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Chapter 1

Introduction

The standard model1.1

(FN

leptons "r

quarks

Table 1.1. The fermions in the standard model and their masses

1

t
b

e
u 
d

~ 0
0.511 MeV
0.041 GeV
0.041 GeV

~ 0
105.66 MeV

1.5 GeV 
0.15 GeV

~ 0 
1784 MeV 

not yet seen 
4.5 GeV

c 
3

to the standard model, all matter is composed of leptons and quarks, 
•ould be six kinds of quarks, but the sixth one, called truth or top quark, 

een observed yet. This thesis is about how the top quark could be found 
ments currently being performed at Fermi National Accelerator Laboratory 
in Batavia, Illinois, and how the top quark influences the properties of other 

; 1•?. To introduce these subjects, let us make a short tour of the standard model.
■ . ;his model, there are three families of fermions, shown in Table 1.1. They all 

have spin 1/2. The behaviour of these elementary particles is determined by three 
forces: the electromagnetic force, the weak force and the strong force. The force of 
gravity, which is much weaker, is not included in the standard model. The forces are 
carried by particles called gauge bosons, of which there are four kinds. They have 
spin 1 and are therefore also called vector bosons. The first is the photon, which is 
responsible for the electromagnetic force. Then there is the gluon for the strong force. 
Both these particles are massless. The weak force is carried by two massive gauge 
bosons, called W and Z bosons. In order to allow the W and Z to have masses, the 
theory requires the existence of one more particle, which is called the Higgs boson 
and has spin 0.

Until now, the theory has been in agreement with all experimental data [1, 2, 3]. 
However, two particles have not yet been observed in experiments. One is the top 
quark, as already mentioned, and the other one is the Higgs particle. Both of them



Table 1.2. The bosons in the standard model and their masses

he tau

(1.1.1)a =

(1-1-2)

2

ibtain 
ust be 
.nsion

J = x/2Gm(1 - Ar) ’

e2 1
4tt “ 137.03599 '

0
0

91 GeV
80 GeV 

not yet seen

photon 
gluon 
Z
W
Higgs

where the quantity Ar represents radiative corrections to the muon decay rate. It 
is a function of a, as and all the masses, in particular the unknown masses of the 
top quark, mt, and the Higgs boson Mh- By numerically solving eq. (1.1.2), a value 
for Mw is found which depends on mt and Mh- As a consequence, any prediction

Mi,

The mass of the Z boson, Mz, has been measured to 0.01% accuracy by the recent 
LEP experiments [5], but the mass of the W has not been measured as accurately. 
Therefore, it is better not to use the experimentally measured value of Mw as input, 
but instead to calculate it from the Fermi constant GM. This constant is directly 
related to the muon lifetime, which has been measured to 0.002% accuracy. The 
relationship between Mw and GM can be written as [6]

are needed to ensure the renormalizability of the theory.
The model depends on a number of free parameters. For example, once the masses 

of the particles, the fine structure constant, a, and the strong coupling constant, as, 
are given, one can, in principle, calculate the cross section for any r<. -ion between 
elementary particles one wishes.

In practice, most calculations are done using perturbation thee 
accurate predictions, two things are needed. Firstly, the input par. 
accurately known, and secondly, higher order terms in the perturb 
must be included.

As for the input parameters, the masses of the electron, the rn 
have been measured directly. The masses of the up, down, charm, stran • . n< bottom 
quarks have been obtained indirectly from experimentally measured quantifies [4]. 
The neutrino masses are known to be small in comparison with the other particles. 
The value of as depends on a renormalization scale p. If we choose p = Mz, as is 
approximately 0.12.

In electroweak interactions, three parameters are especially important, namely a, 
Mz and Mw- The first is known to 1 part in 107,



mt = 124t^GeV, (1.1.3)

The top quark
Tt

3

the t 
Mw 
tigbi the bounds

about weak interactions derived from the model will depend on mt and Mh, unless, 
as sometimes happens, this dependence is cancelled by other effects.

By comparing the predictions with experimental results, the following bounds on 
rne and Mh can be derived [7]:

i de that is most likely to be discovered first is the top quark. If it is found, 
riant test of the standard model would be to see whether its mass is within 
;ds (1.1.3). Knowing m( would allow a direct test of the relation (1.1.2) when

. measured more accurately in the future. It would also make it possible to 
on Mh (1.1.4).

Experiments to find the top quark are being performed at FNAL. Protons and 
antiprotons are accelerated in opposite directions around a ring two kilometres in 
diameter and then made to collide with each other at a centre of mass energy of 
1.8 TeV. In these collisions, top quarks should be produced in pairs. They will not 
be observed directly, because they will decay before they have had time to reach 
the detectors. Therefore, their existence must be deduced from the observed decay 
products. For this, it is necessary to know the rates of any other reactions, not 
involving top quarks, that can occur in proton antiproton collisions and produce the 
same decay products. In chapter 2, the cross section is calculated for one of these 
background reactions, the production of a W and four jets of hadrons. In chapter 3, 
different ways to distinguish the top signal from the background are investigated.

Another way to test the model is by performing all kinds of even more precise 
measurements. To match the experimental precision, it is then necessary to in­
clude two-loop electroweak corrections in the theoretical predictions of the measured 
quantities. An example is the quantity Ar in eq. (1.1.2), which can be obtained 
experimentally by measuring Mw, Mz, and a.

The theoretical predictions for Ar and the other measured quantities all depend 
on the unknown values of mt and Mh. It may happen, that no values for mt and 
Mh exist, such that all measurements are consistent with their one-loop theoretical 
predictions, but that if one uses more precise two-loop theoretical predictions, one 
does find agreement with all measurements for some values of mt and Mh-

Let us now discuss a few of the two-loop calculations that have been done in 
the literature. First of all, there is the calculation of the vacuum polarization in

mw = 25t"5GeV. (1.1.4)

The bounds on Mh are less tight than those on mt, because, in general, one-loop 
corrections depend only logarithmically on Mh, whereas some of the mrdependent 
contributions to Ar are proportional to m,. From direct searches we know that 
mt > 91 GeV [8] and mn > 60 GeV [3].



(1-2.1)

4

nstance, 
icticn

subclass of the scalar integrals analytically in terms 
be used in cases where some of the internal 

massive, it is no 
so we must then 
discussed in this

bosons, 
itegrals 

complicated than integrals that involve only massless pa These
be done.

are made. We 
an essential ingredient

quantum electrodynamics by Kallen and Sabry [9]. Later, order aas corrections 
to the W and Z propagators were calculated [10], but second order results for the 
electroweak sector have only been obtained in certain limits. The limit Mh —* 00 
was considered in ref. [11]. The effect of a very heavy fermion doublet was studied in 
ref. [12]. These results were used to find the leading two-loop contributions to Ar in 
the limit mt —» oo, which are of order a2m* [13]. In this approximation, all masses 
except mt are neglected. In a more recent calculation [14], the leading terms in the 
limit mt —» oo were obtained without neglecting Mh, but the vector boson masses 
were still neglected.

Considering that mt may be something like 140 GeV, which is larger than Mw 
and Mz, but still of the same order of magnitude, it is not clear that the above 
approximations are justified. In order to find out, full two-loop calculations would be 
needed.

Such calculations would involve vast numbers of Feynman diagr 
there are several thousand two-loop diagrams that contribute to the

Note that in many diagrams, the internal particles are massive, e.g. 
Higgs particles or top quarks, which makes the corresponding Fe 
much more 
difficulties must be overcome before a full two-loop calculation can

In chapters 4, 5 and 6 of this thesis, some steps in this direction 
consider the calculation of self-energy diagrams, which will be 
in any complete two-loop calculation. These self-energy diagrams can all be expressed 
in terms of a set of basic scalar integrals.

In chapter 4, we calculate a
of polylogarithms. These results can
particles are still massless. When more of the internal particles are 
longer possible to express the integrals in terms of polylogarithms, 
turn to other methods to calculate them. Two such methods are 
thesis.

In chapter 5, we study two series expansions of scalar self-energy diagrams, one for 
small and one for large external momenta. In both cases, the coefficients of the series 
are calculated analytically for arbitrary values of the internal masses. By truncating 
these series, we obtain accurate approximations to the full integrals.

In general, however, there will be an intermediate range of external momenta 
where neither series converges. Therefore we discuss, in chapter 6, a numerical 
method that works for arbitrary internal masses and arbitrary external momenta. 
It is based on a two dimensional integral representation discovered by Kreimer [15]. 
His method works very well, but it can only be used for diagrams with one particular 
topology, the so-called master diagram, which has no ultraviolet divergence. Using 
some of the results of chapter 4, we extend Kreimer’s algorithm so that it can also 
be applied to divergent diagrams.



References

[5]

.-.Sis, G.L. Fogli and E. Lisi, Phys. Lett. B292 (1992) 427.

5

[1] The LEP collaborations: ALEPH, DELPHI, L3 and OPAL, Phys. Lett. B276 (1992) 
247.

[3] G. Quast, Mod. Phys. Lett. A8 (1993) 675.

[4] F.A. Berends et al. in “Z physics at LEP 1”, CERN 89-08, p.89, eds. G. Altarelli, 
R. Kleiss and C. Verzegnassi.

. lin, Phys. Rev. D22 (1980) 971;
ilzen and B.A. Kniehl, Nucl.Phys. B353 (1991) 567;
\lzen, B.A. Kniehl and M.L. Stong, Z. Phys. C58 (1993) 119.

Working Group on LEP Energy and the LEP collaborations, 
. Lett. B307 (1993) 187.

[71

[8j ’ . Abe et al., Phys. Rev. Lett. 68 (1992) 447.

[9] G. Kallen and A. Sabry, Dan.Mat.Fys.Medd. 29 (1955) No.17.

[10] D.J. Broadhurst, Phys.Lett. B101 (1981) 423;
T.H. Chang, K.J.F. Gaemers and W.L. van Neerven, Nucl.Phys. B202 (1982) 407;
A. Djouadi, Nuovo Cim. 100A (1988) 357;
B. A. Kniehl, Nucl.Phys. B347 (1990) 86.

[11] J.J. van der Bij and M. Veltman, Nucl.Phys. B231 (1984) 205;
J.J. van der Bij, Nucl.Phys. B248 (1984) 141.

[12] J. van der Bij and F. Hoogeveen, Nucl. Phys. B283 (1987) 477.

[13] M. Consoli, W. Hollik and F. Jegerlehner, Phys. Lett. B227 (1989) 167.

[14] R. Barbieri, M. Beccaria, P. Ciafaloni, G. Curci and A. Vicere, Phys. Lett. B288 (1992) 
95;
R. Barbieri, M. Beccaria, P. Ciafaloni, G. Curci and A. Vicere, CERN preprint CERN- 
TH.6713/92.

[15] D. Kreimer, Phys.Lett. B273 (1991) 277.

[2] L. Rolandi, CERN-PPE-92-175, Precision tests of the electroweak interaction, 
talk at ICHEP 92 conference, Dallas (August 1992);
G. Altarelli, CERN-TH.6525/92, Precision electroweak data and constraints on new 
physics, talk at XXVIIth Rencontres de Moriond, Les Arcs (March 1992);
P. Renton, Z. Phys. C56 (1992) 355.



Chapter 2

W and jets at hadron

Introduction2.1

(2.1.1)

(2.1.2)

(2.1.3)

(2.1.4)X + V + (Z - 2) jets,

X + +

91 + <?2

6

>oson V 
is more 
■erically

t
1— W~ + b 

L

one looks at

V —» I partons 

could be described in terms of the given expressions. By suitable crossing one obtains 
descriptions of

where X represents unobserved hadrons originating from the partons which are not 
involved in the main reaction. It turns out that for a number of reasons the process 
(2.1.4) with Z = 6 is of particular interest. This has to do with its role as background 
to interesting physics signals.

The first signal is that of tt production in a hadron collider, where 
the semileptonic t decay and at the quark decay of t:

^ + (£) -

On the production of a 
colliders

e+ + e —> Z jets,

e~ + P - + X + (Z - 1) jets,

He)

In ref. [1], analytic expressions were given for processes involving a 
and I partons. The number / was restricted to I < 5. An evaluation 
numerically oriented has also been published [2]. Both approaches ap 
[3]-

In other words the decay

t
I— W+ + b

e+ 4- yc



X + e+ + 4 jets. (2.1.5)

P + P X 92+ + +91

+
(2.1.6)93 + 94

has the following incoming parton

7

(2.1.7)
(2.1.8)
(2.1.9)

(2.1.10)

iv-
L

If 6, 6, qx and 92 are 
e+ and four jets:

all sufficiently energetic to develop into jets, one will observe an

ud —> W+gg, 
ug —■> W^dg, 
dg —> W+ug, 
gg —» W+ud.

The signal e and four jets arises in a similar way. Obviously the QCD process (2.1.4) 
can be a serious background. For the top quark search at hadron colliders one shall 
be interested in the signal (2.1.5) besides the cleaner dilepton signal plus two jets 
arising from both W’s decaying leptonically.

The second signal of interest is that of heavy Higgs boson production by means 
of W+W~-fusion, when one applies jet tagging [4].

result is an e+ (or e~) and four jets, so the process (2.1.4) will constitute 
imd. Although qi and <72 develop into jets relatively close to the beam 
one hopes to detect these jets. Of course signals other than (2.1.6) may 
■ evidence for the Higgs boson (see e.g. [5]), but it would be worthwhile to 

ud , .1.6) as well.
1 ;op masses below approximately 160 GeV the top quark could be found at the 

Tevatron in the near future and the knowledge of reaction (2.1.4) becomes important. 
When the top quark remains elusive at the Tevatron the signal and background 
question comes back again when LHC or SSC studies are made. For those accelerators 
also signal (2.1.6) and its background will have to be known.

Therefore we shall extend in this chapter the previous calculations to I = 6. Al­
though the formalism is set up in such a way that both W and Z could be considered, 
we shall focus on the W case, since that seems to be the most relevant case in view 
of the above signals.

The complexity of the process (2.1.1) rapidly increases with growing I. This is 
illustrated in Table 2.1. In this table a typical parton combination is given and the 
number of subprocesses related to it using different flavour choices. Also the number 
of diagrams for the matrix element is listed. Let us take a specific case in order to 
indicate the meaning of the entries.

For the I = 4 case in reaction (2.1.4) one 
combinations related to the generic udgg case:

H

L w+
L e+ + ,e



1
2

123 2
4

5

6

8

428
98
196
196
16
32
32
32
64
96
96

50
12
24
24

8
2
4
4

14
52
14
14

14
98
28
28
108
60
98
98
28
16
16

14
92
26
26

# diagrams
1

# subprocesses

4

Process type 

ud 

udg 

udgg 
udcc 
uduu 
uddd 

udggg 
udccg 
uduug 
udddg 

ud-gggg 
udccgg 
uduugg 
udddgg 
udccss 
udcccc 
uduucc 
udddcc 
uduudd 
uddddd 
uduuuu

Table 2.1. The numbers of subprocesses in which a W+ and I — 2 jets are 
produced in hadron-hadron collisions, and the number of diagrams per sub­
process, assuming that there is no mixing and that there are no b quarks in 
the initial state.



Matrix elements with one quark pair2.2

(2.2.1)

9

Since the incoming hadrons contain four flavours, the cases (2.1.7)—(2.1.10) represent 
the following number of subprocesses: 4,4,4,2. Here we distinguish for example the 
ud incoming state from du. The number of subprocesses is not the number of times 
a parton cross section has to be evaluated. This number is generally lower because 
different flavours can possess the same cross sections.

From the table it is clear that the I = 6 case is considerably more complex than 
the I = 5 case. Space limitations prevent us from listing explicitly analytic answers 
for helicity amplitudes as in the I = 5 case. Nevertheless we shall give a description 
of the various kinds of amplitudes, i.e. 2, 4 and 6 quark matrix elements. The 2 
quark matrix elements will be evaluated numerically with recursive techniques. The 
four quark matrix element calculation is similar to the I = 4 and 5 cases as far as the 
quark structure is concerned. The 6 quark case occurs here for the first time and is 
a generalization of the 4 quark case.

Besides a description of the calculation this chapter also presents some numerical 
result", for reaction (2.1.4), hereby extending the previous numbers [6] to the four

The results are for Tevatron, LHC and SSC situations. A more extensive 
■ological study for the Tevatron is given in chapter 3.

• line of this chapter is as follows. Sections 2.2, 2.3 and 2.4 describe the 2, 4
i k amplitudes. In section 2.5, we present our numerical results and discuss 

.plications.

0 -» V + + q(P; j) + ff(/<i;ai) + • ■ ■ + g(Kn; an).

The momenta and the colour indices are explicitly given. It is not of importance 
that process (2.2.1) is not a physical process. Later on we will cross two momenta

In this section we deal with the calculation of the matrix elements involving a qq 
pair, a vector boson and an arbitrary number of gluons. We choose for this case a 
different calculational technique than for the two and three quark pair cases. The 
reason is that when more gluons participate in a process, the number of diagrams 
increases rapidly. Therefore the calculation of helicity amplitudes by using Feynman 
diagrams becomes too complex, even when we use Weyl-van der Waerden spinor 
calculus. A technique recursive in the number of gluons has been introduced [7] for 
these situations. It pays off to use this technique when we have three or more gluons 
in a process, so for the one quark pair case we favour this approach.

After briefly summarizing those parts of the recursive calculation methods [7] 
required for the vector boson processes we look at the production of a W and at 
some numerical implications. We will show that for the process under consideration 
both the matrix element and the sum over the parton processes can be systematically 
dealt with for any number of gluons.

For the sake of presentation we consider the process with outgoing partons created 
from the vacuum



(2.2.2)

and

(2.2.3)

(2.2.4)

with

(2.2.5)J(m + 1... n; P).S„(Q-,l...n;P)

(2.2.6)S„(Q; 1... n; P) (Q + Kj + ... + Kn + P)" = 0.

(2.2.7)

10

m) and
For the

(2.2.2) and

E (T-...T’”)itJ(Q;l...m)

E (T‘
P(m+l...n)

Jk{m + 1.. .n; P) = g'

gluon
(2.2.3)

SM(Q;l...n;P) = ie9" £ (T-.. 1 ... n; P)
P(l...n)

over both sides. The 
the nature of the vector boson and on the quark flavours, 
we set the KM matrix equal to unity. This has very little 

the results [6]. AU the Stf’s are conserved quantities,

f J(Q;l...m)r^ 
m=O

Eqs. (2.2.4) and (2.2.5) reflect the coupling of the vector boson at all possible posi- 
tions on the quark line with the gluons randomly distributed 
vertex depends on
Throughout this chapter 
influence on

from the final to the initial state. The matrix element for process (2.2.1) is given by 
a vector current SM(Q; 1 .. .n; P) contracted with the polarization vector V“ of the 
boson. For the sake of clarity we frequently omit colour and momentum indices in

they are implicitly understood. In [1] process (2.2.1) is discussed in great detail. 
Here we only present the main elements of the method to obtain S^.

The vector boson couples to the quark line breaking the Feynman diagram into 
two parts, one spinor current with the g(<?) and gluons 1 through m and one spinor 
current with g(P) and the rest of the gluons, m + 1 through n. These two spinor 
currents can be decomposed in a colour base of fundamental representation matrices 
T‘ of the SU(jV) colour gauge group. The spinor currents are given by

Jfc(Q;l ... m) = gm

They are also gauge invariant in the sense that replacing a gluon polarization vector 
J(i) by the momentum K, gives zero. The matrix element is given by

A4(Q;l,2,...,n;P) =

The computation of the matrix element squared |V'MSM|2 is done as follows. First 
determine all the S„’s using eq. (2.2.5). The fact that we let the vector boson decay

where the sum is over all gluon permutations. The quark currents
J(m + 1.. .n; P) are calculated using recursion in the number of gh: ; 
no gluon case they are: J(Q) = u(Q) and J(P) = v(P). Using eqs 

can be written as



V“ = (2.2.8)

v(Z2). (2.2.9)

(T-).-,(T‘)w = | [«,i^ - S^ki/N] (2.2.10)

11

W/Z old 
0.00226 
0.00404 
0.01168 
0.1046

Nr. Gluons
6
1
2
3
4
5

W / Z new 
0.00223 
0.00386 
0.01233 
0.0807 
0.8908 
14.580

n a rational function in N. This procedure has to be repeated for all helicity 
ions of the quarks, gluons and the decay products of the vector boson. The 
jtched above is valid for any number of gluons. Only the colour matrix

! determined separately for each value of n.

Secondly, we need to sum over the polarization states of the decay products. Finally 
the square |V'i.SM|2 contains a colour matrix which originates from the product of the 
colour parts. We work out those products with

Table 2.2. CPU-time in seconds of the W/Z matrix elements with a quark 
pair and n gluons. Old entry stands for the routines based on [1]. New entry 
is the general method with recursion. Timing on a VAX 3500.

Specifying that the vector boson is a W leads to a reduction in the number of 
helicity amplitudes that has to be evaluated because the W only couples left-handedly. 
When implemented numerically the general recursive method can very well compete 
with analytical results as far as numerical evaluation speed is concerned. In Table 2.2 
we made a comparison between two programs, one based on the analytical results of 
[1] and one based on the numerical recursion method. One can see that there is not 
much difference in the CPU-times needed. Together with the fact that for n > 3 the 
analytical results are very hard to obtain it shows that the recursive approach is the 
best method to use.

In the physical situation where we consider PP —» V+ jets, two of the QCD 
particles in process (2.2.1) have to be crossed from the final to the initial state.

has two consequences. The first is that we have to include a propagator for it. Thus 
one has

L 
s — My + iMv^v *"

In this formula, s, My and Ty are the momentum squared, the mass and the width 
of the vector boson, respectively, and Lv is a lepton current, which is given by



hit.v

(2.3.3)

12

(2.2.11)
(2.2.12)
(2.2.13)
(2.2.14)

In the case n 
for more final state particles the extra gluon 
four processes mentioned above enables us to write down a 
sum over physical subprocesses.

There are four possible ways :

9(^)9(<?) - V + 9(^i) + • • • + g(Kn) 
q(P)g(K!) - V + ?(Q) + S(K2) + ... + g(Kn) 
q(Q)g(K') - V + q(P) + g(K2) + ... + g(Kn) 

g(K2)g(K2) - V + g(Q) + g(P) + g(K3) + ... + g(Kn)

n > 0
n > 1
n > 1 
n > 2

> 2 four different matrix elements have to be evaluated. The fact that 
always ends up in the final state of the 

general algorithm for the

2.3 Matrix elements with two quark pairs
Here we discuss the calculation of the tree level matrix elements fcj reation of
a vector boson, two quarks, two antiquarks and two gluons, followed decay of 
the vectorboson into a lepton pair:

0 —► VgiQ2<73^4<7i<72, V —> lil?. (2.3.1)

Again we get the matrix elements for physical processes that oc ; collision 
experiments by crossing two particles to the initial state. In contrast to the previous 
section we use explicit Feynman diagrams which will be grouped in gauge invariant 
sets. Helicity amplitudes will eventually be obtained from them with help of Weyl-van 
der Waerden spinor calculus.

The matrix element A4 is given by

M = (2.3.2)

where V11 is given by eq. (2.2.8). From now on, we focus on the calculation of the 
four quark, two gluon coloured current TM. All quarks are assumed to be massless.

For the (anti-)quarks we will use the symbol Qi, which stands for (Q,, A„, c,-,/;), 
with Qi = momentum, Xqj — helicity, c, = colour and f, = flavour. We denote the 
gluons by 1 and 2, which stand for (K,-, ASi, a,), (i = 1,2), with Ki = momentum, 
ASi = helicity and a; = colour.

The calculation of the current is in many ways similar to that of the qqqq and 
qqqqg currents presented in [1]. We will use several definitions, and also some results 
given there.

First, we write 7), as the sum of four parts

^(QiQjQsQc 12) = A„(Q2Q2Q3Qa-,12) - AM^QrQv,^)
— A^QiQjQsQi; 12) + AiXQsQiQiQsl 12).

■AiXQiQaQsQ*; 12) is the sum of all Feynman diagrams that can be constructed by 
attaching two gluons <?i and g2 to the two basic diagrams in Fig. 2.1. We will refer to



1 4

2 3a

Fig. 2.1. The two basic diagrams for the four quark current A,

(2.3.8)

are

(2.3.11)

13

(2.3.9)

(2.3.10)

(2.3.4)
(2.3.5)
(2.3.6)

(2.3.7)

a-type diagrams and to the ones

12) —

ieg*6h,i £ 7.(cic2c3c4; a^B^2(.QxQiQzQt, 12).
P(12) i=l

the two possible orders of the gluons. A common factor has

the diagrams constructed using the left diagram as 
using the right diagram as b-type diagrams.

By combining the colour matrices associated with the vertices of a particular 
diagram using eq. (2.2.10), we can write it as the product of a colour factor and a 
'■■■- dependent factor. Doing this for all diagrams we find that the following 
fjz.tor- ;■ cur:

The sum is over 
also been extracted.

Before proceeding to describe the calculation of the functions B^J2, we note that 
is gauge invariant, i.e. it vanishes when a gluon polarization vector is replaced 

by its momentum Because the colour factors 7,- are independent, this means 
that the B-^2 ’s are also gauge invariant. Our strategy is to divide the B^2 ’s into 
as many gauge invariant pieces as possible and then to calculate all those pieces 
separately, choosing the most convenient gauge for the gluon polarization vectors in 
each piece.

7s(cic2c3c4; ata2) =

7i+6(cic2c3c4;aia2) = 7,(c1c2c3c4; a2aj) for i = 1,... ,6.

Splitting off the colour factors, and using the invariance of when gi and j2 
interchanged, we obtain:

7i(eiC2C3C4;aia2) = <5C1C< (7‘“Ta,)C3C3

72(cic2c3c4;a1a2) = (Ta')ClCi(T‘2)eiei
73(ciC2c3c4;a1a2) = (T“‘7’“2)C1C4<5C3,

74(cic2c3c4; a!a2) =

|C2

~~^T^T‘2)C3Ci

7s(ciC2c3c4;a1a2) = --^(Tai)CiC2(Ta2)C3Ct

1(T°-Ta’)cic,<5c3c<

2 3



(2.3.12)

Qj 0-3

(2.3.13)~9

with

and S0(Q3; 12; Qt)
, we
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12) = X-Sv̂

S^dih

as outgoing, and

o have an 
adopt the 
anged in 

•»r the four 
i’ ^ed clockwise

ig2 [2ff“,“3 -ga'”2.'ga2a' g^«t

We will give a 
They are now 
is as follows:

' igV^^Kt, K2, K3) = ig [(Kx - K2)a>ga'°2 
~ra-i,K-l +(K2 - K3)a'ga2°3 + (K3 - •K'1)“’S“3“1],

where all the momenta Ki are defined

(Qi;Q2) = + + + +

- J(Q1)7«[® + & + <& + & + W1!3™'’ J(Q2) (2.3.15) 

as in eq. (2.2.5), but now with rjf’-^2 replaced by 7/?. By inserting 
only the first term of eq. (2.3.15) in eq. (2.3.14) instead of the whole we obtain

description of the Feynman graphs that contribute to the Bi^s. 
colourless diagrams. The meaning of the three and four gluon vertices

aa^

-/ <*1 a4\-

These vertices are not symmetric under permutations of the glum 
unambiguous correspondence between the diagrams and the formui 
convention that the gluons with labels (1,2,3) in eq. (2.3.12) mus. 
ascending order when one goes around the diagram clockwise. Simii 
gluon vertex, the gluons labeled (1,2,3,4) in (2.3.13) must be arm 
around the diagram.

Let us begin with B4m, B5m and B6m, since they are somewhat simpler than Bim, 
B2fi and Bap. We shall derive some expressions for them consisting of parts which we 
already know from [1] and new quantities. For the latter we don’t give the explicit 
results but we indicate which types of diagram contribute. Also the occurrence of 
gauge invariant subsets is noticed for the reason mentioned above.

The diagrams for B4m are obtained by attaching pi and g2 to the quark line that 
connects Q3 with Q4 in diagram a or diagram b. Gluon 1 must be attached below 
gluon 2. In other words, if we follow the quark line from Q3 up towards Q4, we 
should reach gx before we reach g2. B4fl also contains the diagrams where gi and g2 
are connected to each other by a three gluon vertex which is connected to the Q3 — Qa 
quark line. By adding all the diagrams we obtain:

0^2 >-^2



•B<’/3(C?rQjQ3Q4;12) (2.3.17)

with

S'abcdWQi') =

(2.3.18)

and
(2.3.19)

The quantities Lv'^'^2 and RV'^^2

) + Rv’f'/2^Vv,hh = Lv,f./,^ (2.3.20)

(2.3.21)

(2.3.22)

15

<?ix(Q2 + Q3 + Q< + Ki + Ki)eBq2p 
(Qi + Q3 + Qi + Ki + Ki)2

<hc(Qi + Q3 + + ^1 +
(<?i + <?3 + Qi + M + K2)2

b5//’(<?i<?2<23<2<;12) =
\sv̂ 2(Qr-,\-,Qi)

Sab(Qs\ 12;<2«) is defined by

S0(Q3-, 12; Q«) = (%/2)2^sSiB(Q3; 12; (?<).

Expressions for 5/4S((?3; 12; Q4) are listed in [l].1
The diagrams for B5p have g\ attached to the left quark line and g2 attached to 

the right quark line. Their sum can be expressed as a product in a way similar to

U)- (^^Ag^XW,il2ia,)<"--e>
(^)2£^-/»<SYBdn(QrQ^)S^(Q3; 12; Q4) 

(Q3 + Qi + + fG)2

(Q3 + Q< + K2}2Sp{Q3'2'QiY

1There is a misprint in the expression for S(+; —, +; — )ab- The second term should read

{qhY2(Q + Ki)ADk°pB 
WUCt + K2)2(Q + Ki + Ki)2 ’

SVABco(QTQt) = ~^Abcd(QiQi)- 

are the coupling constants in

a quantity we call B4m„. It is precisely the sum of all the a-type diagrams in B4p. 
Taking only the second term of eq. (2.3.15) we get B4p(,, the sum of all the b-type 
diagrams. From the gauge invariance of Sg we infer that Bf,la and B4„6 are both 
gauge invariant.

When translated into Weyl-van der Waerden spinor language, eq. (2.3.14) and 
eq. (2.3.15) become:



SV'J'h is the

J(<?2)
(2.3.23)

and
S0(Q3; 2; Q4) = V2ajBSAB(Q3-, 2; Q4) (2.3.26)

we find

12) =

(2.3.29)

16

(2.3.24)

(2.3.25)
^’/l/25XBdc(Qf;l;<

ch consist 
parating 
(2.3.22)

sum of six diagrams:

9ap

s£/,A(Qi;i;<W =
+J(Qt; l)r™ WW(Q2)
+J(Qi)r^‘/3[ii + ^]-'^i)M-17«j(q2)
+J(Qi)r^1A[<i + 4ri]-17a^(i;QJ)
-J(<?i;i)7o[A + ^r1r^1/3J(Q2) 
+J(Qi)7o[A]-1Ai)^+^]-1r^lA 
-J(<?i)7oW-1r^/v(i;<?2),

where the abbreviations a = Qi + Q3 + Q4 + Ki and b = Qi + Q3 Ki have
been used. B5m is the sum of two gauge invariant parts, BSlia and £?s,.
of all the a-type and b-type diagrams, respectively. This correspov 
the first three terms and the last three terms in eq. (2.3.23). Trans 
into spinor language using

S^hh(Qt-,VQi) =
s£/,A(Qr;i;Q?) = ^B^D

(y/2)2Jjv^<^BS^n(Qt; 1; Qi)S6d(Q3; 2; Q<) 3 27) 

(<?3 + Q4 + Ki?

B^QiQiQ3Q4-, 12) = WF. ^f)SCD(Q3; W (2.3.28)

Expressions for 2; <J4) can be found in [1]. 5jjB£D must be calculated for
each helicity combination. Although eq. (2.3.23) contains six terms, the number of 
terms in S'Ab^d can be reduced to four by using an appropriate gauge.

The next function, Beu, is treated in the same way. The diagrams for Bep have 
ji and gi both attached to the left quark line of diagram a or diagram b, with gi 
nearest to Qi and gi nearest to Qi

B^h{QxQ2Q3Q^) =
1 aa(3

12; ^)(Q3 + q4)3^(Q3; Q<Y

Here (Qr,12-,Qi) is defined analogously to S^'h(Qv,l-,Qi) and
It contains contributions from 18 diagrams and it has to be calculated for every
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32

1

M
2 1

32

Fi-.-. .2. Examples of diagrams for The first one also contributes to B^

17

2'
1

Fig. 2.3. This diagram does not contribute to B^.

helicity combination. Once again, the a-type part Bepa and the b-type part Ba^b are 
separately gauge invariant.

The other B—functions, B2ll and will now be discussed. The diagrams
for B1(1 are obtained by adding g2 and g2 on to the bottom of diagram a or diagram 
b, i.e. they must be connected to the diagram somewhere along the line which starts 
at Q3 and goes to Q2. Someone travelling along that line should meet g2 before he 
meets g2. There are 25 diagrams of this kind. Some examples are shown in Fig. 2.2. 
The quarks and gluons, starting from Qi and going clockwise, are arranged in the 
order QiQaQ312Q2. Note that the colour labels in the colour factor (2.3.4) occur in 
the same order, i.e. ci c4c3aia2c2 (reading the labels of a string (TaTb.,. Tk)xv in the 
order xab... ky). On the other hand the diagram in Fig. 2.3 has gi and g2 in the 
wrong order and should not be included in B2ll.

The connection between diagrams and their colour factors is a general feature of 
all colour structures. For B2ll there are 28 diagrams. They have ji attached to the 
top of the diagram, somewhere between Q\ and Qt, and g2 attached to the bottom, 
like for example Fig. 2.4. The diagrams for B3p have both g2 and g2 attached on the 
top, with 51 to the left of g2. The number of diagrams is again 25 and there is, in fact, 
a one to one correspondence between the diagrams of B2ll and those of B3ll. This 
is an instance of a more general symmetry of Ap, which follows from CP invariance,

2 ?
1



(2.3.30)J (Q 3)73 J (Q ■■■'•■

Fig. 2.4. A contribution to B2p.

For example in Fig. 2.4 it is:

(2.3.31)

(2.3.32)
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J(l)pV“*'"(-(Q3 + + Kr + K2), Ki,Q3 + Q4 + K2)
x<z»aVa^(-(Q3 + Q< + K2), Q3 + Q4, K2)J(2)p.

■ iected by 
ctor, but 
diagram

9aP 
(Qs + Q<)2

= Blpa + Bipt + Bipc with
sum of a-type contributions proportional to ga0, 
sum of b-type contributions proportional to gal3, 

= everything else.

Bip 

Bipa 

Bi pt = 

Bi pc

It can be exploited to derive B3u from Bip, once the

It contains a on the left quark line and a -fg on the right quark :i 
the metric tensor gal3. All the diagrams for B4(1, BSp and Bep conta 
in diagrams where gluons are attached to the internal gluon of diag 
b, there is a more complicated tensor in between -ya and -yg.

p(Qi)r™A[«» + & + <a]-17aJ(<?2)

When we substitute eq. (2.3.12) in eq. (2.3.31) and contract all the dummy indices 
we find, among many other terms, one that is proportional to ga0. This happens in 
all the other diagrams as well. The quantity containing all contributions to Bip that 
are proportional to gal3, is gauge invariant. Let us call it “BiM(p“^)n for the moment. 
Of course, the rest of Biu, “B1(1(no fl“^)”, is also gauge invariant. Within Bip(ga/3) 
we can still separate the a-type and the b-type contributions, but in Bip(no gal>) we 

cannot. So, our final decomposition of Bllt is:

that we will discuss later on.
latter has been calculated.

Simply separating the a-type and b-type contributions, as we did with B4p, Bsp 
and B6(J, does not yield gauge invariant parts of Bltl, B2tl and B3(1. This is due to 
diagrams like eg. Fig. 2.4, which have one or more gluons attached to the internal 
gluon of diagram a or diagram b. When we take diagrams like that and replace 
by A'm, we do not get zero unless we take the a-type and the b-type diagrams all 
together. However, we can find gauge invariant parts in a slighty more complicated 
way. For this, we first take a look at the expression for diagram a:

2



(Qi + Q2 + <?3 + <?4 + — 0. (2.3.33)

(2.3.34)

) + LVJ'hU (2.3.35)
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(2.3.36)

(2.3.37)

B^Q^Q^W) = -B^'^QxQ.Q^l) 
12) = -B2y,(Q2<21Q4Q3;21)

B^^QtQiQsQ^; 12) = -B^1(Q2Q1Q4Q3;21) 

B^(Q,Q2Q3Q<; 12) = -B^'(Q2QiQ4Q3; 12) 
B^a(QiC?2Q3Q4;12) = -B/y*(<?2Qi<?4<23;21)

B{\h(QiQ2Q3Q4-,9ig2) - SQ^K,B{f(QlQ2Q3Qi;92'),

B^h(QiQ2Q3Q4\gx92>) - Sq^JS^Q^Q&cgi),

The quantities B2(1 and B3il are decomposed in exactly the same way.
To calculate the currents HI(J, two methods are used. The first is to take a 

gauge invariant quantity and evaluate it immediately in the Weyl-van der Waerden 
formalism, choosing gauge spinors for the gluons that make this as easy as possible. 
When we use the second method, we postpone the specification of the helicities and 
the introduction of Weyl-van der Waerden spinors. First we combine terms so that we 
end up with formulae that no longer contain any gluon polarization vectors explicitly, 
but only implicitly through the abelian field strengths F‘“‘ = K^J1' — KUJ^. After 
that, we proceed in the normal way, expressing everything in terms of spinors, except 
that this time there is no need to choose gauge spinors, since F'"' is manifestly gauge 
invariant. Sometimes, it is convenient to use a combination of the two methods.

To test the results we performed several numerical checks, which are based on the 
following properties of the B—functions.

The hrst is current conservation:

;ere is a set of relationships that can be proved using charge conjugation

The wiggle above the B—functions on the right hand side means that they must be 
calculated with the vector boson vertex (2.3.20) replaced by

f™'’ = + ^./^(L**).
In certain regions of phase space the B—functions diverge because they contain 

diagrams with denominators that vanish. This happens when the energy of one 
of the gluons goes to zero, and also, because we are neglecting quark masses, when 
particles are collinear. In these limits, our tree level calculation is certainly not a good 
approximation to the exact S-matrix element. Nevertheless, it is useful to evaluate 
the B—functions numerically in the soft and collinear limits, because asymptotically, 
they can be related to currents and S„ that have been calculated and checked 
before [1].

The soft limits that were tested are the limit when <?i becomes soft:



Sqkp = (2.3.54)

SqKiKiP =

(2.3.55)

tested: when Q3 —» zK, Qt —» (1 — z)K with K an

(2.3.56)

(2.3.57)
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(2.3.48)

(2.3.49)

(2.3.50)

(2.3.51)

(2.3.52)

(2.3.53)

(2.3.38)

(2.3.39)

(2.3.40)

(2.3.41)

(2.3.42)

(2.3.43)

(2.3.44)

(2.3.45)

(2.3.46)

(2.3.47)

B3}/*(QlQ2Q3Qi\ S19i) ~* 

Bl'J^Q^QzQcgxgz) -» 
Bl'J^Q^QzQ^g^gz) -

the limit when g2 becomes soft:

B{'J\QiQ2Q3Q^gig2) -> 

B^^Q.Q-iQzQ^g^ -

B{'vh(.QxQ2Q3Q^gigz) -» 

BsV^QiQjQsQ^si^) - 

Bl}!\Q\Q2Q3Q<\gig?) -»

•S<?,K.K3B2V’«?1Q2<?3Q4;S2), 

SqzK^k-, B3„h (Q i Q2 Q3Q<\g3), 

SQl&Q,B''B(QiQ2Q3Q4-,g2), 
SQ^K.B^iQ.Q.QzQ^g,)-,

QFP 
Q-KKP

B^h

B^kQiQjQ^^gigi) -» 

B^h(QiQ2Q3Q4-,g3g2) -» 

B^Q'QzQzQcgigz) ~» 

B^QiChQ&^gw) -»

Bs'/’Wl^QsQxiSlfh) - 

B^QiQ2Q3Q<\gig2) -

The soft factors are given by [8]:

Q-FrFrP____________ Q ■ Fi F2 Q
Q - K2Ki - K2K2 - P Q ■ KxKi ■ K2{Kx K2Y Q 

P ■ Fy F2 P
P (Ki + K2)Ki ■ K2K2 ■ P'

The following collinear limit was t ’ 1__ ~ . ..
arbitrary lightlike momentum and 0 < z < 1:

r/,A - J E hx(XnXit)Sf'B(Ql.KX,l,2-,Q2)
L A=±l

- | E Aa(A,3A,-<)S^2(Q1;1,KA>2;<22)
Z A=±l

‘^K’1JGQ2^1^2(Q1Q2Q3Q4; <71), 

*^03^2Qa (Q1Q2Q3Q4; pl),

k2q< (Q1Q2 Q3Q4; pi),

(Q1Q2Q3Q!',

Sq^q.B^^Q.Q^Q.,

and the limit when g\ and g2 both become soft:

Sq.k^q^B^^QiQiQ.Q^, 

Sq^Qi Sq^q, B<; h(QiQ2Qy:^ i. 

sQiK1K,QtB£h(QiQ2Q3Qi), 

Sq^k^QiB^^QiQ.Q.Q.), 

SQ\K3Q2SQ3K3QiB,ll'h(QiQ2Q3Qi), 
SQiKiK^.B^^Q^Q^



(2.3.58)

(2.3.61)+

M+-) = M+-) =

M-+) =M-+) = (2.3.62)

(2.3.63)

wit , = 1,... ,6:

7i(c1c2c3c4;aia2) (2.3.64)7.'

and
(2.3.65)

For i

(2.3.67)

with
(2.3.68)
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I
i

(2.3.59)

(2.3.60)

!

Using this notation, the colour summed matrix element squared

48 48

E M’ = EE^W'4) 
colours t=l j=l

9z)
Qz)

Qz, Qz *-*

QJ

48 

-G* = E 7i-4|'m

as in eqs. (2.3.4)-(2.3.9)

72(1 - z)
<939a)

-72z
(9394) '

discuss the matrix element squared. To do the

The matrix Cij can be expressed as a rational function of N using eq. (2.2.10). For 
completeness it is given explicitly in appendix 2A. Then eq. (2.3.67) must be summed 
over all helicity combinations.

- I E Aa(A,3A,-<)S;-a((?1;1,2,A-A;<?2)
Z A=±l

- 0
B//’ -> 0

B1̂  - | E hx(Xq3Xit){S^(Ql-,KX,\,2-Qz') 
Z A=±l

1, KX,2,Qz) + S''h(Qu 1,2,KA;Q2)}

The collinearity factors are given by:

-y/2z
(9394)'

72(1 - z) 
(9394)*

".al point of this section we
c.. ■ -■ tnation, we write

i = 1,...,6

i = 1.......... 12

Q4) i = l,...,12

i = 1,...,12.

(2.3.66)

can be written as:

c,2 = E 7.'(ciC2C3C4aia2)7J(ciC2c3C4aia2). 
ciC2C3C4aia2 

be expressed

= iegi6^B^h(Q1QzQ3Qi-, 12).

7,..., 48, 7, and are given by:

7i+6 = 7.(ai <-» az), A+6m = A>(Si

7*+12 = —7<(cl W C3)> A+12M = ^.>(<31
7«+24 — 7i(^l ^3,C2 *—* C4), /li4-24M

7>+36 = —r.(c2 <-♦ c4), >4,+36m = Ai^Qz



2.4

(2.4.1)

and all those which arise by per-

(—1)P(~1)P + m2(I + m3(J + r (2.4.2)

'he quanti-

(2.4.3)mi =

3 2 5 24 3

(2.4.4)m2 ' hz- +

1 6 1

1 4 6 1 4

(2.4.5)m3 — +
2 5 2
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3

1

We sum over all quark permutations P and antiquark permutation 
ties rh1(i represent the following diagrams:

Matrix elements with three quark pairs

The matrix element for subprocesses involving six quarks and a vector boson, which 
decays into a lepton pair, is given by:

M = V“Ull, 

where is the six quark current. Again all the quarks and antiquarks are outgoing 
particles. We denote the quarks by g2, q3 and qs and the antiquarks by q2, and qe- 
Each of these particles has a momentum Qi, a helicity A,, a colour c, and a flavour 
A- .

is the sum of nine basic Feynman diagrams 
muting the quarks and the antiquarks. We write

6^(123456) = 52 I
P(13S),P'(246)

P

62

5

62

5

5

6

6

5



5 2 21 4 5 1 4
H.m4 = +

6 3 6 3

5 2 1 4

(2.4.6)+
6

(2-4.7)

(2.4.9)

T?P(Q3-,Q4) = a (2.4.11)

(5 + 6)

23

mlp(123456) =

x V“^(-((?3 + Q4 + Qs + Q6), Q3 + Q4, Qs + Qe). 

For 7712/1) and 77i4m we need some additional building blocks.

3

1

linear combinations of m1M, m2(3, m3ll and m4ll with 
we will first express

U^^ieg* £ 
P(135) 

where B1m, and B3m are 
arguments in various different orders. To calculate the m^’s, 
them in terms of smaller objects like Qi).

sv̂ 'h (Qt;Qa) S0(Q3-,Q4) Sy(Qs;Qs) 
(Q3 + <?4)2(Qs + Qs)2(Q3 + Q4 + Qi + Qs)2

(2.4.10)

The qu. ntity mlp has a factor of | because the diagrams of mi„ do not change when 
(3 t ■ 5) ad (4 <-♦ 6) are interchanged at the same time. This means that they occur 
tv sum over all the permutations. Extracting some overall factors and the
co ; rs, we obtain:

.(123456) = |ies4 {6clC4<5c3e6<Seic2m1(x(123456)
+<5C1 ct <5C3c2 <5«c< mi(i(125634)}

?h2^(123456) = ^C1C6<5C3C26C5C4 - -^8C1C28C3C68CsC4 (2.4.8)

“ yy ^C1C4^C3C2^C5C6 + ^C3C< ^CsCfl } 7712^(123456)

and similar expressions for m3p and m4li. Substituting them into the formula for U,, 
gives:

4

P 1



4 3

0t;0(Q3-,Q.) = (2.4.12)

(5 + 6)

2 1 1
a(Qi; Qi) = +

(3 + 4)(5 + 6) (3 + 4)

2 1

(2.4.13)a+
(5 + 6) (3 + 4)

(2.4.17)

(2.4.18)

(2.4.20)
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_ J
(5*+6)

(2.4.14)
(2.4.15)

’papVhh

or equivalently,

t?\Q3-, Q.) = J(Q3)7’[«. + & + &]~ VJ(Q<)
t;0(q3-, q.) = - J(Q3)7“[(& + & + &]-V-7(<w
T^(Qi;Q3) = ^Qijr^^n^+^+^+^+ftl-^I^+^+^l'V^Qj)

- J(Q1)7“[<a+<2J+(a]-1r^/j[%+%+«h]"17^(Q2)
+ j(Qi)7°[©+®i+<a]-17/’[(a+«b+©1+®i+<&r1r^/i/v(Q2),

(2.4.16)

(2.4.19)

Now we use use Weyl-van der Waerden spinors to calculate the m,M’s for the helicity 
combination (AiAjAa^AsAs) = (d 1------1—). Once they are known, the m,M’s
for other helicities can easily be derived. This is done as follows. First note some 
properties of the currents T°0, T°0 and Sa:

Sa(Q3^3', Q4A4) = Sa(Q4A4; Q3A3)
2?^ (Q3A3; Q4A4) = -T0a(Q<X4-,Q3X3).

Sf,ftSM.S™'(Ql-, Q2)t;0(Q3- QJSplQs, Qe) 
(Qs + Qs)2(Q3 + Q. + Qs + Qs)2 

5/3/45/./.^^; Q6)T°g(Q3; Q.jS^tQr; Qi) 

(Qs + Qs)2(Q3 + Q. + Qs + Qs)2 
5/3/45/./.go(Q3; Q4)Tff (Q1? Q2)5p(Q5; Q6) 

rn4p (Qs + Q.)2(Qs + Qs)2

2



From these properties the following relations can be derived.

(2.4.22)

T

inc

(2.4.23)

with

(2.4.24)

(2.4.25)

with
N

(2.4.26)cpp- =

I
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—N2
N

Q<) 
<2s)

Qs)
Q<)

—N2
N

-N2 
N

—N2 
N

—N2

-N2
N

N 
—N2

N

—N2 \
N

-N2 
N

—N2 
N

—N2 
N 

\ -N2

^cP(s)«t

■' C sufficient to obtain all other helicity amplitudes.
: square the matrix element one introduces an amplitude X(P) depend- 
cific permutation P of the quarks.

= V“UU = iieg* 52 (-1)PX(P)5C„(1)C,
P(135)

P P'

ma^AiAjAaA.t 4—, Qs *-+ Qg) 
m4/J(AiAj 4—AsAgjQa «-> <?4) 
m4jl(AiAjA3A4 4—, Qs «-» Qg) (2.4.21)

To get the helicity combinations with (AtAj) = (—|-), we use complex conjugation.

m,M(—, 4-, A3, A4, As, A6) =
[m,>(4-,-,-A3,-A4)-As,-A6,fiyj*A - Lv,flh)]’

N3 -N2 
N3 —N2 

N3 -N2 
N3 -N2 

N3 —N2 
—N2 N3 >

Finally one has to sum over all the helicities in eq. (2.4.25).

X(P) = V" {bIm(P(1)2P(3)4P(5)6)

4-^B2/1(P(l)2P(3)4P(5)6) + ^B3M(P(1)2P(3)4P(5)6)}

The six quark orderings (135), (153), (351), (315), (513) and (531) are obtained by 
permutations P, (i = 1,..., 6) from the ordering (135). Summing over the colours 
leads to a 6 X 6 colour matrix cpp>.

E I/4I2 = (^)25252cpp,x(p)-x(p')
Ct 4 P pt

—FAsAg) = niiM(AiA2 4—AsAgjQa
mip(AiA2A3A4—F) = ^1m(AiA2AsA4 4—, Qs
77^2m(AiA2—FAsAe) = —ni3M(AiA2 d—AsAgjQs 
rn2M(AiA2A3A4 —F) = 1112^X1X2X3X4 d—Qg)
ni’3p{X\X2 —FAsAe) = — 1712^X1X2 d—A5A6, Q3 <-> Q4) 
^3p(AiA2A3A4 —F) = 
m4M(AiA2 —FA5Ag) = 
m4M(AiA2A3A4 —F) =



(2.4.27)

2.5 Results
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(2.4.29)

is invariant 
_• symmetries

In this section we present cross sections for the production of I u + (2,3,4) jets for 
Fermilab, LHC and SSC energies. Moreover we compare this cross section with 
the top pair production cross section with the subsequent decay of the top pair 
tt —♦ W+W bb —> lu + (2,3,4) jets. As mentioned in the introduction this is one 
of the important processes in which the top quark can be found. Therefore the 
comparison between the signal and the background is crucial for the ability to find 
the top quark in the lepton plus jets decay channel. For the super colliders both the 
top signal and the W production are a background to the Higgs search in this decay 
channel.

q3. In ca 
92-

When one restricts the calculations to W production a number of simplifications 
occur, both in the four and in the six quark cases. Since = 0, all helicity
amplitudes with (A91, A^) = (-|—) vanish. Knowing the quark flavours, the Kronecker 
delta in eq. (2.3.11) reduces the number of quark permutations that contribute to A4.

In the four quark case at least two quarks must have the same flavour. By re­
arranging the particles we can label them as q3 and q^. Then </i and q2 must have 
different flavours. So we have fa /2, fz — fa- This leaves three possible situations.

1) . /l / /3, fa + fa. eg. udcc. In this case, no quark permutations are allowed:

TAQiQiQzQ* 12) = A^Q2Q2Q3Q4- 12). I

2) . A = f3 = A / f2 , eg. uduu. Now qx and g3 are identical particles, so

^(Q1Q2Q3Q4; 12) = A\(Q1Q2Q3Q4; 12) - AM3Q2Q1Q4-. (2.4.28)

3) . fi / fa = fa = /4, eg- uddd. Here
TAQiQzQzQa. 12) = Am(QiQ2Q3Q4; 12) - A^QXQ4Q3Q2.

It follows that in case 2), | Ad |2 is invariant under q4 
under q2 <-» q4. In all three cases |Ad|2 is invariant under g2 
were checked numerically.

In the six quark subprocesses there are seven types of flavour combinations. In 
all seven combinations we have A 0 f2, f3 = f4 and fs = f6.

1) - Ai Ai Ai A aP different, eg. udccbb.
2) - A = Ai eg- udcccc.
3) - A = Ai eg. uduucc.
4) - A = Ai eg. udccdd.
5) - A = Ai A = A> eg. uduudd.
6) . A = A = A eg. uduuuu.
f). f2 = A = A eg. uddddd.
Many symmetries exist for these cases. Like in the four quark case we have checked 

them numerically.



(jet), (2.5.1)

(2.5.2)(jet)|.

For each pair of outgoing partons

(2.5.3)(jet, jet).

(2.5.4)
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20
20 
1.0 
0.0

LHC 
16 

MRSB 
Mw 
50 
3.0 
0.4 
50 
50 
3.0 
0.4

SSC 
40 

MRSB 
Mw 
50 
3.0 
0.4 
50 
50 
3.0 
0.4

specify the input needed for the 
are given in Table 2.3. For

FNAL 
1.8 

MRSB 
Mw 

15 
2.0

we require

AR > ARmin(

sum of the (Z+, iq) and the (Z , rq) cross

The separation AR is defined as

.. presenting and discussing the results we 
nv alculations. The cuts and parameters used
ear1 _ig parton we require a transverse energy

Et = £sin0 > £?linl

M = |lntan(0/2)| < |r;maxi

AR = 7(A4>)2 + (Ar;)2, 

where AC* is the difference in the azimuthal angle and Ar; the difference in pseudo­
rapidity. For the charged lepton Z we impose a minimum transverse energy E^n)l) 
and a maximum pseudorapidity |r;raax(Z)|. The minimum required missing energy 
is £?,Z1’n(mis). Finally, we require a minimum separation ARmin(jeZ, Z) between the 
charged lepton and each outgoing parton.

The cross sections in this chapter are the 
sections, for one species of lepton Z.

The parton distributions used are the MRSB structure functions [9] (-Aj^fg = 
200 MeV) with the QCD scale Q = Mw- The Monte Carlo of ref. [10] is used to

Collider
(TeV) 

Struc. Func.
QCD scale 
^?lin(;ei)(GeV) 
|r;max(jeZ)| 
ARmln(jeZ, jet) 
E?lin(Z)(GeV) 
£jPin(mis)(GeV) 
|r;max(Z)| 
ARmln(jeZ, Z)

where 0 is the angle between the parton’s momentum and the beam axis. We also 
require the pseudorapidity

T?.ble 2.3. Structure functions, QCD scale and cuts used for each collider 
fhout this section. (★ means defined in text.)



0.0131

1.4

Table 2.5. The ratio R„ for several AR(jet, jet) cuts at Fermilab energies.

Next we discuss behaviour of the ratio
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sections with the QCD scale chosen to be equal to the 
shall study the scale and structure function dependence

4.5
1.44
0.30

745 
130 
26.0 
4.8 

0.71

..us
>ss

An 
1 
2 
3 
4

AR(jet, jet) > 0.4 AR(jet, jet) > 0.7 AR(jet, jet)
0.17 0.17 0.17
0.22 0.20 0.16
0.22 0.18 0.11
0.22 0.15 0.07

number of jets 
0 
1 
2 
3 
4

generate the top signal cross 
top mass. In chapter 3, we 
of the results. In Table 2.4 we use cuts which more or less typify the CDF-detector.

R„ — <r(W + n jets)/a(W + (n -1) jets). (2.5.5)

It was conjectured in ref. [11] and later verified for up to 3 jets [6], that this ratio is 
approximately constant for reasonable cuts. For loose CDF cuts (see Table 2.3, with 
AR(jet,jet) > 0.7) it is roughly equal to 1/5. That there must be a limit on the 
validity of this rule of thumb is easily understood by considering the available phase 
space for the extra jet in the ratio. With an increasing number of jets, the available

2 quarks 4 quarks 6 quarks total
745
130
21.5
3.4
0.40

Turning to the results, we first discuss the relative importance < .us subpro­
cesses for the measurements at the Tevatron. Table 2.4 gives the ■ oss section 
as well as the separate contributions from the subprocesses accordi ■ ■ -he number 
of quarks involved in the subprocess. We notice that subprocesses our quarks 
become more and more important compared to the two quark subprocesses for an 
increasing number of jets. For 2, 3 and 4 jets respectively 17%, 30% and 42% of the 
toted cross section comes from the four quark subprocesses. Note further that the 
six quark subprocess is negligible, the contribution to the total cross section is only 
1.8%.

Table 2.4. The PP —» W + jets cross section (in picobarn) fc rmilab
(AR(jet,jet) > 0.7) divided in subprocesses depending on the :r of 
quarks in the subprocess.
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1

<r(/ v + 3 jets) 
2j61 
3.97 
2.60 
1.61 
1.02 

0.669 
0.452 
0.314 
0.222 
0.159 
0.115 
0.085

4.8 
0.087

cr(l v + 2 jets) 
547 
2.74 
0.998 
0.445 
0.235 
0.135 
0.084 
0.053 
0.036 
0.024 
0.017 
0.012
26.0 
0.27

Table 2.6. The PP —> it —► tv + (2,3,4) jet cross sections (in picobarn) for 
various top masses (in GeV) and the PP —♦ W + jets background with and 
without i-tagging at Fermilab energies (AR(jet,jet) > 0.7).

<r(Z v + 4 jets)
R23
1.33
1.70
1.44
1.10

0.818
0.601
0.445
0.330
0.245
0.183
0.162
0.71

0.022

It is of interest to compare the cross section PP —> I v + (2,3,4) jets with top pair 
production where each top quark subsequently decays in a b quark and a W, PP —♦ 
bbW+W~. One of the possible decay channels is that one IV decays hadronically into 
2 jets and the other one leptonically to give a charged lepton and a (anti)neutrino. 
The Er of the bottom quarks is strongly dependent on the top mass. If the top mass 
is close to the W mass the bottom quarks will have, in most of the events, a low 
transverse energy and will not pass the threshold for recognisable jets [12], When 
the top mass increases it becomes more likely that one or both of the bottom quarks 
will pass the £™’n(j) threshold and develop into a jet. For the Tevatron this can 
be clearly seen in Table 2.6. For mt = 90 GeV most of the events are with two jets, 
while the fraction of lepton plus four jet events is the smallest. This is in contrast 
with a heavier top mass. From a mass of 140 GeV onward the situation is reversed 
and most of the events are with four jets. The important issue is the relative size of 
the background compared to the top signal. The top search in the lepton plus two 
jet channel was extensively studied in refs. [12]. Since the top mass is above 89 GeV

m,(GeV)
90
100
110
120
130
140
150
160
170
180
190
200 

background
| with ^tagging

phase space for adding a jet quickly decreases. Since it eventually becomes impossible 
to add another jet, the constant ratio rule of thumb breaks down for high numbers 
of jets. However if we make the jet “small” (e.g. a small jet cone) the breakdown of 
the constant ratio rule is postponed. This is demonstrated in Table 2.5. We see that 
for ARm’n(jet, jet) = 0.4 the ratios .fib, P-3 and Rf are equal within the numerical 
accuracy. As expected there are increasing deviations as ARm'n(jet, jet) increases.



30

m,(GeV)
100
110
120
130
140
150
160
170
180
190
200 

background 
with b-tagging

c(Z iz + 3 jets)
7.9
10.7
11.4
11.6
11.4
11.2
10.7
10.2
9.82
9.38
8.81
24

0.24

<r(/ v + 2 jets)
37.9
34.0
29.8
25.4
21.5
18.3
15.7
13.4
11.1
9.22
7.51
52 

0.087

<r(Z iz + 4 jets) 
0718
1.27
1.72
2.10
2.28
2.
2.40
2.41
2.48
2.49
2.51
8.7
0.17

[13] the background is too large to observe the top quark in the two jet mode. The 
top search in the three jet plus lepton channel was studied in refs. [14]. As can seen 
from Table 2.6 the background remains a problem, though compared to the two jet 
plus lepton mode the signal to background ratio is improved. For the four jet plus 
lepton mode the signal is larger than the background over a large mass range of the 
top. This offers a good possibility of finding the top quark in the four jet plus lepton 
mode.

Table 2.7. The PP —> tt —» Iv + (2,3,4) jet cross sections (in picobarn) for 
various top masses (in GeV) and the PP —♦ W + jets background with and 
without b-tagging at LHC energies

Table 2.6 also shows the background when we select only those subprocesses con­
taining a bb quark pair in the final state. In other words, it is the cross section for 
PP -t W + (2, 3, 4) jets where two of the jets are tagged as b jets. No efficiency for 
the tagging is folded in.

This b tagging opens the possibility for considerably improving the signal to back­
ground ratio for the top search, particularly in the lepton + 4 jets channel. From 
Table 2.6 we see that the background cross section is reduced by a factor of 30. This 
means that the IV background is no longer a problem. As a simple example assume 
a top mass of 120 GeV, a tagging efficiency q = 20% and an integrated luminosity 
of 25 pb ’. Then we should expect approximately 7 top events and 0.1 background 
events. If we can be sure no jets are mistakenly tagged as b jets, then any observed 
hz + 4 jet events with at least one tagged b are almost certain to be top events.

Finally, we include some results on the processes PP —» W +jets and PP —» tt —» 
In + jets at future super collider energies in Tables 2.7 and 2.8.
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Appendix

2A The colour matrix for the four quark processes
The 48 x 48 colour matrix c defined in (2.3.68) can be written as

c =

where

,cd =>cc,cB =CA =

and

0

,C2 =Cl =
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Cl 
ca

ca
Cl

ca 
cb 
Cc 
CD

Or 
c8

eg

c?

cb 
ca 
cd 
Cc

CD
Cc
CB
CA

eg
Cs

Cc
CD
Ca

cb

Cs
Cs

0 
s3

-64 
S3 

0 
Sj

63 5 
s3 
S3
S3
0

( 6' 
0

Si
-«4

0 
<5i 
0

S4 
0

S3

0 
<54 
0

+ 4 jets)
2.3
6.5
9.4
11.9
13.2
14.0
14.6
15.1
15.5
15.6
15.8
46
1.0

0
Si
0 -Si

S3 —S3
S3
S3

S3 
0

<53
0 -S3)

<r(l v + 2 jets)
179
165
146
127
112
97.6
84.8
74.2
63.6
54.3
45.9
177
0.21

<r(Z v + 3 jets)
39.6
54.4
59.6
62.2
62.9
62.4
61.6
59.4
58.0
55.9
53.2
107
1.0

m, (GeV)
100
110
120
130
140
150
160
170
180
190
200 

background 
with Magging

S3 S4 
0 —64 —64

S3

(Si 
0

«a
<53 -S4

-S4 -S4
\ S3 S3

■ 2.8. The PP -4 tt Iv + (2,3,4) jet cross sections (in picobarn) for 
top masses (in GeV) and the PP -> W + jets background with and

• u- ((-tagging at SSC energies

c3 c4
c4 c3

61 —S4 S3 —S4^
S3 — S4 —S4

61 —S4 —S4
S3 —64

S3 —S4 —S4 
\— S4 —S4 —S4



<=3 = ,C( =
6a

5S/

Cs = ,C6 =

A

o? = ,Cg =

The constants 61.. ,6B

(N2 - 1, 1, N5.= ; n-3)., N - N
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Chapter 3

Recognizing the top quark in multijet events

3.1 Introduction

The main

34

(3.1.1)
(3.1.2)
(3.1.3)

collaboration 
t constraints 

. in particular

where j denotes the jet originating from the hadronic W decays.
Other authors have investigated single top quark production [3], but that does 

not yield promising results for the Fermilab collider. We shall denote the various 
channels by the number of hard isolated charged leptons in the event.

The highest event rate is given by the zero lepton process (3.1.1) with its relative 
branching fraction of x Unfortunately this multijet final state suffers from a 
huge QCD background and seems only usable when one of the 6-jets can be tagged. 
Even then the background is still much larger than the signal. We refer to refs. [4, 5] 
for a more detailed discussion.

The single lepton channel (3.1.2) has a smaller event rate with a relative weight 
of 2 x x (counting both electron/positron and muon/antimuon final states). 
However the QCD background is strongly reduced by the presence of the isolated 
lepton, making it possible to get a signal over background ratio of order one.

pp —> tt —♦ bb W+W~ —> bb jj jj
pp —> tt —> bb W+W~ —> bb lis jj
pp —> tt —> bb W+W~ —> bb Iv I'v'

The present direct top mass limit of mt > 91 GeV from the 
used an integrated luminosity of roughly 5 pb-1 [1]. Based on 
obtained from the standard model using a combination of measure *
the combined LEP data [2], the top mass is likely to be in the k it = 132 -50 
GeV. This means the current collider run at Fermilab, yielding • > st 25 pb of
integrated luminosity, should produce enough events to establish the existence of the 
top quark.

Given the above top quark mass limit and expected top mass, the dominant pro­
duction process of top quarks is direct tt production. The top quark will subsequently 
decay into a b quark and a W boson, resulting in the following signatures which can 
be used in the top search
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a contribution of 2 x x
g final states with tau leptons). The remainder consists of more difficult 
nvolving tau leptons, electron-positron or muon-antimuon pairs.
lepton signal has the clear advantage of a low background. It has been 

disc ; detail in refs. [9, 10]. However, due to the presence of two neutrinos, it 
is r. ; • die to reconstruct the top mass. For a top search in this signal one has to 
rely on i event rates and compare them directly with the theoretically calculated 
it cross section. This results in a top mass with a theoretical error which is not 
known. The usefulness of the two lepton signal will increase when accompanying jets 
are measured, but it will become clear that for the discovery of the top quark the 
study of the one lepton signature, besides the two lepton signature is crucial.

The outline of the chapter is as follows. In section 3.2 the production cross sections 
and their uncertainties are discussed. In section 3.3 some methods to determine 
the top mass which are not sensitive to the absolute value of the cross sections are 
proposed. Section 3.4 presents the conclusions.

pp —> W 4- n jets (3.1.4)

becomes more and more involved. The n = 3 case was considered in refs. [7, 8] and 
the n = 4 case in ref. [6]. Some discussion of top signal versus background was given 
in ref. [6] and also in ref. [9], but in the latter a shower Monte Carlo was used to 
estimate (3.1.4) and not the exact evaluation. All the results for the single lepton 
channel in this chapter refer to the sum of e+ and e~ signals. For muons the results 
are, of course, the same.

■-dike two lepton channel (3.1.3) only gives
(not cou
fina :

purpose of this chapter is to study this one lepton signature and its background in 
more detail than in chapter 2. In particular it will be shown how specific distributions 
can greatly improve the extraction of the signal. Depending on the mass difference of 
the top and the W vector boson the signal (3.1.2) can show up as one lepton with 2, 3 
or 4 jets. With an increasing number of jets the calculation of the exact background 
cross section

With the use of theoretical calculations, the most important consideration is the 
expected uncertainty in the answer due to the fixed order perturbative calculation. 
For the top production both signal and background have their uncertainties which 
affect the applicability of the calculation. Existing next-to-leading order calculations 
show that the shapes of differential cross sections are already predicted reasonably 
well by leading order calculations, but their normalizations are uncertain.

A common way to estimate the order of magnitude of the uncalculated higher 
order corrections is by studying the sensitivity to the renormalization and factoriza­
tion scales. In this chapter, we shall always choose the renormalization scale and the 
factorization scale to be equal. For the background we shall make the three scale 
choices
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Fig. 3.1. a, b and c: The cross sections for pp —► lepton 4- 2, 3, and 4 jets, 
respectively. The curves show the tt signal, the horizontal lines are the QCD 

x J —► lepton 4- jets cross section.
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+ Pt,w >

where pr,w is the transverse momentum of the W. For the signal we use

= \mt

has a large uncertainty and would make it virtually impossible to determine the top 
mass using the two lepton signal which relies on the total cross section.

For process (3.2.1) also the next-to-leading order contributions have been calcu­
lated [11], The next-to-leading order cross section has a reduced sensitivity to the 
scale choices. This is demonstrated in Fig. 3.3 where we show the scale choice sensi­
tivity with the same choices as in leading order. For comparison we also plotted the 
leading order result with the same choices.

One could now in principle use the next-to-leading order calculation with its 
much smaller theoretical uncertainty to relate the value of the cross section to the 
top mass. However, in view of the large corrections to the Born cross sections, 
which amount to about 30%, one should worry about even higher order contributions. 
The latter can be approximated by calculating the soft gluon corrections, which 
has been done in ref. [12]. If we apply this technique to approximate the next-to- 
leading order contribution we recover the exact next-to-leading order result within 
about 10% (see Fig. 3.4), well within the theoretical uncertainty. Now we can apply 
the soft gluon approximation to obtain an estimate of the next-to-next-to-leading 
order contribution, this gives still a large positive correction of 25%. The results are 
summarized in Fig. 3.5, from which it is clear that the estimate of the theoretical

P = 2^/m? + ,
where pj-., is the average of the transverse momenta of the two tops. The results are 
give; m ; , 3.] for the single lepton plus jet final state. The solid lines correspond
with ■ h.
(low
seel
that
only

p = Mw

\MW

scale choice, the dashed lines with the second (upper line) and third 
Both signal and background are leading order estimates of the cross 
jet definitions and kinematical cuts used are given in Table 3.1. Note 

al and background are comparable up to a top mass of around 150 GeV 
demands that the final state contains both a lepton and four jets.

Jization uncertainty in the background is relatively unimportant when 
we .outions. However in the two lepton signal the ability to predict the
theoretical cross section as a function of the top mass is crucial. From Fig. 3.2 it is 
clear that using the leading order prediction for
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The top curve includes the O(a2s) contribution in the soft gluon approxima­
tion; the other curves are the exact O(a$) corrected cross sections for three 
choices of the scale p.
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As we have shown in the previous section there will be problems when one relies on 
the absolute theoretical prediction of the signal to determine the top mass. There­
fore we will explore in this section a few possible methods of circumventing these 
uncertainties.

The jet definitions and other kinematical cuts used throughout this section are 
listed in Table 3.1. Note that one could apply additional cuts to improve the signal 
over background ratio (see for instance ref. [16] where in the case of the hadronic 
decay of the W a cut is placed on the two jet invariant mass). Also changing the 
jet definitions could improve the signal over background ratio (e.g. increasing the 
£p*n(jet)). However all these types of additional cuts or changes in the cuts will 
reduce the number of top events in the final sample and should, therefore, only 
be applied when needed. As we will show, using the minimal set of cuts listed in 
Table 3.1, which are dictated by detector properties, one already gets very reasonable 
results.

uncertainty by changing the scale is not a good method for this particular cross 
section due to the large corrections. In fact, in ref. [12] the soft gluon effects are 
calculated to all orders in as. For the qq subprocess the resummed cross section is 
about the same size as the corrected cross section, but for the gg subprocess
the higher order corrections are large and not well under control.

There are two other uncertainties affecting the top cross section. One results from 
the parton distribution functions, especially the gluon distribution function. The 
fraction of the tt production that arises from gluon fusion ranges from about 50% for 
mt = 100 GeV, through 28% for mt = 140 GeV to about 14% for mt = 190 GeV. To 
show the effect this has, we calculated the cross sections for (3.2.1) using two different 
sets of structure functions, see Fig. 3.6. The two sets of structure functions used are 
the MRSB structure functions [13] with A5 = 122 MeV and the Bl set of structure 
functions for the MS scheme in [14] with A5 = 126 MeV. The other uncertainty is a 
non-perturbe.tive effect resulting from the Coulomb singularity. Its effect on the total 
cross section is less than 10%. [15]

AU ove effects give the predicted next-to-leading order cross section a rel- 
mcertainty. Therefore, the top mass determination through the two 

e, which relies on the ability to predict the cross section as a function 
. ss, has a larger uncertainty than one might expect from simple renor- 

•e changes. The present CDF limit on is based on a next-to-leading 
order akdi ion which gives a cross section of 156 pb for = 91 GeV. In view 
of the above uncertainties this limit also contains uncertainties. For instance taking 
the next-to-next-to-leading order approximation of the cross section literally would 
increase the mt limit to 95 GeV. This is based on the value of the O(c*s) corrected 
cross section of 155 pb at mt = 95 GeV. This clearly demonstrates that the top mass 
determination is strongly sensitive to the absolute cross section prediction.
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where cr, is the cross section for pp —♦ 2 leptons 4- i jets. As can be seen from 
Fig. 3.7 these fractions have a marked top mass dependence, while there is almost no 
dependence on the scale. A measurement of such fractions gives an indication of the 
top mass without relying on the absolute event rates.

The single lepton plus multijets final state offers a more direct possibility of de­
termining the top mass. This is because the top mass is reconstructible from the 
final state using distributions. Possible uncertainties in the event rates are relatively 
unimportant provided that the signal to background ratio is at least of order unity. 
In ref. [17] several distributions were examined in the lepton plus three jet final state. 
However the lepton plus four jet final state offers a better possibility since the signal 
to background ratio is expected to be much more favorable (see Fig. 3.1).

In order to extract the top mass from the signal we will use two simple directly 
measurable quantities, the three jet invariant mass and the cluster mass. Using the

The first method uses the fact that the signal can have vario> 
in the final state. Differentiating between these jet final states 
ratios of cross sections with different number of jets. In the appro- 
top is produced on shell the production cross j ' J , ‘ -
to the subsequent decay of the top and cancels in the ratio, thus the ^certainties in 
the production process are removed. Because the energy of the b quark is strongly 
related to the top mass there will be a strong dependence in the iet fractions and 
ratios on the top mass.

However this way to cancel the normalization uncertainty in the top cross section 
only works when the background is negligible. This means the method can only be 
applied to the two lepton signal and not to the single lepton plus multijets signal. By 
measuring the 0, 1 or 2 jets arising from energetic b quarks in the top pair decay, we 
can define jet fractions /Oj fi and /2 by

fi =

Vs
Structure Function 
Jet rapidity coverage 
Leptonic rapidity coverage
Er,n(jet)
E™n (lepton)
E^in (missing)
Jet-Jet separation AT?
Jet-lepton separation

Table 3.1. The parameters and cuts used for the one lepton signal and back­
ground. For the two lepton signal and background the same parameters and 
cuts are used, except that no cut is imposed on the missing mon ntutn.
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(3.3.3)

(3.3.4)

(3.3.5)

1 
s.

140 160
Top mass (GeV)

tt —> 2 leptons + jets events with 0, 1 andFig. 3.7 
2 jets.

rnc(j, /; I')1 = [ptO'O + PtM]’ - [prOO + Pr(</)]2

m(ji,j2, j3) = )/[E(ji) + £(h) + E(J3)]’ - [p(ji) + Pb’j) + p(i3)]2.

P§-(jO = 7PT(iO2 + m(j/)2, 

PrO’O = pr(» + Pr(0> 
m(jl)2 = [E(j) + £(/)]2 - [p(j) + P(Z)]2.

The 3 jet mass is defined using the momenta of three of the four jets:

momentum of one of the four jets, the momentum of the charged lepton and the 
missing transverse momentum, the cluster mass is defined as:

All the following calculations are performed with scale 1. The results refer to 
the sum of the e+ and e~ signals. In Fig. 3.8 the average cluster mass distributions 
(one entry for each of the four possible cluster masses) are shown due to signal and 
background. The histogram due to background alone is indicated with a dashed line. 
Four top mass cases are presented: 105, 135, 165 and 195 GeV. For the latter two 
cases the top mass is not visible anymore, for the others a sharp drop indicates the 
top mass position.

A better signal is obtained by using the the 3 jet mass distributions which are 
shown in Fig. 3.9 for both signal and background. Again the background contribution

a f0

O f, 

• h
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In this chapter we have shown that the one lepton plus 4 jets chan, 
establishing the top quark. With this signal it becomes possible to 
where the top reveals itself by a clear peak at the top mass. In th 
jet mass (Fig. 3.11), this peak remains visible for top masses up 
165 GeV.

However, we must point out that
effects into account. Experimental errors in the three jet masses and the cluster 
masses would make the peaks in the distributions less sharp. Moreover, they would 
make our algorithm to select the best way to combine the jets into a three jet mass 
and a cluster mass less effective. These effects will reduce the range of top masses 
where this method works well. 

is given by the dashed histogram. Above a top mass of 165 GeV the top signal is too 
small with respect to the background, making the peak virtually invisible.

We can easily improve these invariant mass distributions by using more of the 
kinematics of the top events. The cluster masses and the three jet masses can be 
grouped into pairs, each consisting of a cluster mass calculated from one jet momen­
tum and a three jet mass calculated from the three other momenta. By selecting 
the pair in each event, in which the cluster mass and the three jet mass are closest 
in value, two additional distributions are obtained. Each event gives one entry in a 
cluster mass histogram and one in a three jet mass histogram. The signals improve 
dramatically in these distributions. This can be seen in Figs. 3.10 and 3.11.

we have not taken any expc. mental detector
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Two-loop self-energy diagrams with massless 
fermions

In order to calculate the self-energies of the photon and the W a. osons at the 
two-loop level, two ingredients are needed. The first is an extens he Passarino 
Veltman scheme [1] for reducing tensor integrals to scalar integ is. This is now 
available for two-point functions [2]. Secondly, one must compute t - s< iar integrals. 
In the electroweak sector, this is complicated by the presence of massive internal 
particles, and a general method to calculate these integrals analytically is not known. 
In this chapter, we will limit ourselves to a class of more simple scalar integrals, 
namely the ones that occur in two-loop diagrams in which one of the loops represents 
a massless fermion.

In section 4.2 we introduce our notation for two-loop scalar integrals and give 
a list of all cases required for our purpose. In section 4.3 we explain the method 
we use to calculate them, which is based on their analytic properties as functions 
of the external momentum squared. They have a branch cut along the positive real 
axis. The discontinuity across this cut is given by Cutkosky’s rules. The functions 
themselves are then obtained through a dispersion relation. The discontinuities can 
be interpreted as two- and three-particle phase space integrals, which we study in 
section 4.4. After discussing a simple example in section 4.5, we list the results in 
section 4.6. In the final section we comment on some possible applications.

In ref. [2], it is shown that all two-loop Feynman diagrams contributing to gauge 
boson self-energies in the standard model can be expressed in terms of a limited set 
of scalar integrals. Each of these scalar integrals can be represented graphically by a 
scalar diagram.

The two basic topologies are shown in Fig. 4.1. All other topologies which are 
needed for the gauge boson self-energies can be derived from these by cancelling



Fig. 4.1. The two basic topologies: T12345 (left) and T11234 (right).

>lo(n»2) = ( (4.2.1)

(4.2.2)

B'0(p2-,m},m}) = (4.2.3)

(•■•) = /

(4-2.4)
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The irreducible topologies that can be derived from the two basic 
. - /*.s by cancelling propagators.

___ d°q
iir2(2irp)

___________ 1_______________

- ”»>] fa - mi] ... [k^ - m?]

propagators. Apart from reducible topologies generated in this way there are four 
remaining irreducible ones as shown in Fig. 4.2.

D-t (• • ■) •

Th reducible topologies represent simply a product of two one-loop integrals, and 
can be calculated from the following basic integrals, expanded up to terms of order 
<5.

1 
q2 — rn

Bo(p2; ml, ml) = (----------  f ------ ;--------r) ,” 2> '[92-m?][(p + 9)2-m3]'
d

3(m?)
Here the one-loop integration is symbolized by a bracket

D = 4 — 26 is the dimension of space-time and p is an arbitrary reference mass. We 
use dimensional regularization for both ultraviolet and infrared divergences.

For the scalar integrals associated with the irreducible topologies we will use the 
notation of ref. [2], which is well suited for computeralgebraic manipulations. An 
integral with t internal lines is denoted by
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Tomj (p2;0,0,0,0,0)

dDQ2 

iir2(2irfi)

- z
Toms (p25>»i,mJ’0’0’0)

To3« (p’;m2,m2,0,0)

* (p2;O,O,o)

D-4 (■■)>

T,o3« (p2;o,o,o,o,o)

In this chapter we present analytical results for the two-loop scalar integrals shown 
in Fig. 4.3, which are all the integrals necessary for the gauge boson self-energy 
diagrams containing a massless fermion loop.

dp<?i

irr2(2rrp)

where one has to express the momenta fc; in terms of two distinguished integration 
momenta qt and q? and the external momentum p by imposing momentum conser­
vation at the vertices. In the integrals Ti3< and Tu3(, which do not depend on the 
external momentum, we will drop the argument p2. Note that, in this system, there 
are often several equivalent notations for the same integral, eg. = Ti3S- This 

becomes obvious when one draws the corresponding diagrams.

Fig. 4.3. The irreducible scalar integrals given in this chapter. The external 
lines carry momentum p. The dashed internal lines are massless. The solid 
internal lines have mass m, except where other masses are indicated.

7*11234 (p2;0,0,0,m2,0) 7*11234 (p’;m2,m2,m2,O,o) T11234 (p2;m2,m],m3,0,0) 7*11234 (p2; m2, m3,0,0,0)

where the momenta kii for j = 1,..., £ are members of the set of all momenta 
{fci,..., fc5} of the basic topologies of Fig. 4.1. The two-loop integration is symbolized 
by double brackets



4.3 The dispersion method

'p2

Fig. 4.4. The contour in the complex £-plane.

(4.3.1)

(4.3.2)AT«)

where
(4.3.3)
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k

To dispersion relation for these T-integrals 
the contour C shown in Fig. 4.4.

and Co is the point on 
The discontinuity AT(C)

1
C-P2

we apply Cauchy’s theorem to

AT(C) = lim {T« + »e) - T(f - ie)} 

the real axis where the cut starts.
can be obtained directly by applying Cutkosky’s rules 

[4]. Then the dispersion relation (4.3.2) is used to find T itself. This is only possible if 
T goes to zero rapidly enough, but that can always be arranged by reducing the space­
time dimension Z), if necessary. After the dispersion integration has been carried out, 
the result is analytically continued in D.

According to the Cutkosky rules, the discontinuity across the branch cut equals 
a sum of cut diagrams. This is shown in Fig. 4.5. In a cut diagram the lines in the 
unshaded region (to the left of the cut) represent ordinary propagators:

1 r°°
w=^iL d< Z7TI J Co

The scalar T-integrals we wish to calculate are only defined in momentum space 
by equation (4.2.5) for real values of p2, but they can be analytically continued to 
the whole complex p2 plane, with a branch cut along the positive real p2 axis. The 
original function is recovered when p2 approaches the real axis from above. These 
analytic properties can be derived from a Feynman parameter representation (see, 
e.g., ref. [3]).

Provided that T(£) goes to zero rapidly enough as |£| —» oo, the contribution from 
the large circle vanishes in the limit where its radius goes to infinity. We are left with 
the following integral along the real axis:



A

A

Fig. 4.5. From top to bottom: AB0, AT234, AT1234, and A71234S-

k

with

k

The lines that cross the cut represent delta functions:
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1
k2 — m2 + ie

1
k2 - m2 - ie 'I

I
The lines in the shaded region (to the right of the cut) represent propagators 
the opposite sign in front of ie:

I



2?r 0(fc°)<5(P — m2) y

k

4.4 Massive phase space integrals

(4-4.2)

We use the

(4.4.3)

(4.4.4)

(4.4.5)

r (2 - 25)
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-

1/2-6

, (4.4.6)

fci + A’

W?- 
(2*)2 

■r2(27rp)D-'

~m’) = J

The cut diagrams can 
decay processes. Here

where k is the momentum flowing across the cut from the unshaded into the shaded 
region. In addition, there are some factors of i and —1 involved, which are given 
explicitly in Fig. 4.5.

;)) =
T(1 - 8) |~A(p2,mj,m^) 

(P2)2

/dnD_1W = 7pzry.
Using the duplication formula for the T-function and expressing p° and |&i| in terms 
of scalar invariants we obtain the following result, which is valid in any frame,

(2tt 0(k°) 6(k2 - m2) 2tt 0(k°) 6(k2 - m2

-2pi d (p1 - (m, + m,)3) (4^ j

I
^1

J dDt, -
After introducing spherical coordinates, 

r d0-1^ = /» |M
J 2k° Jo

the |fci|-integration can 
integral gives a factor

m })2^e{ka2)8(kl -

f y 6% s(fc?)5(fc12
When ■ < (mi 4- m2)2, this is zero because the on-shell conditions on k2 and k2 
cannot be solved simultaneously. If p2 > (mi +nij)2, we can simplify the calculation 
by working in the p-rest frame, where

p = (p°,0), ki = (k°,ki), k2 = (p° - k°,-ki).

on-shell condition on ki to integrate over k°:
d^ki

2fc° ’

be done using the on-shell condition on ki- The angular

be interpreted as phase space integrals for two and three body 
we will derive general expressions for these integrals that are 

valid fc • rary space-time dimension D.
Su ie momenta going through a two-particle cut are called k\ and &2, with

hen the corresponding phase space integral will have the form 

m2)) =

- m2) fl(p° - k°)6((p - k^ - m2) . (4.4.1)



(4.4.9)

(4.4.10).2

23-

(4.4.11)

Z(p2) is

J dflD_i(k3) = J (sin B13)D 4dcosfl13 J df2D_2(£3J.), (4.4.15)
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(4.4.8) 
the scalar

— Sas)))

- m2)0(k?)6(k? - ml)

ml) 2?r B(k°) 6(kl - ml) 2vr (l(k°) o(k^ - ml)
— -Sia) 5 ((k2 + k3)2

y dDk! y dDk36>(k?)5(k12

•812 — (^1 + ^2) 2 » 5 23 — (&2 + ^3)2 » $31 — (^3 + &1)2 ■ 

Only two of these variables are independent, because

512 + 523 + S31 = p2 + m2 + m2 + m:

We will rewrite eq. (4.4.8) as a two dimensional integral over Sj

/(p2) = y dsi2ds23j(si2,s23;p2)/(s12,s23,s3i)

where A is the Kallen function:

A(a, 6, c) = (a — 6 — c)2 — 45c. (4.4.7)

Now consider a three-particle cut with momenta k2, k2 and fc3 going through it, 
such that fcj + fc2 + k3 = p. It will have the following structure:

f(p2) = ((2ir 0(k°) 6(k2 — m2) 2jt 0(k“) <5(k2 — m2) 2% 0(k°) 5(k2 — m3) f (su, «23>53i))) >

where f is the product of all the uncut propagators, which only depend on 
invariants

with 

J(-Si2,S33;p2) = «2tt 0(k?)6(kJ-
6 ((k) + fc2)2

= (2*)3
[t>2(27rp)D-']2
«((p-fcl)2-323)5((p-k3)2-312)
e(p° -h°- k°3) 6((p -kt- k3)2 - ml). (4.4.12)

zero when p2 < (mi + m2 + m3)2. For p2 > (mi + m2 + m3)2, we will again 
work in the p-rest frame,

p=(p°,0), ki = (k,°,k1) i = 1,2,3. (4.4.13)

We use four of the delta functions to reduce (4.4.12) to two angular integrals,

6 ((p°-k?-k°)2 - |ki|2 - |k3|2 - 2|fci||k3| cos013 - m2) , (4.4.14) 

where 0i3 is the angle between ki and k3. The fifth delta function is eliminated by 
writing



(4.4.16)

-2ir [|M||£3|sin013]D *.■^(■S12,S23;p2) = (4.4.17)

(4.4.18)

where

(4.4.19)

Z(p2) = / (S12>«23, S31) . (4.4.20)ds12ds:

(m2 + m3)2, s3i > (m3 + mJ2 , (4.4.21)S12

and
(4.4.22)

(4.4.23)/(C) •
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The remaining angular integrations 
Combining the results, we find

1 
r (£> — 2) V2jrp2

In the p-rest frame one can show that

—2tt i

T (2 - 25) \2irp2
1 

!23 “7
P2

fcj£jsin2013 = ,
P

D~4 1

(P0)2

can regularize both infrared 
caused by poles in the uncut

(m1+m2)2, s23

[defl
Ip2 J

functions of su, S23, mJ, mJ, m3 and p2. The

where Ar3± is orthogonal to and carrying out the cos#i3 integration. This brings a 
factor of 2|fc1||£3| in the denominator, provided that

(p°-fc?-<g)2-|g,|2-|g,l»-mj
2|fci||fc3|

are independent and both of the form of (4.4.5).

det > 0.

This follows from the condition (4.4.16).
It is interesting to see how the factor (det/p2)-4 

and ultraviolet singularities. Infrared singularities are 
propagators f on the edge of the phase space. This is exactly where det goes to zero. 
The poles are cancelled by the factor (det/p2)-4 if we make 6 negative. On the other 
hand, if we have an ultraviolet singularity, it will appear as a divergence when we 
insert /(p2) in the dispersion integral:

1
2iri

yoo j 

Ao C - p2

This divergence is regularized by giving 8 a positive value. Then the factor (det/p2)
helps to suppress /(p2) as p2 —+ 00.

k2 k2 k2 k2- k3 
det = k2-kx fcj k2-k3 .

^3 • ki k3 ■ k2 k3

This gives following Lorentz invariant expression for Z(p2):

(>Y3Sf 
\27rft2J -Aitr2)

In (4.4.19), all the scalar products are
integration region fl(p2) is the part of the sn-Sas-plane where:



4.5 An example

Fig. 4.6. 71234

(4.5.2)
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mJ). For this calculation, it i ■ convenient to 
left to right, as in Fig. 4.6.

We write the one-loop subintegral containing propagators
Then we note that, due to the factor mJ), we can replace it with Bo(mJ; 
The remaining loop integral equals the discontinuity of another Bo'.

we will

£)) = ^BQ{p2\Tn\,rri22).

In the general massive case, it is the curved boundary of the phase space, deter­
mined by det = 0, that makes these integrals difficult. If we try to calculate (4.4.23), 
we run into integrals involving square roots of quartic polynomials, that cannot be 
removed by a transformation of variables, unless either one of the masses is zero, or 
p2 is zero or equal to one of the following (pseudo)thresholds:

(mi 4-m2 + m3)2, (mj + m2 — m3)2, (m1-m2 + m3)2, (-mi + m2 + m3)2 . (4.4.24)

The discontinuity AT is the sum of a two and a three-particle cut, which 
denote by AT^ and AT^3\ respectively. The two-particle cut is given by

- (2tt 0(k°) 6(k* - m2) 2tt 9(k%) 8(k2 - m:

These are exactly the same conditions as found in [5], where a proof is given that if 
a two-loop integral contains any three-particle cut where none of these conditions is 
true, then it cannot be expressed in terms of polylogarithms.

However, this problem does not occur in the diagrams with massless fermions 
where, in each three-particle cut, at least two of the masses are zero. AU the integrals 
of Fig. 4.3 can be calculated analytically in terms of logarithm ■ logarithms and 
trilogarithms. In the next section, we will show how this is done fc uple example.

In this section, we will calculate 7\234 (p2; 0,0, m2,0), but first s consider the 
more general case: T1234(p2; m2, m2, mJ, 
define all momenta k\ to k4 flowing from

- -((2rfW) W - „■) 2,^
(4.5.1)

3 and 4 as Bq(A:J; mJ, mJ). 
•?;mj,mj).



So, we find

r(2)(p2) at(2>(C)

(4.5.4)

AT(3)((), (4.5.5)

AT<3\p2) = »((2tt 0(fc») <5(A:2) 2rr 6(k°) 6(k2 - )). (4.5.6)

First,

(4.5.7)

(4.5.8)

with

T(3>(p2) =

da

(4.5.10)

61

with 
case: rr, 
given b

m2 )27r0(I-J)5(it2)

-1 i 
T (2 — 2B) \4rr/x2 

£

i,m2),
a product of two one-loop integrals, for which we can use the expressions (4.6.13)- 
(4.6.15) given in section 4.6.

Now we t:;rn to the contribution from the three-particle cut:

t(3)(P2)s i rd^J_
2tti Ao Q - P

~r rn3 + m4)2. At this point we will restrict ourselves to the special 
-= m4 = 0, m3 = 771- The three-particle phase space integral is now

'l.m2)

2A?3 - A:4 2A?2*^3 2&2'&4 .
a =-----— , b =-----—, c =-----— . (4.5.9)m* ml m*

Inserting the resulting expression in the dispersion integral (4.5.5) and introducing 
the dimensionless variables £ = C/tti2 and x = p2/m2^ we obtain the following three 
dimensional integral for T^:

■oo 1dfcx
[(at - £ + a + 5 + 1)(£ — a — 5 — 1)

“ £

1 
k2 — ie

we note that, in this particular case, k2 is always positive, since

k2 = (^3 + kt)2 > m2 .

Therefore, we can drop the ie in (4.5.6). Next, we reduce AT'3\p2) to a two di­
mensional integral using (4.4.20). The Gram determinant (4.4.19) can be written 
as:

z —6772 . . .
det = —(ab — c)c,

4

ATJ2'(p2) = AB0(p!; m2, m2)B0(m2; m2, m2). (4.5.3)

Inserting this result in the dispersion integral (4.3.2) with Co = (mi + mj)2 gives

1 f°° jz 1^C-p2
1 f°° 1

= x— / ----- iAB0(C; m2, m2) B0(rn2-, tti:
27TI C — P

~~ -^o(p i ^^2) 771-



will do the special case

(4.5.11)

We find

dt (f - a - 1 - 6) 6 -

(4.5.12)

—26
(4.5.13)

In the general

(4.5.14)

T<3>(p2)-T<3>(0)

da

(4.5.15)

AT<3>(p2) = 2rri (4.5.16)(i > 1).

(4.5.17)
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a 4- 1

m2 
47T/X2

oo 

n=0

?~2Sa

r(a)r(/3) 
r(a + /3) '

$ - a - 1 
a + 1

can easily

1-2S(a + 1)

Before calculating this integral for general values of p2, we 
p2 = 0. The b-integration yields a beta-function:

B(a,0) = -t/-1 =
Jo

case when p2 0 0, we write 

T(3,(p2) = (T(3)(p2) - T(3)(0)) + T<3>(0).

The first term in (4.5.14) is finite, so we can calculate it with 6 = 0, as follows:

■h \£ -1 £
/■“> ( i i

= -/ df -------- -
■'i \£ -x £

____
•n \£-® (.) £.......................

= 3 - 2^^ ln(l - x) - ^^-Li2 (x) . 
X X

As a check we may verify that (4.5.15) is indeed an analytic function of p2 in the 
whole complex plane, except for a branch cut along the real axis from m2 to infinity.
The discontinuity across the cut is

(3) _ r2(i - <s)r(6)r(2<s) 
k 1 r(2-i)

AT<3>(p2) = 2rri ^2^—-1 - In (x)}

Another way to check the result is by writing the factor l/(£ — x) in the integral 
(4.5.10) as a geometric series

The next step is to interchange the a- and ^-integrations, after wh: h they 
be done, yielding two more beta-functions. The final result for T( s:

1
daJ^ d6«r7T) 

(£ - a - l)q 
£(a + l)2 

d|((£ + l)ln(£)+2(l-£))



obtain

(4.5.18)+

(4.5.19)

(4.5.20)

4.6 Results
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5(fcJ — m

By integrating each term separately, we obtain a power series for 7'*3*(p2), which 
converges in the region |p2| < m2. This series can then be compared with the series 
we get when we expand (4.5.15) in p2.

Our final result for (p2; 0,0, m2,0) is obtained by adding (4.5.15), (4.5.13) 
and (4.5.4) and expanding the T functions in 6. It is given in section 4.6.

Most of the other integrals can be calculated and checked in a similar way. How­
ever, there are some differences which we will now briefly discuss. In the case of 
7'134, the discontinuity is given by just one cut diagram (see Fig. 4.5). To isolate the 
divergent part, we make the following substitution in the dispersion integral (4.3.2)

i (p2)2 , p! .1
C’U-p2) c2 C

now finite for D = 4. The other terms can

In this section, a list of analytical expressions for the two-loop integrals shown in 
Fig. 4.3 is presented. They are given up to 0(1) in 6, where D = 4 — 25 is the 
dimension of space-time. In cases where they exist, closed expressions in terms of T- 
functions that are valid for arbitrary values of 5 are included. The one-loop integrals 
Ao, Bo and B'o of (4.2.1)—(4.2.3) are also given, up to 0(5). The results were derived 
for real values of the masses. The momentum p2 is assumed to have a positive 
infinitesimal imaginary part.

C-p2
The inter-ai . ntaining the first term is
easily b> a Led for arbitrary D.

The ^12345 is finite, so we may set D = 4 from the beginning. There are
two thie !e cuts and two two-particle cuts. To compute the contributions from
the twe cuts, we must first calculate a one-loop three-point integral and then
insert I in the dispersion integral. This is more complicated than in the case
°f Tua-. ■■ <■ there is no factorization analogous to (4.5.4).

The - , ?.sion method cannot be applied directly to 7i34 and Tun, because they 
do not depend on the external momentum. However, these integrals can be obtained 
in an indirect way by noting that they are equal to 7234 and T1234, respectively, when 
the latter are evaluated at p = 0.

An additional trick is needed in the case of TH234. Applying the Cutkosky rules 
to this integral would give cut diagrams containing the ill defined expression

__ 1__

when one of the propagators with momentum k2 is cut and the other is not. To avoid 
this problem, we first calculate T1234, and then obtain 7)1234 by using

7’ii234(p2; m2, m2, m2, ml, mJ) = -^^Tl2M(p2\m2, ml, mJ,mJ).



real axis in

defined by

(4-6.2)

7E + In

= ~ie + In

(4.6.4)ip = 7e + In

(4.6.5)

(4.6.6)
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m2 \
47T/X2/

47T/X2/ ’ 

-p2\
Airfi2) ’

ln(l -zt) 
t

,Lh (*Q

Lm

where -/e >s Euler’s constant.
In the results for integrals that depend on two different masses mi and m2, the 

dimensionless variables x and y are defined by

P2 _ m2
m2’ V~ m2'

We also need the roots and r2 of the equation

mjr 4- — = mJ + m\ — p2.
r

1The integrals A\m and £1 are in agreement with our formulae (4.6.23) and (4.6.29), respectively.
However, we disagree with the integral £i, corresponding to (4.6.34).

Li2 (z) = - f dt 
Jo

Li3(z) = /’dt^ZL!. (4.6.3)
Jo t

Both have a cut along the positive real axis for z > 1. For S'. -lues of the
argument they involve the values {(2) = x2/6 and £(3) of the Rien '.a function. 
For properties of polylogarithms like functional equations, etc. we o Lewin [8].

A useful list of integrals that can be expressed in terms of these functions is 
presented in ref. [9). One has to be careful, however, in extending these formulae to 
complex values of the arguments. The rj-function comes in handy in this respect.

We will use the following abbreviations,

Some of the simpler two-loop integrals are well known, but they are included for 
the sake of completeness. Three of the more complicated cases were also considered 
in ref. [6] and improved in ref. [7].1

We use the principal branch of the logarithm ln(z) with a cut along the negative 
For a, 6 and ab not on the real axis one defines the rj-function

r/(a,6) = ln(a6) — ln(a) — ln(i) (4.6.1)

= 2rrt {fl( —Imo)J(-Im6)0(Im(a6))

—0(Ima)0(Im6)fl(—Im(afc))} .

The principal branches of the dilogarithm Li3 (z) and the trilogarithm Lis (2) are



They satisfy

x/y, n 1/n , r2 <-» l/r2 . (4.6.8)y

(4.6.9)

and the roots ' - and r2 of

(4.6.10)

The latt. the relations

(4.6.11)

given by (see [10])

r(6-i)

(4.6.12)4- 1 — Lm 4- 6

x

+
(ln(n) - ln(r2))}

21n(r!) — 21n(r2)

4-In InIn — In

4_Li2
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1
6

/ m2
\4rr/x2

1
6

The on< -l<x integrals are

-Li2

1 n - r2 
! x

- r2
x
ri(l ~ r2)

ri - r2

r2(l -

r2 - i

In the results for integrals that only depend on one mass m, we use

(r + i) = 2m2 - p2.

■2) =

nr2 = l, (1 -rr)(l - r2) = x.

7-2(1 - n) 
r2 - Tr 

1 - r2 X
Ti - r2)

(—)
\ri — f2/

^)-Li2(.
n / v

l/jz, a: <->

m2

1 A ( . 
m2

+Li2 &=?;))}
(4.6.13)

Bo(p2;m2,m2) =
{| (£m, + Lmj) - 2 + ln(y) - (ln(r,) - ln(r2))}
U Z X Z X J

{<(2) + 8 + |(£m, +Lm,)2+ 11^(1/)

+ (Zmi + Lm,) x (-2 + ln(y) - |

-2^- ln(y) + - 
X

\r2 - n

n(l - r2)
ri - r2

nr2=j/, (1 - n)(l - r2) = x. (4.6.7)

Since the results are always invariant under ri <-> f2, it does not matter which root 
is chosen to be called Fi and which one f2. Note that (4.6.13) and (4.6.36) are also 
invariant under m,\ w m2; this corresponds to



(4.6.14)

Bo(p2;0,0) =

(4.6.15)

+ L12 (4.6.16)

^T13<(m2,0,0) =

1

71134 (o,O,m2,o) = —

^■7234 (p2; 0,0, o) =

(4.6.20)
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The next two special cases are used in section 4.5.

jBo(0;m2,0) = -5-A0(m2) 
m

— Li2

^-(ln(n)-

Vln (l--r2

1 - r2
i - r2

1 x — y 4- 1
"" 2 r2-
n(l - r2)

i - r2

m2 
47T/X2 

1 
262 +

— Lm

- r2

+ Li2

~P2\ 
4-nfi2 J

-

“2Sr3(i -<5)r(-i + 2<5) 
r(3-3«)

24 r2 (i -5)r(5)r(-i + 25) 
r(2-5) 

17 3
'mJ + g + +

ln(r2'.)|

M
(. 4

r2(i -5)r(5)r(25)
r(2-i)

} + 2 + + — (4-6-1®)

-24r2(i - <$) r (i) r (25) 
r(2-5)

1 32 - |C(2) - L2m + Lm (4.6.19)

/ m2
\4tt/x2

1 1
262 + 6

/ 2 \ —26
Tn34(m2,m2,0,0) =

= -^ + U- 2S2 6 (2

r(5)r2(i-6) 
r (2 - 25)

, + 6{'L-l«2) + ±L2-2Lp}

1 , , . 1
~2ln(s,)+ o

1^-1 in fnG
Tl-TiJ \ T1

nlVLi2 r2 - n / Kn

The results for the two-loop integrals are

p2 bq (p2;mt^2) =

4^±i(11.(.2 r2 - rj [ \
n(i ~ r2)\ 
n - r2 )

-P2
4tt/z2

1 13 1
’45 8 + 2Lp

.’m-3Lm (4.6.17)

1
2



2

5

(4.6.23)

(4.6.24)

2

'mj

+
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ln(r2))) ln(p)

Li2 (®)

I x 
1-y + x

x

1
1 4" r2

71234 (p2; 0,0, m.'M = - In (-a:)}
+y - 5<(2) + L*m + (-5 + 2 In (-x)) Lm + | In2 (-x) 

o , z \ - h /1 X + 1
\ / ~ x ' ’ x

(ln(ri) - ln(r2))} L,

5- 2Lmi

-Lm

Lm

(4.6.21)

F2 ln(ri)j- 
5 + 2 r‘

X

} + 3 + |c(2) + ^+(
—y x - | Q - x) In (1 - x) + Li2 (x)

-25r3(i -6)r(-i + 25)
5T(2 —35) 

19 1
+ y-y:(2) + £2-5LJ) (4.6.22)

ln(rj)) Lm

TI234 (p2;0,o,o,o) =

= i +

(1 +

(ln(H) - ln(r2))} + L2mj

+y +1<(2) + j ln2(^

..•O,0)=i+1
19 

’’ 2 '

+-1- ~ In (1 - x) + ^Li2 (x)

^8 ln(ri) + ln2(l + r2) - ln2(l + n)

— 2Li2 — k’2 (1 — r') ^*2 (1 — rs)

-Li2 (r2(l - r2)) - p (1 - x, r2) In (r2(l - r2))
+Li2 (r^l - n)) + p(l - x.rijln^l - rj)}

ri234(p2; ml, m2,0> 0) = 2^ + 

n - r2
X

1 1
2^ + 6 1.2

19 3 , . 1
2 ■ -m ■ \ “ • 2

-3 In (-x) - 2^- In (1 - x) - ^-±^Li2 (x)

. 5 r + ri
5 12 Lm+ x

+y + 2^(21 + —
1 — X , z, x . 1 _ .

x ' 2
1 n - r2 

+ 2 x
+2Li2 (

„ i 1 1 ( 3 , x’ °’ °) " 257 " 5 1" 2 + Lm + 4
1
2
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(4.6.26)

(4.6.27)

(4.6.29)
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1
26
3

—Li2

— Li2

-Li2

- |41n(r]) - 41n(r2)

ilA
n/ \ n

n(l - r2)
-r2

r2(l - n) 

r2 — H

Note that Ti234(p3;m2,0,0,0) — Ti234(p2; 0, m

p2Tn234^p2; 0,0,0, m2,

+ ln(

+ Li 2 (

) +p (1 -x,£-

{5 - 2Lm + 2

+ -y + 5^(2) + - Lm
+5 (^)ln(1

+2 (1 - In2 (1 - x) .

7i234(p2;n»2,0,0,0) = —— + 
Zdx

19

~2iT2(l -6)T(-1 -6)T(-1 +26) 
T(1 -36)

LP}-| + ^(2)-L2 + iP (4.6.28)

P2Tii234 (p2; 0,0,0,0,0) =

(L^Mi-x)}

(5+2(ii£)ln(1-l)) 
x) + (2 - Li2 (x)

7i234(p2 ; 0, m2,0,0) = XTi + zr 
zd zd 

19 3

,2,o) — — — + - { — 1 + Lp + Lm}~ - (Lp + im)2 + Lp + Lm 

-ixln(-x) + i (x - ln(l - x) + Li2 (x)

(S + 2(1; .(I-*))

I2,0,0) is finite.

1 n - r2
+ 2 x

l-i
r2 -

(n(l - r2)
V n - r2 
/ 1 -r2 
\n - r2 
(ra(l ~

Z-P2 
\4tt/z2 
__ 1_ 1 

262 + 6

{5 - 2Lm + 2

+"2" + 2^2^ + —

— In (—x) + {2 Li2 (x) + In2 (1 — )

+ In (—x) In (1 — x) — 4 In (1 — x)} .

r2 - riJ

- x, —) In f- 
ri/ \ 

' 1-) ln ( 
r2/ \

-r2
r2(l - ri)\

r2 - r, )

— Li2 (1 — rj) + Li2 (1 rj) 

r2(l - n)' 
-ri 

'n(l - r2)



1
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2

+ Li2

In

(4.6.31)+Li2

When m2 = 0, eq. (4.6.31) reduces to

,2

—26

63 T (2 - 26}
(4.6.33)
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—Li2

-Li2

—Li2

(p2; 0,0,0,0,0)

i r3(i-5) (r(i-5)r2(i + 5) r(i-2S)r(i+ 2*) 
r(i-2S) r(i-3«)

-r2(l - ri) 

i - r2

+Li2

— 2Li2 ) - Li2 (1 - n) + Li2 (1 - r2)

—Li2 (r2(l - r2)) - r?(l - x, r2) In (r2(l - r2)) 
+Li2(rj(l - r1)) + r/(l - x,n)ln(ri(l -r,))}

(ln(ri) - ln(r2)) - | Li2 (x) + In (1 - x)

Zl)ln r-n(i-r2)\_1 ZJ_ 
n/ \ r2-rj ) \rx

-r2(l - n)\
n — r2 )

- Li2 (1 - n) + Li2 (1 - r2)

r2(l - n)\
~n /

n(i - n)\ 1
. ~ri JI

+|- (inf
2 .'-2 — n ( \ 

Z-ri(l -r2)) 
\ r2 - H ) 
fl-r2 
\ri - r2 
/r2(i - n) 
\ ~rl 

/n(l - r2) 
\ ~r2

p2 ri234s

( ~p2 
\4tt/i2 
6C(3)

!,0,0) = 

x |-ln(y) +

1 x — y — 1
2 y

(S
-,(1

+ y (’

0,0,0) = - 2Lm| ln(l - x} -xln(-x) + (1 + x)ln(l - x)

-2 Li2 (x) - In2 (1 - x) - In (—x) In (1 - x) . (4.6.32)

P27ii234(p2;m2,m2,

V_ * 1 (ln(n) - ln(r2))J

In (y) - ~ln (y) (ln(n) - ln(r2)) 4 r2 - n
I (x + y - 1) 

2 -n) 
1 - 
r2 -

P2Tn23i

{i ■

1 -
+ 2

u_l ?:
' 2

(|-2£m+x-2 

1 1
+ 2^ 

+2Li2 (

-x,l)n/
+ ^1-^1) In

m2 7n234 (p2; m2 y m2y m2y o,o) =

F2 — r\ Zx x
— {ln2(l + r2) — ln2(l + n)

1 +r2J

1 — x
y 

^Inf^
- r2) \ ri
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— Li2

— Li2

-4Li3

1 — n \ 
-ri(l - r2)J
( 1-7-2
\-f2(1 - ri)//

m2,0,0,0) =

(fa ln(ri)ln (r2)

p2 ^issts

p2 ri2345(p2; m,, 

^ln(-z) -fain 
+3Li3 (1 - n) + 3 Li3 (1 - 1/n) + 3Li3 (1 - r2) + 3 Li3 (1 - l/r2) 
+ ln(y) (|L*2(1 -n) - | Li2 (1 - 1/rj) + |Li2(l -r2)

- | L‘s (1 - Vrs) - | Li2 (1 - y) + | Li2 (1 - 1/y)}

- In (n) (Li2 (1 - n) - Li2 (1 - 1/n)) - In (f2) (Li2 (1 - f2) - Li2 (1 - l/r2)) 

-fa(y) fa

+ 4Li3 Gfal)

— 2Li3(r2(l -f2))

1 fa-fa -ln2 (rs(1 - r»))}
— 2Li3(ri(l - fj))

P2 ?1234S {p2 ;m2,m2, 0,0, o) =

2 Li3 (x) + 4 L13 4- 6 Li3 (1 — rfa + 6 Lis (1 — r?) + ln3(l —
1 - f2 \

1 - Fl - r2 J

+,(l-I,r,){21.‘(Ti-

-4Li3 ( -~ri )
\1 — Ft — F27

+’7(1 -x,F!)^21n2 Q 2 n 2 r2) -ri))}

—21n(l - i)ln2(F2) - ln(-x)ln2(r2)
4-21n(r2) {Li2 (1 - n) — Li2 (1 - r2)}

n/ \r2(l-ri)

(p2;0,0,m2,0,0) =
2

-<(3) - 2<(2) (In (-x) - In (1 - x)) + In2 (-x) In (1 + x) - - In3 (1 - x)
+ (2In (—x) — 4 In (1 — x)) Li2 (1 + x) + 4 Li3 (1 + x) + 2Li3 (—x)

(^)+2Li,(.)-4L11(l±i)

-r2(l - Fi)\

1 - r2 J
/-Fj(l - r2)

\ 1 - Fi

In2 (y) fa fa-- - ) + In —=far
\ \1-f27 \Fi(1-f2)

+| In3 (1 - x) + | In3 (1 - x/y)

(x/y) + 2Li3 + 2Li3

1
4
1
3

+Li3 (x) + Li3



rj(l-

in2-’/(n.l

~y(r2,y-

In eqs. (4.6.25) and (4.6.31), Lij (i)

+Li2

+ L12

(4.6.37)

(4.6.38)

and

(4.6.39)— In+ Lij
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-Li3

—Li3

—Li3

-Li3

1 - n A . T. /i -------- I + Lij I — r2 — rxJ \ri

but this has not been done in

1 - r2
1 — r2

ri(l - r2)

—r2

r2(l - n)
-n

ri(l - r2)
-r2 

r2(l - n)
-n

r2(l -n)
-n

Li2

- 2 Li3

2Li3

can be eliminated using

ly — x-r2 
\ y - x 
1 -

r2

1 - r2 \
i - r2) ’

cases where it would hide the symmetries.

1\, ( 
— x. — ) In I

r2/ \
) In ( 

n/ \

Li2 (1 - y) + Li2 (1 - 1/y) = ln2(y),

y-x-r2 
y -x

-'j +2 ln(l -x)Li2 fri(1 ~r-^-
/ \ —n

— In2 ( ---- - —— — 2 In (1 — x) In (
J \ 1 — x / \

z/l/)Li2 rj2)

) _ In2 (y~*~ri) - 2 In(1 - x/y) In

(4.6.36)

—2 In (1 — x) Lij (x) — 2 In (1 — x/y) Lij (x/y)
- In (y) (in2 (1 — x) - In2 (1 - x/y)')

+ (ln(l - x) + ln(l - x/y)) (ln2(n) + ln2(r2)) 

(^^i)+2 1n(l-x)Li2 (■ 

ZZ1) V in2 - 2 In (1 - x) In f'

+ 2 In (1 - x/y) Li2

II) _ln3 (y-x-r3\ _2 ln _x/y}ln / 
• ) \ y -x ) \»'3
/1 - x - r2 
k 1 - x

n(i - r2) 
-r2

( 2 Li3 ( y~x~rl) + 2 In (1 -
v \ y -x )

/ i , 2 ( 1 — r2 
“’VS1" (—

Li2(x) = Li2 (1 — n) + Li2 (1 — r2)

-r2 ) \

-n ) \
+ ln2(rj) + ln2(r2) - | In2 (y) .

In some results, the number of dilogarithms can obviously be reduced by using iden­
tities such as e.g.

>•2(1 - n)
-n

-’?(r2,1 - x)Q In2

-l(n,» - x) f |ln2

2Li3
■ ■ '■ •• J



4.7 Conclusion

References

72

different from those required 
be found in refs. [12, 13, 14, 15).

[1] G.Passarino and M.Veltman, Nucl. Phys. B160 (1979) 151.

[2] G. Weiglein, R. Mertig, R. Scharf, and M. Bohm, in ’’New Computing Techniques in 
Physics Research II” , ed. D. Perret-Gallix, World Scientific 1992, p.617;
G. Weiglein, R. Scharf and M. Bohm, Reduction of general two-loop self-energies to 
standard scalar integrals, to be published.

[3] R. Scharf, J.B. Tausk, Scalar two-loop integrals for gauge boson self-energy diagrams 
with a massless fermion loop, University of Leiden preprint INLO-PUB-7/93 (1993).

[4] R.E. Cutkosky, J. Math. Phys. 1 (1960) 429;
M. Veltman, Physica 29 (1963) 186;
G. ’t Hooft and M. Veltman, Diagrammar, CERN Yellow Report 73-9.

[5] R. Scharf, Diplom Thesis, Wurzburg, 1991.

[6] P.N. Maher, University of Wisconsin-Madison thesis (1991).

[7] L. Durand, P.N. Maher and K. Riesselmann, University of Wisconsin-Madison preprint 
MAD-TH/93-1 (1993).

[8] L. Lewin, Polylogarithms and associated functions (North Holland, 1981).

[9] A. Devoto and D.W. Duke, Riv. del Nuovo dm. 7 (1984) N.6.

energies in the 
neglected.
nt purpose. In 
in the general 

.-als from them

In this chapter, we presented analytical expressions for all the scalar integrals required 
for the calculation of two-loop self-energy diagrams containing a massless fermion 
loop. We obtained their discontinuities by applying Cutkosky’s rules. Then we 
calculated the integrals themselves through a dispersion relation, using dimensional 
regularization for both ultraviolet and infrared divergences. We checked that the 
results agree with an independent calculation using Feynman parameters [3). Other 
checks included verifying the analytic structure of the results, and, in the case of 
TiiMs, a comparison with a numerical program based on [11].

Note that the mass configurations considered here are different from those required 
in QED and QCD, for which analytical results can be found in refs. [12, 13, 14, 15). 
With the results of this chapter and the tensor integral reductio: algorithm of ref. |2), 
one can now study the light fermion contributions to gauge bo 
standard model in the approximation where the fermion mas'

Some of the integrals of this chapter can also be used for 
chapter 6, we will discuss a method to calculate T23t, 7’1234 ai 
mass case. This will be done by first subtracting combination;' 
which are known analytically, such that the remainders are D = 4. Then
they can be integrated numerically in the same way as 7’12345 >’ l e<^ 'n re*' I1"’



73

[13] G. Rufa, University of Mainz thesis MZ-TH/85-16 (1985).

[14] A. Djouadi, Nuovo Cim. 100A (1988) 357.

[15] B.A. Kniehl, Nucl.Phys. B347 (1990) 86.

[10] U. Nierste, D. Muller and M. Bohm, Z.Phys. C57 (1993) 605.

[11] D. Kreimer, Phys.Lett. B273 (1991) 277.

[12] D.J. Broadhurst, Phys.Lett. B101 (1981) 423; D.J. Broadhurst, Z.Phys. C47 (1990) 
115.



Chapter 5

5.1 Introduction
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Series expansions of two-loop self-energy 
diagrams

where k is the external momentum (note that J really depends on

= [ [_____________________________ dnP d"<7_____________________________
J J ((* - P)2-™2)*'1 ((* - qy-ml')” ((p - (p2-™2)*'* (g2-"*2)”

(5.1.1)

k2) and n is the

In chapter 4 analytical expressions in terms of polylogarit . e given for all 
scalar integrals needed for computing the contributions to vec -on self-energies 
from two-loop diagrams containing massless fermions. That wb,; > r.:.ible because all 
three particle cuts in such diagrams contain at least two massless par .icles. However, 
the full self-energies also get contributions from diagrams that do not possess this 
property. These are the diagrams containing top quarks, whose mass can definitely 
not be neglected, and the purely bosonic diagrams containing IV, Z or Higgs bosons. 
Since many of these diagrams cannot be expressed in terms of polylogarithms, we are 
forced to calculate them by other methods.

In this chapter, we will study two series expansions of two-loop self-energy dia­
grams with arbitrary internal masses: one for small external momenta and one for 
large external momenta. Since the coefficients can be calculated analytically, the first 
few terms of the expansions give approximate results for these diagrams, provided 
the value of the external momentum is inside the region where the series converge. 
This happens to be true in a number of cases of physical interest. On the other 
hand, there are also diagrams with intermediate values of the external momentum, 
where both series fail to converge. For those diagrams other techniques will have to 
be developed. The series expansions described in this chapter could then be used as 
checks on such new techniques.

The scalar integrals we will consider correspond to the diagram in Fig. 5.1 and 
will be written as



k k
3P-Q

1

fc — qk — p

Fig.

9

2

PP 3 kk 41
p-q

5k — p

Fig. 5.2.

(5.1.2)
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two-loop self-energy diagram of eq. (5.1.1). Note that the 
prop j to, are labeled in a different way than in chapter 4.

1 _ 1 / 1 
mi)(p2 — mi ~ m4 \P2 — mi

1 \
P2 - mi) '

(P2-

More simple two-loop diagrams which contain four 
as products of one-loop diagrams, can 
the powers of denominators iz, equal to 
Fig. 5.2 can 
and iz4 ) by

space-time dimension (in the framework of dimensional regularization (1, 2]). Here 
and below the usual causal way of dealing with denominators in pseudo-Euclidean 
momentum space (k2 <-> k2 + iO) is understood. This notation, which allows us to 
consider integrals with arbitrary powers of denominators iz,-, will prove to be very 
useful during our calculation of the coefficients of the expansions. Occasionally, we 
will use the shorter notation J({iz,}; {m,}; fc) instead of J(izi,..., izs; mi, ...,ms; k).

or three internal lines as well 
be obtained from (5.1.1) by putting some of 
zero. Moreover, the integral corresponding to 

also be expressed in terms of (5.1.1) (for the case of integer values of izi 
use of the obvious decomposition formula

q

5

2



5.2 The expansion for small k~

5.2.1
k2 = 0, so

(5.2.1)

where

(5.2.3)o* =

When this operator acts find

d = (2fc"D) = 2nD + 4fc2D2 = 4 (n/2 + *:2D) D , (5.2.4)

so

(5.2.6)1 = 0,1,2,...

leads to

□j = 42 (n/2 + fc2D) (n/2 + 1 + fc2D) ... (n/2 + j - 1 + fc2D) Dj . (5.2.7)

(5.2.8)
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I

Setting k2 = 0 in this equation gives the following identity:

□jj(fc2) = 4j(n/2)j D2 J(fc2) at k2 = 0 ,

d 
dk“ ^dk^

d2 
dkudk“

on a function of fc2, we

□t =

D (n/2 + I + fc2D) = (n/2 + I + 1 + fc2D) D

J(fc2) = E^(fc2)J (DV(*:2)) |*’=o, 
j=o 3 •

D = 3/3(ifc2). (5.2.2)

In order to calculate the derivatives with respect to k2, it is c<- ent to express 
them in terms of the momentum space d’Alembertian,

Reduction to vacuum integrals

In the massive case, the integrals (5.1.1) are analytic functions of k2 near 
they can be expanded in a Taylor series:

□j = 42 (n/2 + Pd) D (n/2 + fc2D) D ... (n/2 + fc2D) D . (5.2.5)

Commuting all the factors D to the right through the factors (n/2 + fc2D), using the 
rule:

So, in general it is sufficient to consider the scalar integrals (5.1.1) with different 
powers of denominators iz,-.

The rest of this chapter is organized as follows. In section 5.2 we study the 
expansion for small k2. Then, in section 5.3 we discuss the expansion for large k2. A 
number of formulae we need for massless two-point integrals and for massive vacuum 
integrals are collected in appendices A and B, respectively.



where

(“)> s (5.2.9)

(5.2.10)

need to evaluate OkJ

(5.2.12)

. (5.2.13)
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r(P! - n/2)F(^ - n/2) 
r(»/i)r(I/2)

(fc2)2
8n(n + 2)

r(° + j)
T(a)

is the Pochhammer symbol. By substituting eq. (5.2.8) in the Taylor series (5.2.1) 
we finally obtain:

The result 
shifted arg i

/(‘'bh,''3:m1,m2,m3) = J J —

we apply the second Oi to the r.h.s. of

/(^l, 0) = —

— J(0) + — J(fc2)} |jt=o +

Note that for t’r.. pecial case m2 = m2 = m4 = mj, m3 = 0 an analogous expansion 
has been co: e.g., in ref. [3] (see also [4] and references therein).

lying the operator (5.2.3) to the integral (5.1.1) is (we only write 
f the integrals on the r.h.s.):

(t)J (DiJ(*2)) l*=o •

d"p dnq
-m?r (?2-^r((p-<?)2-^r’

(see Fig. 5.3). Of course, in these integrals we may have m4 instead of ml or ms 
instead of m2. So, the coefficients of the momentum expansion (5.2.10) of the integrals 
(5.1.1) can be expressed in terms of vacuum integrals (5.2.12) with various values of 

p2i ^3.

When one of the indices i/, is zero the result corresponds to the product of two 
massive tadpoles and can be represented in terms of gamma functions (see eq. (5B.1)). 
For example:

For example, when we
(5.2.11), and so on.

After applying □{ we put k = 0. As a result, we obtain vacuum integrals (i.e. 
diagrams without external legs). By using, for the cases when mi / m< or m2 / ms, 
formula (5.1.2) and the analogous identity for the second and fifth denominators, 
these vacuum integrals can easily be reduced to integrals with three denominators,

nt-f(p, ?!,..., ms-,k)

'•'2 + 1 — n/2) (iq + 1) + v2 J{v2 + 1))
+</i(i/i + 1 )m, + 2) + 1/2(1/J + l)m2 J(y2 + 2)
+i'i^2 ((m2 + m2 - ml) J{v2 + l,v2 + 1) - J(^i + l,v2 + l,«/3 - 1))} .

(5.2.11)

n(_l)-. +*-> (mJ)"/’— (m^)n/2-^

oo J

(°^(*2)) k=0 + ...



p-q

Fig. 5.3.

(5.2.15)

when two of

(5.2.16)r(-s) r^ + s).(A2 -M2)-
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l3 -2(p9))' (5.2.14)

be repr . cd in terms of
1 a. and for even a we

ds
-too

dnp (p2)2 
(P2

Note that when wez 
values of i/3. This means that in this case we have

((p - ?)’ - 1,01 = (p2 + 92 - m\

in the numerator. The squared momenta p2 and q2 can I 
denominators. The integrals containing (pg)“ vanish for odd 
use

apply operator (5.2.3) to (5.1.1) we ma obtain negative

5.2.2 Vacuum integrals with two different masses
We start the examination of the vacuum integrals (5.2.12) with the case 
the masses are equal: mt = m2 s m, m3 - M. The case when all three masses are 
unequal will be discussed in the next section.

To obtain the result for the case of arbitrary values of iq, iq, v3 and n, it is conve­
nient to use the method of evaluating massive Feynman integrals [5, 6] based on the 
Mellin-Barnes representation of massive denominators,

1 11 /■•“> (—M2y
F(p) 2irf J-,oo S (fc1)-**

r r dnp dnq (pg)2’ (2j)! r dnp(p2y r d'q (q2)j
J J (p2- (g2 - mlp V jl (n/2^ J (p* - m2?' J (q* - m2)1'2'

Finally, we arrive at a representation of integrals with negative 1/3 in terms of tadpole 
integrals (5.2.13). This property is well known, and we presented formula (5.2.15) 
only for completeness.

So, the main problem in obtaining the coefficients of the expansion of (5.1.1) io 
k2 is to evaluate the integrals (5.2.12) for positive integer values of iq, tq and v3. We 
will do this in three stages. In sections 5.2.2 and 5.2.3 we will consider two different 
mass combinations and derive explicit formulae for the case — P3. Then, in
section 5.2.4, the results will be extended to the general Pi, Pa, v3 case.

9

3

2



(5.2.17)

In the followin . convenient to use the dimensionless variable

(5.2.18)

For |z| < 1

X

X4F3 z

+(4z)n/2"'

(5.2.19)><4^3

(5.2.20)pFq

where (a)j is the Pochhammer symbol (5.2.9).
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aj, ... aP
Ci, ... CQ

r(^3 - n/2)r(;/1 + 1/2 — n/2) 
r(i/3)r(i/I +1^2)

^("i, "2, ^3; m, m, M) = — 7r"( — l)‘/,+p’+‘^

1/3, pi + P3 — n/2, P2 + P3 — n/2, Pi + + P3 — n
(pi + P2 + 2i>3 — n)/2, (i/i + P2 + 2^3 — n + l)/2, 1/3 — n/2 + 1

1 rX 2iri J-
rt'oo

du
—too

, 1/2 j 4- ^2 — n / 2, n/2
(t'l 4- ^)/2, (1^1 4- U2 4- 1 )/2, n/2 — 1/3 4- 1

where we have used the standard notation for the generalized hypergeometric function 
of one variable (see, e.g., [7]),

~ xp (fll),- - (gp)j 

j! (cih—(cqL-’

_ M2
Z ~ 4m! '

we close the integration contour in (5.2.17) to the right and obtain

I(pi, Pt, p3; = -^•"(_l)‘'‘+^+^(m2)"-‘'‘-^-^

T(n/2 — u3)r(r,i + 1/3 — n/2)r(u2 + p3 — n/2)T(i/i + P2 + ^3 ~ n) 

r(n/2)r(iz1)r(^)r(i/i + p3 + 2^3 — n)

In this formula we remember that (fc2 «-» k2 + iO) . The contours in Mellin-Barnes 
representations are chosen so as to separate the left and right series of poles of gamma 
functions occurring in the integrand.

In our case, it is sufficient to apply formula (5.2.16) to the third denominator in 
eq. (5.2.12) only. Then the obtained vacuum integral with one massless line (with 
shifted power of denominator) can be evaluated in terms of gamma functions (see 
eq. (5B.4)), and we arrive at the following Mellin-Barnes representation:

1 1 r(1/1)r(I/2)r(1/3)r(n/2)
/ M2\u
!—r I T(-u) T(n/2 - v3 — u)
\m* /

r(i/3 4 -.3 — n/2 + u)r(iz2 + P3 — n/2 + u)r(ut + ^2 + 1/3 — n + u)
r(ui + p3 + 2^3 — n + 2u)



X

where

(5.2.22)-d. 2F,

A(e) =

0(e3), (5.2.23)

da 2F2 z z

(5.2.24)
(c)j

dc2Fx z z

(5.2.25)(V>(c +j) - 0(c)),
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i

1,1
3/2

a, 6 
c

a, b 
c

( 3/2 |') 

a

In the 
them in e =

4>(z) = 4z | (2 — ln(4z)) 2Fi

-dclF2

= 4- 2f oa
oo

case i/i — p2  p3 = 1 the tF3 functions reduce to 2Fi functions. Expanding 
(4 — n)/2 and keeping the singular and 0(1) terms only, we get

"“’•(m2)1 2‘ 4(e)
~^(1 + 2z) + i(4zln(4z)) — 2zln2(4z) +2(1 - z)0(z)|

(5.2.21)

/(1,1, l;m,m,M) = +

a,b I 
c

j=o J

a.b 
c

£ (<*)j W, 
jS j'- (c)j

where 0(a) = (d/da) ln(T(a)). The combinations of 0 functions of integer and half­
integer arguments occurring on the r.h.s.’s of (5.2.24) and (5.2.25) (for a = b = 1, 
c = 3/2) are known rational numbers. Many useful properties of the functions (5.2.24) 
and (5.2.25) (integral representations, analytic continuation formulae, etc.) can be 
obtained by differentiating appropriate formulae for 2F2 with respect to parameters. 
Note that the same functions as in (5.2.22) also occurred in ref. [8], where the QCD 
radiative correction to Higgs decay into two quarks was considered.

r2(i + e)
(1—c)(l—2e)

= 1 + e(3 - 27e) + e2 ( 7 - 67e + 27J +
\

and 7E = 0.57721566... is Euler’s constant. In formula (5.2.22) we used the follow­
ing notation for the derivatives of the hypergeometric function with respect to the 
parameters a and c:

s T ’F1
oo



(5.2.26)2F2

da2Ft z

(5.2.27)

where Ci sen’s integral function (see, e.g., [9]),

(5.2.28)

As a result, we get

(5.2.29)*(z) =

(5.2.30)
2e2

(5.2.31)
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arcsin \fz 
v/z(l ~z) ’

1,1
3/2

1,1
3/2

1,1
3/2

1,1
3/2

r> I 0|C12(0) = - / d0 In 2sin —
Jo 21

/(1,1,1; m, m, m) =

......... — lln(4z) arcsin \/z 4- Ch (2 arcsin x/z'j } ,
- *)

____

with (we follow the notation of ref. [11])

32 - ~^=
9\/3

where Cl2 (rr/3) = 1.0149417... corresponds to the maximum of Clausen’s integral [9] 
and cannot be represented in terms of other known transcendental constants. This 
constant has appeared before in two-loop massive calculations (see, e.g., [12, 11, 10]). 
Note that in ref. [13] results for the integrals (5.2.12) have been obtained in the form of 
hypergeometric series which follow from (5.2.19) if we take M = m (z = 1/4). After 
extraction of singularities in e, these expressions are numerical series. A numerical 
comparison shows that they coincide with the results expressed in terms of (5.2.31).

To obtain an expression for 4>(z) in the region z > 1, we go back to the hyperge­
ometric representation (5.2.22) and use the following analytic continuation formulae

z I — 2 2Fi

Equation (5.2.22) is useful for studying the behaviour of ♦(z) in the region z RS 0. 
For larger values of z, it is more convenient to use other expressions which will be 
given below.

For the region 0 < z < 1 we use the following formulae, which can easily be 
obtained from a parametric integral representation for the 2F\ function and its para­
metric derivatives:

z I + dc 2Fi

—-— Cl2 (2 arcsin ,/z) •

It should be noted that an analogous representation (in terms of Lobachevsky’s func­
tion) has been obtained in ref. [10].

In particular, if M = m (z = 1/4) we have



(5.2.32)

da 2F2

. (5.2.33)+22F! - da 2Ft - dc 2F1

(5.2.34)$(z) = 4z ln(4z) ?F 1 — Z I + <?a 2.^1 1 — Z

(5.2.35)

(5.2.36)+ 2 In2 - ln2(4z) + — ,

where
(5.2.37)

So,

-s)r(n/2-P2-t)
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1 - A
2

Finally, we obtain from (5.2.34)

1 - A
2

1,1
3/2

•n(_1

t

ents of the hyper- 
an be represented 
ogarithm (Spence

f'°° ds dt x‘ 
J—ico J—too

( 1,1 
k 3/2 \

( 1,1 ,  ' 
k 3/2 2

$(*) = T -4L>2

/(l/l,l'2,J'3;m1,m2,m3) = —7r’

tt ln(4z) 
“2Jz(l-z)

( 1)1
\ 3/2

be obtained by differentiation of the usual analytic continuation 
a. Using these formulae we get

1.1 i
3/2 |

Formula (5.2.33) can
formula for 2Fi with respect to the parameter

1,1
3/2

This formula gives us the expansion near z = 1.
The region z > 1 corresponds to negative values of the 

geometric functions in (5.2.34). In this case the function (5 
in terms of logarithms while the function (5.2.33) con tai: 
function) [9], defined by

5.2.3 Vacuum integrals with three different masses
Let us now consider the general case of (5.2.12) when all three masses mi,m2 and 
m3 are different. This time, we use the Mellin-Barnes representation (5.2.16) for the 
first and second denominators. Substituting eq. (5B.3) yields

(m23r-

Li2 (f) = - [' dt 
Jo

( 3/2 | *) ’

A(z) = ^l- 1.

we have representations of /(1,1, M) for all values of the masses.

from z to (1 - z) (see, e.g., [8]):

1F' ( 3/2 |1 ~ z) =

xr(i/i + i/j — n/2 + s + t)r(izt + v2 + i/3 — n + s + t) , (5.2.38)

1
*(2^)2

_________ 1________
r(i/i)r(i/2)r(i/3)r(n/2)

i
A

7T2

3



(5.2.39)and

x

(5.2.40)

where
(5.2.41)

r2(i -£)r(£)r(-i +2e)x

+r(i -£)r(-i +e)r(e)

x(l - w) 2F1
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e, 1
2—£

1 — wz
(1 - w)(l -z)

z(l — w)
1 — z

—z
(1 - w)(l - z)

7(1,1,1; m2,m2, m3) = tt‘

where the two dimensionless variables

m?x = —1

are used. Closing the contours to the right we

m?
y = -5

m3

get (for arbitrary and n)

( 3’ r(1/1)r(p2)r(I/3)r(n/2)

A~2e(rnl)

7(«'i,f2,^3;mi,m2,m3) = —3rn(—l)‘'1+*a+K’

1__
r(2 — e)

| r(n/2 — iz1)r(n/2 — iz3)F(pi + — n/2)T(i/i + v2 + f3 — n)

xF4 (p, 4- iz2 + i>3 — n, fi + — n/2; i/t — n/2 + 1, Vj — n/2 + 1 | x, y)

+yn'2' r(n/2 - l/1)r(P2 - n/2)r(P!)r(i/i + 1/3 - n/2)
"1 + "3 — n/2; I/] — n/2 + 1, n/2 — iz2 + 1 I x, y)

’(izi — n/2)T(n/2 — iz2)F(</2)r(iz2 + V3 — n/2)

v2 + J's — n/2; n/2 — i/i + 1, "2 — n/2 + 1 | x, y)

+xn/^> -n/2)r(p2 -n/2)r(«/3)r(n/2)
xF« (1/3, n/2; n/2 — i/j + 1, n/2 — u2 + 1 | x, y)} ,

P , ,, , y‘ (“)>+' Wi+lF4(a,5;c,dk,!Z) = gg-nr (c).(d—

is Appell’s hypergeometric function of two variables (see, e.g., [7]) and (a); is defined 
by (5.2.9). Formula (5.2.40) gives us the expansion in x and y for the case y/x+y/y < 1 
(this corresponds to the region of convergence of the functions).

For the important special case = v2 = 1/3 = 1 (n = 4 — 2e), we can use known 
reduction formulae for ^-functions (see, e.g., [14, p.102] or [15, p.453]). As a result, 
we find



+r(i-£)r(-i+£)r(£)

+r(2 - e)r2(-i + £) (

(5.2.42)x(l - w) (1 - z) 2Fi

where
(5.2.43)

with

zFi

(5.2.46)

where

M1 — In z In j/4>(z,3/) = 2 In

— 2L12
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i-e

i
A

£, 1 
2-e

—z 
(l-w)(l-z)

w(l — z) 
1 - w

(£ln(l -£) -e2 (in2 (1 -

1 + z - y - A
2

1 + z — y — A
2

1 — z + y — A 
2—2 Li2

f) + Li2 («)))} •
(5.2.45)

Using this expansion and some well-known relations for dilogarithms [9] we get 
the following result for the integral with i/j = v2 = v3 = 1 (as n -+ 4):

2

— z + y — A
2

7(1,1,1; mi, m2, m3) = rr‘

1 — e 
~ 1 — 2e

—w
(1 - w)(l - z)

x(l-z)JF1(2£L1£|

—w____
(1 - w)(l - z)

+ } (5.2.47)

The functions A(z,y) and 4>(z,y) coincide with A(z) (5.2.37) and $(z) (5.2.36) when 
z = y = l/(4z).

1 , ,
w = — (-1 + z + y + A) , z = 77- (-1 + z + y + A' 2x

A(z, y) = ^/(l - z - y)2 - 4zy .

This formula can be connected with the result obtained in 
continuation formulae that express 2Fi functions of f in terr

(5.2.44) 

using analytic 
Fi functions of

1 — f. By use of the parametric integral representation for the 2 . tion occurring
in (5.2.42) it is easy to obtain the following expansion as £ —► 0 (keeping terms up to 
O(£2) only):

e, 1 
2-e

'"-^(m2)1-2'

fl 2x —(1 + z + y) + -(zlnz + y Iny)

—z In2 z — y In2 y + (1 — z — y) In z In y — A24>(z, y)} ,



2F. , (5.2.48)?F,

—z ‘(1 + x - y) 2Fi

(5.2.49)-y '(1 - x + y) 2F

2Fj

(5.2.51)+ da 2F2
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2L
4zy

obtained in the region A2 > 0 and y/x + y/y < 1. By 
also obtain results for the region y/x — y/y > 1

1, 1 
3/2

e, 1 
1/2+ e

1, 1 
3/2

a, b 
a — b + 1

1
1/2+ e

can be done by use of the quadratic

Note that these results were 
permutation of ml,m2,m3 we can 
and the region y/y — y/x > 1.

It is interesting to note that the function 4>(z,y) (5.2.47) is the same as in the 
case of the massless triangle diagram (see, e.g., [17] ) where x and y are constructed 
from external momenta squared instead of masses. So, all results for $(z, y) obtained 
here are also applicable to that case.

The analytic continuation to the region A2 < 0
transformation,

'•; , m2, m3) = ir' >2)1-2M(e)

+2e2, {-22Fi( P)

1
X2?

a/2, (a 4- l)/2 - b 
a — b + 1

\m3>

(l-£)2

which we apply to the 2Fy functions occurring in (5.2.42). Then the transition to 
inverse arguments yields

y I + dc 2 Fi

1 |_^ 
1/2+ e | Ax)

611 I--")) l/2 + e| 4y)j

This formula can be used to examine the behaviour of 7(1,1,1; mi, m2, m3) near 
A2 = 0. It is valid for arbitrary n because we did not expand in e. Using the definition 
of x and y (5.2.39) we see that it is completely symmetric in m\,m2,m3. However, 
it is only valid outside the region bounded by the lines 1 — x — j/ = 0 (0 < z < 1), 
1 + z — y = 0(z>0) and 1 — x + y = 0 (z > 1), where the arguments of the corre­
sponding 2Fi functions are equal to one. A careful examination of the 2F\ functions 
near these lines shows that if we write an additional term in the braces in (5.2.49),

(... + 2rJ(l+J£2(-A2)1/2-<g(z + y - 1)0(1 - x + y)0(l + z - j/)|, 
k J 1 y 1 “f" C J J

(5.2.50) 
we obtain an expression which is valid for all positive values of z and y. If we consider 
e —> 0 the following expansion up to e2 terms can be derived:

~1 + 2^2Fi( |o)

z 'y '(1 - z - y) 2Fi



4>(x,!/) = 2 arccos

(5.2.52)4- Ch I 2 arccos

(5.2.53)0

Z(lZj + 1,1-2,1-3) =

86

5.2.4 Recurrence relations for two-loop vacuum is

When we calculate the coefficients of the expansion (5.2.10) we

2 1 + j-y 
2,/rCl2

mJ,

Here we obtained the same functions 
different masses.

In this case, in the representations (5.2.26) and (5.2.27) it is more convenient to 
use arccos rather than arcsin in the arguments of Clausen’s function. So, we get the 
following representation for the function $(x, y) in the region A2 < 0 ( y/x + y/V - 0-

+ CI2 ^2 arccos

0 = —2mji-1/(i-1 + 1, i/2,1/3) — (mJ
+(n - 2i/! - x-3)/(»-!, «-2,1-3)
+1/3 [/(«-!, t-2 — 1,1/3+ 1) — /(i'i — 1,1-2,1-3+ 1)] • (5.2.54)

By interchanging p, q, and p + q in eq. (5.2.53), we obtain two further identities, 
similar to (5.2.54). Together they form a system of equations for /(1-1 + l,^,^), 
/(i-i, 1-2 + 1,1-3) and /(i-i, 1-2,1-3 + I), whose determinant is proportional to

A(mJ, mJ, mJ) = 2(mJmJ + + mjmj) — (mJ + mJ + mJ)
= —mjA2(x,y), (5.2.55)

where X(x,y) is defined by (5.2.44). Solving these equations yields

_______ 1_______
i/iA(mJ,mJ,mJ)

as in equation (5.2.22) for the case of two

-1 + x + y 
2y/*y

Note that the result (5.2.46), (5.2.52) is also completely symmetric. This expression 
can be used inside the parabola which continues the curve y/y = 1- The
analogous representation was obtained in ref. [18] in terms of L.e’ vsky’s function.

IS

   -d vacuum inte­
grals (5.2.12) with higher powers of denominators. Instead of woi ut eqs. (5.2.19) 
and (5.2.40), we will construct a recursive procedure for evaluating :'(i-i, 1-2,1'a) w’^ 
integer i/’s (in this section we omit the arguments mumj.ms) by applying the 
integration-by-parts technique [19]. Our procedure is analogous to the method used 
in ref. [17] to calculate massless triangle diagrams.

Starting from

 J J d P d q| (p2 _ (g2 _ m2p ((p + qy _ m2yy } ’

and writing the right hand side in terms of 7(i-i, 1-2,1-3), we find

— mJ + mJ)j-3/(i-i, 1-2,1/3 + 1)



(5.2.56)

(5.2.57)

(5.2.58)7(2,2,!) = + In (4z) >, z < 1,

and for z > 1 :

7(2,2,!) =

. (5.2.59)

(5.2.60)(Af = 2m) .z = 1

87

Li2

arcsin x/z) 

z(l - z)

m2(n — 2pi — 1/3) + m2(n — 2i/i — i/2)] 7(i/i, i/2, fa)

— ml)i>! [7(i/i + 1,1/2 — l,j/3) — 7(1/, + 1,1/3,i/3 — 1)] 

+ m2i/2 [7(^1,1^2 + 1,1/3 — 1) — 7(i/i — l,>/3 + 1,1/3)] 
+0131/3 [Z(i/i, i/2 - 1,1/3 + 1) - Z(i/i - 1,1/3,1/3 + 1)]}

ir< 1

2m2 (1 — z)

1 , 2 /I — M 1 , 3, . , IT2 
"2ln — +4ln(4z)-12

(1-2Z)»

7(2,2,1) = ^(4 In 2-1),

These results give the first term of expansion (5.2.10) for the integral corresponding 
to the diagram in Fig. 5.1 with mi = m2 = m4 = ms = m, m3 = M. Note that 
expressions (5.2.58) and (5.2.59) coincide at z = 1 and yield

{ ln(4z)

1 - 1
2 1'2

and analogous expressions for 7(i/i,i/2 + 1,1/3) and 7(i/i, i/2,1/3 + 1). These results 
make it possible to evaluate integrals with i/] + n2 + 1/3 = a + 1 in terms of integrals 
with i/! + i/2 + 1/3 = a. It can also be noted that there is an additional condition for 
integrals with the same sum 1/1 +1/2 + 1/3, which can be used to reduce the number of 
terms on the r.h.s. of (5.2.56),

?r4 1
2m2 (1 — z)

2z - 1
+~xr

[i'i(m2 - m2) + 1/3(1723 - m2) + i/3(m? — m2)] 7(i/i, i/2,1/3) 

= i/]mj [7(1/! + 1, i/2 - 1,1/3) - 7(i/i + 1,1/3, ”3 — 1)] 

+i/2m2 [7(i/i, i/2 + 1,1/3 — 1) - 7(i/] — 1,1/3 + 1,1/3)] 
+i/3m] [7(i/i — l,i/2,i/3 + 1) — 7(i/i, i/2 — 1,1/3 + 1)] •

Using >) (and permutations), all integrals 7(i/i, i/2,1/3) with positive integer
v's can ed to 7(1,1,1) and trivial boundary integrals (5.2.13) (when one of
i/’s is eq.j.d ;ero).

The recurrence relations can easily be programmed, which we did using the RE­
DUCE system [20]. As an example, it is easy to check that, after some transformations, 
the result for 7(2,1, 1) obtained by applying relation (5.2.56) with 1/1 = i/2 = 1/3 = 1 
coincides with the results presented in refs. [12, 21] in terms of dilogarithms.

In the case m, = m2 = m, m3 = M (z = Af2/(4m2)) we get (at e = 0)

x { [niiCi*! + 1/3 + 1/3 — n) + 

+(m2



M, (5.2.62)
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■vious sections 
and $(*)• In 
roduced when 
•ies, we derive 
s close to 0 or

,r« ~ / A? \m,m;fc) = -gcXz)(—}

with z = A/2/(4m2). By performing the procedure described ir 
we obtain expressions for the coefficients cj(z) that contain 
the denominator they contain powers of z and (1 — z), which 
the recurrence relation (5.2.56) is used. To avoid numerical 
expansions of our expressions in z and in (z — 1), which we use
1. These expansions can easily be obtained by using the expressions or in terms 
of hypergeometric functions (5.2.22) and (5.2.34). Near z = 1 the coefficients q(z) 
are analytic. The expansions near z = 0 contain powers of z, and in addition terms 
of the form zl In z. As can be seen from Fig. 5.4 for the case of co(z), the expansions 
can give good approximations to the exact coefficients in a wide range of z values.

The first six coefficients cj(z) are plotted in Fig. 5.5. Their exact values are listed
Table 5.1 for three special values of z. For z = 0 they coincide with the results 

given in ref. [11].
Fig. 5.6 shows the first terms of the momentum expansion (5.2.62), and also the 

value of J obtained by numerical integration, in the region below the threshold at 
k2 = 4m2 (the right edge of the plot). In this example we chose M = Mz an<^ 
m = m(, the masses of the Z boson and the top quark. For the latter we picked 
a value which is in the middle of the allowed range of masses. This combination 
of masses occurs in two-loop corrections to the Z and photon propagators in the 
standard model. In this particular case only three terms are needed to obtain an 
accuracy of 1% when k2/m2 = 1. To obtain 1% accuracy when k2/m2 = 2, five terms 
are needed. When k2/m2 = 3, the sum of the first six terms differs about 5% from 
the numerical value. These numbers depend on z, but the picture for other values of 
z is very similar. Notice that if k2 « k2/m2 w 0.42, which is still in the region
where the momentum expansion approximation works well.

An example involving three different masses is shown in Fig. 5.7, where m\ = 
m4 = mt, m2 = m5 = Mw (the W boson mass) and m3 = mb (the b quark mass). In 
this case the first threshold is at k2 = 4M^. If we choose k2 « A/j, k2/M^ « 1-3,

5.2.5 Numerical results

In this section we shall demonstrate our method by considering the integral

J(mj, m2, m3, m4, ms; k) = J(l,l,l,l,l; mj, m2, m3, m^, ms; k). (5.2.61)

It is finite and it can be calculated for arbitrary masses by a method described in 
ref. [22], which involves a two-dimensional numerical integration. We shall approxi­
mate the integral (5.2.61) by taking the first few terms of its momentum expansion, 
and then compare the results with the values we obtain by using the numerical 
method.

In our first example we take mj = m2 = m4 = m5 = m and m3 = Af and write 
the momentum expansion as:



Co(z)

O
0

(M = m)z = 0 z = 4

Co(z) 3S21

C1(z)

c2(z)

C3(z)

c4(z)

c5(z)

89

13 
18

388
675
5309
11025
206624
496125
13260704 
36018675

2(44-952) 
27

4(29—3652)
243

8(367-99052)
3645

16(317179-106344052)
3444525

32(566101-206136052) 
6200145

4 In 2-1
3

321n2—1 
70

4(1992 In 24-83) 
31185

7680 In 24-529 
45045

32(14178401n 24-113193) 
363738375

1312(739201n 24-6221) 
1003917915

Table 5.1. The first coefficients Cj for z = 0, 
S2 is defined in (5.2.31).

z = 1/4 and z = 1. The constant

z = 1 (M = 2m)

Fig. 5.4. The coefficient co(z). The solid curve shows the exact value, the 
curve with long dashes is the expansion near z = 1 including terms up to 

(jz — l)4), the dotted curve is the expansion near z = 0 including terms 

up to O (z4 In z), and the curve with short dashes is the expansion near z 
including terms up to O (z10 In z).
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Fig. 5.5. From top to bottom: co(z), ci(*)> <=2(2), 03(2), 04(2), cs(z)-
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Fig. 5.6. The integral J(mt, mt, Mz, m<, m(; k) with Mz = 91.16 GeV and 
mt = 140 GeV (z = 0.106). The crosses are the values obtained by numerical 
integration. The straight line is the first term of the momentum expansion. 
The curves show the improvement of the approximation when successive terms 
of the small k2 expansion are added.
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which is again far below the threshold, so we see that also in this case, the expansion 
works well.

1.5

0 
0

5.3 The expansion for large k2
In this section, we will show how to obtain a series expansion for the integrals (5.1.1) 
for large external momenta, when k2 is larger than the highest threshold of the di­
agram. This expansion is more complicated than the one for small fc2, because it is 
not a usual Taylor expansion, but also contains logarithms and squared logarithms 
of (—k2) (in four dimensions), yielding an imaginary part when the momentum is 
time-like. The procedure of calculating this diagram in the form of a series in in­
verse powers of the external momentum (plus logarithms) resembles the standard 
procedure of analytic continuation of the hypergeometric function (some explicit ex­
amples of such a procedure connected with Feynman integrals were presented e.g. in 
ref. [5]). To obtain this expansion, we shall apply a general mathematical theorem 
on asymptotic expansions of Feynman integrals in the limit of large momenta. This 
theorem holds at least in the case when the external momenta are not restricted to 
a mass shell. However, in our case of a two-point massive diagram, it is valid for any

2 
k’/M.2

Fig. 5.7. The same as Fig. 5.6, but now for J(mt, Mw, mb, rnt, Mw', k) with 
Mw — 80 GeV, = 140 GeV and mj, = 5 GeV.
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Constructing the asymptotic expansion
self-energy diagrams, the asymptotic expansion theorem can be

The terms on 
total power of

1
[p2 - m2j“

When applied to our 
stated as follows:

2(*g) — ?2 + m‘
&

values of the external momentum. All the coefficients of the expansion have a natural 
interpretation in terms of Feynman integrals and are analytically calculable in the 
case we consider. Expansions of this kind were presented in refs. [23, 24, 25, 26] and 
rigorously proved in ref. [27]. A review is given in ref. [4].

,2V

i vB 
[PT h J’

1 1 f'Wi
[(* _ 9)J _ mJ]v [fcT Zj j!

the right hand side of (5.3.3) should then be sorted according to the 
m and q. For example, the terms proportional to q2/k2 and m2/P

shrinking 
Feynman 

momenta 
“large” ex 
mial in the
It is implied ; .t the operator T acts 
are performed.

In our case, the sum (5.3.1) goes over all subgraphs 7 that become one-particle 
irreducible when we connect the two vertices with external momentum k by a line. 
In other words, we should consider all possibilities to “distribute” the external mo­
mentum k among p,, and for each arrangement the subgraph 7 will coincide with the 
subset of lines involving fc, while lines without k should be removed. For our graph 
r (see Fig. 5.1), all possible subgraphs 7 (there are five different types of them) are 
presented in Fig. 5.8. The reduced graphs T/7 correspond to the dotted lines and 
can be obtained by shrinking all solid lines to a point. In such a way, we find that 
for the second and third type (see Fig. 5.8) Jr/7 corresponds to a massive tadpole, 
for the fourth type we obtain a product of two massive tadpoles, while for the fifth 
type we get a two-loop massive vacuum integral (with three internal lines).

The Taylor expansion operator T expands the denominators of the integrand in 
the following way:

Jr °
P—oo 'T

In this equation, T is the main graph (see Fig. 5.1); 7 are subgraphs involved in 
the asymp :t.ir expansion (see below); r/7 is the reduced graph obtained from T by 

raph 7 to a single point; J7 denotes the dimensionally-regularized 
corresponding to a graph 7 (for example, Jr is given by (5.1.1)), 
■rator of Taylor expansion of the integrand in masses and “small” 
are “external” for the given subgraph 7, but do not contain the 
-..mentum k; and the symbol “o” means that the resulting polyno- 
anta should be inserted into the numerator of the integrand of Jc/t 

on the integrands before the loop integrations
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Type 2 :

Type 3 :

Type 4 :
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Fig. 5.8. The subgraphs 7 (solid lines) contributing to the large mansion. 
The dotted lines belong to the reduced graphs r/7.

52 
ii.—Js=o

*1 .ms;p J

(from j = 1) and the term proportional to [(A?g)/Jb2]2 (from j = 2) lid be grouped 
together. The reason is that when we evaluate the massive va integrals Jr/i 
with these momenta q in the numerator, the powers of q will b< nsformed into 
powers of the masses. If we have several denominators to expand, t hen we should 
also collect all terms with the same total power of masses and “small” momenta qi-

Now we are ready to consider what integrals correspond to different terms of the 
asymptotic expansion (see Fig. 5.8).

1. In this case, 7 = T. All denominators of (5.1.1) should be expanded in masses,

- • • (^s)J&

£?
(5.3.5) 

After expanding the integrand of the g-integral in masses and p, we obtain products of 
massless one-loop integrals (see Appendix A) and massive tadpoles with numerators 
that can be calculated by use of eq. (5B.11) (see Appendix B). Other contributions 
of the second type can be evaluated in the same way.

(mi)’1 ...(ms)" J({Pi +

(5.3.4) 
Note that if we consider the case p, = ... = izs = 1, the first term of the expansion 
(5.3.4) (with j, = ... = Js = 0) gives the well-known result: —6C(3)ir',/A:2. The 
two-loop massless integrals with higher integer powers of denominators occurring on 
the r.h.s. of (5.3.4) can be evaluated by use of the integration-by-parts technique [19] 
(see Appendix A).

2. Let us consider only the first contribution of the second type (see Fig. 5.8), 
when 7 is obtained from T by removing line 1. Then we get

r d"P 
J [p2-"iir
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.(5.3.7)x7(,

(5.3.8)
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xZn. .m5;p,g

_________________________dn<7_________________________
[(i+p_g)3_mjp[(*:_gp-ro2p[(p_,)«_m?r[92-m?]‘'-

(5.3.6)

case when the central line is removed from 7, we obtain:

As a res 
the seco- 
B).

5. In :i se we obtain a non-trivial two-loop vacuum integral. For example, 
the first contr;bution of the fifth type gives:

/ f_____________d"p d>____________
7 J

5.3.2 Analytical results
In principle, eqs. (5.3.4)-(5.3.8) presented in the previous section (together with the 
formulae of Appendices A and B) enable one to construct analytical expressions for 
the coefficients of the large-!-2 expansion. However, in the general case of unequal 
masses the higher-order coefficients become rather cumbersome. To calculate these 
coefficients, we used the REDUCE system [20]. The algorithm constructed is applica­
ble to integrals with arbitrary values of masses, space-time dimension and (integer)

___________________ 1___________________
[(!-9)2-ml]'<'[(fc-p-9)2-m5]‘a[(!-p)2-m3]‘'*

btain products of two one-loop tadpoles with numerators (also for 
mtion), which can be evaluated by use of eq. (5B.12) (see Appendix

1 \ 
[(!-p)2-m2]^[(t-9)2-mir;-

Expanding the denominators, we obtain two-loop vacuum integrals with numerators, 
that can be evaluated by use of eq. (5B.13) presented in Appendix B (the same for 
the second contribution of the fifth type). Note, that here we obtain the same two- 
loop vacuum integrals as those involved in the small-!2 expansion. In particular, for 
unit powers of denominators the dependence on masses can be expressed in terms of 
dilogarithms (see (5B.5)-(5B.1O)).

So, the total asymptotic expansion is the sum of all terms presented, and we see 
that all integrals corresponding to the coefficients of the expansion can be evaluated.

[ dnP
J [p2-rn?P

XTn, J

After expansion, we obtain integrals of the same type as in the previous case.
4. There are no loop integrations in the subgraph 7, and we get for the first 

contribution of the fourth type:

f f d"p d"9
J J [p2-m2r [<?2 — m2P



(5.3.10)6<(3).

In2jVf, + 4 In

+ 4 In

(5.3.11)

ln(—k2 — iO) = ln(A:2) — in (5.3.12)(k2 > 0).
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logarithms of 
contributing 

o we get the

.. ™i.
2

mj
k^_ 
mJ

__P

2, ’

^3)} >

Mo

k^_

+ {analogous terms with rri:

+^{2>n’
mJ

where the symmetric function F is defined by (5B.7)-(5B.1O) (note that F has the 
dimension of mass squared). We see that contains also ln( — k2) and ln2(—k2) 
terms, which means that our expansion (at n = 4) is not a usual Taylor expansion. 
In fact, the highest power of ln(—k2) is connected with the highest order of pole 
in e (double pole) that can occur in the two-loop integrals involved. Note that for 
positive k2 the sign of the imaginary part produced by these logarithms is defined by 
the “causal” iO-prescription,

Ij.m,) + T’(mJ,mi

, mi , mi 1
- In —| In —| + 6 mJ mJ J

I 1 ml , m2 , , mS- In In —J — In —? In —j
' mJ mJ mJ mJ

The jMi term already includes contributions of all terms (5.3.4)-(5.3.8) (with the 
exception of (5.3.7) that begins to contribute starting from A^G); this yields

= ■J(ml,... ,m5; k)

“ -^A4(m1,...,m5;fc) = -^g^,(5.3.9)

where the coefficient functions Adj include the powers of masses 
masses and momentum squared. It is easy to see that the only i 
to Ado is J<°)(1,1,1,1,1) in (5.3.4) (see eq. (5A.7) in Append- 
obvious result that the expansion starts from

powers of denominators. If we are interested in the result near n = 4, we perform an 
expansion in € = (4 — n)/2 to get the divergent and finite parts of the coefficients.

One of the most important examples is the “master” two-loop diagram (presented 
in Fig. 5.1) in the case Pi = ... = 1/5 = 1. In this case, the result should be finite 
as n “* 4 (and it is a non-trivial check of the algorithm that all the divergent 
contributions from separate terms of (5.3.4)-(5.3.8) cancel in this sum !). A rigorous 
proof of the finiteness of the expansion was given in [26] (it was based on the so-called 
R*-operation [28]).

Let us define



2 In2 + 4 In

-2 In2 — 21n+

In2 + In2 + 4 In+ 4 In+

+ 2 In2 + 21n+ 2 In+

2 In2 - 2 In+

+
(5.3.13)+
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also present the result for the next term of the expansion,

_fc2_'
. m3.

__P
m2

ms)} ■

2

term with mlm;

M2

Let us

, ttin nin , m. , rn.
- In —| In —| - In —| In —| + 8 mj m{ m\

ml

+ {analogous terms with mJ, m.

ml
m3

; 2 In2

— mj

^(.mlml + mlmj) 

mini*
2

;) F(m2,m:

Higher contributions are more cumbersome, and we do not present them here (but 
we are going to use them below, when comparing our expansion with the results of 
numerical integration). By use of the REDUCE system [20], for the general massive 
case of the integral (5.3.9) (when all five masses are arbitrary) we obtained analytical 
results for the coefficient functions up to Ade-

There are also some other possibilities to check the correctness of our results (in 
addition to cancellation of 1/c poles). For example, in ref. [11] analogous results were 
presented for some special cases when some of the masses are zero while others are 
equal (see also ref. [29] where these results were generalised to the case of arbitrary 
space-time dimension n). In these cases, we compared our results for the coefficients

_in4ln4_in4in^_in>4+2 
mf rrr5

+ {analogous I

. m3

+ {analogous terms with mjm2,

+ 2m2 + 2mj) F(mJ,m: 

{2mJ + 2mJ — m^ 4- m2 + m2 

cumbersome, and

, ml mi mJ m2- In —i In - In —5 In —| - 8
ml ml ml ml

ml ml 1
— 2 In —| In —| + 7 > mf mj J

+ln4ln4+ln4ln4+6
ml mj mj ml

l{(m2 + m2

2.
'21

•L
.3

ml)

m2 m:
mi * mi 11 m4 m4 

{analogous term with

^,2

m?

m2

‘0

. ml



4) and found complete agreement.

5.3.3 Numerical results

(5.3.14)

such that the remainder behaves like

M - A4<n> = O ((fc2)-"”1 ln2(—fc2)) (5.3.15)

(5.3.16)Mw,Mz, mt, mb-, k),

(5.3.17)J(m(, mh Mz, mt, mt; fc).

(5.3.18)Mz = 91 GeV, Mw = 80 GeV, m, = 140 GeV, mb = 5 GeV.
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(at n =

ny fixed value 
its are known, 

would expect the series to converge when |A:21 is larger than the highest threshold, 
and whether the asymptotic 

we made

where the Mw, Mz and mb denote the masses of the W-boson, the Z-boson and the 
bottom quark. This integral is a contribution to the top quark self-energy. In this 
case, both the two-particle thresholds coincide. The three-particle thresholds also 
coincide with each other.

The other example occurs in the photon, the Higgs and the Z-boson self-energies:

The results are displayed in Figs. 5.9 and 5.10. In each plot, the first threshold is 
exactly on the left edge and the position of the highest threshold is indicated by a 
dashed vertical line. The dotted horizontal line shows the lowest order asymptotic

as fc2 —» oo.
Strictly speaking, this does not imply convergence of the serif 

of fc2, but from experience with special cases where exact analytic 
one
In order to see whether this is true in the general case,
expansion can be used as a practical means of calculating these integrals, 
some numerical comparisons for two physical examples.

The first example is:

Here mt is the top quark mass. As in the first example, there are only two distinct 
thresholds. We calculated (5.3.16) and (5.3.17) numerically using the method of 
ref. [22]. The values we took for the masses were:

In this section, we will continue to focus on the “master” two-loop integral correspond­
ing to Fig. 5.1. In general, it has two two-particle thresholds, at fc2 = (mi + m4)2 
and fc2 = (m2 + m5)2, and two three-particle thresholds at fc2 = (mi dmi + ms)2 and 
fc2 = (mi + mi + mi)2. The asymptotic expansion theorem quoted in (5.3.1) provides 
a series of approximations to this integral of the form (see eq. (5.3.9)):
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have a complicated structure, with
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la r ations between 
cries ceases to 
applied to the

In general, massive two-loop self-energy diagrams have a complicated structure, with 
up to four physical thresholds. Except for some special cases, they have so far defied 
attempts to calculate them analytically. However, they do have series expansions, 
whose coefficients can be calculated analytically. In this chapter, we developed algo­
rithms to obtain the coefficients of two expansions in the external momentum k. The 
first one converges when k2 is below the lowest physical threshold, the second when k2 
is above the highest physical threshold. The coefficients can be interpreted as massive 
vacuum diagrams and massless self-energy diagrams. We showed that they can all 
be expressed in terms of the function 4>, involving dilogarithms (5.2.47) or Clausen 
functions (5.2.52), and powers and logarithms of the masses. We implemented our 
algorithms in a set of REDUCE programs.

In order to test the convergence of the expansions we looked at a number of exam­
ples of diagrams occurring in the standard model. By a numerical comparison with 
the results of a two-dimensional numerical integration [22] we found that the expan­
sions converge quickly, and that, unless we are very close to one of the thresholds, 
only a few terms are needed to obtain accurate results.

Note that our algorithms our valid for arbitrary values of n, because the expansion 
in £ is only done at the very end. Therefore they can also be applied to ultraviolet 
divergent integrals. In this case, we will get poles in £ which should be cancelled by 
renormalization counterterms.

The main advantage of series expansions as compared with numerical integrations 
is that they can be evaluated much faster on a computer. This is especially important

approximation M<°> = A40 = 6<(3) = 7.21234 ... (the imaginary part is zero to this 
order). The curves labeled 1,2,... show the approximations • • • defined
by eq. (5.3.14). The results of the numerical integration program are shown as crosses.

At large values of k2, say ten times the highest threshold or higher, already 
agrees with the numerical results to within 0.01%, which is the order of magnitude 
of the error in the numerical results.

The most interesting region is immediately above the highest threshold, where 
we would still expect the expansion to converge, but more slowly than at large k2. 
In fact, in our first example (5.3.16), jVff4! is still accurate to within 1% on the 
threshold itself. In the second example (5.3.17), the convergence near the threshold 
is less rapid. This region is shown in more detail in Fig. 5.11, where the left edge of 
the plots corresponds to the highest threshold. On the threshold itself, the error in 
.Adf6) is about 6% (in the real part), but it drops down to less than 1% by the time 
k2 is a factor of 1.2 above the threshold.

Finally, when we go below the highest threshold, we see 
the asymptotic approximations and the numerical values, an­
converge. From this we see that the asymptotic expansion can 
region above the highest threshold, as expected.
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Is c c

T(n/2 — i/i)r(n/2 — i/2)r(i/i + 1/2 — n/2) 
r(i/i)r(i/2)r(n - -i/2)= i7rn/2(-l)‘/1+*/2(-A:2)n/2“lzl"*/2

be extended in several directions. The general 
used for the large momentum limit can also be 

used for other limits in situations where some of the internal masses are much larger 
than others. In this way, it would be possible to obtain approximations for at least 
a part of the region between the thresholds, which is currently beyond reach. The 
expansions can also be generalized to two-loop vertex diagrams. The results could be 
checked by comparison with a parametric integral representation obtained in ref. [30].

wo-point integrals
Here we p < ^e formulae needed for evaluation of one- and two-loop massless
integrals c in this chapter. These results are well known, and we write them
only for completeness.

The massless one-loop integral is

when we are interested in a range of values of some of the parameters, such as e.g. 
the Higgs and top quark masses in the standard model. On the other hand, our 
expansions are useless in the region between the thresholds, whereas the numerical 
method has no such limitations.

The results presented here can
asymptotic expansion theorem we

where n = 4 — 2e is the space-time dimension.
Massless two-loop integrals are defined by (see (5.1.1))

'J(0)("l,J'2 , «/3, </«, 1/5) = (h 4- 21/3 + i/< - n) 1
x {P1 + 1,1/2 — 1, 1/3, t/4, </s) — ^(0,(</l + l,^,^ — l.'/'l.'/s)]

+1/4 p^°^(i/i, 1/2,1/3,1/4 4- 1,1/5 — 1) — 1/2,1/3 — 1,1/4 4- 1,1/5)] } ■ (5A.3)

Using this recurrence relation, together with the symmetry properties:

J10^!/!, 1/21 1/3, l/4, PS) = J(0)(l/4,4/5,l/3, «/l,‘/2) 

= J(0)(l/2, 1/, , I/3, l/5, I/4) = •/(0)(‘/S,‘/4,«/3,'/2,l/l))

Starting from an equation similar to eq. (5.2.53), one can show that



5B Massive vacuum integrals

(5B.1)= ijrn/2(-l)*z(m2)n/2

(5B.2)/(pi, v2, p3; nil,

= 0

In mJ 4- tn2 In m^)x
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all integrals J*°*(pi, p2,1/3, p4, p5) with positive integer p’s 
lowing “boundary” integrals:

0,p4,ps) = /<0’(p1;P4) Z<°>(p2,ps); (5A.5)

J(O)(P1, p2, P3, P4,0) = (jt2)*>+«>—/» /(O)^ p3) /(0)(lZ1 + „2 + _ n/2, P4). (5A.6)

For example,

Z(l, 1, l;mi,m2,m3)

1 
“2

mJ In mJ 
:2)]} + O(£) (5B.5)

can be reduced to the fol-

J(0)(l,l,l,l,l) =-^ 6<(3) + O(s). (5A.7)

Note that £(3) does not occur in the divergent and finite parts of any other integrals 
with positive i/’s.

The result for the one-loop massive tadpole integral is well know

• J pSf ■
The massive two-loop vacuum integral is defined by 

, f [ dnp d"g
2’ 3 J J [pl — m}]‘i [g2 — mj]^[(p — g)2 -- mj]*3

Some special cases were considered in refs. [12, 21, 16, 10, 18]. When mi = m2 
or mi = m2 = m, m3 = 0, it can be expressed in terms of gamma functions,

Z(pi,p2,p3;0,0,m) = _x"(_l)“i+"i+‘’(m2)’—
r(n/2 - p,)r(n/2 — p2)r(pt + p2 4- p3 - n)r(pt + p2 - n/2) 3,

x r(p1)r(p2)r(p3)r(n/2) ’

Z(pi,p2,P3;m,m,0) = -ir"(-l)“>+‘’+p’(m2)"-'1
X r(Pi + P2 + P3 ~ n)T(n/2 - p3)F(pi + p3 - n/2)F(p2 + P3 - n/2) 4>

r(pi)r(p2)r(n/2)r(pi + p2 + 2p3 - n)
The case where all the masses are non-zero is discussed in detail in sections (5.2.2)- 
(5.2.4). Here we give a summary of the results for Pi = p2 = P3 = 1 in a form that 
clearly shows the symmetry with respect to mJ, mJ and mJ.

= x4-2T2(1 4. £) (1 + 3e + 7s2)
mJ + mJ) + |(mj In mJ 4- mJ 

[mJ In2 mJ + mJ In2 mJ 4- mJ In2 mJ 

4-(mJ 4- mJ — mJ) In mJ In mJ 4- (mJ
4-(—mJ 4- mJ 4- mJ) In mJ

— mJ 4- mJ) In 
In mJ 4- F(mJ, mJ, m-



. (5B.6)*3'

(5B.7)

with

(5B.8)

(5B.9)

— Inxlny

<5B.1O)

(p2)(Wi+Ns)/2 ,

(5B.11)
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1 - x + y - A
2

E
«>+X>=JVl
2j2+j3=N2

= m}X2 (x,y)4>(x,y)

— 2Li2

1 + x — y - A 
2

1 + x - y - A
2

—2Lij

can be written as

If the largest mass is mi or m2, we should choose this mass as the dimensionless- 
making parameter in (5B.7) and (5B.8) (instead of m3). In the region where A2 < 0, 
the function (5B.7) can be represented in terms of Clausen’s functions (see eq. 5.2.52). 
To obtain results for integrals (5B.2) with higher integer powers of denominators, we 
use the recursive procedure of section (5.2.4).

We also need to evaluate massive integrals with numerators. To do this, in the 
one-loop case we used the following explicit formula:

W,! N2l 
(n/2)(W,+/Vj)/2

m3)

7T2

+ T

2 1 __ 2__2 14- 77i24- Tn3Tn^)j 
5(1 — Xi — X2 — X3) 

iii2m2 + x2x3m2 + x3xim2

In terms of the function 4> used in section (5.2), it

m? mi

A2(x,y) = (1 - x — y)2 - 4xy,

(fc2)21(fc2)»[2(fc.fc2)]»
Ji! ji'- J3!

F(m2,m2,

1 — x + y — A
2

and the integral on the l.h.s. vanishes if (M + N2) is odd. The sum in braces is 
over all non-negative integers ji,j2,ji obeying two conditions: 2j\ + J3 = M an<I 
2j2 + J3 = N2, so it is a single finite sum. We also use the standard notation for the 
Pochhammer symbol (5.2.9).

f d"p
J [p2 — m2]1'

where the function F is symmetric with respect to mj,m2 and mJ, and has the 
following Feynman parameter representation:

f 
J [p2 - m2]"

F(mJ,mJ,m2) = {mf + m2 + m2 — 2(mjm:

X / dxj [ dx2 f di' 
Jo Jo Jo

[2(fc1P)]^ [2(fc2p)]"’
1N1+N2- even



[2(fcp)]* [2(fcq)]

References

106

[1] G. ’tHooft and M. Veltman, Nucl.Phys. B44 (1972) 189.

[2] C.G. Bollini and J.J. Giambiagi, Nuovo Cim. 12B (1972) 20.

(p2)"(g2)”[2(p9)]" >
(5B.13)

E
Wi+»=N1

l 2j2+j3=N2

E
2«+»=7V, 
2j2+j3=^2

|N2|
INi+n2- even

___________ (IV3 + j3)!___________  
ji' Ji- j3! ((-^3 + j3)/2)! (n/2)(^3+j,)/j

1
J1U2! j3!

IV,! Ml (k2)iN'+N')/2 
(n/2\Nt+N2)/2

M! W (k2)lN'+fWt 
(n/‘2’'){N1+Ni)/2

72^(N2+iV3)/3

(5B.12)

>r (M + N3) is

*//

’//

and the integral on the l.h.s. of (5B.12) is equal to zero if (M 
odd. The sum in braces is of the same structure as in (5B.11)

We also need an analogous formula for the two-loop integr-. 
nators:

^p2)(jvl+^r3);

[ [____________ d"p dnq____________
J J [p2 - m’W - m2]^[(p - ?)2 ~ mfr

_______________dnp dnq_______________
[p2-m?]“‘[q2-m^[(p - q)2-m^

r r d"p d"g
J J [p2 - [g2 - m|]^

and this integral is also equal to zero if (Nt + /V2) is odd.
In all formulae (5B.11), (5B.12) and (5B.13), the remaining momenta in the nu­

merators on the r.h.s. can be expressed in terms of denominators, and we arrive at 
the result expressed in terms of integrals (5B.1) and (5B.2) without numerators.

dnp dnq 

[P2 - m?]"1 [<?2 - m2]^

three denomi-

[2(fcp)]"* [2(1;,)]"’ [2(pg)]"’1
I Ni+N3- even

N2+N3- even

When we have a two-loop integral with a numerator and two denominators (cor­
responding to a product of two one-loop tadpoles), the following formula can be 
derived:
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Numerical integration of two-loop self-energy 
diagrams

In order •. e two-loop radiative corrections in the theory of electroweak in­
teractions J need to know the numerical values of scalar two-loop self-energy
diagrams in ;neral mass case. It is not possible to express them in terms of 
polylogaritiims. l or small or large values of the external momentum p2, the series 
expansions of chapter 5 can be used, but what is really needed is a method that works 
for arbitrary values of p2.

For the convergent integral 7i234s(p2; m2, mJ, m2, m2), such a method was dis­
covered by Kreimer [1], who calculates the integral directly in momentum space, 
doing the last two integrations numerically. Another way to calculate this diagram, 
using a numerical integration over Feynman parameters, is presented in ref. [2].

Throughout this chapter, we shall use the notation introduced in section 4.2. We 
shall extend Kreimer’s algorithm to T234(p2; m^), T1234 (p2; mJ, mJ, m^, mJ),
and T1123<(p2; mJ, mj,mj, mJ, mJ), which are ultraviolet divergent. As is shown in 
ref. [3], all two-loop Feynman diagrams contributing to gauge boson self-energies 
in the standard model can be expressed in terms of these three functions, Turns, 
products of one-loop integrals and two-loop vacuum integrals. The special case of 
T11234 with mJ = 0, which is also infrared divergent, will not be considered here.

The extension of the algorithm is possible because we now have at our disposal a 
number of analytical expressions for special mass situations, which have the same ul­
traviolet divergences as the integrals we wish to calculate. By subtracting appropriate 
combinations of these special integrals, we can reduce our problem to the numerical 
evaluation of a convergent integral.

In section 6.2, we describe how we obtain these combinations and how the remain­
ing numerical integration is performed. Then, in section 6.3, we discuss the results of 
this general numerical approach and compare them with some results found by other 
methods.



6.2 Kreimer’s method

T = tn + ta .

(6.2.2)

0) +

all known analytically.

no

1 - Li2Li2

Each of the integrals T234, 
late them numerically, we

1
k2 — nr

7234(p2;m?>m3>0) =
-^(m? + m2)
Hr

l{l(TO>+ m’) -

(mJ — m:1
+ 2

1 .
+ 4P'

?} 
-3Lm2) + lp2Lp 

I-?} 
+(”! + "!) (3+ !»■ Q)}

m:

; mJ, 0,mJ)
(6.2.3)

7’1234 and Tn234 is ultraviolet divergent. In order to calcu- 
shall decompose them into two terms:

= -7234(p2;mJ,0,0) + r234(p2;mj,mj, 
+mJmjT23344(p2; mJ, mJ, 0, mJ, 0) .

The first three terms on the right hand side of this equation are
For the first term, where two masses are zero, we can use the result (4.6.21) obtained 
in chapter 4. The case when only one mass is zero can also be calculated analytically. 
The result, in the notation of section 4.6, is:

a suitable decomposition, we use the following identity:

m2 
k2(k2 — m2)

Applying this to propagators 3 and 4 in T234, we obtain

T234(p2;mJ,m:

(6.2.1)

This decomposition must satisfy two conditions. Firstly, the numerical part Tn must 
be finite, so that it can be calculated by numerical integration. Secondly, the analyt­
ical part TA must be a combination of integrals for which analytical expressions are 
known.

To find

12 ~ mi 

m2

mJ
P2

1
262
1
6
+m2(L2mi-3Lmi) + rnJ(L2m3

1 2 (, ( mJ \ > ( rni\ +-p2 < In —+ In —M
4 I \-P / \-P /

. Z_2 . —f o ■ 1

mJ — mJ

(p2 + mJ + mJ) (r, - r2) {- ln(ri) + ln(r2)}
4 \ z P



. (6.2.4)

(6.2.7)

and

711234,, , ,mj,

(6.2.9)

111

mJ) = 
mJ) =

(6.2.10)
(6.2.11)

Li2 (1 — n) + Lij (1 — r2) — Lia

(W1 + W3 + W«)(W2 + W3 + W5)\ 
(W2 + W3 + W4)(W1 + W3 + Ws)J ’ 

(6.2.13)

^5 + Li’ (
1 — T • (
----------- - Llj
-r2 / \

m‘.+m3

m‘3,m;

r°°J dj/;

; mJ, mJ, mJ, 
2 2 2

J, mJ, mJ) = mJmjT23344(p2;mJ,mJ,O,mJ,O). 

similar way. : • following identities for T1234 and Tn234 

mJ, mJ, mJ) = Ti234(p2; mJ, mJ, 0,0) 

!4(p2;mJ,mJ,mJ,0,0) + mjTi2344(p2; mJ, mJ, 0, mJ, 0) 

mJ,0,mJ,0),

mJ) = T1234(p2; m 
34fp';mJ,mJ,mJ, 
)23344(p2; mJ, mJ,

m3,mj) — — ?234(p2; mJ, 0,0) + T33i(p2; mJ,

T234;v(p2; m^, m:

In a

+mj (1 -

mJ, 0) + TWp2; mJ, 0, mJ),
(6.2.5)

(6.2.6)

can be derived:

?)H
The last term on the right hand side of eq. (6.2.3) is finite, due to the extra propa­
gators it contains. Therefore, both requirements mentioned above are satisfied if we 
define

T234a(p2;mJ,

Now, let us
culates the integral 7’12345
of the loop momenta analytically, he is left with a two dimensional integral over the 
time components of the loop momenta, which can be written as

Ti234s(p2; mJ, mJ, mJ, mJ,

r axP2 J-00

>t0,mj,0)
(6.2.8)

are given by 
convergent. This

>3,0,0),

>2, mJ, mJ)
>2,0,0),

, mJ, 0,0), 
mJ)

mj) =
1 1 ■

W2 — u>J wj — w2

mJ — mJ 
m?

1-mJ\l
m2 J)

= T11234(p2;mJ,mJ,mJ,0,0) 
+mj7ii23 mJ, mJ, mJ, mJ, 0,0) + mjT112344(p2; mJ, mJ, m: 

+mJmjT1123344(p2; mJ, mJ, mJ, mJ, 0, mJ, 0).

The first terms on the right hand sides of eqs. (6.2.7) and (6.2.8) 
eqs. (4.6.25) and (4.6.31), respectively. All the other terms are 
leads us to define

Ti234a(p2;

Ti234n(p2 ; m T'u34(p2;mJ,m:
-Ti234(p2;mJ,m:

Tii2344(p2;mJ,mJ,mJ,mJ,mJ) = Tut34(p2; mJ, m2, mJ, 

T'ii234/v(p2;mJ,mJ,mJ,mJ,mJ) = Tii234(p2; mJ, mJ, mJ, mJ,

-Tin34(p2;mJ,mJ,mJ,0,0). (6.2.12)

discuss Kreimer’s method. For timelike external momenta p, he cal- 
in the p-rest frame. Integrating over the space components

3

2



with

1/2
(6.2.14)w.

1/2
(6.2.15)Wj

(6.2.16)U>3

(6.2.17)w4

1/2
(6.2.18)Ws

hat the remaining

(6.2.19)

, (6.2.20)
oo

w4

are used.
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(u>2 + w3 + w4)(w2 4- J>3 4- w-i) \ 
(w2 + u>3 + Ul4)(w2 4- W3 +

(6.2.22)

(6.2.23)

7'1234n(p2; Hl,,

w3

£wi 4- w3 4- W4)(w2 4- u>3 4- wJ 
(t"2 + w3 4- W4)(W1 4- w3 4- W4)

m.

T234N(p2-,ml,i

ns for the integrals

P2 ' \ 

ml | 
P2

11/2

= [(* +1/)2

-

- [<«->>■-£+«
The square roots Wi,...,Ws should all be chosen in the fi: idrant. The result, 
(6.2.13), is also valid for spacelike external momenta. It tur 
x- and y-integrations can readily be performed numerical

Following exactly the same arguments, analogous repre:
Tn defined above can be derived:

>2>m3>
roo

dy
— OO

n?4) =

—5“---- 5 ‘n
wf — w3

f |n /(wi 4- w3 4- w4)(w2 4- w3 4- w4)\
1 \(w2 4-w3 4-w4)(wi 4-w3 4-w<)/

(6.2.21)

rn234N(p2;nii,nij,
4 too coo
?/-TOdl/-oo

mJ) =
dz / dyln

> J—oo

dS/(w?-W22)2 

(w; — Wg)(w3 4- w4 — w3 — w4) 1 
2wi(wj 4- w3 4- w4)(wj 4- w3 4- u>4) J

where, in addition to wj,..., w3, the variables

= [(* + y)2 + fe]1/2 > 
= [y2 + u]1/2,

2 ml , ■ x----- 4- ie
P

Kx+l)’-^ + .£

1/2



6.3 Results

di-yA(p2, s, m2)A(s,m|, mJ). (6.3.1)
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7T

7

dy {F(x,y) + F(-x,y) + F(x, -y) + F(—x, —y)} . (6.2.24) 
JO JO

Finally, we n■■ ■ quadrant onto a unit square using transformations of the form
x = x'/(l — x') and y = y'/(l — y'). The integrations are done with the Monte Carlo 
program VEGAS [4].

mJ, mJ)
= ^AT234(p2;mJ,m:

J(m3+Tn4)2

Im7’234(p2 ; mJ, 

1 
2i ”■

To check the reliability of the method, we looked at a number of special cases where 
we could compare the results obtained by numerical integration with results obtained 
by other methods.

The first case we considered was T234, where we put = 0. For several values of 
m3, m4 and p2, we compared the numerical results, obtained using 140000 points for 
the Monte Carlo integration, with the analytical result (6.2.4) and found agreement 
to four digits.

Next, we studied the imaginary part of T234 for general values of the masses. It is 
finite in D = 4. According to Cutkosky’s rules, it is equal to a three-particle phase 
space integral (see Fig. 4.5). Using the method of section 4.4, it can be written as 
a two dimensional integral. One of the integrations can easily be done analytically, 
yielding

It is possible to take the limit £ —» 0 before performing the x- and y-integrations, 
provided one remembers that the square roots w, should be positive when w2 is 
positive, and on the positive imaginary axis when w2 is negative. When p2 is negative, 

always positive, and the integrals Tn are real. However, when p2 is positive, 
are imaginary. This can give rise to imaginary

the w, are
there are regions where some of the w,
parts in the integrals Tn-

At first sight, one might think that the integrands in eqs. (6.2.13) and (6.2.20) 
have singularities where the denominators w? — w2 and w4 — w2 vanish. However, that 
is not the case, since the numerators also vanish at those points. This also happens 
in eq. (6.2.21), but there, the cancellation is more delicate because the factor w2 — w2 
occurs to the second power.

In order to perform the numerical integrations, we map the integration region 
onto a unit sq>; We do this by first shifting the integration variables so that the 
zeros of th- .viators w2 — w2 and w2 — w2 coincide with the axes. Then, we 
map the i? onto one quadrant:

dyF(x,y) =
rCO

JO



ln(ri)

(6.3.2)

i the ana-
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moment, 
Isis prob- 
lominator

^i234(p2;0,0,m'

?,0) (4.6.23)

Once again, we found the results of the numerical integration agree 
lytical results to four digits.

The numerical calculation of (6.2.21) seems to be more difficult, 
the errors are still rather large, especially for timelike external mome, 
ably due to the large cancellations that occur in the numerator when 
vanishes, but we expect this can be brought under control.

The great advantage of Kreimer’s method is its generality. In cases, it
cannot compete in speed or precision with analytical formulae, bu! in the general 
mass case, it provides results where other methods fail. In principle, it is possible 
to derive one dimensional integral representations for these scalar integrals, but one 
would have to consider many different cases, depending on whether some masses 
are smaller or larger than others, separately. With Kreimer’s method, all cases are 
treated at the same time.
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= 26* + 6 {2 ~ ■k’’} + T " 2^2) + Lp ~ 5Lp

— 7- In2 (—x) + 3 In (—x) + 3 —--------
z x

4 (i+l)in2(ri)-

We calculated this one dimensional integral numerically and found agreement with 
the results of Kreimer’s method to four digits.

As a check on T1234, we looked at the special cases T,1234(p2; 0,0,
and
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De invloed 1 i topquarks op de productie van 
meerder< on op electrozwakke parameters

Men stelt zich . alle materie opgebouwd is uit twee soorten deeltjes, lepto- 
nen en quarks, ij ; ?o- ie, die deze deeltjes beschrijft, wordt het standaardmodel 
genoemd. Naast leptouen en quarks komen in het model nog enkele andere deeltjes 
voor. Dat zijn de ijkbosonen: het foton, het gluon, het IV-deeltje en het Z-deeltje, 
die zorgen voor de overdracht van krachten tussen de leptonen en de quarks, en verder 
het Higgs-deeltje. Op het ogenblik komen alle experimenteel bekende gegevens over 
het gedrag van deze deeltjes overeen met de voorspellingen van het standaardmodel. 
Twee voorspellingen zijn echter nog niet uitgekomen. Ten eerste zouden er volgens 
het model zes soorten quarks moeten zijn, maar is de zesde soort, het topquark, nog 
niet waargenomen. Ten tweede is ook het Higgs-deeltje nog niet gezien.

Er bestaat een goede kans, dat het topquark binnenkort gevonden zal worden in 
experimenten die uitgevoerd worden bij Fermilab in de Verenigde Staten. Daar wor 
den protonen en antiprotonen versneld en vervolgens met elkaar in botsing gebrac t. 
Bij die botsingen zullen topquarks en antitopquarks in paren ontstaan. Ze zu en 
echter niet zelf waargenomen worden, omdat ze een zeer korte levensduur hebben. 
In plaats daarvan zal men hun vervalsproducten waarnemen en daaruit het kort 
stondige bestaan van het topquark moeten opmaken. De moeilijkheid daarbij is, at 
dezelfde vervalsproducten ook door andere reacties kunnen ontstaan, waar helemaa 
geen topquarks bij betrokken zijn. Het is daarom erg belangrijk om te weten hoe vaa 
die achtergrondreacties plaats vinden, in verhouding tot het aantal reacties waann 
topquarks ontstaan.

Er zijn verschillende manieren waarop de topquarks en antitopquarks kunnen 
vervallen. In dit proefschrift wordt vooral veel aandacht besteed aan het verva waar 
bij er uiteindelijk een neutrino, een geladen lepton en vier jets van hadronen (ui 
quarks samengestelde deeltjes) ontstaan. De belangrijkste achtergond hier ij is e 
reactie waarin vier jets en een VF-deeltje ontstaan, en het W-deeltje vervolgens m een 
neutrino en een geladen lepton vervalt. De werkzame doorsnede voor deze ac ter 
grondreactie — een grootheid, die aangeeft hoe vaak de reactie op zal tre en ij een 
gegeven aantal proton-antiproton botsingen — wordt berekend in hoofdstu , en



topquark beinvloedt namelijk de eigenschappen

116

Men kan ook uit andere experimenten iets over de topmassa te weten komen. Het 
opquar ' einvloedt namelijk de eigenschappen van de andere deeltjes in het stan- 

daardmodel door stralingscorrecties. Door die eigenschappen .eurig te meten, 
nassa.

:hulp van Feyn- 
.ijn al berekend, 
an zal men ook 

De tweede helft 
grammen. We

vindt men, indirect, grenzen op de mogelijke waarden van de 
Stralingscorrecties kunnen overzichtelijk voorgesteld worder

mandiagrammen. De bijdragen van diagrammen met een geslo< 
maar als in de toekomst de experimenten nog nauwkeuriger wc 
de bijdragen van diagrammen met twee lussen mee moeten n- 
van dit proefschrift gaat over de berekening van zulke twee 
beperken ons tot diagrammen met twee uitwendige lijnen.

In hoofdstuk 4 worden diagrammen uitgerekend, waarin sommigeIn hoofdstuk 4 worden diagrammen uitgerekend, waarin sommige van de in- 
wendige lijnen massaloze leptonen of quarks voorstellen. De uitkomsten kunnen 
ook worden gebruikt als een goede benadering voor diagrammen waarin leptonen 
of quarks voorkomen, waarvan de massa klein is vergeleken met de massa’s van het 
W- en het Z-deeltje.

Er komen echter ook diagrammen voor, waarin geen enkele massa verwaarloosd 
kan worden. In die gevallen blijkt de aanpak van hoofdstuk 4 niet te werken. Wat 
wel kan, is zo’n diagram schrijven als een oneindige reeks. We laten dit zien in 
hoofdstuk 5. Aan de hand van enkele voorbeelden wordt de convergentie van de 
reeksen onderzocht. De reeksen convergeren alleen voor waarden van de uitwendige 
impuls binnen zekere gebieden, maar binnen die gebieden is de convergentie vrij snel, 
zodat men met slechts enkele termen goede benaderingen krijgt.

Tenslotte wordt in hoofdstuk 6 een nog algemenere manier om deze diagrammen 
te berekenen beschreven, die voor willekeurige waarden van de uitwendige impuls te 
gebruiken is. Hierbij worden de diagrammen eerst geschreven als tweedimensionale 
integralen, die vervolgens numeriek uitgerekend worden.

blijkt van dezelfde orde van grootte als die van het topquarksignaal te zijn.
Het doel van de experimenten bij Fermilab is niet alleen het bestaan van top­

quarks aan te tonen, maar ook hun massa te bepalen. In beginsel kan dat eenvoudig 
door het aantal gevonden topquarks te tellen, en dan gebruik te maken van het, door 
de theorie gegeven, verband tussen de werkzame doorsnede en de topmassa. Omdat 
het echter heel moeilijk is om de werkzame doorsnede nauwkeurig uit te rekenen, 
kan men op deze wijze de topmassa niet erg nauwkeurig bepalen. Daarom wordt in 
hoofdstuk 3 een manier voorgesteld, waarop de topmassa bepaald zou kunnen worden 
door de energieen en impulsen van de vervalsproducten te meten, zonder het verband 
tussen de werkzame doorsnede en de topmassa te gebruiken.



Curriculum vitae

117

Ik ben op 12 december 1965 in Keulen geboren. Nadat ik in 1984 aan het Haags 
Montessori Lyceum het eindexamen VWO behaald had, begon ik natuurkunde te 
studeren aan de Rijksuniversiteit te Leiden. Het propaedeutisch examen werd in 
augustu - gd. Na een experimentele stage in de groep Quantumvloeistoffen
onder 1 of. dr. R. de Bruyn Ouboter ging ik naar de groep theoretische
hoge-e' <aar ik onder leiding van prof. dr. F.A. Berends een scriptie
schreef . malisatie van de Z-breedte. In juni 1989 volgde het doctoraal
examer; 'de.

Op j 989 trad ik als onderzoeker in opleiding in dienst van de Stichting
voor Fu .tc . . Onderzoek der Materie om bij prof. dr. F.A. Berends aan een
promotieoncic : : < te beginnen. Tijdens de promotieperiode bezocht ik in 1989 de 
“Herbstschule fur Hochenergiephysik” te Maria Laach, Duitsland, in 1990 en 1991 de 
“AIO/OIO-School theoretische hoge-energiefysica” in Twente en in 1990 de zomer- 
school “Z° Physics: Cargese 1990” te Cargese, Corsica. Mijn bijdrage aan het on- 
derwijs bestond uit het geven van werkcolleges bij het college Veldentheorie.



List of publications

118

6. Large momentum expansion of two-loop self-energy diagrams 
with arbitrary masses,
A.I. Davydychev, V.A. Smirnov and J.B. Tausk,
Leiden Preprint INLO-Pub-5/93.

5. Momentum expansion of two-loop self-energy diagrams 
occurring in the standard model, 
A.I. Davydychev and J.B. Tausk,
in Proc. VII Intern. Workshop (Sochi, Russia, October 1992), 
Yad. Fiz. 56 (1993) No. 11, 137.

4. Two-loop self-energy diagrams with different masses 
and the momentum expansion, 
A.I. Davydychev and J.B. Tausk, 
Nucl. Phys. B397 (1993) 123.

3. Scalar two-loop integrals for gauge boson 
self-energy diagrams with a massless fermion loop, 
R. Scharf and J.B. Tausk, Leiden Preprint INLO-Pub-7/9

1. On the Production of a W and Jets at Hadron Colliders,
F.A. Berends, W.T. Giele, H. Kuijf and J.B. Tausk, 
Nucl. Phys. B357 (1991) 32.

2. Top-quark search in multijet signals, F.A. Berends, J.B. T . 'sk. W.T. Giele, 
Phys. Rev. D47 (1993) 2746.





Stellingen

5. Bij het bepalen

Spiesberger en van 
voor zowel het

Vein de parton-dichtheidsfuncties uit diep-inelastische 
verstrooiingsexperimenten moet men rekening houden met de longitu- 
dinale structuurfunctie Fl.

en Km te bepalen, die voorkomen in de Michaelis-

en N2 geldt de volgende6. Voor twee niet-negatieve gehele getallen Ni 
vergelijking:

[(2fc-p)"‘(2fc •<?)"’]

- ■ «>-i

3. Om de constanten Vmor 
Menten vergelijking,

C.W. Wharton en R.J. Szawelski, 
Biochemical Journal SOB (1982) 351.

4. Omdat c-quarks soms voor &-quarks kunnen worden aangezien, is het 
van belang om te weten, hoe vaak er bij de reactae pp —■» W + 4 jets 
c-quarks in de eindtoestand voorkomen.

d[S]
dt [S] + Km ’

waarmee men de afbraak van een stof S onder invloed van een enzym 
beschrijft, is het nuttig om de gemtegreerde vonn van deze vergelijking 
te gebruiken.

1. De renormalisatieschema’s van Bohm, Hollik en
Sirlin geven tot op een-lusniveau dezelfde uitkomsten 
verval van het muon ids van het Z-deeltje.

M. B6hm, W. Hollik en H. Spiesberger, 
Fortschritte der Physik 34 (1986) 687;
A. Sirlin, Physical Review D22 (1980) 971.

2. Het zou interessant zijn om na te gaan, hoe de theoretisch voorspelde 
vorm van de Z-resonantie veranderen zou door het meenemen van de 
exacte energie-afhankelijkheid van het imaginaire deel van de tweelus- 
Z-zelfenergie.



[X] = jdnkf(k2)X,

of als een twee-lusintegraal,

[X] = JdnpJd"qgtf,q2,p-q)X.

J^2
te vervangen door

-K f - J[KU; (< 1,2).

nuttig zijn

J.B. Tausk, Leiden, September 1993.

9. Het huisvestingsbeleid 
biliteit van de bevolking.

In deze uitdrukkius ,f<5 
worden de tensoren gigeven door

7. De berekening van S-matrixelementen voor processen waarbij twee glu- 
onen betrokken zijn met polarisatievectoren J, en J2 kan soms verkort 
worden door de tensor

van veel Nederlandse gemeenten remt de mo-

8. Het zou nuttig zijn om naast bet telefoonnummer ook de postcode in 
de telefoongids te vermelden.

(Fi • W
Ki-K2 '

en K? de impulses ■ du gluonen, en

waarin de som loopt over alle niet-negatieve gehele getallen 
met de beperking dat 2ji + j3 = Nit 2j2 + j3 = N2. Hierbij kan het 
symbool [...] op twee manieren worden gelezen: als een dimensioneel 
geregulariseerde een-lusintegraal,
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