charge 
stripes themselves become delocalized quantum mechanically. In this final chapter we will 
introduce, and study numerically, a model of a system of interacting, quantum fluctuating, 
anti-phase stripes living in a quantum antiferromagnetic spin background. The stripe sys­
tem will correspond with a quantum string liquid and because the fluctuating stripes are 
anti-phase boundaries for the spin system, they will fluctuate the spin system as well.
In the first section we will review a work on a pure quantum strings system. In the second 
section we show that a topological spin-charge hidden order exits for such a stripe system. 
We then introduce the model, discuss what phases and order one might expect. And finally 
the numerical results will be presented and discussed extensively in the light of the first 
two sections.

Before considering the problem of fluctuating strings in a spinfull background we review 
in this section the work by Zaanen[l 10] on a gas of elastic quantum strings living in 2+1 
dimensions.
Motivated by the cuprate stripes, which are viewed as preformed line-like textures (chapter 
3), Zaanen considered a gas of quantum strings with a finite tension, embedded in a 2+1 
dimensional space-time. The main question addressed is whether it is possible to quantum 
melt a system of completely intact, infinitely long stripes. Even in this limit the stripes 
themselves can still execute quantum meandering motions and a consensus has been grow­
ing that a single stripe is like a quantum string with finite line-tension[34, 77,78, 111,112). 
The ideal string gas is defined as the low density limit where the width of the strings

6 Dynamical stripes in an antiferromagnetic 
spin background
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(6.2.1)S

supplemented by the avoidance condition,

(6.2.2)01 < 02 ... < <pN.

The hard-core condition Eq.(6.2.2) renders this to be a highly non-trivial problem. Helfrich 
considered the related classical problem of a stack of linearized and directed extrinsic cur­
vature membranes embedded in 3D space. Although this is a higher dimensional problem, 
the action depends on double derivatives instead of the single derivatives in Eq. (6.2.1),

can be neglected, while the strings only interact via the requirement that they cannot 
intersect! 113], i-C. via a hard-core condition. This is obviously the limit where quantum 
kinetic energy is most important. It is shown that in 2+1 dimensions even in this limit 
this string system turns into a solid at zero temperature. This solidification is driven by 
the quantum-mechanical analogue of the entropic interactions known from statistical me­
chanics. In a system with steric interactions between its constituents, entropy is paid at 
collisions in the classical system and kinetic energy in the quantum system. This causes an 
effective repulsion and these ‘quantum entropic' interactions dominate to such an extent in 
the string gas that they cause it to solidify always.
As discussed in chapter 3, in the path integral representation, the quantum string gas be­
comes equivalent to the statistical physics problem of a stack of elastic membranes ('world­
sheets') which do not interact except for the requirement that the membranes do not inter­
sect. A seminal contribution in the study of entropic interactions in classical systems com­
posed of extended entities is the analysis by Helfrich] 115] of a system of extrinsic curvature 
membranes in 3D, interacting only via an excluded volume constraint. In the quantum con­
text, this method will be illustrated here by reviewing the analysis of the hard-core Bose 
gas in 1 + 1D, which is closely related to Helfrich's extrinsic curvature membranes in 3D. 
The string gas will turn out to be a straightforward, but non-trivial extension of the Bose 
gas: different from the latter, the quantum entropic interactions of the string gas are driven 
by long wavelength fluctuations. I will only cite the result for the string gas and refer the 
interested reader to the reference] 110] for further details.
The hard-core Bose gas is a gas of particles characterized by a kinetic scale E?, while at 
the same time the long wavelength density-density correlator exhibits the algebraic decay 
characteristic for a harmonic crystal in I + 1D: < n(.v)/>(0) >~ cos(2kpx)/x2. The con­
cept of entropic interaction offers a simple explanation. At zero temperature the hard-core 
gas corresponds with the statistical physics problem of a gas of non-intersecting elastic 
lines embedded in 2D space-time] 114], which are directed along the time direction. The 
space-like displacement of the /-th worldline is parametrized in terms of a field 0, (r) (r is 
imaginary time) and the partition function is.

z = I d<t>iWe-^
= y^r^2yOr0>)2,
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(6.2.3)

(6.2.4)AF(B0) F(B0) - F(B0 = 0),

B =d2 (6.2.5)

(6.2.6)

(6.2.7)B =

AF 
~V~

At the same time, by general principle the ‘true’ long wavelength modulus B in the 
direction has to satisfy (V is the volume),

97t2 h2
T]4 Md3

Seff = 5 / dT / (lx + Bo(9.v^)2] .

where ^(.v, r) is a coarse grained long-wavelength displacement field, p = MId the mass 
density, and d the average interwordline distance (/? = l/r/ is the density). Obviously, for 
finite Bq fluctuations are suppressed relative to the case that Bo vanishes and this cost of 
kinetic energy in the quantum problem (entropy in the classical problem) raises the free- 
energy. Define this ‘free-energy of membrane joining’ as

92(AF(Bo)/V)

In case of the steric interactions, the only source of long wavelength rigidity in the space 
direction is the fluctuation contribution to AF. This means that Bq = B and B can be 
self-consistently determined from the differential equation, Eq. (6.2.5). In fact, the only 
ambiguity in this procedure is the choice for the short distance cut-off for the fluctuations 
in the .v direction, which is expected to be proportional to the distance between the world­
lines, xmjn ~ rjd. The shortcoming of the method is that mode-couplings are completely 
neglected and this is not quite correct since the outcomes do depend crucially on short 
wavelength fluctuations. However, it appears[116] that these effects can be absorbed in 
the non-universal ‘fudge-factor’ giving rise to changes in numerical prefactors without 
affecting the dependence of B on the dimensionful quantities in the problem.
The free energy difference for the bose gas, Eq. (6.2.4), is easily computed from the Gaus­
sian action Eq. (6.2.3) and expanding up to leading order in A. = (VBto)/(>/P^) (ro is the 
cut-off time), it becomes small in the low density limit,

(9m0)2 —> (320)2, and it follows from powercounting that this problem is equivalent to 
the hard-core Bose gas in the present context. In order to determine the ‘entropic’ elas­
tic modulus at long wavelength Helfrich introduced the following construction. Assume 
that the long wavelength modulus Bo is finite. For the Bose gas this implies that the long 
wavelength action is that of a 1 + 1D harmonic solid,

nh rw 1
= 7733/2+ °(X )'4tj2 V M d3'2

Inserting Eq. (6.2.6) on the r.h.s. of the self-consistency equation Eq. (6.2.5) and solving
the differential equation up to leading order in A. yields,
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,-d

(b)(a)

It is easily checked that this corresponds with the elasticity modulus appearing in the 
bosonized action of the hard-core boson problem, taking i) = V6. Hence, the space-like 
rigidity of the bose gas at long wavelength can be understood as a consequence of entropic 
interactions living in Euclidean space-time.

For the string gas problem, the string gas in 2+ID is related to the hard-core bose gas in 
I +1D: the latter can be viewed as the compactified version of the former. Imagine that the 
hard-core bose gas lives actually in 2+ID where the additional dimension y is rolled up to 
a cylinder with a compactification radius Ry of order of the lattice constant a. while the 
bosons are spread out in elastic strings wrapped around the y-axis. Let Ry go to infinity. 
This has the effect that the embedding space becomes 2 + 1 dimensional, while the boson 
wordlines spread out in string worldsheets. This ‘directed string-gas’ is not yet the one of 
interest, since the worldsheets are not only directed along the imaginary time directions 
(as required by quantum mechanics) but also in the x — y plane (Fig. la). The difficulty 
is that in the string gas dislocations can occur (Fig. lb), and if these proliferate they will 
destroy the generic long range order of the directed string gas. However, two objections 
can be raised against a dislocation mediated quantum melting. The first objection involves 
a further specification: As pointed out in chapter 3, ‘overhangs’ like in Fig. lb are events 
where transversal fluctuations are suppressed, relative to those around directed configu­
rations. Therefore already a single string tends to acquire spontaneously a direction, if it 
is regularized on a lattice (like the stripes). The second argument is more general. It is a 
classic resultjl 17, 113] that at any finite temperature dislocations proliferate in the string 
gas. However, in the presence of a finite range interaction of any strength the Kosterlitz- 
Thouless transition will occur at a finite temperature. Hence, by letting this interaction to 
become arbitrary weak a T = 0 transition can always be circumvented.

Figure 6-1. A typical space-like configuration in the directed siring gas (a), including a collision 
of the type driving the ‘quantum-entropic’ interactions. In the string gas dislocations (b) do not 
proliferate, and it is therefore equivalent to the directed gas.
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(6.2.8)

(6.2.9)

6.3 Hidden order in the stripe phase

(6.3.1)(p(.v)p(A'))

(6.3.2)(S(.v)S(a'))

Hidden order in the stripe phase

B = Ad^'^

When dislocations can be excluded the directed string gas remains and this is just the de- 
compactified Bose gas. In Euclidean space-time it corresponds with a sequentially ordered 
stack of elastic membranes. This allows the use of Helfrich methods and a similar, but oth­
erwise non-trivial derivation for the induced elastic modulus can be done. Zaanen found 
that the induced modulus, up to leading order in the density, is given by:

The above connection between the physics in (1 + 1) dimensions and the physics of directed 
strings gas in (2+1) dimensions is in fact more deep. An interesting observation, due to 
Zaanen, reveals a deeper similarity between the (1 + 1) dimensional doped Hubbard chain 
and the (2+1) dimensional anti-phase stripe system in the antiferromagnetic back ground. 
This similarity or connection involve a hidden order that occurs in both cases. This hidden 
order involves a global topological operator besides a local operator.
Consider a doped Hubbard chain at large U, (U » f), with a low density of holes Eq. 
(1.2.1). Such a system is known to be a Luttinger liquid where spin and charge separate. 
The charge (p) and spin (S) correlators behave as follows:

cos(2e)(x — x')
Bp |x-x'|^ “

COS(£)(X — x')

Ba |x -

where A is an integration constant and p. is the ‘coupling constant’ for the string-gas,

h
ped2'

This result demonstrates that in parallel with the hard-core bose gas, the string gas is char­
acterized by a fluctuation induced elastic modulus at long wavelength which will be small 
but finite even at low density. Eq. (6.2.8) describes the counter-intuitive fact that upon in­
creasing the kinetic energy of a single string, the rigidity of this medium is actually increas­
ing. The parameter p is the dimensionless quantity measuring the importance of quantum 
fluctuations[32]. Since quantum dislocation melting is prohibited, the string gas is always 
a solid, and this solid becomes more rigid when the microscopic quantum fluctuations be­
come more important. This might appear as less surprising when the (directed) string gas 
is viewed as a decompactified bose gas. On the one hand, the larger internal dimensionality 
of the worldsheets as compared to the worldlines weakens the ‘quantum-entropic interac­
tions, but the enlarged overall dimensionality causes the algebraic long range order of the 
1 + 1D bose gas to become the true long range order of the 2+ID string gas.
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at long distances. Bp and B„ are non-universal amplitudes while the exponents Kp.„ cor­
respond with the stiffness of the free charge and spin fields, respectively. The wavevectors 
where the dominant correlations occur (e = 2k r and e = 4Z/.- for spin and charge, respec­
tively) are quite like to what is found in underdoped cuprates: e = x(rr/a) (a is the lattice 
constant).

Calling this a liquid is actually a bit misleading. The power law behaviors revealed by 
Eqs. (6.3.1.6.3.2) in fact reflect order more than disorder. As emphasized by Haldane and 
many others, these correlators express algebraic long range order. The Luttinger liquid 
should be viewed basically as an ordered state, a one dimensional Wigner crystal which is 
at the same time an antiferromagnet. Since both condensates carry zero-modes (massless 
phonons and magnons) true long range order is impossible in l + ID. As is well known, the 
virtual admixing of these modes in the ground state changes true long range order in the 
algebraic correlations revealed by equations (6.3.1.6.3.2).

It is convenient to associate the charge dynamics with the low density gas of holes. Two 
holes cannot occupy the same site, and should therefore be regarded as hard-core particles. 
As discussed in the previous section (6.2), by general principle, this bard core gas crys­
tallizes into a massless 1 + 1D Wigner crystal. This explains Eq. (6.3.1): 2e is nothing else 
than 2rr/d, where d = a/x is the average interparticle distance, while Kp is the stiffness 
associated with the crystal. How to understand the spin correlator? When the hole moves, 
say, to the right the electron moves to the left, colliding with the electron which was already 
to the left of the hole before it moved. According to Schulz, the spins of these electrons are 
subjected to an antiferromagnetic exchange interaction. Hence, the spins surrounding the 
hole have an antiparallel relative orientation which is not different from what is found in the 
pure spin system. Alternatively, one can view such a configuration as a (missing) electron 
bound to an Ising-type domain wall in the staggered magnetization with a spin opposite 
to that of the (missing) electron: this is of course nothing else than the holon. The holons 
condense in the Wigner crystal, but since they are also Ising domain walls in the algebraic 
antiferromagnet they shift the ordering wavevector to the incommensurate 2e while their 
Gaussian zero-point motions also fluctuate the spin system and Eq. (6.3.2) follows.

By spreading out ('decompactifying’) this Luttinger liquid along an additional space di­
rection. one obtains a 2+ID state which is remarkably close to a stripe phase. The holons 
spread out in lines of holes which are at the time Ising domain walls in the spin system. 
The algebraic charge- and spin order changes into true long range order. One can infact 
fairly say that the Luttinger liquid associated with a l + ID doped Mott-insulator is nothing 
else than a stripe phase showing algebraic long range order. Although the microscopic 
mechanism responsible for this phenomenon in 2+ID is still poorly understood, one finds 
it hard to accept that the similarity with the l + ID Luttinger liquid is merely accidental.

Now a deeper connection is clear when one considers the Ogata and Shiba[ 121 ] solution 
of the Hubbard chain in the limit of strong interaction U » t. Without going into de­
tails, the Ogata-Shiba solution shows that holons are genuine entities on all scales, down 
to the lattice constant. In ID the Hubbard model is exactly solvable using Bethe-Ansatz. 
Although the information on the spin dynamics reside in the amplitude of the wavefunc-
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(6.3.3)

(6.3.4)

(6.3.5)
Ozop(|x - -v'l.A'o) = S<r

(6.3.6)

I

(6.3.7)
Oiop.

Tr0.r

where £ is a path joining point ro and r. The 
spin now reads,

(|F _r-|,C) = W(-l)<^>S?e'^^

re entangled in the general case. Ogata 
lion, the equation for the spin and charge rapidities a ese equations separate. The charge 
and Shiba observed, however, that in the large U lint* equivalent to hard-core bosons, 
dynamics can be associated with the holes, which effective Heisenberg chain. This 
while the spin dynamics are in one-to-one relation wim orjgjnal Hubbard chain: take a 
effective chain is obtained by a squeezing operation o em |ef( behind after taking out 
particular configuration of holes and consider the sPin chain. Below we will show that 
the holes and their corresponding sites as just a Heise stripes and the spin system left
a similar squeezing operation can be done for a systemi mathematical terms, consider
behind is related to the 2D Heisenberg system. To put the following non-local
the following. Take an arbitrary point Ao on ,l'e c a,n
(topological spin) operator.

6.3 Hidden order in the stripe phase

topological spin-spin correlator in the original

same "topological spin” operator can be defined,

fro.., = e,"Ef~o<1-"')(-l/Sx

where zi/ measures the charge on site / (zf / has eigenvalues 0, 1 and 2 for an empty , singly 
and doubly occupied site, respectively). Now consider the correlator.

O/up.d.V — a'I.A'o) = ('Hf>0..rf>0..td4'))

the meaning of the 'charge string operator’ expzzr - «z) is that it adds a minus
sign every lime that a hole is passed on the trajectory aq — x. One infers immediately that 
the charge string operator keeps track of the sign changes in between the points X and x' 
or squeezing this part of the chain and thereby cutting out the spin disorder caused by the 
motion of the Ising domain walls attached to the hole. In fact, it can be easily demonstrated 
by a simple calculation! 118] that for the Ogata-Shiba case the following asymptotic form 
holds (modulo log corrections),

(»)
|x — x'|*»

to be compared with the correlator of staggered spin eq. (6.3.2). Here Ka = 1 (Heisenberg) 
and B„ is the staggered spin amplitude associated with the Heisenberg chain.
The key point here is that the above correlation function is independent of the paths joining 

a'o and x or xo and x'.
Now in the stripe system, the

= e-’Epez:<|-V')(-l)<j+>,)5f-
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O,op.(.\r - r'|, |C|) = O,op.(|r - r'|) (6.3.8)

O,op.(\r -r'|,|C|) (6.3.9)

where, now C is a path joining point .v and .v'.
The stripe phase, of the type considered in the previous section, where dislocations can be 
excluded, can be considered as (2+1) dimensional decompactification of the (1 + 1) dimen­
sional Hubbard model in the Ogata-Shiba limit. Similar to the one dimensional case, in this 
phase the above “topological” correlation function is again independent of the path C. One 
can then, write;

-ici 
e *»tr

where |C| is the length of the path C
The independence of a correlator with respect to a length scale reveals true long range 
order. In this case this order is hidden because of its topological nature. In (I +1) dimension 
this hidden order is nothing else than a manifestation of the phenomenon of spin-charge 
separation.
In a situation where a small density of stripes dislocation is present or at non zero, but low, 
temperature, the operator O,op, decays exponentially as a function of the length of the path 
C

where now fs,r is a correlation length which is generally should be inversely proportional 
to the density of stripe dislocations at small densities.
This is unusual since this length scale is associated with a non-local (’topological’) op­
erator, while standard long range order is associated with local operators. However, this 
general type of order has been recognized before. The best understood precedent is the 
‘hidden order’ associated with S = 1 (‘Haldane’) spin chains, as first recognized by den 
Nijs and Rommelse[47],
Similar to the Ogata-Shiba limit of the one dimensional Hubbard model, and at low stripes 
density, the stripes can be squeezed out. The spin system left behind is just a 2D Heisenberg 
spin system with an anisotropy in the coupling due to the charges or stripes as in chapter 5. 
The above correlation function of the topological spin will show the same behavior as the 
spin-spin correlation of the related 2D Heisenberg model.
Although the correlator is independent of the length of path C, it is still a function of 
the distance |r — r'| between the two "topological spins”. If it becomes independent of 
this length scale then the topological spin system will show long range order, or more 
precisely, the spin system left after squeezing the stripes, which from now on we will 
refer to as the topological spin system. This, in a sense, is an ordering of the original spin 
system, because even when the stripes are dynamically fluctuating the spin system possess 
a sense of staggering. This order is obviously hidden. In fact the direct staggered spin-spin 
correlation may reveal a disordered system while the topological spin is ordered.
Now consider a system in which the above hidden order is present, i.e. the correlator de­
fined in Eq. (6.3.7) is independent of the path C. In such a system three correlators that may
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<W(|r -r'|) = <U/|(— l)<r+>’SFS-,(-l)(r'+^)|'P> , (6.3.10)

(6.3.11)

= (7?0.f) = (e"r^'^"-V,(-l)<t+>>S?) . (6.3.12)

And thirdly the charge-charge correlation;

OcAa.dr - r'l) = <<I'|n(r)n(r')|4') , (6.3.13)

(6.3.14)

This correlator should reveal the stripes order and its corresponding order parameter is the 
value of the charge charge structural factor at the (/-point at which the stripes ordering 
occurs.

reveal further long range order exist. Corresponding to each one an order parameter can be 
defined. These are the staggered spin-spin correlator given by;

The topological spin-spin correlator is given by Eq. (6.3.8) above. Corresponding to it one 
can define a topological spin order parameter as;

Ptj = 22e,’ (i:_r')('l'|n(r)/i(r')|*).

When one of the correlator is independent of |r — r'| and its order parameter acquire a 
non-zero value the corresponding system orders. And when it decays exponentially with 
|r — r'| its corresponding order parameter will be zero: the system will be disordered.
Let us now discuss the nature of the possible order that may occur in a system of anti-phase 
stripes in an antiferromagnetic background. Firstly, the stripes or the charge can order, 
implying that is non-zero at some q value. The spin system left will be a system of 
coupled spin ladders. This is the problem considered in the previous chapter 5. Depending 
on the charge induced anisotropy on the spin system and whether the spin ladders have 
even or odd legs, the topological spin correlator Eq. (6.3.8) may show long range order. 
If the topological spin orders, the staggered spin magnetization will show the alternating 
modulation seen in the experiment on the ordered stripe phase. The order parameter of the 
topological spin will have the same absolute value of the staggered spin magnetization, 
however, it will not be alternating.
When the stripes are disordered, the order parameter of the staggered magnetization will 
be zero and the direct staggered spin-spin correlation will not show long range order. How­
ever the hidden topological spin-spin correlator may still show long range order and its 
corresponding order parameter (6.3.12) will be a non-zero constant. In fact we will show 
below that this is the only possible case when the stripes are disordered. Here, we of course

and its corresponding order parameter is the usual staggered magnetization;

Mstae = ((-Dv+ySr-) .
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ordered staggered spin, (however.

disordered staggered spin; i.e.

disordered staggered spin;

6.4 A Model for dynamical stripes in an antiferromag­
netic background

In this section we will consider a model for dynamically fluctuating stripes living in an 
antiferromagnetic spin background. As in the previous two sections the stripes will be 
considered as directed strings, however they are otherwise fully quantum mechanical. The 
above three possible scenarios of ordering will be clearly shown. The last possibility where 
the disordering of the stripes will induce ordering of the topological spin will be elaborated 
further. We will justify our claim that a phase where both the strings and the spins are 
disordered is not present, unless stripes dislocations are allowed.
From the previous section we learned that the direct staggered spin-spin correlator, which 
is the experimentally measurable quantity, carries information about both the spins and the 
charges. Furthermore, although the spin system may show long range order, in the sense of 
the hidden ordering of the topological spin, the direct staggered spin spin correlator may 
however still show a disorder system due to a disordered stripe system, scenario (3). This 
motivates one to search for a model where the squeezing of the stripes is part of the model, 
but however trying to retain the effect of the stripes on the spin system. In the mode! for 
static stripes, the stripes were considered to live on the bonds of the lattice while the spins

mean the stripes are disordered because of their quantum fluctuations and not because of 
the presence of stripe dislocations. These are omitted as we assumed that we started from 
a system where the hidden order discussed above is present, which means stripe disloca­
tions are not present. The reason for this is that the fluctuations of the stripe system induce 
ordering in the spin system. This order is reflected in the hidden topological spin-spin cor­
relator. The direct staggered spin-spin correlator do not show long range order in this case 
because it carries information about the stripes system which is disordered. This is similar 
to the one dimensional case. The spin-spin correlator in eq. 6.3.2 carry information about 
the charges (through its dependence on kp) whereas the topological one. eq. 6.3.5. does not. 
Therefore the fourth possibility where every thing is disordered can not exist in this case. 
It is only when stripes dislocations are allowed this fourth possibilities can exist. This is a 
central result of our study, that in a stripe phase where dislocations are not present there is 
a hidden spin order. Unfortunately, one can hardly think of an experimental way to probe 
the hidden ordering of the topological spin in a dynamically fluctuating stripe system.
This leaves us with only three possible scenarios.
(1) Ordered stripes, ordered topological spin system —» 
the spin magnetization is alternating).
(2) Ordered stripes, disordered topological spin system 
zero spin magnetization.
(3) Disordered stripes —» ordered topological spin system 
i.e. zero spin magnetization.
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occupy the lattice sites. This is in fact an explicit squeezing operation. The stripes were 
removed together with their corresponding lattice sites. However to retain their effect on 
the spin system, as anti-phase boundary inducing anisotropy on the spins, they were put 
back in the bonds. The spin system considered is actually the topological one and not the 
direct spin system. This is clear because every missing site implicitly adds a (-1) factor to 
the spin-spin correlator. Because these missing sites correspond to removed charges, this 
is an implicit addition of the factor e,n^~n) in the correlator.

To be specific we will consider the following model of directed strings living in a spin- 
I antiferromagnetic background. Consider the two-dimensional square lattice. The bonds 
connecting the lattice sites can be divided onto those bonds parallel to the x-axis and those 
parallel to the y-axis. Now we will consider the strings to be of the same variety of strings 
considered in chapter (3) and with the particles building up the strings to be living on 
the bonds parallel to the x-axis. Furthermore we will assume that the strings are directed. 
Therefore these particles can only hop along the x-axis, specifically to the nearest neighbor 
bond along the x-axis with a hopping parameter t. The particles are assumed to satisfy the 
hard core bosons condition. (As these particles are essentially living in one dimension they 
can also be assumed to be fermion). The spins (spin |) live on the lattice sites, interacting 
among themselves with nearest neighbor antiferromagnetic interaction. The exchange in­
teraction is J if no string is present in the bond connecting them and J = a J if a string’s 
particle is present in the bond connecting the two spins. As in the previous chapter, the ex­
change interaction is weaker if a stripe is present between the spins. Therefore 1 > a > 0. 
(see figure 6-2). Since the strings live on bonds parallel to the x-axis, the spins along the 
y-axis interact with interaction energy J. However, when a kink is present on a string we 
notice that across the kink two spins which were not nearest neighbors in the original lat­
tice, may become nearest neighbor after putting the stripes on the bonds. The interaction 
between these two spins should be zero. This happen along the y-axis only. Figure 6-2 gives 
a clear picture of the model we consider. From the above, it follows that the Hamiltonian

The discussion in the previous section shows that the same implicit way of squeezing the 
stripes can be done even in the case of dynamically fluctuating stripes. We can now put the 
stripes back on the bonds. For every stripe configuration we can remove the stripes with 
their sites and put them back on bonds. The bonds form a lattice as well and the stripes can 
now fluctuate on the bonds lattice. Similar to the ordered stripe case the spin system left on 
the lattice sites after the squeezing operation is the topological one. The stripe system and 
the topological spins are still coupled. This is already seen in the static stripes case. The 
presence of the stripes induces anisotropy in the spin system. In the dynamical stripes case 
this coupling is even more than just the spin anisotropy. A stripe induces a spin anisotropy. 
That means it makes the exchange interaction in the bond between the two spins across 
them weaker. When these stripes fluctuate they carry this weaker bond with them. This 
means the influence of the stripes is not only to induce spin anisotropy but also to fluctuate 
the weaker bond inside the spin system. The spin system also influence the stripes. When 
the stripes fluctuate they break some of the spin bonds, this will cost exchange energy. This 
energy cost can be considered as a curvature energy on the stripes.

6.4 \ .Model for dynamical stripes in an antiferromagnetic background
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where a is a bosonic operator obeying hard core conditions and ii/ = a/a/. P is a projection 
operator insuring that hole hoppings do not break the strings.
As emphasized above, the spin system living on the lattice sites is the topological spin 
system. The direct measurements of the spin-spin correlation in the above constructions 
measures the topological spin-spin correlations as given in equation 6.3.7. To measure the 
true staggered spin-spin correlator we have to undo the squeezing operation by taking care 
of the strings positions. This is done by adding extra sites whenever a string is encountered. 
It is clear that if the strings are disordered or fluctuating, this disorder will appear in the 
staggered spin-spin correlator while the topological spin-spin correlator will not feel the 
disorderedness of the strings, at least not directly.
The above model is essentially a strong coupling model for the stripes at low density sim­
ilar to the Ogata-Shiba case of the Id Hubbard model. The reason is that in the above 
constructions the minimum width of the spin domains between any two strings is one and 
can not be zero. In other words, the hard core condition now imposes that strings can not 
even be nearest neighbors. Below it will be shown that a strong repulsive force between 
strings arises when two strings are next nearest neighbors.
Our main aim is to study the model and justify our claim that the above three scenarios 
for the ordering are the only possibilities. This will be done by mapping out the zero tem­
perature phase diagram of the model as a function of the strings hopping parameter t and 
the charge-induced spin anisotropy a = 1 — p. The nature of the different phases will be 
mapped out in detail as characterized by the string and spin (hidden) order.
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Figure 6-2. Description of the model of fluctuating stripes in the AF spin background. By squeezing 
the stripes one arrives at a spin-only model. The stripes are put back as strings living on bonds. Note 
that a kink (crosses) on a string breaks a spin bond along the y-axis and costs energy.
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6.5 The phase diagram

(6.5.1)B = 1 -

(6.5.2)

where O is the order parameter of the ordered phase. The Binder parameter behaves differ­
ently in the ordered and disordered state. In the ordered state (<94) = (O2)2 and therefore 
B = 2/3 while in a disordered state, and for Gaussian fluctuations, (O4) = 3(O2)2, and 
therefore B = 0. This property can be exploited to find the location of a phase transition 
or a cross over line between an ordered state and the disordered state characterized with 
severe Gaussian fluctuations! 119].
The order parameter of the spin system is easily identified as the staggered magnetization 
of the spin lattice.

As the stripes were shifted to live in the bonds lattice, this spin order parameter is actually 
the order parameter of the topological spin and gives information about the hidden order 
of the spin system.

diagramThe phase

<O4) 
3(O2)2

r

Motivated by the result of bond centered stripes in the previous chapter, we will considered 
the model at a stripe density of This means there is one particle for every' two bonds 
on the bonds lattice. On average, the stripes leave between them a two leg ladder spin 
system. This filling is particularly interesting for the following reason. If the stripes order, 
forming a coupled two leg ladders spin system, the l = 0 result is now known from the 
previous chapter. The interesting point is that already two of the above three possibilities 
are demonstrated in this case. Below a finite critical a (ac = 0.3) both the topological spin 
system and the direct spin are disordered, while the stripes are ordered. Above ac both 
the stripes are ordered and (hidden) spin system is ordered. The question is now what will 
happen when switching on the strings kinetic energy t.
Later on we will in fact argue that, by changing the density of the strings, the topology 
of the phase diagram will not change. Only the precise position of the transitions lines 
changes with the filling.
We studied the model numerically employing a combined Quantum Monte-Carlo algorithm 
for spins and the strings. The fact that the spins and the strings live essentially on separate 
lattices makes it possible to develop such a code. The spins are efficiently simulated using 
the loop cluster algorithm while for the strings we used world line algorithm. Since the 
quantum motion of the strings is effectively one dimensional, this world-line algorithm 
turned to be efficient enough for a quantitative study of the model. We also employed 
the Binder parameter technique to map out the phase diagram[l 19]. This parameter is the 
reduced fourth order commulant defined as
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Figure 6-3. Phase diagram of the fluctuating stripes model 
lines are for the eye guide.

In the bond lattice, the ordered stripe phase correspond with strings running vertically and 
spaced one bond apart. A line perpendicular to the strings, correspond with a 1D half filled 
hard core bose system. This makes the following order parameter to be the relevant one for 
the stripe system in this case.

at a stripes filling of The continuous

Dynamical stripes in an

Ps. = ((-Dx(aX - 1)).

Using the combined quantum Monte-Carlo algorithm with the Binder parameter technique 
applied for the above defined order parameters, we arrived at the following phase diagram 
shown in figure 6-3.

Three distinct phases are present. They in fact correspond to the three ordering possibilities 
discussed above. Phase I and II are just continuations of the “t = 0" case. In both phases, 
the strings system is ordered. The strings are of the flat string type discussed in chapter 3, 
(see table 3-4). Because now t is non-zero, there are local quantum fluctuations consisting 
of kinks in individual strings. In phase I the spin system is disordered and there is no hidden 
spin order. This is similar to the system at t = 0. However, the two leg ladders are now not 
only coupled by the charge induced anisotropy but also by the exchange of weaker bonds. 
In phase II the spin system is ordered. The topological spin show the “hidden” long range 
order. The direct staggered spin-spin magnetization flip when ever one crosses a string. 
The line separating phase I and II is a line of true quantum phase transitions separating a 
disordered spin state and an ordered one. Every point on the line is now a quantum critical

0
0
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6.6 Discussion of the Phase Diagram
The a —> 1 limit is quite easy to understand. In this limit the spin system is obviously 
ordered. Here I mean the “topological” spin system. This system will possess long range 
order and the “topological” spin-spin correlation, Eq.( 6.3.7), behave in the same way as 
the spin-spin correlations of the 2D Heisenberg model.

point. The transition is driven not only by the spin anisotropy a but also by the strings 
fluctuations. At a = 0 the transition is solely driven by the strings fluctuations.
In phase III and at the single string level, the strings are Gaussian. However the strings 
system solidify because of the “string gas” effect discussed at the first section of this chap­
ter. One should note that this solidification is driven by the Gaussian fluctuations in the 
strings system. Because of these fluctuations we termed this phase as disordered. The line 
separating this phase and phase II is actually a crossover line. The stripes order parame­
ter in phases II and 1 is significantly above zero. In this phase one has to go to a much 
lower density of stripes to see a finite value of the order parameter. The “topological” spin 
system shows the same hidden order present in Phase II, however because of the severe 
quantum fluctuations in the string system the direct staggered spin-spin correlation decays 
exponentially.
To get more insight about the nature of this phase, we analyze the following figures. In 
figure 6-4 we show a plot of the topological spin-spin correlation function (Eq. 6.3.7) at 
a point inside phase III (a = 0.9 and r = 1.5). Because we are working at non-zero 
temperature, this has been normalized by the staggered spin-spin correlation function of 
the quantum Heisenberg model at the same temperature. One can fairly conclude that the 
topological spin system behaves as a quantum Heisenberg system. We also show the direct 
staggered spin-spin correlation function. This function falls exponentially to zero signaling 
a disordered behavior. The nature of the stripe system is best figured by examining the 
charge-charge structural factor (Eq. 6.5.3). The solidification of the stripes system due to 
the string gas effect should appear as a peak at the relevant q value. At the density we 
studied (|) this should occur at (7r,0). However as mentioned above it is quite hard to 
detect this effect at such densities. By going to lower densities, a much more clear peak 
appears. In figure 6-5 we plot the structural factor for a (48 x 48) lattice with 12 strings, 
i.e. at a 1 /4 doping, at a point deep inside phase III {a = 0.05, t = 8.0). One clearly notice 
a sharp peak at (y,0). The, higher, peak at (0,0) correspond to the homogeneous charge 
background. However the relative ratio of the two peaks gives a feeling for the quantum 
fluctuations in the system. One would expect that by going to lower densities the stripes 
have more room to fluctuate and therefore they should be more disordered. In fact the 
opposite occurs. It is shown in the first section that the solidification of the quantum strings 
gas is driven by the fluctuations. The more room the strings have to fluctuate the more 
the effect is present. By going to lower densities one increases the fluctuations, which will 
help solidify the string system. This is why for a density of | it was quite hard to detect 
any solidfications of the system. At lower densities the effect is more clear.

6.6 Discussion of the Phase Diagram
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Figure 6-4. Plot of the Topological spin-spin correlation ( pluses ) and the direct staggered spin-spin 
correlation (crosses) for a 24 x 24 lattice at (a = 0.05, t = 2.0).

Figure 6-5. Plot of the charge-charge structural factor for a lattice of 48 x 48 at the point a = 0.05 
and t = 8.0 inside phase III. The average distance between the strings is 4.



103

e0 = -6692(1) J (6.6.1)

IC = 0.347 (6.6.2)

l = 33/0.7 (6.6.3)0.347/0.7 = 0.497.

From seciion 3.7 chapter 3 a transition from a flat phase to a Gaussian phase occurs when 
K, is equal 0.7r. This allow us to estimate the t value at which this transition occur

As the number of bonds is twice the number of sites, the energy per bond is half of this 
value and this will be the energy cost of one kink, )C, in the strings system

For the string system, the crossover can be understood as a single string unbinding tran­
sition. A kink in the string will break a spin bond along the y-axis and this will cost an 
energy equal to the bond energy of the spin system, see figure 6-2. As the spin system is 
equivalent to the Heisenberg model, this energy can be estimated by considering the energy 
per bond in the pure Heisenberg model. The energy per site.eo, of the Heisenberg system 
is calculated by many groups and found to be[ 122],

This is the same value at which the crossover from an ordered strings system to a disordered 
system occurs. Below this value one has an ordered system of flat strings and above this 
value the strings are Gaussian.
As K, is coming from breaking a spin bond along the y-axis, along the y-axis the spin­
spin interaction is equal to J for all a. Therefore K. does not change upon changing a. 
This explains that the cross over occurs at the same t value all the way from a = 1 to 
approximately a = 0.3. For a < 0.3 the spin system is disordered therefore the above 
mechanism is not valid.
For the spin system, below the string transition, both the direct staggered spin-spin corre­
lation and the “topological” one show long range order. However it is the topological one 
that is equivalent to the Heisenberg spin system. The “topological” spin-spin correlation 
behave in the same way as the spin-spin correlations of the 2D Heisenberg model. Above 
the strings transition the “topological” spin system is still ordered. However the direct stag­
gered spin-spin correlation will follow the disordered strings system and therefore decays 
exponentially.
We now discuss the other limit, a —> 0. Let us first look at the I —> 0 limit. In this case the 
strings become classical. One would then like to find the minimum energy configuration 
of the combined system. We simulated the above model at different stripe densities with 
the strings considered to be classical at a relatively low temperature. Focusing on the equi­
librium configuration, we found a tendency for the strings to be straight (flat strings) with 
an even distance between them. In this case the distance between the strings is two. This 
means that the strings leave between them spin ladders with an even number of legs. This 
finding is consistent with the fact that even-leg spin ladders always develop a gap therefore 
driving a special stability as compared to odd-leg spin ladders. To put this on a solid basis,

6.6 Discussion of the Phase Diagram 
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for the case we are considering ( density equal to |) we compared the ground state energy 
of a coupled two-leg ladders system with that of coupled 1 and 3-leg ladders. We found 
that the energy of the two-leg ladders system is always lower and specifically at a = 0 the 
energy density of the 2-leg ladder system is of order 0.1J lower than the system of 1 and 
3-leg ladder. This fact is true for all a less than 0.3. This finding is in fact more general. 
For any density of strings, the minimum energy configuration will always be flat strings 
leaving between them a spin system consisting of coupled even-legs spin ladders.
Another observation that further supports this conclusion is related to the force acting be­
tween two static flat stripes in a spinful background. When injecting two stripes in an 
antiferromagnetic spin system, an induced interaction arises due to the modification of the 
quantum zero point spin wave energy. This effect is analogue to the Casimir effect. At long 
distances the interaction energy per unit length of stripe is attractive and falls, generally, 
like V(d) = d~} where d is the distance between the two stripes[120]. However, when 
d is not large, this interaction energy behaves differently. It fluctuates between even and 
odd distances with minima at even d depending on a. The reason for this behavior is the 
existence of a gap in the even-leg ladder spin systems. We define the interaction energy 
between the two stripes as follows.

VW = E2(d) + Eo(d) - 2 * Ei (J) (6.6.4)

where En is the total energy of the system with n stripes. We have calculated this interaction 
energy for two a values, a = 0.08 and a = 0.2. In figure 6.6 we display our results for 
V (J). Although these forces are small, however, in the thermodynamic limit and at T = 0 
they will dominate and one can fairly conclude that the stripes will prefer to leave an even 
distance between them.

From the above we conclude that in the limit t —> 0, ot —> 0 and at any string density 
one has an ordered strings system consisting of flat strings. Moreover, these strings leave 
between them a system of coupled even-legs spin ladders. This spin system has a finite 
correlation length and therefore it is disordered. This means that both the direct staggered 
and the“topological” spin-spin correlation will not show long range order. Moving away 
from a = 0 along the t = 0 line, one will ultimately hit a critical a = ac at which a 
quantum phase transition will take place. Beyond this critical value the spin system will 
show long range order. For the doping we are considering, this quantum phase transition 
occurs at the value ctc = 0.3. As has been shown in the previous chapter (5)
By switching on t, quantum fluctuations will develop in the strings system. These fluctu­
ations are in the form of kinks in the flat strings system. They will ultimately drive the 
topological spin system from a disordered phase to an ordered one. One can think of two 
ways that the fluctuations in the strings system causes the spin system to order. Firstly, 
these fluctuations will induce odd-leg rungs in the even-leg ladder system. At some mo­
ment these odd rungs will proliferate, kill the gap and drive the whole spin system to a gap­
less state similar to the coupled odd-leg ladders. These fluctuations will also fluctuate the 
weaker bond along the axis perpendicular to the strings, the x-axis. This will distribute the 
effect of the weaker bonds along the x-axis and at some moment the spin-spin interaction
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Discussion of the Phase Diagram

along this axis will switch from an alternate weak and strong bond to a more homogeneous 
interaction intermediate between J and a J. This will change the nature of the whole spin 
system from coupled even-leg ladders system to an anisotropic Heisenberg model, or to 
coupled spin chains. Such a system show long range order at zero-temperature.[90].
The cross over from the ordered stripe system in phase II to the disordered one in phase III 
at this limit is more complicated. It can not be understood in terms of single string physics 
only. One may still argue that the spin system is actually ordered and a mechanism similar 
to the one working at the a 1 limit should work here as well. This can not be true 
because of two reasons. Firstly the cross over seems to occur at a higher values of t and 
one need a rather large kink energy to account for this. This large energy can only come 
from the spin system. The only possible way is breaking the rungs inside the two leg ladder 
system. The kink energy is, however, quite small. It is of order of (9(0.01 J). Therefore, 
it cannot explain the occurrence of the cross-over at such a relatively large value of t. 
Moreover, a linear confining potential interaction between kinks builds up, when two kinks 
try to run apart V (/) = k.l, where k is the kink energy and / is the distance between the 
two kinks. This linear potential is similar to the linear string interaction that occurs when

d
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Figure 6-7. (a) Kinks in a coupled two-leg ladders stripe system, (b) When the kinks fly apart they 
induce odd rungs and a linear potential develop.

° I

I t °

° I t
° * I

a single hole is injected in an antiferromagnet[13]. This interaction will pull the two kinks 
together and forbid them from flying apart, thereby prohibiting the proliferation of free 
kinks.

Therefore, a collective mechanism beyond single string physics should be taking place and 
is responsible for the disordering of the strings. The nature of this mechanism and how it 
disorders the strings system is still an open question.

It is clear that the disordering of the string system in Phase III is driven by the quantum 
fluctuations. However, before they are severe enough to disorder the strings system, these 
same quantum fluctuations are in fact responsible for driving the topological spin system 
from a disordered state to an order one. When the quantum fluctuations get more severe 
to the extend of disordering the strings system they should in fact help more to order the 
spin system. Therefore one can not have a phase where both the strings system and the 
topological spin are disordered. We again stress the fact that the direct spin spin correlation 
will show a disorder system because of its dependence on the disordered strings.

We end this section by showing that the topology of the phase diagram does not change by 
doping. From the discussion on the small t and a —> 0 limit we concluded that at this limit 
and for any doping the stripes system consists of ordered strings of the flat type leaving 
between them a system of coupled even-leg spin ladders. These ladders may have different 
width. The system will choose the configuration with the lowest energy. For example at a j 
doping the lowest energy configuration will be an alternate 2-4 leg ladders. Since even-leg 
spin ladders are gaped, the spin system as a whole will be gaped at this limit. Therefore 
both the topological spin and direct spin systems will show a disordered system. This is 
phase I. Upon increasing a one should hit a quantum critical point where the a transition to 
an ordered spin state should take place. This critical a is smaller for lower stripes densities.
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This is obvious since at lower densities the width of the spin ladders will get larger and 
the gap of the spin system gets smaller. One then enters a phase where both the stripes and 
the spins are ordered and this will be phase H. The direct staggered spin will flip whenever 
one crosses a stripe. Tire same argument holds when increasing the kinetic energy of the 
stripes. By increasing z the coupling between the ladders increases and at some critical t 
the spin system should show long range order and one enters phase II.
For a > a,, the mechanism for the cross-over from phase II to phase III is independent 
of the doping. It corresponds to a single stripe depinning transition. In fact the anisotropy 
does not play a role on the transition. Therefore the position of the cross-over should be 
independent of the doping as well. At the other limit, a < ac, we note that the transition 
from phase 1 to phase II occurs before a single strings become Gaussian. The quantum 
fluctuations on the flat strings are the driving mechanism for this transition. This occurs 
at the single string level. Upon increasing z to higher values the quantum fluctuations will 
become more severe and ultimately they will drive the single string from the flat phase 
to a Gaussian string. At this level we expect the collective mechanism responsible for the 
transition from phase II to phase III to take place or at the least to occur some where after 
the single string becames a Gaussian string.
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Samenvatting

De titel van dit proefschrift is “Over stripe correlaties in Cuprate supergeleiders”. De cu­
prates zijn quasi 2-dimensionale materialen die koperoxide bevatten. Ze zijn gelaagd en de 
koppeling tussen de vrijheidsgraden in de verschillende lagen is zeer zwak in vergelijking 
met die in de individuele lagen. De fysisch belangrijkste lagen kunnen gezien worden als 
vierkanlc roosters waarbij de elektronen de roosterpunten bezetten. Als de cuprates onge- 
doteerd zijn, zijn het spin-, antiferromagnetische isolatoren. Door ze te doteren met gaten, 
dat wil zeggen door elektronen te verwijderen uit de lagen, gaan de materialen een gebied 
binnen dat bekend staat als een spinglas, waar de antiferromagnetische ordening zeer snel 
onderdrukt wordt. Door verder te doteren en de temperatuur te verlagen tot beneden een 
kritische temperatuur worden ze supergeleiders. Bij deze doteringconcentratie wordt ook 
een nieuwe fase waargenomen: de stripe fase. De gaten verzamelen zich in domeinwanden, 
snaar-achlige structuren vormend, die gat-vrije domeinen scheiden. In deze spindomeinen 
ordenen de spins zich antiferromagnetisch met tegengestelde orientatie over de gat-lijnen 
(de stripes).
Van deze stripe-fase wordt verondersteld dat ze zowel in competitie is als coexisteert met 
de supergeleidende fase, in ieder geval tot en met de optimale dotering. Zowel statische als 
dynamische stripe correlaties zijn experimenteel waargenomen. De studie van deze stripe 
fase is het onderwerp van dit proefschrift. Een overzicht van bestaand experimenteel en 
theoretisch werk aan zowel het bestaan van deze stripe-fase als het mechanisme dat zorgt 
voor de stabiliteit ervan wordt in het introductie hoofdstuk gegeven.
Omdat stripes lijnachtige objecten zijn. kan men de ladings-sector van de elektronische toe­
stand van de cuprates opvatten als een kwantum stringvloeistqf. Om het probleem van vele 
wisselwerkende stripes aan te pakken, is het eerst noodzakelijk om uit de vinden wat de 
fysica van een enkele stripe in isolatie is. In hoofdstuk 3 wordt een kwantum roosterstring­
model voor een enkele stripe gei'ntroduceerd. De spin achtergrond wordt hier verwaarloosd. 
Gebruik makend van exacte diagonalisatie- en Quantum Monte-Carlo technieken wordt 
aangetoond dat bij het absolute nulpunt een symmetrie-breking plaatsheeft. Hoewel de 
string zich kwantum-mechanisch kan delocaliseren, blijkt dat de string in alle gevallen 
spontaan een voorkeursrichting in de ruimte ontwikkelt.
De belangrijkste reden hiervoor is dat knikken in de string kwantumtransport bemoeilijken, 
of vice versa, de kwantumbeweging van kinken rechtten de string (het tuinslang effect'}. 
Het gerichte-string probleem dat overblijft lijkt te zijn gerelateerd aan een goed begrepen 
oppervlakte statisisch fysisch model (het RSOS model) en tegelijkertijd aan een S = 1 
XXZ kwantum spinketen met anisotropie op elke roosterplaats.
Een aantal door deze klasse van modellen beschreven fases, welke tot nu toe niet 
geidentificeerd waren, werden gevonden. De fases vallen in drie hoofdcategorien: klas- 
sieke, Gaussische en ‘ongeordend vlakke’ fases. De fases worden verder onderscheiden
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door de orientatie van de string op het rooster. Behalve de vlakke string in de horizontale 
en diagonale richtingen. laat dit proefschrift zien dat ook de ongeordend-vlakke fase een 
zeer rijk gedrag vertoont. Naast de bekende fase met horizontale richting. welke geasso- 
cieerd is met de onsamendrukbare fase van het spin model, wordt een nieuwe categorie 
geidentificeerd: de ongeordend vlakke fase. die afhankelijk van parameters, willekeurige 
richtingen in ruimte inneemt (de “slanted” fases).

Het kwantum roosterstring model is een model voor niet-metallische stripes. In hoofdstuk 
4 wordt het probleem van een metallische string beschouwd. Dit is een een-dimensionaal 
metaal levend op een gedelocaliseerd traject in twee dimensies. Startend met specifieke 
aannames gei'nspireerd door de cuprate stripes wordt er aangetoond dat de dynamica op 
lange golflengte van zo’n probleem een eenvoudige generalisatie is van een Luttinger vloei- 
stof, waarbij de gebruikelijke theorie van spin-ladings scheiding moet worden uitgebreid 
met een derde sector van transversale string modes. Door een specifiek model te beschou- 
wen wordt aangetoond dat het feit of een string metallisch is een zwakke invloed heeft op 
de string fluctuaties. hetgeen impliceert dat het geen belangrijke factor is voor het kwan- 
tumsmelten van de stripe-fase. Dit resultaat biedt een verklaring voor de ongevoeligheid 
van de statische stripe fase tegen dotering.

In hoofdstuk 5 wordt een model van statische stripes in een spin achtergrond beschouwd. 
Deze zijn of gecentreerd op de rooster-punten of gecentreerd op de rooster-bindingen. De 
spin-dynamica wordt bestudeerd en er wordt aangetoond dat voor de bindings-gecentreerde 
stripes veel van de spin fluctuaties zullen ontstaan in de spin sector. Een interessante 
kwantum fase-overgang vindt plaats bij een eindige ladings-geinduceerde anisotropie. Voor 
rooster-punt gecentreerde stripes spelen de kwantum spinfluctuaties een centrale rol in het 
ontstaan van kwantum spinfluctuaties.

Een interessante vraag is wat er gebeurd als de ladings-stripes zelf kwantum-mechanisch 
gedelocaliseerd worden. Het probleem van wisselwerkende kwantumfluctuerende stripes, 
levend in een kwantum mechanische antiferromagnetishe spin achtergrond wordt bekeken 
in het laatste hoofdstuk. Het stripe systeem komt overeen met een kwantum stringvloei- 
stof en omdat de fluctuerende stripes anti-fase grenzen zijn voor het spin systeem, zullen 
ze ook het spin systeem laten fluctueren. Eerst wordt een overzicht van het probleem van 
een puur kwantum string gas zonder dislocaties gegeven. Gebruik makend van de con- 
nectie van dit probleem met het harde kern Bose gas probleem, wordt aangetoond dat het 
string systeem vast zal worden ten gevolge van de kwantum fluctuaties. Deze fluctuaties 
induceren op lange golflengte een elastische modulus, welke klein maar eindig zal zijn, 
en vanwege de twee-dimensionaliteit van het probleem zal een werkelijk lange afstands 
ordening ontstaan. Vervolgens wordt aangetoond dat dit verband tussen de stripe-fysica en 
een-dimensionale fysica veel dieper is. Het wordt aangetoond dat een verborgen spin orde­
ning van het zelfde soort bestaat in zowel de grote (/-Hubbard keten en een systeem van 
fluctuerende strings in een spin-voile achtergrond. De fysische reden van deze ordening 
is, dat als men alle gaten samen met hun roosterpunten uit de Hubbard keten haalt. of alle 
strings uit het stripe systeem, het “topologische” spin systeem dat achterblijft precies een 1 - 
dimensionaal respectievelijk 2-dimensionaal Heisenberg systeem is. Gebruik makend van
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deze verborgen ordening wordt aangetoond dat de fluctuaties van de stripes altijd ordening 
induceren in het topologische spin systeem, hoewel deze ordening verborgen is. Het fa- 
sediagram van het probleem van fluctuerende strings in een spin-voile achtergrond wordt 
vervolgens volledig bepaald. Drie scenarios blijken te bestaan: Geordende stripes met een 
geordend topologisch spin systeem, geordende stripes met een ongeordend topologische 
spin systeem of ongeordende stripes met een geordend topologisch spin systeem.
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for n/ = 2

3

for m = 3

Chapter 5, this thesis

Chapter 6, this thesis

3. A system of directed quantum strings is equivalent to a decompactified, in 
an extra dimension, algebraic Wigner crystal which is formed by the hard 
core bose gas system in 1+1 dimension. The strings system is now a true 
solid due to the extra dimension.

4. For a system of anti-phase, directed quantum strings living in an antiferro­
magnetic spin background, it is impossible to have both the strings and the 
topological spin system quantum disordered. The topological spin system 
is the spin system left after removing the strings together with their sites.

Chapter 6, this thesis

1. Apart from some extreme classical limits, the general quantum lattice string 
model at zero temperature is a directed string, the garden hose effect.

Chapter 3, this thesis

respectively, where a is the spin anisotropy and c0 is the spin-wave velocity 
in the isotropic limit.

Stellingen
behorende bij het proefschrift 

On Stripe Correlations in Cuprate Superconductors
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forn, 

for ni = 2

2. The effective anisotropic quantum non-linear sigma models for the cou­
pled 2-leg and 3-leg spin ladders systems are characterized by the follo­
wing anisotropic spin-wave velocities:

c, = “Co

cy

5. In the large (7, 1+1-dimensional Hubbard model, the holes form an alge- 
braicly long range ordered Wigner crystal. By taking out the holes together 
with their corresponding sites, the remaining spin system is analogous to a 
Heisenberg chain.

M. Ogata and H. Shiba, Phys. Rev. B 41, 2326 (1990)



Ian Affleck and Bertrand I. Halperin, J. Phys. A 29, 2627 (1996)

10. Considering the current trends in the rate of change of the countries’ popu­
lation, the world population will reach a maximum of around 10 billion in 
the third decade of this century then drop to a minimum of around 4 billion 
at the end of the fifth decade before start rising again.

8. The current civil war in Sudan, which is the longest in Africa, will come 
to a lasting end if the leaders of the different warring parties take the eco­
nomic interest of the Sudanese people as their top priority.

9. Education and technology should be the main focus of the policy makers 
in the third world, in order to attain a sustained development.

j. The renormalization group approach to dimensional crossover suggests 
that order occurs for infinitesimal higher dimensional coupling only if the 
renormalized coupling in the lower dimensional theory is smaller than the 
critical coupling in the higher dimensional theory.

Osman Yousif Osman
4 October 2000

7. A Landau mean-field analysis falls short as a description for the thermo­
dynamic behavior of the stripe phase because of the importance of fluctu­
ations.

C. N. A. van Duin and J. Zaanen, Phys. Rev. Lett. 80, 1513 (1998)
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