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Introduction1

In spite of the strong interactions that electrons have through the Coulomb po­
tential, the developments in solid state physics over the last sixty years have 
shown that quite often the electron-electron interactions can be neglected to 
a very good approximation. One of the most vivid technologically relevant il­
lustrations of this comes from the semiconductor industry — the transport of 
elections and holes in the semiconductor materials from which microchips are 
usually made, is normally described entirely in terms of a one-electron picture. 
This means that, instead of taking the correlations between the fermions (elec­
tions) into account, one can limit the analysis to that of a single electron in an 
effective periodic potential — a Bloch-electron. This effective potential may it- 
se't incorporate the effects of the interactions with the other electrons in some 
average way [ 1 J.

Such a description is not only successful for semiconductors, but also for 
many of the classical metals. In this case, the theoretical justification for de­
scribing transport and other properties in terms of almost non-interacting quasi­
particles, is the Landau Fermi-Liquid theory [1,2]. In the last two decades, more 
and more examples have been found of materials or of artificially structured 
devices, for which such a simple description fails. Notable examples include 
new materials like heavy fermions, Kondo materials, high-temperature super­
conductors and the recently discovered materials with a “giant” or “colossal” 
magnetoresistance. Also, surprising and fundamentally new manifestations of 
interaction effects have been found in suitably engineered structures of mate­
rials whose bulk behavior itself is classical. For example, in layered materials 
one can create quasi-two-dimensional electron gases. In the early eighties, new 
quantum Hall effects were discovered in such quasi-two-dimensional systems. 
One regime, the fractional quantum Hall regime, is characterized by new quasi­
particles, so-called composite fermions [3]. Manifestations of fundamentally 
new interaction effects have also been found in quasi-one-dimensional systems, 
both in charge density wave systems and in conducting polymers like polyacety­
lene. For polyacetylene, which is also a quasi-one-dimensional system as it is 
a long conjugated polymer, it was proposed some two decades ago that the 
electron-phonon interaction is essential for understanding many of its physical 
properties (4). In this case, the lowest energy excitations are a combination of a 
localized lattice distortion and a localized electronic state — these so-called soli­
tons are new topological excitations which can also be viewed as quasi-particles 
with nontrivial spin and charge quantum numbers.

These few examples serve to illustrate that fermionic correlation effects can 
manifest themselves in a variety of ways, and in a variety of systems. This is
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The Marginal Fermi Liquid phenomenology

(i.i.i)

reflected in this thesis, in which we consider two different, unrelated actually, 
examples of such fermionic correlations. The first one is a phenomenological 
approach that has been proposed to describe the normal state of high-Tc super­
conductors. This so-called Marginal Fermi Liquid approach [5] was introduced 
a number of years ago to capture a number of salient experimental features of 
the high-T,- materials in a few formulas. The second topic of this thesis will 
be the development of a simple extension of the Su-Schrieffer-Heeger model for 
polyacetylene to include the torsional and twist degrees of freedom. The aim of 
this study is to arrive at a model in the spirit of the Su-Schrieffer-Heeger model 
to describe the coherent conformational dynamics of (bio)molecules like retinal, 
the molecule that plays an important role in the first steps in vision. Below we 
motivate these two major themes of this thesis in more detail.

The Marginal Fermi liquid approach was motivated by the observation that the 
anomalous normal-state properties of the high-temperature superconductors 
near optimal doping, like the linear-in-temperature resistivity over a large tem­
perature range and the linear-in-frequency width of the quasiparticle peaks in 
photoemission experiments, could be modelled empirically by postulating that 
the imaginary part of the self-energy behaves as

Imi(co, T) = (Arr/2) max(co, T).

When starting from the marginal Fermi liquid Ansatz for the polarizability, as 
proposed by Varma ef al. [5], one obtains A = g2N(0')2, g being a coupling con­
stant and N(0) the density of states at the Fermi energy. This relation between 
the polarizability and the self-energy is discussed further in the first appendix 
to chapter 2.

If still valid in the limit of zero temperature and frequency, a regime which 
actually is hidden due to the occurrence of superconductivity in the cuprates, 
this behavior would imply a just-breakdown of the quasi-particle concept. The 
name “marginal Fermi liquid" derives from this condition. If, on the other hand, 
a small energy scale exists in the system, for instance due to low-lying spin fluc­
tuations, it might well be possible that the anomalous normal state properties 
are consistent with a Fermi liquid-like picture below this small energy scale. In 
this case, they would not really imply a breakdown of the quasi-particle concept 
in the cuprates [6].

In either case, however, strong inelastic scattering dominates the physics of 
the normal state. It has been pointed out that this inelastic scattering in the 
normal state largely affects the superconducting state: first of all the transition 
temperature is lowered substantially as a consequence of pairbreaking [7-10]. 
Secondly, the suppression of coherence peaks and a steep behavior of the gap,
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with an enhanced value of 2S(0)/kBTc, might arise as consequences of a strong 
temperature dependence of the inelastic scattering rate below Tc [7-11).

It is aesthetically most attractive to assume that the physics underlying the 
anomalous normal state behavior of the cuprates is also the origin of the su­
perconductivity [12], or is strongly competing with it. Kuroda and Varma [11] 
and Littlewood and Varma [13] have pursued the first possibility in an Eliash- 
berg strong-coupling approach, in which the MFL-polarizability plays the role of 
the bosonic mode that is responsible for the superconductivity, i.e. where the 
MFL-polarizability replaces the usual electron-phonon coupling a2F(co). They 
find s-wave superconductivity with an enhanced ratio 2A(0)IkBTc and a sharply 
decreasing nuclear relaxation rate l/T^T below Tc rather than a coherence peak.

In chapter 2 we shall show, without referring to any specific theory about 
the origin of the superconductivity, that the superconducting state is very much 
affected by the normal state behavior described by the MFL Ansatz or the sup­
pression thereof in the superconducting state. We demonstrate this by analyz­
ing the effect of an additional attractive BCS-type potential on a system in which 
the dominant scattering causes the unusual normal state behavior. The transi­
tion temperature Tc for this case can be determined from the ladder instability 
of the normal state. Below Tc, when the gap opens up, the suppression of the 
(electronic) bosonic mode is modeled by a scattering rate that decreases with 
decreasing temperature. The gap at zero temperature, A(0), remains practically 
unaffected by the MFL behavior above Tc if the MFL scattering is sufficiently 
suppressed at T = 0. Consequently, the ratio 2A(0)/kB7c is enhanced even for 
a weak-coupling superconductor, and the gap opens up rapidly; even a discon­
tinuous first order transition at Tc is possible. Furthermore, we find that this 
behavior of the gap together with the smearing of the singularity in the BCS 
density of states due to the MFL scattering suppresses the coherence peaks.

Although the dominant scattering leads to anomalous normal state behav­
ior modelled by the MFL Ansatz, a weaker interaction can be the origin of the 
superconductivity if retardation effects play a role, i.e. if different interactions 
involve different time scales. Within our description it is quite possible that the 
anomalous properties of the superconducting state of the cuprates are mainly 
due to the fact that the pairing occurs in a strongly correlated system (with MFL 
behavior), and that they are only weakly related to the origin of the pairing. 
Indeed, our results demonstrate a large degree of insensitivity of the unusual 
superconducting properties to the pairing mechanism. This becomes especially 
apparent by comparing our results to those of Littlewood and Varma [13], which 
are very similar, but obtained with the MFL-boson taken as the origin of the 
superconductivity.

Our investigation of the consequences of unusual normal state behavior mod­
elled by the MFL Ansatz thus nicely illustrates two simple generic features of 
high-Tc materials: first of all, it shows that the rapid suppression of the quasi­
particle scattering rate below Tc will automatically lead to a relatively high ratio
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1.2 The Su-Schrieffer-Heeger model for finite chains
As was already mentioned briefly before, the Su-Schrieffer-Heeger (SSH) Hamil­
tonian has proven to be a successful theoretical framework for understanding 
conjugated polymer chains [4,15,16]. In this tight-binding model one focusses 
on the coupling between the n-electrons that constitute the valence band, and 
the ionic motions along the one-dimensional polymeric chain. This model ex-

of 2A/kBTr. A large value of this ratio is normally associated with strong cou­
pling effects, but our analysis illustrates that this conclusion can not be drawn 
automatically. Although this is implicit in other more sophisticated approaches, 
like the one taken by Kuroda and Varma [11], the simplicity of our analysis 
brings this point to the foreground. Secondly, our analysis of marginal Fermi 
liquid effects on the fluctuation contribution to the conductivity, which is the 
subject of chapter 3, shows that these fluctuations are suppressed. Hence, 
while in the superconducting phase fluctuation effects in these materials are 
strongly enhanced due to the combined effect of the short coherence length, the 
high transition temperature and the strong anisotropy — taken together, these 
changes are so important that a whole new field of vortex phase physics has 
emerged — the strong normal state scattering modelled by the MFL Ansatz has 
the opposite effect, namely a suppression of the fluctuation contribution to the 
conductivity.

When the work for this thesis was started, it appeared that the MFL apm ■ >ach 
could be a promising route towards a semi-quantitative understanding of r um­
ber of properties of the normal phase of the high-Tc materials, and th,' the 
Ansatz might help in pointing the road towards a more microscopic theory, by 
putting constraints on it. These original promises have not been fulfilled. As 
the Ansatz is a postulate on the outcome of a hypothetical intermediate step of 
a calculation, it is not really a self-consistent theory. Consequently, calculations 
involve (implicit) questionable assumptions and the form of the Ansatz tells 
little — if anything — about the microscopic origin of the anomalous normal 
state behavior. Moreover, within the Ansatz, the spin degrees of freedom play 
no role at all, while in recent years it has become undeniable that the physics 
of the high-Tc materials is associated with a strong interplay between charge 
and spin degrees of freedom — for example, there is now strong experimental 
evidence for the existence of striped phases, in which holes order in domain 
walls that separate spin ordered domains [14]. Furthermore, the fact that there 
is now strong evidence that the superconducting order parameter has d-wave 
symmetry also points at a strong interplay between spin and charge degrees of 
freedom. For these reasons, we decided not to continue the research on the 
marginal Fermi liquid approach which was the main research theme during the 
first phase of our work, and whose results are described in chapters 2 and 3.
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hibits a rich variety of nonlinear phenomena and topological excitations, which 
result from the existence of two possible and equivalent configurations of bond­
length alternation in the Peierls distorted ground state.

The semi-classical dynamics following the excitation of a rr-electron from the 
top of the valence band into the bottom of the conduction band in the dimerized 
ground state, has been the subject of a number of papers [17-20]. However, 
in these works kink-antikink generation and their dynamics was considered on 
chains of effectively infinite length only, using periodic boundary conditions; 
therefore, little is known about finite-size effects [21].

Our motivation for studying these kink-antikink excitations on chains of fi­
nite length comes from a somewhat unexpected comer, and was triggered by in­
teractions and discussions with dr. H. J. M. de Groot from the chemistry depart­
ment in Leiden. In biochemistry one encounters small light-harvesting molecules 
called “chromophores” that trigger a (not yet fully determined) sequence of 
steps after photo-excitation. A specific example of such a chromophore is the 
rela'l • h small conjugated molecule 11-cis-retinal that has a carbon backbone 
of five (C - C = O-units, and which is bound inside the protein opsin to form the 
light-sensitive rhodopsin. Rhodopsin is present in membranes of the rod cells 
of vertebrate retina, thereby enabling perhaps the most important sense: vision.

In recent years (bio)chemists have been slowly uncovering the secrets of vi­
sion and now some aspects of the first steps in vision seem well established. To 
be more specific, photo-excitation of this chromophore leads to an intermediate 
state (which is called bathorhodopsin) on an extremely short time scale, of the 
order of 200 femtoseconds [22]. On this time scale the chromophore undergoes 
a cis-to-trans isomerization; all other processes, which eventually lead to the 
triggering of a nerve signal, take place on much larger time-scales. To study this 
system theoretically, one has to come up with a definite model. Because of the 
fact that many details of the structure and function of rhodopsin are not yet 
known and that it is unclear precisely which details are relevant to the function­
ing of rhodopsin, a complete model obviously is a tall order. It does seem clear 
however, that an extension of the SSH model (taking into consideration torsional 
degrees-of-freedom) is well suited because of the fact that the chromophore it­
self is a small conjugated molecule. The SSH model is also a model of intrinsic 
simplicity and one in which kink-antikink excitations are consistent with both 
the short time scale and the high quantum yield. In fact there are experimen­
tal indications that the charge distributions in the neighbourhood of a charged 
nitrogen group on the retinal, are described quite well by the SSH Hamiltonian 
with Coulomb corrections. Moreover, ab initio calculations by Bifone et al. [23] 
in the group of de Groot, also give indications for solitonic type of excitations 
if retinal is artificially brought into a twisted state. In such type of calculations, 
however, excited states can not properly be studied; in addition, the temporal 
dynamics can not be studied within such an approach, whereas tight binding 
type models of the kind we will introduce in chapters 4 and 5 are ideally suited
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to do so: simulations of our model for short to medium size chains can easily 
be run on a standard workstation.

Studying the effects of finite chain-lengths on the kink-antikink dynamics 
within the SSH model is a modest but logical first step towards the understand­
ing of the first step in vision. So before we can turn our attention to the formu­
lation of a tight-binding type model that allows us to study the dynamics of the 
untwisting of retinal in chapter 5, it is necessary to analyse more precisely how 
to study chains of finite length within the framework of an SSH-type model. It 
is this issue which is the subject of chapter 4. In order to study chains of finite 
length without periodic boundary conditions, the question arises as to which 
boundary condition to use, e.g. whether to leave the chain ends open, or to use 
a potential at the outer ends to regulate the chain length. Although this question 
has arisen before, it has, to our knowledge, not been addressed systematically. 
A study of these effects therefore turned out to be an essential ingredient for 
reaching our long term goal.

Our analysis in chapter 4 relies on a general expression that we derive for 
the energy-per-site e(u, 6) of the SSH model, for uniform but arbitrary values of 
the dimerization amplitude u and bond stretching <5. We show that a careful but 
relatively straightforward evaluation of r(u, 6) for a finite and open SSH chain 
allows one to determine the proper boundary conditions such that the bulk 
properties (ground state dimerization amplitude u and stretching 5) of long but 
open SSH chains are the same as those of periodic chains for the same parameter 
sets. This facilitates comparison of results for the two types of boundary condi­
tions. Furthermore, the central role of the energy-per-site e(u, 6) is made even 
more apparent when we consider the velocity of sound within the SSH model. 
In chapter 4 we will show how, both in a heuristic and in a more formal man­
ner, a non-perturbative expression for the velocity of sound as a function of the 
electron-phonon coupling strength in the SSH model can be obtained.

In chapter 5, we briefly introduce our extension of the SSH model, which al­
lows us to describe the dynamics of a molecule embedded in a three-dimensional 
space. To arrive at this extension, we have to account for the fact that the over­
lap of rr-orbitals on adjacent sites — and hence the hopping rate of the electrons 
in the tr-band — depends on the relative angle between these rr-orbitals. More­
over, we have to allow for bond bending, the fact that the lobes of bonding 
cr-orbitals may point in directions that differ slightly from 2rr/3 radians. The 
new constants appearing in our extension, like the bond-bending elastic con­
stant, can be determined relatively accurately by comparing the frequencies of 
the vibrational modes with typical values reported in the literature. For this rea­
son, the normal mode analysis of our model, summarized in chapter 5, is an 
important ingredient for fixing these parameters.

Although a full study of our model has not been completed yet, our results 
so far indicate that it is a viable model for studying the coherent dynamics and 
conformational changes in small and medium sized linear conjugated molecules.
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Once the parameters are fixed by comparing the results of our normal mode 
analysis to experimental vibration frequencies, our model yields explicit results, 
not only for the dynamics of molecules like the retinal in rhodopsin, but also 
for the energies of different (meta)stable states of molecules. Our preliminary 
investigations along these lines make us hopeful that our model does capture 
an important part of the physics involved: as we will discuss in chapter 5, the 
lowest vibrational period of a molecule with a size comparable to the size of 
retinal is of order 385 femtoseconds. Given the fact that our model does not 
take into account many features of the molecule and its surrounding protein 
cage that might have some influence, this compares favourably well with the 550 
femtoseconds oscillations that have been seen in the absorption spectra after 
photoexcitation of the molecule. An immediate implication of this comparison 
is that this slow oscillation is primarily a bending mode, not a twist mode. As 
an example of the other way in which our model can be tested, we note that 
as yet unpublished results for cyclooctatetraene (COT) indicate that our model 
gives quite reasonable results for the energy difference between the “boat" and 
“chair" configuration of this molecule [24].

In the model we have developed so far, we have not included a Hubbard type 
of interaction term. For the soliton excitations that arise in the one-dimensional 
SSH model, it is known that these Hubbard type of interaction terms can be 
taken into account perturbatively (provided the Hubbard-U interaction is not 
too large, of course), and it does not change the qualitative physics. One may 
wonder whether this remains true when one analyses the strong twists that nec­
essarily occur during conformational changes. This question is presently being 
investigated by Aalberts and coworkers. With a Hubbard interaction term, the 
model does become computationally more intensive, but with the recent ad­
vances in treating strongly correlated quasi-one-dimensional quantum systems 
using the Density Matrix Renormalization Group method, it appears that inclu­
sion of such terms is within reach [25]. This opens up a whole new avenue 
for treating chainlike molecular systems and for which our model in chapter 5 
provides a basis.
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2.1 Introduction

(2.1.1)

2 Phenomenology of the Superconducting 
State of a Marginal Fermi Liquid with BCS 
Model-Interaction

Since the discovery of high-temperature superconductors a decade ago, much 
theoretical effort has been made to understand the peculiar properties that these 
materials display. The superconducting state of the high-temperature supercon­
ductors shows a number of unusual features in comparison with weak-coupling 
BCS superconductors. Most prominent in the early days were the absence of 
coherence peaks in the nuclear spin relaxation rate 1/7\T [1] and also in the 
conductivity ay (a)} [2] (though in the latter quantity peaks arising from life­
time effects or thermal fluctuations can appear [3]), and an unusually large ratio 
2^(0)/kuTc, for which values up to 10 have been reported [4]. In recent years it 
has, in addition, become clear that these high-Tc materials are d-wave supercon­
ductors and not s-wave superconductors like the classical materials.

Furthermore, the normal-state properties of the high-temperature supercon­
ductors near optimal doping, like the linear-in-temperature resistivity over a 
large temperature range and the linear-in-frequency width of the quasiparticle 
peaks in photoemission experiments, are anomalous with respect to normal met­
als.

Although there is no agreement yet on the microscopic description of these 
materials, it is believed by almost all workers in the field that the origin of 
the superconductivity and the anomalous normal-state properties are intimately 
linked. In an attempt to give a unified perspective on the experimental facts, a 
phenomenological approach was taken by Varma et al. [5]. They showed, that 
the unconventional normal-state behavior was well described by the marginal 
Fermi liquid (MFL) hypothesis. Most of the anomalous normal-state properties 
can, according to this hypothesis, be understood from a single assumption about 
the polarizability of the (strongly interacting) system, namely

ImP(q, co) oc tanh(co/T).

It leads for instance to an electronic scattering rate 1/t = (Arr/2) max(T, |<o|), 
where A = g2N((y)2, with g being the coupling of the electrons with the uniden­
tified excitations that lead to the unusual polarizability and 1V(O) the density of 
states at the Fermi energy.

The assumption that the dominant scattering occurs by exchange of the ex­
citations that give rise to the unusual polarizability immediately leads to the
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observation that below Tc, as the gap opens up, this scattering proces will be 
suppressed considerably (most dramatically if the coupling of the electrons to 
the polarizability is such that it leads to type I coherence factors). As a con­
sequence the quasi-particle lifetime will rapidly increase as the temperature is 
lowered. Measurements of the surface resistance of YBCO [6) do indeed appear 
to give evidence for a suppression of the quasiparticle scattering rate, and hence 
support the assumption about the dominant role of an electronic scattering pro­
cess involving a nontrivial renormalization of the polarizability.

As we mentioned in the introductory chapter, it is aesthetically most attrac­
tive to assume that the (yet unknown) physics underlying the MFL hypothesis 
is also the origin of the superconductivity [7], Kuroda and Varma [8] and Lit­
tlewood and Varma [9] have pursued this idea in an Eliashberg strong-coupling 
approach, in which the MFL-polarizability plays the role of the bosonic mode 
that is responsible for the superconductivity, i.e. where the MFL-polarizability 
replaces the usual electron-phonon coupling a2F(w). They find s-wave super­
conductivity with an enhanced ratio 2A(0)lkBTc and a sharply decreasing 1 ,'TiT 
below Tc rather than a coherence peak.

However, in this chapter we shall show, without referring to any specific 
theory about the origin of the superconductivity, that the superconducting state 
is very much affected by the normal state MFL-behavior. We demonstrate this by 
analyzing the effect of an additional attractive BCS-type potential on a system in 
which the dominant scattering causes MFL behavior. The transition temperature 
Tc for this case can be determined from the ladder instability of the normal 
state. Below Tc, when the gap opens up, the suppression of the (electronic) 
bosonic mode is modeled by a scattering rate that decreases with decreasing 
temperature. The gap at zero temperature, A(0), remains practically unaffected 
by the MFL behavior above Tc if the MFL scattering is sufficiently suppressed at 
T = 0. Consequently, the ratio 2A(0)/kBTc is enhanced even for a weak-coupling 
superconductor, and the gap opens up rapidly; even a discontinuous first order 
transition at Tc is possible. Furthermore, we will find that this behavior of the 
gap together with the smearing of the singularity in the BCS density of states 
due to the MFL scattering suppresses the coherence peaks.

Although the dominant scattering leads to MFL behavior a weaker interaction 
can be the origin of the superconductivity if retardation effects play a role, i.e. if 
different interactions involve different time scales. It is therefore quite possible 
that the anomalous properties of the superconducting state of the cuprates are 
mainly due to the fact that the pairing occurs in a strongly correlated system 
(with MFL behavior), and that they are only weakly related to the origin of the 
pairing. Indeed, our results demonstrate a large degree of insensitivity of the 
unusual superconducting properties to the pairing mechanism. This becomes 
especially apparent by comparing our results to those of Littlewood and Varma 
[9J, which are very similar, but obtained with the MFL-boson taken as the origin 
of the superconductivity.
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2.2 2A(0)/keTc and suppression of Tc

S.(k, co) = A[co ln(x/coc) - i(rrx/2)]. (2.2.1)

(2.2.3)£(ico„) = -i\T arctan

(2.2.4)

With the simple model form for the attractive BCS interaction (up to an energy 
co0) Tc can be determined from the ladder instability of the normal-state. Here 
we neglect differences between the pair-formation temperature and the actual 
transition temperature. We take the normal-state propagators with the MFL self­
energy. The form of this self-energy can be derived from the Ansatz for the 
polarizability (Eq. 2.1.1). The derivation is given in appendix A, with the result:

Figure 2-1. Tile particle-particle ladder. The dashed lines denote simple BCS -interactions, the 
propagators have a marginal Fermi liquid self-energy.

Here x = max(|co|, T) and a>c is a large cut-off scale, which is estimated to be of 
the order of 0.5 eV from Raman scattering [11; also the infrared measurements 
of Rotter et al. [10], which show a quasiparticle scattering rate which is linear 
in to up to frequencies of 3000 cm-1 (0.37 eV) indicate a cut-off of this order. 
The value of A can be determined from resistivity measurements. Taking from 
ref. [11] the result of resistivity measurements up to 600K on Bi2Sr2.2Cao.8Cu208 
that dp(T}ldT = 0.46pflcm/K , we find A = 0.23, assuming a plasma frequency 
of 1 eV. Though the value of A is certainly not the same for all high-Tc materials, 
it is of this order of magnitude.

The temperature Green function in the normal state then is

G(k, ia>n) = [ico„ -e(k) -S(ico„)] *, (2.2.2)

where from analytic continuation of the marginal Fermi liquid S(k, co) it follows 
that (see appendix B)

1- -tAco„ log co„ + a>c \ 
^n + T2)'

The pairing-instability occurs at the temperature where the particle-particle 
scattering amplitude f(k, co, k, co; -k, -co, -k, -co) diverges (Fig. 2-1) [12],

■T =_ ___* ,,, I t 

>________ — k,—co

l=N(0)VT f de(k)G(-k,-ico„)G(k,icon), 
lain|<0)0 J
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(2.2.5)

))]■■arctan

2N(0)V

1 +

A = —----

B = -

(2.2.7)

(2.2.8)

where N(0) is the density of states at the Fermi energy and V is the strength 
of the BCS-type interaction with a cut-off energy co0. The e(k)-integration is 
straightforward, leading to

Here <p(x) is the Digamma function and a = u)0/(joc < 1. The critical tempera­
ture then is found to be

A
+ (2n + 1) 7T

rnolZnT-(1/2) z 
71=0

o>o/2nr-(l/2) z 
n=0

((2n + l)x

B - VB2 - 4AC 
2A

________________ 1_______________
(2n+ 1) [1 - Alog((2n + DrrT/coJ]

1 
(2n + l)rr

<uo/2nT-(l/2)
1 = 2N(0)V

Taking for instance A = 0.23, o>o=0.2 eV, aic=0.5 eV and N(0)V=0.5 yields 
Tc=91 K. In the limit A — 0 one recovers the BCS critical temperature, TcBCS = 
1.13co0exp[-l/N(0)V], which is higher than TC(A > 0). In figure 2-2 we have 
plotted TC(A = 0)/Tc(A^s) as a function Ans for different values of N(0)V and 
with a = 0.4. One sees that the stronger the BCS-coupling is, the smaller the rel­
ative suppression of Tc due to the MFL-scattering. Thus the critical temperature 
is suppressed as compared to the BCS-value by the MFL-behavior of the normal

« 2N(0)V

The remaining sum over the Matsubara frequencies can, under the condition 
that coo < u>c or that A is sufficiently small, be approximated by

Alog(2n + 1)
1 + Alog(coc/7tT) J

 (2.2.6)
Performing the sum in the first contribution from the term between square 
brackets and writing the second sum as an integral gives the instability con­
dition, which can be written as a quadratic equation for log(a>o/TrTc) = X, 
AX2 + BX + C = 0, with the coefficients

71 = 0

(2n + 1)2tt2T2 + a>2'\ 
(2n+ l)2tr2T2 + T2 )

 5A  A2
4 N(0)V

(1 - A log a) - A (log 2 + (p (|)) + (1 - A log a),

(1 - A log a)2 - (log 2

____________ 1____________
(2n +!)[! + Alog(coc/rrT)]

TC(A) = exp 
7T

+ (I)) (1 - Aloga)) .

2A
N(0)V

C =___ *
N(0)V

x I 1 + - log I
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Figure 2-2. Tt(A = O)/Tc(AnJ) versus Tc(AnJ). The different curves correspond, from top to 
bottom, with values of N(0)V=0.3, 0.45, 0.6, 0.75 and 0.9.
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.2.9)= 3.53

(2.2.10)= 3.532A(0)  Tc(A(T = 0)) 
kBTc Teens')

Thus with separate origins of the anomalous normal-state properties (arising 
from the MFL-polarizabUity) and the superconductivity (originating from the BCS 
model-interaction) a situation arises that resembles the strong-coupling situa­
tion with an enhanced value of 2A(0)lkBTc. The reason is that the inclusion of 
the MFL self-energy in the propagators of the particle-particle ladder describes 
the pairbreaking effects, which are suppressed at low temperatures. Such a sup­
pression also occurs in the strong coupling phonon situation, where the pair­
breaking due to thermal phonons has a relatively large effect on the transition 
temperature but only a small effect on the gap at zero temperature, where no 
thermal phonons are present.

In the extreme limit in which the quasiparticle scattering rate becomes negli­
gible as soon as the gap opens up, the present model reduces to the BCS-problem 
for all T < Tc. Then, A(T) follows a BCS dependence Abcs(A = 0, T) for all 
T < Tc(Anj). The behavior of Abcs(^ = 0,T) is indicated by the uppermost 
dashed curve in Fig. 2-3. Clearly, in this extreme limit, A jumps to a finite value 
at Tc(AnJ). In the general case in which the quasiparticle scattering rate remains 
nonvanishing below Tc, the opening up of the gap is less drastic, but still more 
rapid than in the BCS case: the quicker A(T) decreases below Tc, the quicker the 
gap opens up, and vice versa. Although in principle the full complex gap equa­
tions have to be solved below Tc to study this behavior, the general trend can 
be understood as follows. Consider a temperature-independent A; for a given

2A(0)  TC(A = 0) 
kBTc Tc(Am) '

In general, if the MFL mode is not entirely suppressed at zero temp;:: lure, 
a smaller ratio is obtained. When a possible small effect of a tc: :■ iture- 
independent inelastic scattering on the ratio 2A(0)/kBTc is neglected, has

state. This is a natural consequence of the pairbreaking caused by the inelastic 
MFL-scatt ering.

An immediate consequence of the electronic origin of the MFL-mode is that at 
low temperatures where the gap develops, the MFL-mode itself will also develop 
a gap, and the low energy scattering will be suppressed [9]. The suppression of 
the quasi-particle scattering rate below Tc can be described phenomenologically 
by 1/t(T) = (A(T)tt/2)T, where A is constant for T > Tc, indicated by A„.. As 
explained above we estimate Anj=0.23 from the experiment of ref. [11]. Upon 
entering the superconducting state ACT) decreases.

In case the MFL-interaction is completely frozen out at zero temperature the 
zero temperature gap A(0) will not be affected by the MFL-scattering and thus 
assumes the BCS-value. Therefore, the ratio 2A(0)lkBTc increases entirely due 
to the effect of the MFL pairbreaking scattering on the transition tempt-: ire,
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Figure 2-3. The gap as a function of temperature (upper figure) with a temperature-dependent 
A (lower figure) with 2A(0)lkBTc ~ 7.8. The curves in the lower figure correspond to curves 
in the upper figure: the lower the A(T) curve, the higher the A(T) curve. The dashed lines 
are BCS curves (thus with 2A(0)/kBTc = 3.53) through TC(A), with the values of A given in the 
figure. We used N(0)V=0.6, a>c = 0.5 eV and a>o = 0.2 eV.
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2.3 Coherence peaks

BCS theory predicts coherence peaks in the nuclear spin relaxation rate and the 
microwave conductivity as a function of temperature (16). These peaks appear 
at about 0.85Tc and have a width of typically 0.3Tc. They reflect the properties of 
the quasi-particles and the singular nature of the density of states just above the 
gap, Ns(a>) = N„(0)co/Vto2 - |A|2. In the high-temperature superconductors 
these coherence peaks are absent [1], In Eliashberg strong-coupling theory (with 
an a2F(<o) from the MFL mode [8,9] or from phonons [13,14,15]) it is found that 
they may disappear for sufficiently strong coupling.

With 2A(0)lkBTc large, the coherence peaks become narrower and are lo­
cated closer to Tc than in the BCS case. This is due to the same effect that leads 
to the steep behavior of the gap: As the parameter A changes upon entering the 
superconductive state a scan of the BCS curves between the A=0.23-curve at Tc 
and the A=O-curve at T=0 (as described above for the gap) is made, as shown in 
Fig. 2-4. This yields a narrow coherence peak. By using directly the steep gap, 
one also finds this narrow coherence peak. With A being a function of A(T), 
as was considered above, the coherence peak disappears completely when the

value of A the transition temperature TC(A) is known from Eq. 2.2.8 to increase 
with decreasing A. In a rough approximation, we can take for the temperature 
dependence of A(A, T) for fixed A a BCS curve through TC(A). Curves of this type 
are indicated by dashed lines in Fig. 2-3. (The ratios of the Tc's for A=0, 0.06, 
0.12, 0.18 and 0.23. are taken from the N(0)V = 0.6-curve in Fig 2-2) If we now 
consider a temperature-dependent A(T) as drawn in the lower part of Fig. 2-3, 
we obtain a gap that “scans" the constant-A-curves between the A = 0.23-curve 
at Tc and the A = 0-curve at T = 0 (solid curve and dotted curve, corresponding 
to the A(T) curves that are shown in the lower part of the figure). Evidently this 
leads to a relatively rapid opening up of the gap and a larger ratio 2A(0)/kBTc, 
which for the curve we have shown is about 7.8. In fact, if we take the scatter­
ing rate as a function of A(T) and T, rather than of T only, the opening up of 
the gap and the decrease of the scattering rate even show a discontinuity at Tc 
(discontinuous curves in Fig. 2-3), very much like the behavior discussed above 
in the limit A — 0 for all T < Tc. This discontinuity is found to be very large 
when we use A(T < Tr)/AnJ = 2/(1 + exp(A(T)/T)). (This ratio is the low fre­
quency limit of the ultrasonic attenuation in BCS theory, i.e. a coherence-type 
I suppression [16]). Of course, it also leads to a discontinuity in A at Finite 
frequencies (and presumably also correlation effects leading to a vertex renor- 
malisation) might weaken this drastic behavior, leading to a smaller jump of the 
gap at Tc and a remaining amount of inelastic scattering in the superconductive 
state. Experiments seem to agree that the temperature dependence of A(T) is 
very steep, if not discontinuous [3].
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Figure 2-4. Coherence peak (solid curve) with a temperature dependent quasi-particle lifetime 
1/t = (A(T)tt/2)T, A(T) taken as the upper A(T)-curve in Fig. 2-3, but without broadening 
of the density of states taken into account. The dashed curves are BCS coherence peaks, Tc 
determined by (8) with, from right to left, A=0, 0.06, 0.12, 0.18 and 0.23.
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(2.3.1)

where

G(k,z) = (2.3.2)

2.4 Conclusions

i
2 Tri

(0 + <X2)y]2y[p1 
2tx^2 + X2

Ns(co)
N„(0)

Nt(co)
N„(0)

z + e(k) 
z2 -E(k)2 ’

and £(k) = ^e(k)2 + |A|2. The integral can be evaluated exactly to give

+ y2 + 2/? + y^2^2 + y2 -20 ,

discontinuity of the gap, and thus of A at Tc is sufficiently large. If A changes 
continuously at Tc, always a narrow peak remains. The same mechanism leads 
to a more rapid suppression of the ultrasonic attenuation rate below Tc.

Close to Tr, in the region of the narrow peak, the inelastic scattering is still 
active. This scattering, in addition to the BCS-interaction, has the effect of smear­
ing the square root singularity in the BCS density of states. With a quasi-particle 
lifetime of the order of 0.2 x 10"13 seconds close to Tc, as given by Bonn et al. 
[6], the spectral broadening near Tc is of the order of the zero temperature gap 
in the cuprates. At lower temperatures the broadening is strongly reduced due 
to the suppression of the inelastic scattering.

The smearing of the BCS density of states due to the MFL scattering is shown 
in Fig. 2-5. It is calculated from the spectral function of a BCS superconductor, 
with an imaginary part of the selfenergy 1/t = (A(T)tt/2)T, i.e.

In this chapter, we have considered a system of electrons with an (unidentified) 
dominant scattering mechanism that leads to marginal Fermi liquid behavior 
and a BCS model-interaction, that causes superconductivity. In absence of the

(2.3.3) 
where a2 = co2 + A2 + (1/t)2, 0 = co2 - A2 - (1/t)2 and y = 2co/t. The 
quasi-particle spectrum obtained in this way is always gapless, with the zero 
frequency value Ns(co - 0,T)/Nn(0) = 1/V1 + A(T)2t(T)2. In Fig. 2-5 we have 
shown N5(co)/JV„(0) for different temperatures and different scattering rates 
at Tc. The temperature dependence of the MFL scattering rate shows up in the 
decreased amount of broadening at low temperatures.

Such a broadening of the square root singularity in the density of states, 
which occurs especially near Tc, where the narrow coherence peak is located, 
suppresses the peak largely or totally, as is shown in Fig. 2-6. This suppression 
even occurs for scattering rates that are smaller by a factor of two than quoted 
above.

J de(k) [G(k,z — co - i/r) - G(k,z — co + i/T)] ,
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Figure 2-5. The density of states in the superconducting state with the MFL-interaction at 
different temperatures. At low temperatures the MFL-interaction is suppressed and the BCS 
square root singularity is recovered. At higher temperatures the MFL interaction Is stronger, 
and the smearing of the singularity stronger.The dotted curve is obtained with a scattering 
rate of 0.02xA(0) at Tc, the solid line with a scattering rate of 0.05xA(0) at Te and the dashed 
line with a scattering rate of 0.4xA(0) at Tc. We used a decrease of the scattering rate as 
indicated by the solid curve in Fig. 2-3, i.e. ACT) = (T/Tc)4AnJ below Tc. Even our largest 
scattering rate is modest compared to the one given by Bonn et al. [6].
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Figure 2-6. The nuclear spin relaxation rate l/Tj normalized to the normal state value with 
broadening of the density of states taken into account. The scattering rates are the same as in 
figure refmfldos.
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m

Appendix A: Derivation of the MFL self-energy

(A.l)

(A.2)

>-----
»,“n

------ ►
».“n

The sum can be evaluated in the usual way, by representing the sum as an inte­
gral along the contour C shown in Fig. 2-8:

MFL-scattering the system would be a BCS-superconductor. The MFL-scattering 
is a pairbreaking process that lowers the critical temperature, which we calcu­
lated from the divergence of the particle-particle scattering amplitude. If the 
MFL mode is sufficiently suppressed below Tc it has little effect on the zero 
temperature gap. Consequently, 2A(0)/kBTc is enhanced. The gap opens up 
relatively rapidly, possibly even with a discontinuity at Tc. The inelastic MFL- 
scattering also broadens the square root singularity in the density of states 
which, together with the enhanced value of 2A(0)/kBTc, leads to a suppression 
of the coherence peaks. Type I coherence behavior as followed by the ultra­
sonic attenuation is more rapidly suppressed below Tc than in the BCS-case. 
Our simple description embodies the relevant features of the Eliashberg strong­
coupling approach: pairbreaking and broadening of the density of states due to 
inelastic scattering, and therefore indeed recovers many of the results obtained 
by Littlewood and Varma [9]. However, in our case the interaction that causes 
superconductivity is of BCS-type, rather than the MFL-mode.

In this appendix we show, how the expression for the MFL self-energy (Eq. 2.2.1) 
follows from the Ansatz in Eq. 2.1.1 for the polarizability of the system. Using 
the diagram shown in Fig. 2-7, we may write the expression for the self-energy 
as:

Figure 2-7. Tire self-energy diagram, in which the drawn line represents the electron propaga­
tor and the dashed line the polarization.
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Im co
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Re co

(A.3)doo' -? da) 2 7T i reSm'=j(x)n—>

[’’IS(ico„) =

[4'
(A.4)

Xr(io) =

(A.6)lmZ«(ra)

Figure 2-8. The contours used in Eqs. A.2 and A.3. The heavy lines denote the coni'.'. while 
the thin lines denote the contour C into which C will be deformed.

-<=-

dq 
(2tt)3

dq 
(2rr)3

dq 
(2tt)3

<p doo' =
Jc

Abbreviating £p.
does not explidtely depend on momentum, the expression for the self-energy is 
thus given by:

>> doo' 
ir

Pr(w -S)l 
+ ij • 

(A.5)

As a second step, we deform the contour C into the contour C. In doing so we 
obtain, in a shorthand notation:

/■ 00+16

J -CO+ 1(5

by and anticipating that the the polarizability in an MFL

doo'

•00

doo'

2tri J

from which the imaginary part can be obtained as

z f dq rim Pg(co - g,q) lmPR(co - g,q)l
9 J (2rr)3 [ - 1 + 1 J '

1 P(oo' + id) -P(co' - it) 
el,u>' - 1' loon - 00' - § 

P(iCQn-S) 1 
+ 1]

1 ImPg(co') 
e8w' _ 1 iWn - a)' - §

P(tCOw ~ ?) ~|
e0ia,„-« + 1J ■

Continuation to real frequency (ioon — co + i<5) gives

rr J
“ du)' 1 Im Pg (co') 

e^10' -1 co -co'- ? +id



Appendix B: Analytic continuation of the MFL self-energy 33

Im Sr(co)

(A. 7)

Substituting for Im Px the MFL form

(A.8)

then finally le rtth

[n(5) +/(? - co)] , (A.9)

Analytic continuation of the MFL self­Appendix B: 
energy

This behavior leads to the analytic form for the MFL self-energy as given by 
Eq. 2.2.1, since the real part may be obtained simply from the Kramers-Kronig 
relation between the real and imaginairy parts of an analytic function.

Introducing the density of states at the Fermi level ZV0, and the Bose-Einstein 
and Fermi-Dirac distributions n(x) and f(x) respectively, we may rewrite this 
as

• for T << co << a>c, only the Fermi-Dirac term will contribute significantly 
with a result that grows linearly in co.

• for co << T << a>c, the product containing the Fermi-Dirac distribution 
f will not contribute much, and the remaining part with the product con­
taining the Bose-Einstein factor n will result in a contribution that grows 
linearly with T.

where A = g'l!N$.
Although this integral cannot be evaluated analytically, it is easy to deduce 

its following properties:

92tK0 J Im PR(co - 5) [n(w - g) + /(-?)] 

52zV0JdgImPR(§)[n(5)+f(5-a))].

tanh(g/T)
1 +52/C02

■ ■ ; . = A J dg

In this appendix we will fill in the steps that lead from the MFL selfenergy for 
real frequencies to the expression for this self-energy for imaginairy frequencies, 
Eq. 2.2.3.

The selfenergy at imaginairy frequencies, S(tcon), can be obtained from the 
imaginairy part of the (retarded) self-energy at real frequencies, ER(co), through

„ tanh(E/T)
mPR© - -rvo j + g2/to2 ■
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(B.l)duoS(ico„) =

duo duo

duo

(B.2)

results in

(B.3)

for co < < T < < uoc

(B.4)

(B.5)

TT

Sr(cO)

CO - iuon

Sr(co) 
co - ico„
Sr(co) +

co - ico„
Sr(co)

co2 + icoji ’

which is Eq. 2.2.3.
It is easily verified that this expression correctly returns the self-energy ex­

pression for real frequencies. Indeed, analytic continuation to real frequencies 
(icon — co + i0+) gives,

S(ico„) = - iAco„

_ , . -iArr . , / co \ Sr(co) ~ —-—co + Acolog I — .
Z \ COc /

/•tOf

Jr

1^
rr

TT

2tcon
TT

'c>

These two limiting forms may be combined to reproduce the expression for 
the self-energy in Eq. 2.2.1.

while for T << co << coc

Sr(co) =

J"

S'r(co) = [T0(T - |co|) + co0(|co| - T)] ,

duo 
o

T 
uo2 + ico2

T 1= -iAT arctan(— )--iAco„log 
co„ 2

duo—: 
CO'

*

where, in the last step, use has been made of the fact that SR(co) is an even 
function of co.

Substitution of the MFL form

^T + A<olog(£),

-1
+ ico2 J 

COn + tOcA 
co2 + r2 ;■

-iArr
2
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3.1 Introduction

3 Fluctuation Conductivity and 
Ginzburg-Landau Parameters in High- 
Temperature Superconductors above Tc: 
effect of strong inelastic scattering

In the presence of strong pair-breaking the leading contribution to the fluctua­
tion conductivity above the superconducting transition is the Azlamasov-Larkin 
correction. The Maki-Thompson contribution, which describes the scattering

The high transition temperature, as well as the short coherence length and the 
two-dimensionality of the high-Tc cuprate superconductors, enhance the ther­
mal fluctuation1- of the order parameter near Tc in comparison to classical su­
perconductors It is therefore of relevance to study the effect of the strong in­
elastic scattering above the transition temperature on the correction to physical 
quantities due to these thermal fluctuations.

In this chapter we shall analyze the Azlamasov-Larkin fluctuation conduc­
tivity in the presence of the inelastic scattering that leads to the self-energy 
(Eq. 1.1.1). We will find that this scattering leads to cm appreciable change in 
the Ginzburg-Landau parameters and the current vertex; this in turn leads to a 
suppression of the fluctuation conductivity as compared to the case of a con­
stant (i.e. independent of frequency, unlike Eq. 1.1.1) pairbreaking scattering 
rate (e.g. magnetic impurities), which increases with decreasing dimensionality 
and increasing scattering strength. The suppression is larger the smaller the 
dimensionality.

It was shown by Ioffe et al. [1] that in the c-direction of strongly anisotropic 
superconductors, fluctuation corrections to the resistivity first lead to a resistiv­
ity enhancement, as a consequence of electron scattering against virtual Cooper 
pairs, before the zero-dimensional Azlamasov-Larkin fluctuation correction low­
ers the resistivity closer to Tc. The magnetic impurity type of pair-breaking, 
made temperature- but not frequency-dependent, was used in [1], and our find­
ings thus modify those results. We find that their effect is substantially en­
hanced and might explain the upturn of the c-axis resistivity in the cuprates just 
above Tc upon lowering the temperature [1].

3.2 Fluctuation conductivity in an MFL above Tc
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kP

kQ-p Q-k

kP

a

V(Q, inm, iO|)2F(Q, iQmlUQ, - iQi)A(iQi)

(3.2.1)

iQtf = -2T X

(3.2.2)

and HQ, i£lm) is the pair propagator.

(3.2.3)G(k + Q, iwn + inm)G(-k, -ia)n)

3.2.1 Calculation of the pair propagator
First, we calculate the pair propagator HQ, iQm). It is given by the sum of the 
geometric series (Fig. 3-2), F = —V/(1 - X), where V is the usual BCS model­
interaction, which is constant and attractive up to an energy coo, and X is given 
by

dQ 
(2rr)D

dk 
(2rr)D

V(Q. £Qm,

of a particle-hole pair into another particle-hole pair by exchange of a virtual 
Cooper pair, is largely suppressed by the pairbreaking [2]. We shall therefore 
concentrate on the Azlamasov-Larkin correction for a system which displays 
marginal Fermi liquid behavior above the superconducting transition.

The Azlamasov-Larkin diagram (Fig. 3-1) represents a contribution to the cur­
rent

Figure 3-1. The Azlamasov-Larkin contribution to the conductivity. The propagators have 
marginal Fermi liquid self-energy and the pair propagator is shown in Fig. 2-1.

)““a) I
where A is the vector potential. The “vertex function” V is given by

y [ dp 
it J

x2pG(p, icon)G(p, iQ| + ico„)G(Q- p, iQm - iQi - im„)

X(Q.iQm) = VT X [
|a>nl<O>0 J
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k+Q
+

-k

and the temperature Green function in the normal state is

S(ico„) - ~ii\Tarctan (3.2.5)

G(k + Q, icon + iQm) = (3.2.6)

G3(k, iWn + idm).

(3.2.7)G(k, iwn + iQm)G(-k, -ico„)

G2(k, iw„)G(-k,

Figure 3-2. The pair propagator T(Q, inm). The grey lines denote simple BCS interactions, the 
propagators have a marginal Fermi liquid self-energy (See also Fig. 2-1).

G(k, •'«>„) = [t<on-e(k)-£(ia»n)] ’• (3.2.4)

From analytic continuation of the self-energy S(co) it follows (see appendix B) 
that at the Matsuba-;. frequencies

x(Q,tnm) = vr£ [ 
i(Vn

+VTX f
icon J m 2m

m2 + T2; ■
1- - lAtOn 10g(“I\<On/

Here <oc is an upper cut-off, estimated to be at least 0.5 eV.
We thus consider, as we did in the previous chapter, a system in which the 

dominant interaction leads to marginal Fermi liquid behavior. This does not rule 
out that a different, weaker interaction (V) causes superconductivity, provided 
retardation effects play a role such that the different interactions operate on 
different time scales. (A high transition temperature might in such a case be due 
to a large scale coo or to the presence of a van Hove singularity in the density of 
states [3].)

It is the simple BCS model-form we assume for V, that makes an explicit 
calculation of the pair propagator F(Q, i(lm), in the limit of small Q and small 
fl, possible. To this end, we expand G(k + Q, ia>n + iQm) to order I QI2:

k • O
G(k, ia>n + ifim) 3----- —G2(k, ia)n + inm)

+^-G2(k,icun + iQm) + ^^2
2m m2

Substitution in the expression for X(Q, ifim) gives three terms:

dk
(2rr)D

dk
(2rr)D

Q2
2m
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G3(k, iwn)G(-k,-ia>„)

. We can expand this

Xa(Q, iQ„)

(3.2.9)

1
2t

<P"= WqV

(3.2.10)

(3.2.11)

(3.2.12)

(3.2.13)

(k-Q) 
m2

inz ’ 
8TC

.< - -k
. odd

dk 
(2rr)°

= XA(Q,iQm) + XB(Q) + Xc(Q),

dk
(2rr)D

,2
-G3(k, ico„)G(-k, -icon)

+VT£ [ 
i<u„ J

r-*(Q, iQm) = -rv0 no2 +

y|Q2 
32Dn2T2

(k-Q)2 
m2

-^(T-TC)-M>V^ (3.2.8)
J c O'

rrQm
Tc 8TC '

The second term, XB(Q), gives zero: the k • Q term gives zero becaus 
antisymmetry, while the Q_2 term gives zero because the integral . 
number of propagators is zero.

The third term gives:

It is possible to rewrite ip", the second derivative of the Digamma function (p(z) 
with respect to its argument, using

+P) = <p(|) + p<p'(|) + ^P2ip''(± + p) + O(p3).

After analytic continuation, this finally gives us for the Cooperon:

+ PQ2 -

(icon - «k +

1

r;4)(Q.z) = -I3 
Tc

-1 
tC0n + £k +

XC(Q) = VT £ f 
<<un J

= F

where we have neglected fi in the last two integrals since it would lead to terms 
of third and higher order smallness.
The first term, Xx(Q, tnm), gives ^oVlogt^^)
to first order in (T - Tc) to obtain:

- ^oVlog(^ 
\ 7T1C

= 1-^oV^^-WoV^l

where q has the form:

b2 HI+4^f} -
In the limiting case A = 0 one finds the well-known result

T-T°~|
+ T? J ’
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1 (3.2.14)

(3.2.15)<1 =

in (3.2.16)

(3.2.17)

aR = (3.2.18)

where T° is the usual BCS transition temperature, defined as the temperature 
where r(0,0) diverges:

and a = tt/8T°.
In the presence ;f scattering, e.g. as implied by Eq. 3.2.5 or in the presence 

of impurities, the ?of Eq. 3.2.13 for F-1 is preserved, though the Ginzburg- 
Landau paramete r - e. ;-nd q are renormalized.

It is instruct • first consider the interesting case of magnetic impurity 
scattering, with > \scattering rate 1/t in the Green function G. The sup­
pression of the • , ,.-i temperature due to the pairbreaking by the magnetic
impurities is fci .> be [4]

1 
4ttT^t 4rrTR

This expression is plotted as the dashed curve in Fig. 3-3.
The coefficient a is only slightly modified by the impurity scattering

T“ = 1.13a>o exp (-^)

and where the coefficients q may be obtained from Eq. 3.2.12 with t — oo 

7§(3)vy 
16Dtt2(T?)2

)-<^(|),1 
^<•2 +

rr "(1/2)
8T« I4ttT^2t'

In the limit of large t the above expressions reduce to the unrenormalized coef­
ficients.

In presence of the MFL self-energy, Eq. 1.1.1, the renormalized coefficients 
qMFL and aMFL and the suppressed transition temperature cannot be calculated 
analytically due to the complicated summation over the Matsubara frequencies 
in Eq. 3.2.3. The solid curves in figure 3-3 show the result of a numerical eval­
uation of qMFL as a function of the scattering strength A, with <x>JTc as a pa­
rameter. It is seen that qMFL is a decreasing function of A, and for fixed A the 
value of qMFL decreases with increasing wc/Tc. It is clear that the marginal 
Fermi liquid self-energy leads to a reduced value of q, compared to the case of a 
constant scattering rate. Later we shall see what consequences this has for the 
Azlamasov-Larkin dc-fluctuation correction.

The renormalized Ginzburg-Landau coefficient, which we will denote by qR, is 
given by Eq. 3.2.12 with TcR substituted for Tc [5]
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(3.2.19)

(3.2.20)

I pl 2G2 (p, ico„)G2(-p, -icon). (3.2.21)(2rr)D

(3.2.22)

1
X

V = -2T V

G(Q - p, -ico„) «

3.2.2 Calculation of the vertex V

The second ingredient that is needed in the calculation of the fluctuation con­
ductivity is the vertex function V(Q, iQm, i£2;), as given in Eq. 3.2.2. We shall 
calculate only the dc-limit of the conductivity, i.e. the case il( = 0. V(Q, iQm) is 
evaluated in lowest nonvanishing order in frequency and momentum since the 
pair propagator is strongly peaked at small values of its arguments and thus V 
contributes only significantly at small frequency and momentum.

The expression for the vertex is:

x--------
[-ico,'n ~ ep 2t

2 (3.2.23)

The renormalization of a (Fig. 3-4) expresses how the Ginzburg-Landau relax­
ation time is renormalized by the inelastic scattering. Of course, the Ginzburg- 
Landau time is reduced as a result of the pairbreaking by the inelastic scattering. 
This is of importance for dynamic responses above Tc, but, as we shall see, it 
also influences the dc-limit. Likewise, the fact that ijMFL is reduced relative to 

implies a decrease in the correlation length above Tc.

j 2pG2(p,itUn)G(Q_p’-i£On)’

in D dimensions. Expanding G(Q - p, -icon) for small |Q|:

G(-p, -icon) [1 - G(-p, ,

-12
’n) j

1

gives V = CQ, where C is given by

C = Y f 
Dm 4- J 

ia>„

In the last step, use has been made of the fact that the first term in the expansion 
gives zero when substituted in Eq. 3.2.19, because it involves an integral that is 
antisymmetric in p.

Use has also been made of the identity

Jdkkkf(lkl) = i Jdk|k|2/(|k|),

where 1 is the D-dimensional unit tensor.
Going over from a momentum integration to an energy integration, by using the 
density of states at the Fermi level, ZVo, allows us to obtain

c = 4T^op2F y
Dm [ia>„ - eP + 27
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Since
1 (3.2.24)),

C =

(3.2.25)

(3.2.26)C = 8m3f0n ■

TcTc

+ nQ.2 +
(3.2.28)

The sum in this expression may be evaluated as

<P"(

(3.2.29)

By twice differentiating the identity

(3.2.30)

-32
TT6

TrQm 
8TC

z 
n=0

i 
m=-oo

Q2S
>nm

dQ 
(2rr)D

1 
(2ttT)3

dQ 
(2tt)d

1
4ttTt

1 
4ttTt

1
(T + nQ2)3'

JVq-1 
+ nQ2 +

2
-) -</'(-

2

Acqj •

4ttTMqp}
Dm

) - 4ttTt(/z(|) - (p'(|)J

_1______
+ Sfr’3

(4tt7t) ^4TrTT(p(i +

)3

)3j“ = -£t°Sr^’2C2 J

<p(z) - ipt-z) = -Trcot(rrz) -

ju, = 4—C2TY f
mi mJ QQ^

Z(w+1^)3->(l + ,i=o tn + 2 + ,]n.TT)
it is possible, using Eq. 3.2.10, to write

JVqPf
2Dn2mT2

^ + nQj 
rr2/4tr2/4

^)(

1

+ oQ2 +

= T ’ i7TT-<p(i + -±—) - 4ttTt<P(|) - <p'(|)]
DtrmT L 2 4ttTt 2 2 J

From Eq. 3.2.25 anb :?q. 3.2.12 it is seen that there exists a simple relation be­
tween C and q

^Q-1_______________

+ nQ.2 + H£h^)
(3.2.27) 

Expanding the second fraction with respect to co, the term linear in co gives

1

(n + |

1
2

3.2.3 The de fluctuation conductivity
Upon substitution of the expressions we obtained for the vertex V = CQ (Eqs. 3.2.19 
- 3.2.25) and the Cooperon propagator rl4)(Q, iClm) (Eq. 3.2.11), Eq. 3.2.1 for the 
current becomes

e2
m2
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(3.2.31)jw = ico

(3.2.32)CTal =

2-D/2
(3.2.33)

where
(3.2.34)Bd =

3.3 Discussion

(3.3.1)

one sees that the expression in square brackets vanishes linearly for small argu­
ment, so that only the last term survives. Thus

We have seen that the use of Green functions with the marginal Fermi liquid self 
energy in the calculation of the dc-Azlamasov-Larkin fluctuation conductivity 
leads to a change of the parameters q and a, which appear in the final result, 
Eq. 3.2.33, as the prefactor aq1-D/2.

In figure 3-5 we have plotted the enhancement factor of the Azlamasov- 
Larkin contribution due to the marginal Fermi liquid effects in D=3, 2, 1, and 
0 compared to the case of a constant magnetic impurity scattering rate as a 
function of p = 1 / (4ttTct) . For the case of the marginal Fermi liquid self-energy 
above Tc, 1/t = AttT/2, p = A/4. It is seen that the frequency dependence of the 
pairbreaking scattering rate enhances the effect of the pairbreaking and thus fur­
ther reduces the fluctuation conductivity. From resistivity measurements it can 
be estimated that A varies roughly between 0.25 and 1 in the different cuprates.

Despite the reduction of the fluctuation conductivity, fluctuation effects are 
observable up to high temperatures due to the small bare conductivity <To- The 
resistance ratio

R_ 
Ro

at)2 J

Tc 
T-Tc

dQ 
(2rr)D

1
1 +

2ee2kBTc 
hD

rre2C2

dx

&AL = BDar)'~DI2 (

Q2
(^ + nQ2)

With Eq. 3.2.26 and the fact that j = iajcrA, we finally obtain the expression for 
the Azlamasov-Larkin correction to the dc-conductivity [9] as

2*e2Tc
D

Q2
(i^ + nQ2)3’

where Tr, q, and a are the renormalized parameters. This expression can also 
be written as

f a x dx-7-3-7T7-Jo (x2 + l)3
In the latter equation, we have reintroduced h and kB explicitly, so as to make 
the result for aAL independent of the units used. As Eq. 3.2.33 shows, the scat­
tering rate dependence enters aAB through the coefficient aq1-D/2, and thus has 
a dimensionality dependent influence.

f dQ
J (2rr)D 3 A<u .
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deviates over a large temperature range from 1 when <ro is small.
A few years ago, Ioffe et al. [1] have shown that in strongly anisotropic ma­

terials fluctuation effects initially lead to an increase of the c-axis resistivity 
above Tf upon lowering the temperature, as a consequence of electron scatter­
ing against Cooper pairs, before it drops to zero. The decrease of the conductiv­
ity near Tr is first driven by zero-dimensional fluctuations and even closer to Tc 
by three-dimensional fluctuations. This observation might help to understand 
the observed upturn of the c-axis resistivity near Tc in the cuprate superconduc­
tors [6]. While it is difficult to extract parameters from the experiments accu­
rately, the authors of Ref. [1] estimate this effect to be too small to fu! ■ ount
for the observed upturn. Moreover, the resistivity minimum appears lose
to Tr, as can be seen from the dashed curve in Fig. 3-6.

Taking the marginal Fermi Equid self-energy into account, the effe. Ioffe 
et al. is substantially enlarged via the changes in q and a, as is illustrate y the 
solid lines in Fig. 3-6. With a linear in temperature bare resistivity, the . . :'s of
Ioffe et al. [1] hardly produce an upturn of the c-axis resistivity. Especial ■. iien 
a variation of Tc through the sample is taken into account a small shoulder 
rather than a clear upturn is produced, as shown in Fig. 3-6c. Well above Tc the 
resistivity is linear in temperature. The enhancement of the upturn in Rd Ro in 
Fig. 3-6a leads to a clear minimum in the c-axis resistivity Rc in Fig 3-6b. The 
high temperature where the minimum in Rc occurs (above 1.2TC) is in agreement 
with the experimental observations of Ref. [6],

In conclusion, we have discussed the effect of a linear-in-temperature and 
linear-in-frequency scattering rate on the Azlamasov-Larkin fluctuation conduc­
tivity. The Ginzburg-Landau parameters and the current vertices renormalize 
appreciably due to the inelastic scattering. We find that the fluctuation conduc­
tivity is reduced as compared to the case of magnetic impurity scattering. This 
causes an enhancement of the effect which was proposed by Ioffe et al. [1] to 
account for the upturn of the resistivity in the c-direction near optimal doping.
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Figure 3-6. The c-axis resistivity. The left figure shows the ratio R /Ro, where Rq is the bare 
resistivity, the middle figure shows R with Ro T. The rightmost figure was obtained with 
a box distribution of Tc’s with a 3K width. The dashed curves are obtained by using the 
expression derived by Ioffe et al. (Il, the solid curves are obtained taking the effects of the 
marginal Fermi liquid self-energy into account. The upper dashed curve corresponds to A = 
0.6 and the lower dashed curve to A = 0.3. The same parameters are used for the solid curves.
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4.1 Introduction

4 The Su-Schrieffer-Heeger model for finite 
chains

The Su-Schrieffer-Heeger (SSH) Hamiltonian has proven to be a successful the­
oretical framework for understanding conjugated polymer chains [1-5]. In this 
tight-binding model one focuses on the coupling between the rr-electrons that 
constitute the valence band, and the ionic motions along the one-dimensional 
polymeric chain. As is well know'n, this model exhibits a rich variety of nonlin­
ear phenomena and topological excitations coupling the two possible and equiv­
alent configurations of bond-length alternation in the Peierls distorted ground 
state.

One motivation for studying this model was presented in the introductory 
chapter of this thesis. There it was argued that a model, in this spirit, could 
be a suitable starting point for unraveling the conformational dynamics in the 
first step in vision. Before we can turn our attention to the dynamics of the 
untwisting of retinal in chapter 5, it is necessary to formulate more precisely 
how to study chains of finite length within the framework of cm SSH-type model. 
It is this issue which is the subject of this chapter.

In order to study chains of finite length without the commonly used periodic 
boundary conditions, the question arises as to which boundary condition to use, 
e.g. whether to leave the chain ends open, or to use a potential at the outer 
ends to regulate the chain length. Although this question has arisen before, 
it has, to our knowledge, not been addressed systematically. We will do so in 
this chapter, and in particular we calculate the value of the stretching force 
which facilitates comparison between long chains with nonperiodic boundary 
conditions and those with periodic boundary conditions.

As will become clear below, the prominent part played by the energy-per-site 
in the model, allows us to obtain a non-perturbative expression for the velocity 
of sound. Our result shows, that the presence of a finite electron-phonon cou­
pling strength A reduces the velocity of sound compared to the case where this 
coupling is absent. For small coupling strengths, however, the reduction is only 
exponentially small. This observation invalidates perturbative calculations by 
previous authors.

In section 4.2 we present the SSH model, discuss the boundary conditions 
and show which choice of a stretching force is most convenient to compare var­
ious boundary conditions. We then derive, both heuristically and formally, the 
aforementioned renormalisation of the sound velocity in section 4.3. In section
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Model Hamiltonian for finite chains4.2

(4.2.1)H = Hel + Hi,

with the rr-electron-lattice coupling written as

+ h.c.] , (4.2.2)

and a lattice part

(4.2.3)- un).

4.4 we briefly discuss the generation and subsequent dynamics of kink-antiklnk 
pairs on finite chains, and compare it to the the case of these excitations on a 
chain of infinite length or periodic chains. Finally, in section 4.5, we summarize 
our findings.

The one-dimensional tight-binding Hamiltonian we use to describe the physics 
of the conjugated polymer trans-polyacetylene (CH)N, is given by

In Eqs. (4.2.2) and (4.2.3), n numbers the (CH)-groups, u„ is the displacement 
along the chain of the n,h (CH)-group relative to some reference position na, 
Cn.s(Cnj) creates (annihilates) an electron with spin projection s at site n. The 
model parameters are: the hopping parameter t for uniform spacing a between 
adjacent (CH)-groups, the electron-phonon coupling constant a, the force con­
stant K for bond length deviations from equal spacing of the a -bonding back­
bone and the mass of a (CH)-group M. The harmonic stretching force r will be 
discussed below.

The rr-electron-lattice part of the Hamiltonian Hei models the coupling of 
the rr-electrons to the lattice degrees-of-freedom via a linear (distance) modu­
lation of the bare hopping frequency t. The first term in the lattice part of the 
Hamiltonian Hi models a harmonic restoring force on the a-bonded (CH)-groups 
when displaced from equal spacing a, and the second term is the kinetic energy. 
Up to the last term in Eq. (4.2.3) the three equations constitute the familiar SSH 
Hamiltonian [1,2].

The last term in Eq. (4.2.3) gives a constant stretching force r on a finite chain. 
As “ u») = (“n ~ Mi) denotes the change of length of the chain, it
corresponds to a potential term which is linear in the total chain length. Usually, 
the SSH model is studied with periodic boundary conditions, as these are most 
convenient to model long, essentially infinite chains. As already recognized by 
Vanderbilt and Mele [14] and by Su [15], however, for finite open chains which

^n-i m N n-i
Hl = 7 Z (u n+1 )2 + 7 I - r Z (“n+1

n=l n=l n=l

N-l

H,i = - Z Z [f - “(“"‘I - ] [chcn+14
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to be of the form

(4.2.5)6,N 
2 n.

are our interest here, the electronic energy decreases with an overall contraction 
of the chain due to the linear coupling term proportional to a in Hei. Following 
these authors, a constant stretching force r is introduced in the Hamiltonian to 
counterbalance this compression. With this procedure, one can use the same 
parameters t, K, and « as in the model with periodic boundary conditions. Note 
that for periodic boundary conditions this term automatically vanishes, since 
then (uN - uO = 0.

At this point, we note that for finite chains without periodic boundary con­
ditions, two types of boundary conditions have been used: so-called “pressure 
boundary conditions" with f * 0, and “open boundary conditions" with T = 0 
[16]. It is important to realize, however, that from the point of view of using the 
SSH model Hamiltonian as an effective model, both cases describe the same 
physics: the “pressure boundary conditions” can be transformed into “open 
boundary conditions” by a redefinition of the variables {un} and the parameters 
t and f. Indeed, under the uniform stretching transformation u„ = un - nV IK, 
we find from Eqs. (4.2.1) and (4.2.3) that to within a constant term

H({u„};t.K,D = H({ii„];t - ar/K.K.O). (4.2.4)
Hence, contrary to what is sometimes suggested in the literature [16], the dy­
namics of a chain with pressure boundary conditions is completely equivalent 
to that of a chain with open boundary conditions, provided we use the renor­
malized hopping frequency t = t - aV !K and uniformly scaled coordinates [15]. 
The practical advantage of using the pressure boundary condition with r * 0, 
however, is that with a proper choice of F, we may use the same parameter sets 
and lattice spacing as those used in the literature for periodic chains. These sets 
were obtained by comparison with experimental data on polyacerylene.

Following Vanderbilt and Mele [14], the value r = 4a/rr has often been used 
in the literature. This is the value derived assuming the ground state is undimer­
ized, but in practice a somewhat different value for r must be used to obtain the 
proper dimerized ground state. For small coupling, when the changes in the 
electronic energies due to the dimerization are exponentially small, the correc­
tion to r = 4o(/rr is also exponentially small.

In this section, we shall determine the value of T self-consistently for the 
dimerized ground state of long chains; as we shall see, for the standard parame­
ter sets, the corrections are non-negligible. In addition, the analysis given below 
will allow us to determine the ground state energy-per-site e(u, <5) as a func­
tion of the uniform dimerization amplitude u and the uniform bond stretching 
<5. In section 4.3 we show that the optical frequency and sound velocity can 
be expressed simply in terms of derivatives of e(u, 6). This yields a physically 
transparent and technically efficient way of calculating the sound velocity ex­
actly [13],

To obtain the approximate ground state we take u„

u„ = (-l)nu -
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+ h.c.lH(u,6)

(4.2.6)

(4.2.7a)

(4.2.7b)

In terms of these operators the Hamiltonian is written as

H(u,<5)

(4.2.8)

(4.2.9)ejt = 2(t - a6) cos(ka).

and

(4.2.10)

where N is the total number of (CH)-groups. On substitution of Eq. (4.2.5) and 
neglecting non-extensive terms, the Hamiltonian Eq. (4.2.1) becomes [17]

H(u, 6) = ^EicCn.) 
ks

fi

= S - Cks-Cks-') +
ks

(-l)nCn5.

Cns,

n.s

+ 2NKu2 + |/VK<52 - NE6.

The diagonalization of Eq. (4.2.6) can be done in anale the usual case 
of periodic boundary conditions [3], so we will only giv.- of the essential 
steps. Since we neglect end effects, our results give the term for T and
f(u, 5) in the limit N — oo.

For a = 0, H(u, <5) can be brought to diagonal form ’ ?_ Eloch operators
Cfcs = N~i ^.e~lknac„s in the extended zone —tt < ka < n. tor <x * 0, when the 
dimerization doubles the unit cell, it is convenient to fold the zone into the half 
zone -rr/2 < ka < rr/2, with valence (-) and conduction (+) band operators 
defined as

•ks+ - n^_) + 2NKu2 + |NK52 - NT6,

- «<5] [<,cn+l,$

Finally, H is diagonalized by the transformations = PkCks- - YkCks+, 
aks+ = PkCks- + YkCks+, whose inverses, on substitution in Eq. (4.2.8) give

+ 2NKu2 + - N15 ,

with the energy gap parameter A* = 4au sin( ka) and unperturbed band energy 
in the reduced zone defined by

with the quasi-particle energy of the familiar form: E* = + Aj and nks± -
aks±aks±- Note that since the e* and hence Ek depend on the bond stretching 
<5 according to Eq. (4.2.9), the first term of the right-hand-side of Eq. (4.2.10) 
depends on 6 as well.

ri — 1 V a~ikna

ri — V o-ikna
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f(u, <5) =

(4.2.11)

where • have introduced the dimensionless variable z, given by

(4.2.12)z =

and where '£ is the complete elliptic function of the second kind:

r(Vi -z2) (4.2.13)

(4.2.14)[£ - X] + 4Ku,

[l-z2x] +K<5-r, (4.2.15)

where X is the complete elliptic integral of the first kind,

dtp. (4.2.16)

(4.2.17)+ 4K,Euu

(4.2.18)+ K,ES«

(4.2.19)Eu6

For the half-filled band of (CH)n, the energy-per-site £(u, <5) for a given dimer­
ization amplitude u and stretch 6 is obtained by setting nks- = 1 and = 0 
in Eq. (4.2.10), and replacing the sum by an integral:

-2
TT

dz(u, 6) 
du 

de(u, 6) 
ds

2au 
t - aS ’

L

? 1
y/1 - (1 - z2) sin2(</>)

8a z
tt 1 - z2
4a 1
TT 1 - Z2

From Eq. (4.2.11) we can determine the ground state dimerization amplitude 
and uniform stretch for our chains by minimization of the energy. Taking first 
derivatives with respect to u and 8 yields

and where we have begun to abbreviate KVl - z2) and X(V1 - z2) as I and 
X.

By differentiating Eqs. (4.2.14) and (4.2.15) once more, we get for the second 
derivatives of £ with respect to u and S:

■rr/2 i

Ek d(ka) + 2Ku2 + -K62 - r<5

-4(t-aa)£(^—+ 2Ku2 + 1 Kg2 _ r5 _
TT 2

16a2 2T-(1+z2)X
7r(t-a<5) (1-z2)2

4a2z2 2T-(1+z2)X 
rr(t - aS) (1 - z2)2

8«2z 2E- (1 +z2)X
rr(t-a<5) (1-z2)2

= J' 71 - <1 - z2) sin2(</>) dtp.

Xf.'Jl - z2) = f
Jo
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(4.2.20)A

(4.2.21a)

(4.2.21b)

(4.2.22a)

(4.2.22b)Es=o =

4e-(l + l/(2A)> (4.2.23a)z a

(4.2.23b)1-4

where use has been made of the fact that for small z:

(4.2.24)

2A

As we will see below, when we discuss the velocity of sound in our model, 
together with Eq. (4.3.9), these equations give the explicit expressions for the 
sound velocity.

The ground state configuration can now be determined by setting the first 
derivatives Eqs. (4.2.14) and (4.2.15) to zero and solving for u and 6 as a function 
of the model parameters. It is convenient to introduce a dimensionless electron­
lattice coupling strength A, which is defined here as [18]

1 
2A

X - T 
1-z2 ’

rrr^ = 0 
4a

(1  „-(2+l/A)
\A )

2a.2
TTKt '

For the stretch per bond 6 in the ground state and the parameter z defined in 
Eq. (4.2.12), we obtain from Eqs. (4.2.14) and (4.2.15) the two coupled equations

>-!)•

ttK r
4^5 =

ttF  2T - (1 + z2)X
4a 1-z2

These coupled equations can be solved numerically, i.e. given r and A one deter­
mines z from Eq. (4.2.21b), thus giving the (scaled) stretch nKS/4a on substi­
tution in Eq. (4.2.21a). Fig. 4-1 shows 6 as a function of the coupling strength A 
for different values of T.

As we mentioned previously, we want to tune the parameter r in such a way 
that there is no stretching (6 = 0) in the ground state, as in the case of periodic 
boundary conditions. This value of F, where no stretching occurs, is obtained by 
solving the set of coupled equations

T(Vl-z2) « 1 + ~ (log(j|i

4a I - z2X
TT 1 - Z2

Fig. 4-2 depicts the dependence of 7rE5»o/4a on the coupling strength A. The 
weak coupling correction to Es = 0 is only exponentially small; for small A, we 
obtain from Eqs. (4.2.22a)

1 I - X 
2A + 1 - z2 ’
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Figure 4-2. Value of T that renders 6 = 0 in the ground state versus coupling strength A.
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4.3 The velocity of sound in the SSH model

(4.3.1)L

(4.3.2)

4- 0®
Here U(x, t) denotes the displacement of a small volume with mass density p, 
away from its position in the homogeneous, undistorted state, and C is an elastic 
coefficient. In the more general three-dimensional formulation such coefficients 
are known as Lame coefficients. [24] We now apply this elastic theory to a solid 
with lattice parameter a, by applying a uniform stretch 6, so that the lattice pa­
rameter a of the medium changes into a + 6. Thus, C (dU/dx)2 = C (6/a)2. The 
second term in Eq. (4.3.1) then is nothing more than the second-order change in 
energy density of the medium in the presence of a uniform stretch. In terms of 
the energy per lattice site £ we therefore have

C = aess i 

where tgs denotes the second derivative of £ with respect to a uniform stretch 6. 
Since the wave equation associated with Eq. (4.3.1) is p (d2U/dt2) = C (d2U/dx2).

In addition to including dimerization, the extended rr-electron system provides 
a screening mechanism which reduces the speed of sound. [23] A simplified 
calculation of this effect, based on simple concepts borrowed from continuum 
elastic theory, will be discussed first in section 4.3.1 below, whereafter a more 
elaborate treatmem based on a normal mode analysis will be given in section 
4.3.2.

The sound and the optical frequency have previously been calcu­
lated perturbatively using the dimensionless n-electron-phonon coupling con­
stant A as the small parameter. However, these calculations lead to erroneous 
results which subsequently were often quoted in the literature. [3,4] Here we 
will present a physically transparent and exact method of calculating the speed 
of sound and the optical frequency for long wavelengths.

4.3.1 Sound velocity; heuristic derivation
The basic idea underlying our approach is very simple. Consider for example a 
one-dimensional elastic medium. Long wavelength distortions in such a medium 
are governed by the continuum Lagrangian

!4‘

The actual values of the parameters for polyacetylene depend on the type of 
experiment from which they are extracted [11]. For the different parameter sets 
used the literature, however, A lies in the range between 0.2 and 0.4, so that the 
correction is non-negligible.
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(4.3.3)

(4.3.4)

euuAu + £uaA5 = 0, (4.3.5)

so that the optical modes fluctuate about

(4.3.6)Au — (fus/Euu) A<5,

Ae(u,<5) = ifautAu)2 + fUi(Au)(A5) + ifM(A<5)2 , (4.3.7)

where Ae(u, <5) = e(u, 5) - e(u, 6), Au = u - u etc.

for a given stretch A5. Expanding the energy-per-site e(u, 5) about the equilib­
rium values (u, 5 = 0) to second order, we have

9e(u, 5) 
du

we immediately have for the speed of sound c

= 0,
u=u

where the overbar indicates a time average on a time scale short compared to 
acoustical periods but long compared to optical periods. Put differently, the 
forces in the optical modes average to zero on acoustic time scales. We can 
obtain an expression for the value of the time averaged Au for a given quasi­
static stretch A<5, by expanding Eq. (4.3.4):

where M = ap is the mass per lattice site. That it is not necessary to study finite 
wavevector q oscillations and then take the limit q — 0 to calculate the speed of 
sound, can be understood as follows. Uniform stretch is in fact the q = 0 mode 
when positions are expressed in relative coordinates.

The analysis below is based on the observation that, as was demonstrated 
in the previous sections, the energy density e, as a function of the stretch pa­
rameter <5, can rather easily be calculated non-perturbatively. Combined with 
Eq. (4.3.2) this immediately gives the sound velocity. The only complication in 
applying this idea lies in the fact that as a result of the electron-phonon interac­
tion, changes in the stretch <5 are accompanied by changes in the dimerization 
amplitude u. The exact generalization of Eq. (4.3.2) to this more general case is 
given below in Eq. (4.3.9), and is based on the fact that the optical frequencies 
are much higher than the acoustical frequencies for long wavelengths, so that 
it is permissible to average over the fast optical modes in deriving the effective 
elastic energy as a function of the stretch 6.

Indeed, due to the arbitrarily large difference in the frequency of acoustic (5) 
versus optical (u) modes in the q — 0 limit, we may approximate
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(A5)2. (4.3.8)

(4.3.9)c = Co

(2+1/A) (4.3.10)

In analogy with Eq. 4.3.2, 
dimerized ground state

fuu
4

^opt

c/c0 «

, we therefore obtain for the speed of sound in the

^66 _ ^u6 
K Keuu '

where co = a^KTM is the bare speed of sound and where the second derivatives 
given in Eqs. (4.2.17)-(4.2.19) are to be evaluated at the equilibrium values u 
and <5 = 0. We stress that, within the adiabatic approximation for the electron 
dynamics, Eq. (4.3.3) is exact.

Figure 4-3a shows the reduction of the sound velocity as a function of the 
coupling strength A. Note that, by expanding the coefficients in Eq. (4.3.9), we 
find an exponential Iv small renormalization of the sound velocity for small A:

1-4(x-2)
On the one hand, this contradicts the often quoted result [3,4] that the sound 
velocity for small coupling is given by c = CoVl - 2A, and the dashed line in 
Fig. 4-3a shows this behavior of the sound velocity as obtained by Rice et al. 
[19] On the other hand, Psaltakis and Papanicolaou (26) used a 1/n expansion 
technique for calculating the phonon spectrum, where n is the degeneracy of the 
tr-electron bands (n = 2 for polyacetylene), and their result for the suppression 
of the sound velocity compares extremely well to our exact result.

To illustrate the validity of Eq. (4.3.9), we have also performed numerical sim­
ulations in which a sinusoidal modulation was superimposed on the dimerized 
ground state. The sound velocities were calculated by measuring the result­
ing periods of oscillations for different A. As is clear from Fig. 4-3a, where the 
diamonds represent the simulation results, the agreement with Eq. (4.3.9) is ex­
cellent.

It is perhaps not surprising that the effect of the coupling on the sound 
velocity is only exponentially small in the weak coupling limit, and roughly linear 
for larger couplings. After all, the effect is a manifestation of the change in chain 
stiffness which in turn is directly related to the electronic gap. It is well known 
that the gap is exponentially small in weak coupling, crossing over to linear in A 
behavior for larger couplings [3,4].

Since optical frequencies are finite as — 0, the optical frequency is given in 
terms of emu only: [25]

Using Eq. 4.3.6 we thus arrive at an expansion for the effective energy with 
respect to the stretch A6, valid on acoustic timescales 

f £“d 
^UU
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Figure 4-3. (a) Suppression of the sound velocity as a function of the coupling strength A, 
defined after Eq. (4.2.19). The solid line shows our analytical result [Eq. (4.3.9)]. The dashed 
line shows the result obtained by Rice et al. [19] The diamonds mark the points we obtained 
by a numerical simulation (see text), which unambiguously show the validity of our approach, 
(b) Long wavelength optical frequency as a function of the coupling strength A. The solid line 
depicts the exact result [Eq. (4.3.11)]. The dashed line shows the weak-coupling approximation 
[Eq. (4.3.12)].
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(4.3.11)= 2A

(4.3.13)

(4.3.14)
(4.3.15)

5?n
V2n

= ^(Xan+3 + Xan+2 ~ X2n+1 — >^2n) .

= -^2n+l — X2n t

4.3.2 Sound velocity; normal mode analysis

Through the physically transparent and relatively simple analysis given in the 
previous section, we arrived at the exact expression for the sound velocity as a 
function of the electron-phonon coupling strength A: Eq. 4.3.9. In this section we 
show, how this result may also be obtained from a more conventional normal­
mode analysis.

As a starting point we take the classical equation of motion for the j'k (CH)- 
group, expressed in external coordinates:

dE
J dxi

where E = E({x,}) is the total energy which, in the adiabatic approximation, 
depends on the nuclear coordinates only. Changing to internal coordinates with 
two atoms per unit cell:

2E - (1 +z2)X
(1-z2)2

where Qn = ^4KIM is the frequency at the band edge at ±rr/a in the absence 
of dimerization. The solid line in Fig. 4-3b shows the behavior of this optical 
frequency as a function of A, while the dashed line depicts the weak coupling 
result

a>oPt = >/2A Qo. (4.3.12)

obtained from Eq. (4.3.11). Note that, in contrast to the weak coupling behav­
ior (Eq. (4.3.10)] of the sound velocity, our weak coupling result for the optical 
frequency (Eq. (4.3. 2)i and the result given in the literature agree. [3,4,19]

The discrepant. bt-rween our exact result for the sound velocity and the re­
sult [19] obtained u.;i. ;; perturbation theory in A, can be explained by noting that 
the weak coupling tw... vior [Eq. (4.3.10)] shows an essential singularity at A = 0. 
This behavior can therefore never be obtained using perturbation theory in A. 
On the other hand, the analytic behavior for small A of the optical frequency 
(Eq. (4.3.12)] can be obtained correctly using perturbation theory.

In summary, the method described above presents a technically simple and 
physically transparent way of obtaining expressions for the sound velocity and 
optical frequency which can furthermore be applied to other models of the SSH 
variety. These quantities may serve as a guide to determine the validity of spec­
tra calculated by other means.

Section 4.3: The velocity of sound in the SSH model
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(4.3.16)

(4.3.17)

(4.3.18)

(4.3.19)

-M$q = (4.3.20)

(4.3.21)
p

(4.3.22)

(4.3.23)

a

(4.3.24)
au

II

d
du

A(q)
2

with A(q)
(-ito.) for a time derivative and taking advantage of translational invariance in 
the ground state, we find

|A(q)(f6u - |e„u) 
tuu '

(4.3.25)

32g 1
SS-qSVqJ 

82g 1
3v-fl3vqj

d2E 
dS.qddL 
d2E 

dv_qdS,

We thus obtain

5.

 1 dE
2 d82n+2 '

-Mv2n

-M$q

~+vq

- +vp 
'p

|A(q)(g« - Eua + |«uu) 
2(Eu6 - |fuu)

a_
36_,

5,

MO)25,

Meo2

Mco2v,

du-q
/ 38.q

1 d 
„ 2 du.

d2e 
dS-qd6, 

32g
dv~qdSq + Vq

One final change of coordinates to account for the dimerization amplitude u2„ 
is defined from v2n = 52n + 2u2n. The derivatives with respect to 6 in Eq. 4.3.20 
through Eq. 4.3.23 are to be taken with v constant. Since we need to have these 
derivatives with u constant, we write 

a_
a<5_, 
a_
dS_q

we obtain the two coupled equations of motion
...e 1 dE dE

2n 2 a<52n_2 + a<52„
2^-. 

ov2n
On introducing the Fourier transforms

9 N/2
= £ I 62„e‘‘,(2an),

a Nl2 a= y e-ip(2an>°___
a6p 362n '

and expanding around the first derivatives in Eqs. (4.3.16) and (4.3.17), we obtain 
the equations of motion in the form

AW ■
2N V

_4 
N

V Fa d?E - 32£ 1VL Pd8_qdSp +Vpd6-qdvp] ’
V Fa 32£ - 32£ 1
ft ’’av_,a<5p +Vpav^avp]'

1 - cos(2<?a). Defining the energy-per-site a = E/N, substituting

= 4 5.
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(4.3.26)exy =

(4.3.27)co = qa

(4.3.28)c = Co

(4.3.29)t^opt ~
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^6u l^uu 
M 

from which we obtain the sound velocity as

(g - uu 
K

with Co = y/K/M, which reproduces Eq. (4.3.9). The q — 0 optical frequency
becomes, according to Eq. (4.3.25),

where we have introduced the notation

a2g 
dx-qdyq '

In the long wavelength limit, where limq_o£xy = we therefore find for the 
acoustic frequency 

Since, as explained in the introduction, our interest ultimately lies in exploring 
the dynamical pathway to conformational changes in rhodopsin as it adsorbs a 
photon, we conclude this chapter by briefly discussing dynamical simulations of 
photoexcitations for finite chains.

Our chief aim here is to investigate the effect of the stretching force T (pres­
sure boundary conditions) on the dynamics of a kink-antikink pair formed when 
an electron is excited from the top of the valence band into the bottom of the 
conduction band. In particular, since these solitons are repelled from the ends 
of a chain [15], one expects that dynamically generated solitons will be reflected 
by the chain ends. The results presented below confirm this expectation, and 
show that solitons and breathers [20,21] are still recognizable entities on small 
chains [10].

fuu
M ■

It is worth stressing again, that within the adiabatic approximation Eqs. (4.3.28) 
and (4.3.11) are exact. They can be calculated explicitly using Eqs. (4.2.17)— 
(4.2.19) evaluated at the equilibrium values u and 5.

The optical frequency can also be explicitly calculated from Eqs. (4.3.29) and 
(4.2.17). For weak coupling we obtain

a>opt ~ V2A flo , (4.3.30)

where Qo = ~jAK/M would be the (q = 0) optical frequency in the absence of rr- 
electron-phonon coupling. This result and that given in the literature agree [13].
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Figure 4-4. The kink-anti-kink dynamics on a N = 50 chain, with the parameters given in the 
text. The heavy line denotes the zero crossings of s(n) and shows how a kink, initially moving 
towards the chain end with an approximately uniform speed, is reflected on approaching the 
end at a distance 5- It moves back again with approximately uniform speed.

Our simulation technique is based on the adiabatic approximation using the 
Feynman-Hellmann theorem [22]. In short, the procedure is to diagonalize the 
electronic Hamiltonian at every time step, and to calculate the electronic forces 
on the (CH) groups using the Feynman-Hellmann theorem.

To illustrate the generic dynamics on an open chain of finite length, we 
present the results we obtained for a chain of N = 50 sites and parameter values 
set to [20,21]: t = 2.5 eV, a = 4.8eV/A,K = 17.3 eV/A2 and M = 1384 eVfs2/A2. 
These parameters imply a coupling strength A = 0.34 from the definition of A 
in Eq. (4.2.20). For the value of Es.o. needed to obtain a ground state with zero 
bondstretch, we find F4.0 = 5.648 eV/A from Eqs. (4.2.22a) and (4.2.22b). Fur­
thermore, the electronic length scale § . which determines the width of a kink, 
is found to be §/a = (2t/A) ~ 2.5.

Fig. 4-4 shows a three-dimensional representation of the dynamics. Along 
the vertical axis we have plotted the bond elongation relative to its ground state 
value, i.e. s(n) = (un+i - u„)/(un+1 - un). With the heavy line we show the 
s(n) = 0 crossing (shifted upwards for better visibility).

Obviously the dynamics on this open chain very much resembles the dy­
namics on chains with periodic boundary conditions in the first instants. After 
about 100 femtoseconds a kink-antikink pair is clearly formed, moving apart 
with approximately uniform speed (heavy line). As in periodic chains, a spatially 
localized oscillating mode or “breather” is left behind because, as pointed out

/ time (fs)
200
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by Bishop et al. [20,21], the energy of the two moving kinks is less than the 
energy injected by creating the electron-hole pair. The surplus energy is radi­
ated backwards by the moving kink and anti-kink and forms the breather. The 
kink and anti-kink continue to move apart with approximately uniform veloc­
ity, until they are at a distance of the order 5 from the end. There they bounce 
back because solitons are repelled from the ends [15] and move towards the cen­
ter, again with an approximately uniform speed. Finally, the kink and anti-kink 
interact with each other and with the breather in a complicated way; they then 
re-emerge from this zone after about 600 femtoseconds. Coulomb interaction of 
the charged kink and anti-kink may be important in understanding the eventual 
relaxation of the molecule to its final state.

For different parameters the length scales and time scales are of course dif­
ferent, but we have found the dynamics described above to be generic. We leave 
a more systematic study of finite chain dynamics to the future.

4.5 Summary
We have shown how the introduction of an additional degree of freedom, a uni­
form bond stretch, enables us to apply the SSH model to finite open chains. The 
advantage of this approach lies in the fact that one can use the same parame­
ter sets for our finite chains as used for infinite chains with periodic boundary 
conditions.

Both these results and those for the renormalization of the sound velocity are 
given in terms of the energy-per-site e(u, 6). Our method is, in fact, completely 
general in that it can be applied to any model in which an effective energy for 
the long wavelength modes can be written down [13].

The initial (adiabatic) dynamics, following the excitation of an electron from 
the top of the valence band into the bottom of the conduction band, is qualita­
tively the same as the dynamics on periodic chains, and confirm that solitons 
are reflected at the chain ends.

The insights we have obtained in studying the SSH-model on finite chains will 
help us to move on to a more elaborate model for the conformational changes in 
rhodopsin after photo-excitation. To this end, torsional degrees-of-freedom and 
ionic or other site impurities may each play a part. It is our belief that the same 
classical coherent dynamics as seen in the SSH-model, plays an essential role in 
the first step of vision, and investigations along these lines will be the subject of 
the next chapter.





Bibliography
11J W.P. Su, J.R. Schrieffer and A.J. Heeger, Phys. Rev. Lett. 42, 1698 (1979).

[2] W.P. Su, J.R. Schrieffer and A.J. Heeger, Phys. Rev. B 22, 2099 (1980).

[3] A.J. Heeger, S. Kivelson, J.R. Schrieffer and W.P. Su, Rev. Mod. Phys. 60, 781 
(1988).

14] Yu Lu, Solitons & Polarons in Conducting Polymers (World Scientific, Singa­
pore 1988).

[5] D. Baeriswyl, in Theoretical Aspects of Band Structures and Electronic Prop­
erties of Pseudo-One-Dimensional Solids, ed. H. Kamimura, (Reidel 1985).

16] W.P. Su and J.R. Schrieffer, Proc. Natl. Acad. Sci. USA 77, 5626 (1980).

[7] E.J. Mele, Solid State Comm. 44,827 (1982).

[8] E.J. Mele, Phys. Rev. B 26, 6901 (1982).

19] F. Guinea, Phys. Rev. B 30, 1884 (1984).

VZ11C diuuy U1 llUlie 1HU1CLLUV.O IO. J.*-. ----------------- _ „ .

Lett. 154, 56 (1989). For short molecules in the first electronically excited 
state, they study the size-dependence of relaxed solitonic steady-states. 
[See also J.L. Bredas, J.M. Toussaint, and A.J. Heeger, Mol. Cryst. Liq. Cryst. 
189, 81 (1990).]

(11] R.W. Schoenlein, L.A. Peteanu, R.A. Mathies and C.V. Shank, Science 254, 
412 (1991).

[12] H.J.M. de Groot, unpublished.
(13] F.L.J. Vos, D.P. Aalberts and W. van Saarloos, Phys. Rev. B53, R5986 (1996).

[14] D. Vanderbilt and E.J. Mele, Phys. Rev. B 22, 3939 (1980).

115] W.P. Su, Solid State Comm. 35, 899 (1980).
[16] S.R. Phillpot, D. Baeriswyl, A.R. Bishop and P.S. Lomdahl, Phys. Rev. B 

35,7533 (1985).
[17] We follow common practice [3] in calling Eqs. (4.2.6) and (4.2.8) Hamiltoni­

ans. Strictly speaking, the electronic part is written in the form of a Hamil­
tonian, but as it does not depend on the individual coordinates of the CH- 
groups anymore, the lattice part in Eq. (4.2.8) is not a proper Hamiltonian.



72 BIBLIOGRAPHY

[22]

[23]

[24]

[20] A.R. Bishop, D.K. Campbell, P.S. Lomdahl, B. Horovitz and S.R. Phillpot, 
Phys. Rev. Lett. S2, 671 (1984).

C. Cohen-Tannoudji, B. Diu and F. Laloe in Quantum Mechanics Vol.2, p. 
1192 (Wiley-Interscience, London 1991).

L. Salem, Molecular Orbital Theory of Conjugated Systems. (Benjamin, Lon­
don, 1966).

[18] Note that there are several conventions for the definition of the coupling 
strength A in the literature, mostly differing by factors of two.

[19] M.J. Rice, S.R. Phillpot, A.R. Bishop and D.K. Campbell, Phys. Rev. B 34, 4139, 
(1986).

See e.g. L.D. Landau and E.M. Lifshitz, Theory of Elasticity, (Pergamon, New 
York, 1986).

[25] F.L.J. Vos, D.P. Aalberts and W. van Saarloos, Phys. Rev. BS3, 14922 (1996).

[26] G.C. Psaltakis and N. Papanicolaou, Phonons and quantum fluctuations in 
a dimerized electron-phonon chain, in Interacting Electrons in Reduced Di­
mensions, ed. D. Baeriswyl and D.K. Campbell, (Plenum Press, New York, 
1988).

[21] A.R. Bishop, D.K. Campbell, P.S. Lomdahl, B. Horovitz and S.R. Phillpot, Syn­
thetic Metals 9, 223 (1984).



5.1 Introduction

5 Towards Understanding the Ultra-Fast 
Dynamics of Rhodopsin

In this chapter, we introduce the extension to the SSH model with the aim 
to analyse the fast dynamics of rhodopsin. The model is still in a testing stage, 
so this final goal has not been achieved yet. Here we will describe the model, 
and discuss how insight in the behavior of the model and values for the various 
parameters appearing in it can be obtained from a calculation of its vibrational 
modes.

Trying to understand how we see has occupied researchers for more than 100 
years [1 j. Vision in twilight conditions is attributed to rhodopsin, the complex 
formed by the chromophore 11-cis-retinal bound in the pocket of a rod mem­
brane protein called opsin. In the 1950s, vision was shown to arise from the 
rapid 11-cis to 11-trans isomerization of retinal [2]. The cones, responsible for 
color vision, also rely on the photoisomerization of 11-cis-retinal, differing only 
in the protein cages which surround the chromophore; however, in what follows, 
we will consider only rhodopsin’s photochemistry.

We may be on the verge of understanding why rhodopsin is such an efficient 
and fast switch. The reason for calling rhodopsin a switch is, that the optically 
active element, retinal, has two primary conformations—11-cis (rhodopsin or 
Rh) and 11-trans (bathorhodopsin or bRh)—and absorption of an optical photon 
(~ 5000A) toggles the states. Recent experiments [3] show that, for rhodopsin, 
the isomerization is accomplished in a mere 200 femtoseconds, about the time it 
takes light to cross the width of a hair. Vibrational oscillations of the photoprod­
uct cohere for a few ps [4], much longer than the isomerization time. The pho­
toisomerization is also very reliable, with 67% quantum efficiency; that, together 
with a high stability against thermal fluctuations (400 years), yields the startling 
signal-to-noise ratio that makes the rod cells of our eyes essentially single pho­
ton detectors. The efficiency and speed are believed to be related quantities, in 
fact, since slower switches are observed to be less efficient [5]. Once a photon 
has flipped the switch, a sequence of dark reactions—driven thermally—follows, 
leading eventually to a nerve signal.
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5.2 Previous Theory

Model5.3
As in the previous chapter, we will build upon the foundation laid by SSH in 
modeling the conjugated backbone with a tight-binding Hamiltonian in which 
the quantum mechanics for independent rr electrons is retained explicitly, while 
the other backbone forces arising from the sp2 electrons and nuclear repulsion

Birge and his colleagues [6] did molecular dynamics calculations in the early 
1980s and predicted isomerization times of ~ 2.2 ps. While this looks quite long 
in light of the current measurements with femtosecond lasers, the outcome of 
their calculation was already quite surprising, as it was believed at that time to 
be too short for such a large conformational change. Their approach was a one- 
spatial-degree-of-freedom model: only rotations about the Cn=Ci2 bond were 
considered, holding other relative coordinates fixed. In recent years, they have 
revised their calculation to include interaction with a counterion and now find 
it takes the excited state 400 fs to reach the minima of the excited state surface 
from which it tunnels to bRh or Rh, then ~ 1 ps to cool vibrationally to t hat local 
minimum [6]. Experiments indicate an essentially barrierless process |4J.

Contemporaneously Su, Schrieffer, and Heeger (SSH) were investigating poly­
acetylene (PA), another material with double bonds in conjugation, and propos­
ing their celebrated one-dimensional model [7,8]. As was shown in chapter 4 
solitons appear in pairs with astounding rapidity, following photoe?: station. As 
illustrated in Fig. 5.2b, a soliton is a compact and coherent (long-lived) lattice 
deformation pattern which smoothly bridges from a double-single to a single­
double bonding pattern. Interestingly, solitonic lattice distortions draw energy 
levels into the gap [9-11]. The conclusion is that the energy surface is sensitively 
dependent on the vibrating coordinates, not independent of time. Therefore, af­
ter photoexcitation, the retinal exits the Franck-Condon regime so quickly in part 
because forming solitons (in a few fs) reshapes the original energy' landscape.

What we are attempting to do is to apply SSH’s simple conceptual frame­
work for PA to the more difficult problem of rhodopsin and its non-trivial three- 
dimensional structure. To fix the parameters of our model, we use measured 
vibration frequencies and we are aided by recent NMR experiments and ab initio 
calculations which indicate the structure of retinal. One immediate advantage 
of our approach is that we may study (photo)excited electronic states in a rel­
atively simple and fast way, even on a modest-size workstation. Furthermore, 
correlation effects may also be included in these calculations in a transparent 
way; this is not possible in ab initio density functional approaches and is per­
haps misleading in the approach of [6] because they neglect the effect of other 
spatial coordinates on the energy surface.
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AAAAAAA
(b)

where au = 1.4 A is the average carbon-to-carbon spacing, Rtj = |Ri,jj = \fj - nl 
is the actual bond length between atoms i and j, and the operator (c*sCj,) is the 
compact second-quantization notation for moving an electron with spin s from 
site j to site i (with appropriate fermion properties implicit). Our intuition that 
electrons move more readily when the pz orbitals are close together is reflected 
in Hei for positive a and t. Twisting the pz orbitals out of alignment also reduces 
the likelihood of rr-electron hopping [15]. We measure the degree of twisting 
with 3, the angle between neighboring pz orbitals. The pz orbital is always 
taken to be perpendicular to the adjacent molecular bonds. Thus, the pz orbital

are treated with springlike effective potentials. Since electrons are much lighter 
than nuclei, we shall again assume that electrons instantaneously adjust to the 
wavefunctions that are evolving due to nuclear motion (the adiabatic or Born- 
Oppenheimer approximation). The essential electron-lattice coupling produces 
a dimerized lattice (alternating single and double bonds) and opens up a gap 
in the spectrum due to the Peierls instability. The gap, which determines much 
of what happens after photoexcitation, and the topological excitations seen in 
the SSH model, are believed to persist when electron-electron interactions are 
included [9,12). In this chapter we will go beyond SSH in generalizing to a fully 
three-dimensional model, in explicitly considering finite chains, and in adding 
steric and electrostatic interactions specific to rhodopsin.

Our primary additional assumption in modeling three-dimensional conju­
gated polymers is of sp2pz hybridization. That is to say that the pz orbital 
of a carbon atom is perpendicular to the plane containing the three sp2 orbitals. 
Using the Rh ground state coordinates determined in the ab initio calculations of 
Bifone, de Groot, and Buda (BGB) (14), we find near planarity of the sp2 orbitals, 
even in the highly sterically strained regions. That gives us some confidence in 
this idealization.

Even with the simplifications, many elements contribute to our Hamiltonian. 
These can be explored one by one. The rr-electron-lattice coupling is written as

” tlo)) COS Gn,n+\ ] [c*.scn+1,5 + cl+ucBJ] , (5.3.1)H'l = -SS[(t~“(Rn.n+l 
5 n

Figure 5-1. (a) 11-cfc-re tinal. (b) A soliton of width 2$: bond lengths J?n.n+i oscillate about 
mean value a^. Below, the same in standard chemical notation. Note that the soliton inter­
changes the bonding pattern (double-single — single-double).

H
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is assumed to point in the direction of the vector fr, defined by

(5.3.2)

(5.3.3)cos0n.n+1 =

all included

Hi =

(5.3.4)

n-l,n + l (5.3.5)

Hn = VNpN, where pN = £ c}NjcN.s. (5.3.6)

(5.3.7)

J

This contribution is simply Vn times the electron density (-ep is charge density) 
at site N.

One further contribution to the Rh Hamiltonian is the steric interaction due 
to the crowding in the crook of the cis bond, especially the steric interaction 
between the methyl group attached to CJ3 and the hydrogen attached to Ci0 (see 
Fig. 5.2a). Significant distortions result—taking the flat molecule and twisting it 
out of the plane [14,18]. We model the steric interactions with an r~12 potential

Kj.

2

A</>„

n

- «o).

R2n « ---

~7Tn • 7Tw+i

|trn||7fn+i| '

The bond stretching, bond-angle bending, and kinetic terms are 
in the lattice part of the Hamiltonian:

X Rn.ntl •tf„ — Rn-in

In terms of this vector we may write

Hsi = A(RH.Me)-12

S(«„.n+i-ao)2 + ^S(A^)2 
n £ n

n n

where M„ is the mass of the (C„H) or (C„Me) group at position n, where “Me” 
stands for a Methyl group (-CH3)) and where, as we saw in chapter 4, r is a 
term which regulates the chain length for finite chains 116], Since in retinal 
conjugation begins at C5, sums begin with n = 5. Furthermore, IS the 
deviation in radians of the bond angle from 2rr/3 rad = 120°. To first order in 
this deviation we have

~ Rn-l.n ~ Rn.n+l ~ Rn-l.nRn,n+l 

x/3Rn-i,n^n,n+l

So far, the model is generally applicable to conjugated polyene systems in 
three dimensions. To study rhodopsin, at least two additional terms must be 
included. One contribution stems from having a protonated Schiff base (PSB) 
at one end of the conjugated system. The nitrogen in the PSB is also sp2pz 
hybridized (isoelectronic to carbon), but tends to attract electrons to itself more 
than a carbon. We may model this simply with an on-site potential
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Ale - An + aCC (5.3.8)

(5.3.9)

(5.3.10)5/ao

5.4 Structure and Vibrations

(5.4.1)

is a phase angle. Direct numerical sim-

H = Hei + Hi + Hn + Hst-

The I'.... ■ of the atomic coordinates is performed by using the Feynman-
Hellm; .. > . o to calculate the forces, integrating forward, and recalculating
at each electronic wavefunctions of the new configuration [16],

Our re:-- challenge is to fix the parameters of the model. We take as our start­
ing point ’.he length over which the dimerization pattern varies in the ground 
state related to the dimensionless electron-phonon coupling parameter A by 
the asymptotic expression [12]

= 6KffA,

= Ko-+ 12K12O,

= 0,

Mm2,op

Mm2,op

Mm2,op

Mu}x.ac

Mu>2y,ac

^C13,C12 ^C]3,Cu A I kCi3,Ci2 + KC|3,CI4 I
^C13.C12 ^Ci3.Cn/ | Kc13,C12 KCi3.Cn |

where flee 1.54A is the carbon-carbon distance from C13 to the carbon atom 
of the attached methyl group. An expression analogous to Eq. 5.3.8 is used for 
the hydrogen, with aCH = 1.1A.

The c . no’ete Hamiltonian is a sum of these terms:

where Kh.mc is the distance from the hydrogen attached to C10 (at coordinate rH) 
to the methyl group attached to C13 (at coordinate rMe). The spatial coordinates 
of a side group are taken such that angles between the Me group and the two 
backbone bonds are equal:

2a2 
|exp(i + l),withA = ^-^.

Fitting to experiments done on PA, SSH found g/flo = 7. From Eq. 5.3.10, we find 
a relatively small electron-lattice coupling A = 0.21. This is the value used in the 
calculations reported below.

We carried out a full analytical vibrational analysis of the trans-PA case of our 
model (chain in the xj’-plane extending in the x direction as shown in Fig. 5.4 
and Hpa = Hei+Hi), for small electron-phonon coupling. The angular frequencies 
a> for the acoustical and optical modes are [13]:

= 32^*^ qz
Ka + 12^,2o X

= 0Q2 + |K12oQ£ ,
- 256t n,

where k120 = k’120a0“2 and Q_x =
ulation of these vibration modes confirm Eq. 5.4.1. The optical torsional and

Ci3.Cn/
KCi3.Cn


78 Towards Understanding the Ultra-Fast Dynamics...

Figure 5-2. Atomic displacement patterns for acoustical and optical modes. The frequency of 
each mode is given in Eq. 5.4.1.

acoustic bending modes correspond merely to rotations out of the xy plane 
and in the xy plane, respectively; there is no restoring force for such displace­
ments so they are zero-frequency modes. The calculation for cox,Dp employs an 
asymptotic expansion in A for the energy and, as such, is only valid for small A; 
the physical value of A = 0.21 is small enough that the asymptotic expansion is 
still good.

Since we are interested in determining the structure of Rh and its vibrational 
spectra, it is measurements of these quantities which we used to set the remain­
der of the parameters. Raman spectroscopy studies [19] indicate optical modes 
of period 30 fs (= 1100 cm'1) for x and period 25.8 fs (« 1290 cm-1) for y. 
Optical frequencies differ little between PA or ^-carotene. Using the formulae, 
we find Ksigma = 47 eV/A2 and Kl20 = 5.6 eV/(rad)2. (1 eV = 23 kcal/mol.)

In Fig. 5.2, the acoustical modes are shown as uniform compression, bend, 
or twist. These deformations vibrate with period given by the slowest mode, the 
mode with wavelength twice the length of the molecule; thus, Qmn = rr/(N - 1). 
It is interesting to use these expressions to calculate the frequency of the slow­
est acoustical mode. The compression mode is fastest with a period of 110 fs. 
The torsional mode has period 220/Vt/eV fs; for reasonable values of t (dis­
cussed later) this is the next fastest. The slowest is the bending mode. Be­
cause Q = tt/11 yields primarily a rotation, we must look to the mode with 
Q = 2rr/ll. We find this mode has period 385 fs, which compares favorably 
to the measured period of 550 fs in the bRh photoproduct [4]. Therefore we 
attribute the vibrational ringing of the photoproduct to the bending, not the 
twisting mode. This leads to a new way of thinking about the photoisomeriza­
tion: a quick nonlinear untwisting of the 11-cis bond excites many modes, but 
the observed coherent oscillations will be associated with the lowest frequency 
provided other frequencies are well separated from it. According to our calcula­
tions, this is mostly of bending (y) character.

Different measurements lead to conflicting values of t. Based on the tt band­
width of PA, SSH find t = 2.5 eV; however, with this value, steric strain is ab­
sorbed by bond-angle bending rather than by twisting—the ground state is flat, 
in contrast to the BGB structure. On the other end of the scale, values calcu­
lated by ab initio studies of torsional spring constants around single and double 
bonds in hexatriene [20] indicate t ~ 0.4 eV. This would suggest an optical gap



79Section 5.4: Structure and Vibrations

o.io

0.05

0.00

-0.05

82124

(5.4.2)^Me.Cio =

and

(5.4.3)Rwe.Cn =

(5.4.4){0C,O.C11, 0C11.C12. 0C12.C13} =

3.04 A model
3.05 ± 0.03 A (ref [18]) '

?
i s

3.10 A model
3.05 ±0.05 A (ref [18]) ’

and torsional angles consistent with the BGB result:

Other torsional angles are near 0° since no steric interactions are included to 
twist them. That 0ClliC12 is near l80’ indicates that it is a cis bond (5.3.2). Pa­
rameters A and are not yet optimized for a best fit, but qualitative features 
are achieved.

I  Ref 13 
I — Model

6 8 10
n

an order of magnitude too small. We take, at present, an intermediate value 
t = 1 eV to achieve reasonably good agreement with the BGB structure, and an 
electronic gap of 0.62 eV. From Eq. 5.3.10 we find a - 3.94 eV/A which, upon 
using Eq. 4.2.22a, fixes Hot, A) = 4.92 eV/A.

The BGB ground state shows a solitonic dimerization pattern due to the elec­
tron withdrawal from the backbone by the PSB, as can be seen in Fig. 5.3. Far 
from the nitrogen, bond lengths alternate uniformly. Near the nitrogen, this 
difference goes to zero—in fact, the formal C14-C15 bond really is short and 
the Ci;=N bond is long. The constant = -2.15 eV produces a bond length 
alternation pattern consistent with that found by BGB [14] and charge oscilla­
tions [21]. The constant A = 4000 A12-eV was chosen to yield the measured 
spacing between the methyl and carbons 10 and 11:

Figure 5-3. (a) Dimerization pattern compared to ab initio calculations [14]. Note the solitonic 
pattern (compare with Fig. 5.1b) centered near n = 9. (b) Ground-state electron density com­
pared with NMR measurement (21). In the photoexcited state, the electron density near the 
nitrogen increases. Qualitative agreement is good.

1.10 
ol 1.00

- °-90 
5 0.80 

g 0.70 
§ 0.60

0.50

(b)

{15°, 169°, 8") model
{11°, 164°, 14°} (ref[14])

 Ret 19
■ Ground 

------Excited

4 6
n

10 120 2
-0.10

(a)



Towards Understanding the Ultra-Fast Dynamics...80

Photoexcitation5.5

This model, with these parameters, can be used to determine the three- 
dimensional ground-state structure and the dynamical properties of conjugated 
polymers (Rh, bRh, PA, cyclooctatetraene, etc). To get an impression of how 
reasonable these parameters are, we have compared the values we have de­
rived with values used in chemical force-field calculations, deduced for hexa­
triene [20]. The hierarchy of interactions, most important for getting global 
structure right, is correct: bond length » bond angle » torsion. The compres- 
sional Ka and bond-angle K120 spring constants we calculate agree well quantita­
tively with ref. [20]. Our torsional t constant is, as we indicated above, a couple 
of times larger than for hexatriene, but fits into the hierarchy.

One might wonder how our calculations differ from atomic force field ap­
proaches. The key is that we treat the collective response of the electrons which 
gives rise to the possibility for solitons, polarons, etc. We may also treat elec­
tronically excited states, which is also not possible in force-field calculations.

As we have seen in the previous chapter, where the photoexcitation of finite 
chains was dicussed, the dimerization pattern interchanges in the center of the 
molecule persistently [16]. This means that in the center, until vibrational cool­
ing or some other mechanism damps out the kinetic energy, what were double 
bonds become single bonds, and vice versa. In Fig. 5.4 we demonstrate that this 
is also the case for Rhodopsin, in particular that the Cn=C]2 bond (n = 7) be­
comes a long bond. We imagine a mechanism in which the creation of soliton 
pairs (inverting the bond alternation pattern in between) dynamically catalyzes 
the isomerization. The system starts sterically strained; by interchanging single 
and double bonds, the torsional stiffness at the C11-C12 bond is weakened. With­
out a large barrier, can the steric strain do the job of twisting the molecule to the 
less sterically strained bathorhodopsin configuration? Our simulations, to date, 
do not realize this plausible scenario. Possibly, electron-electron interactions 
of the Hubbard type play an important role in this aspect of the dynamics [22]. 
The recent developments of the Density Matrix Renormalization Group, which 
allows the treatment of strong electron-electron interactions in one-dimensional 
models with unprecedented accuracy, appears to pave the road for the inclusion 
of such correlations in our model [17].

The charge density along the retinal backbone is another quantity which 
changes upon photoexcitation of Rh. In the calculations of Birge et al. [6] the 
net charge, near the nitrogen atom, changes by about 0.2 5e. This effect is ob­
served in our simulations (see Fig. 5.3).

Here we have ignored interactions of the retinal with the protein. These 
interactions may assist in the photoisomerization and are cuurently a subject of 
research by Aalberts and coworkers. Yet within 200 fs, the protein cannot adjust
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Figure 5-4. The positions of solitons that emerge after photoexcitation (the lines denote the po­
sitions where the dimerization pattern changes sign Rn,n+l = Rcn.<.c,.s = <>o)- Recall Fig. 5.2b. 
Note that Ci,=Ciz bond becomes and remains a single bond after about 10 fs. Steric strain 
prevents reaming to double-bond character in spite of the small conjugation length (N = 12).

much to the conformational change of the retinal, the exception being motion 
of the lysine residue that binds the retinal to the protein. Protein interactions 
which may play an important role include: vibrational cooling, holding ring in 
place, deformation due to the lysine tugging on the end (perhaps related to 
the energy storage mechanism of bathorodopsin), and the counterion. As long 
as experiments can fix the additional interaction parameters which need to be 
added, the modeling can proceed.

Although much work remains to be done, we are optimistic that a model 
of the type discussed here, will provide the clues to understand rhodopsin’s 
photoisomerization. Dynamical catalysis is one such novel mechanism inspired 
by this approach. The model is also of general utility in studying the three- 
dimensional structure and intermediates of other systems with rr-conjugated 
backbones.
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Samenvatting

He’ eerste deel van mijn promotie onderzoek, waarvan de resultaten te vin- 
den ziju in hoofdstuk 2 en hoofdstuk 3, heeft betrekking op de fenomenologie 
van hcge-temperatuur supergeleiding. Om deze resultaten in een juiste context 
te kun-ten plaatsen, zal ik eerst lets algemeens vertellen over supergeleiding.

5: . geleiding werd in 1911 door Kamerlingh Onnes ontdekt, in het natuur-
kund;;: J.-boratorium in Leiden dat thans zijn naam draagt. Hij ontdekte dat 
wanneer kwik tot beneden zo’n 3 Kelvin (-270*0 wordt afgekoeld, de elektri- 
sche weerstand van het kwik plotseling nul wordt. Later werd dit effect ook 
gevcnden bij andere metalen zoals aluminium, tin en lood. De temperatuur 
waarbeneden de elektrische weerstand nul wordt, wordt de “kritieke tempera­
tuur” genoemd. De toestand waarin het betreffende metaal zich beneden deze 
temperatuur bevindt de “supergeleidende toestand”. Boven de kritieke tempe­
ratuur heet het materiaal in de “normale” toestand te zijn; de term “normaal" 
geeft hierbij aan dat het materiaal zich als een gewoon metaal gedraagt. Behalve 
deze meest in het oog springende eigenschap, het verdwijnen van de elektrische 
weerstand, werden in de loop der tijd nog andere fysische eigenschappen van 
deze materialen gevonden, die optreden in de supergeleidende toestand.

Het duurde echter tot halverwege de vijftiger jaren, voordat een bevredigende 
theoretische verklaring van het verschijnsel supergeleiding gegeven kon worden 
door de amerikaanse fysici Bardeen, Cooper en Schrieffer. Hun theorie, nu be- 
kend onder de naam BCS-theorie, verklaarde vanuit een microscopische onder- 
bouwing de vele verschijnselen die bij supergeleiders optreden. Centraal in die 
onderbouwing staat het concept "gepaarde elektronen”. Op het eerste gezicht 
lijkt het vreemd dat twee elektronen een paar zouden willen vormen, aangezien 
zij immers een gelijke elektrische lading hebben en elkaar dientengevolge zullen 
afstoten. BCS toonden echter aan dat beneden een bepaalde temperatuur, m.b.v. 
in het metaal aanwezige roostertrillingen (fononen), twee elektronen een netto 
aantrekkingskracht op elkaar kunnen uitoefenen. Omdat dit voor alle elektro­
nen opgaat impliceert dit dat de normale toestand, waarin de elektronen niet 
gepaard zijn, instabiel is beneden de kritieke temperatuur waardoor bij lager 
wordende temperatuur meer en meer elektronen met andere elektronen “con- 
denseren” in paren. Dit leidt tot een collectieve toestand met de voor superge­
leiders bekende eigenschappen.

Hieronder geef ik een korte samenvatting van de resultaten van mijn onderzoek 
zoals die in de vorige hoofdstukken, op meer wetenschappelijke wijze, gepre- 
senteerd zijn.
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Het tweede deel van mijn onderzoek betreft een onderwerp dat ligt tussen

Supergeleidende materialen vonden in de loop der tijd allerlei nuttige toe­
passingen. Om praktische en economische redenen lag het voor de hand om 
materialen te vinden met een zo hoog mogelijke kritieke temperatuur; de “klas- 
sieke” supergeleiders zoals lood en tin hebben een vrij lage kritieke temperatuur 
en het is dus duur en onpraktisch om ze met vloeibaar helium op die lage tem­
peratuur te brengen en te houden.

In 1987 ontdekten de fysici Bednorz en Muller, dat een nieuwe klasse van 
keramische materialen supergeleidend wordt bij temperaturen die hoger zijn 
dan het kookpunt van vloeibaar stikstof, zo’n -200°C. Deze materialen, hoge- 
temperatuur supergeleiders, vonden natuurlijk snel hun toepassingen, maar 
stelden de theoretic! opnieuw voor een groot raadsel. Het bleek namelijk dat 
deze materialen ten opzichte van de klassieke supergeleiders, naast de uitzon- 
derlijk hoge kritieke temperatuur, een aantal eigenschappen hebben die niet pas- 
sen binnen de BCS-theorie. Hierbij vielen vooral enkele eigenschappen op die 
deze materialen hebben boven de kritieke temperatuur: de normale toestand 
van hoge-temperatuur supergeleiders blijkt in die zin abnormaai te zijn. Op­
nieuw leverden theoretici enorme inspanningen om een microscopisclie verkla- 
ring voor deze eigenschappen te vinden.

Een aantal van deze onverklaarbare en op het eerste gezicht niet samenhan- 
gende experimentele feiten werd in 1989 door Varma en collega’s in een enkele 
formule samengevat. Deze auteurs poneerden een fenomenologische theorie, 
die gebaseerd was op een aanname m.b.t. de polariseerbaarheid van de ma­
terialen. Deze Marginal Fermi Liquid (MFL) aanname bleek voldoende in staat 
om bij het doorrekenen van de consequenties ervan een aantal experimenteel 
bekende eigenschappen te reproduceren. In deze berekeningen werd aangeno- 
men dat het mechanisme dat verantwoordelijk is voor het MFL gedrag, tevens 
de “lijm” tussen de elektronen is bij paarvorming (zoals de fononen de “lijm” 
tussen de elektronen zijn in het geval van klassieke BCS supergeleiders) in de 
supergeleidende toestand. In hoofdstuk 2 van dit proefschrift, laten we zien 
dat dit geen noodzakelijke aanname is; door uit te gaan van elektronen die zich 
als een MFL gedragen en een afzonderlijk mechanisme voor supergeleiding a la 
BCS, laten zich door berekening resultaten afleiden die ook consistent zijn met 
experimenteel bekende eigenschappen, maar die nu wel eenvoudiger begrepen 
kunnen worden.

In hoofdstuk 3 berekenen we de consequenties van de MFL-aanname voor 
de geleidbaarheidsfluctuaties in supergeleiders, in de richting loodrecht op de 
koperoxide vlakken waaruit deze materialen zijn opgebouwd. Uit deze bere­
keningen blijkt dat de weerstandstoename vlak boven de kritieke temperatuur, 
zoals die experimenteel wordt waargenomen, ook vanuit de MFL-fenomenologie 
kan worden verklaard.
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fysica van polymeren en de biologie, en is beschreven in hoofdstuk 4 en hoofd- | 

stuk 5.
Als U dit in een zeer schemerig hoekje leest, komen lichtdeeltjes (fotonen) 

vanaf het witte gedeelte van deze bladzijde op Uw netvlies. In dat netvlies bevin- 
den zich cellen die, vanwege hun vorm, staafjes worden genoemd; deze staafjes 
gebruiken wij (en andere gewervelden) nu net om in relatieve donkerte te kun- 
nen zien. In het membraan van deze cellen bevinden zich op hun beurt grote 
eiwitmoleculen, opsine genaamd. Een opsine molecuul heeft zich als een verpak- 
king heeft gesloten rond een veel kleiner molecuul: retinal. De combinatie van 
het eiwit opsine met daarin het kleine retinal molecuul, dat overigens in zekere 
zin een door midden geknipt 0-caroteen molecuul is dat vooral in de bekende 
wortels voorkomt, wordt rhodopsine genoemd.

Het retinal molecuul bevindt zich niet zomaar in het eiwit, maar heeft een 
zeer specifieke gebogen vorm die de cis vorm wordt genoemd. Wanneer echter 
een foton dit cis-retinal treft, veroorzaakt dit een vormverandering van het gebo­
gen (cis) naar een recht (trans) retinal molecuul. Dit rechte retinal past nu echter 
niet meer zo goed in het opsine molecuul en begint van binnenuit te wrikken, 
waardoor een reeks stappen in gang wordt gezet die leidt tot een zenuwimpuls 
naar de hersenen: we zien!

Van de meeste van de hierboven genoemde stappen in het mechanisme van 
het zien, is sinds kortere of langere tijd veel bekend. De meest essentiele stap 
echter, de eerste stap, waarbij cis-retinal omvormt naar trans-retinal werpt ze- 
ker vanuit theoretisch standpunt interessante vragen op, die tot nu toe onbeant- 
woord zijn gebleven. De uitdaging is namelijk, te verklaren waarom deze foto- 
chemische reactie zich in slechts zo’n 200 femtoseconde kan afspelen. Zelfs 
voor fotochemische begrippen is deze tijd namelijk zeer kort ( ter illustratie, 
200 femtoseconde oftewel 0.0000000000002 seconde, is de extreem korte tijd 
die licht ongeveer nodig heeft om de afstand van een haardikte af te leggen...). 
Een andere vraag is, waarom deze reactie zo efficient is: lichtintensiteiten die 
overeenkomen met een paar fotonen zijn met het blote, weliswaar aan het don- 
ker gewende, oog waarneembaar!

Nu is retinal in essentie een geconjugeerd molecuul, wat wil zeggen dat het 
een keten van koolstofatomen bevat, waarin dubbele (“korte”) chemische bin­
dingen en enkelvoudige (“lange”) chemische bindingen elkaar afwisselen. Op de 
eindige lengte en wat interessante zijgroepen na, lijkt retinal daarom veel op een 
bekend polymeer: polyacetyleen. Dit molecuul is in het verleden onderwerp van 
veel theoretisch-fysisch onerzoek geweest, en een model voor dit molecuul werd 
gegeven door de fysici Su, Schrieffer en Heeger: het SSH-model. Dit model, waa­
rin de quantummechanische eigenschappen van alleen de valentie-elektronen 
(die elektronen die bij de chemische binding betrokken zijn) worden inbegrepen 
voorspelt, voor redelijke waarden van de parameters in het model, effecten op 
tijdschalen die veel overeen lijken te komen met de tijdschaal van 200 femto­
seconde bij de eerste stap in het zien, en die daarbij mogelijk een rol zouden
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sultaten in dit hoofdstuk zijn primair bedoeld 
genschappen van het model bij de toepassing ervan

kunnen spelen.
In hoofdstuk 4 nemen we daarom het SSH-model als uitgangspunt. De re- 

 . IM 1 om inzicht te krijgen in de ei- 
 .r „ op ketens met een eindige 

lengte. Wat dan blijkt is, dat het SSH-model met een geringe aanpassing geschikt 
is om ook eindige ketens te beschrijven. Een aardig bijprodukt van de analyse is 
een exacte formule voor de geluidssnelheid; hieruit blijkt dat resultaten op dit 
gebied die vroeger met benaderende methoden werden verkregen niet juist zijn.

In hoofdstuk 5 breiden we het model zodanig uit, dat beweging van het mo- 
lecuul in meer richtingen is toegestaan. Dit is van essentieel belang om de cis­
trans overgang van retinal te kunnen modelleren. Bij deze uitbreiding van het 
model worden enkele nieuwe parameters geintroduceerd. Om ealistische waar- 
den voor deze parameters te bepalen, worden de frequenties van mogelijke tril­
lingen (normal modes) uitgerekend. Door deze frequenties ■ ■ ergelijken met 
experimenteel bekende waarden, kunnen de waarden van de pa.'meters van het 
model bepaald worden.

Hoewel deze resultaten nog niet leiden tot uitspraken over retinal en de eer- 
ste stap in het zien, is het werk dat in dit hoofdstuk beschreven staat wel een 
belangrijke en noodzakelijke eerste stap om, in een later stadium van dit onder- 
zoek, de ultra-snelle dynamica van rhodopsine te gaan begrijpen.
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behorende bij het proefschrift

Hoofdstuk 2 van dit proefschrift.
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Hoofdstuk 2 van dit proefschrift.

4. Het gebruik van diagrammen met een statisch energie-landschap als functie 
van een reactiecoordinaat geeft in veel gevallen een onjuist beeld van de 
dynamica van (foto)chemische processen.

3. De discrepantie tussen het door De Caluwe en Verbeure verkregen resultaat 
voor de geluidsnelheid in het Su-Schrieffer-Heeger model en het resultaat 
zoals gegeven in hoofdstuk 4 van dit proefschrift, wordt door hen onjuist 
verklaard; de juiste verklaring is, dat in hun berekening een niet-fysische 
randvoorwaarde wordt opgelegd.

J. De Caluwe enA. Verbeure, Preprint-KUL-TF-97-21

2. Het in dit proefschrift beschreven scenario, waarin de mate van verstrooiing 
van quasi-deeltjes in de supergeleidende toestand wordt onderdrukt door het 
openen van een kloof in het een-deeltje excitatie-spectrum, is consistent met 
de experimentele resukaten van metingen van de electronische soortelijke 
warmte coefficient.

I. Het is denkbaar dat in hoge-temperatuur supergeleiders twee onafhanke- 
lijke mechanismen verantwoordelijk zijn voor het ontstaan van supergelei- 
ding enerzijds en de anomale eigenschappen boven de kritieke temperatuur 
anderzijds.
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CQ

E
n=l

s(n) 
n(n + 1)

oo 
g(x,q) = ^x' 

n=0

5. Wanneer een geluidsbron zich bevindt onder een stolp waaruit door pompen 
de lucht wordt onttrokken, is die geluidsbron uiteindelijk onhoorbaar; in 
tegenstelling tot wat in het natuurkunde onderwijs wordt beweerd, toont dit 
echter niet aan dat voor de voortplanting van geluidsgolven een medium 
nodig is.

10. Koersen op Kwaliteit is niet mogelijk wanneer het aan voldoende voortstu- 
wing ontbreekt.

9. De slogan Sta even stil bij het werk aan de weg schept zeer vaak te hoge ver- 
wachtingen.

7. Bij de beweging van een ronde schijf op een horizontaal oppervlak zijn de 
rotatie en translatie door de wrijving zodanig gekoppeld dat beide bewegin- 
gen, onafhankelijk van hun beginsnelheden, altijd gelijktijdig eindigen.

8. De volkswijsheid, dat een aangebroken fles mousserende wijn langer goed 
blijft als men een metalen lepel in de hals van de fles hangt, is inderdaad 
een volkswijsheid.

10 
^IndO).

6. Zij s(ri) de functie die ieder natuurlijk getal n spiegelt in de decimale punt: 
s(l) — 0.1, 5(621271) = 0.172126 etc. Dan is m.b.v. de genererende 
functie
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