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Chapter 1

Int i j d action

The strong interaction and QCD

1

fhere are four fundamental forces in nature: the gravitational, electromagnetic, weak 

and strong force. In modern physics each fundamental force is described in the frame­

work of a field theory possessing a local symmetry. This means the Lagrangian of 

the theory is invariant under space and time dependent transformations of the fields.

• • tablish a local symmetry it is necessary to introduce gauge fields, which rep­

resent particles that couple to the matter fields already present in the Lagrangian. 

This changes the equations of motion of the matter fields. By the principle of covari- 

antization of derivatives we get an interaction term in the Lagrangian, multiplied by 

an arbitrary coupling constant. In general this coupling constant characterizes the 
strength of the force.

From the four fundamental forces, it is the strong force we are interested in in 

this thesis. It determines the behaviour of hadrons in highly energetic collisions with 

leptons or other hadrons, which will be our subject of investigation. The gauge field 
theory describing the strong force is Quantum Chromo Dynamics (QCD) [1]. In 

QCD the quarks, of which the hadrons are made up, interact through the exchange 

of gluons. The quarks are spin-1/2 particles and the gluons, with a spin equal to 1, 

belong to the class of Yang-Mills fields [2]. They share with the quarks a quantum 

number called color. Originally this additional degree of freedom was introduced to 
explain the hadron spectrum in the constituent quark model of Gell-Mann [3]. It 

seemed that hadrons contained quarks which were in the same quantum state, which 

would violate the Pauli exclusion principle for fermions. However, the Pauli principle 

can be rescued by antisymmetrizing the quark wave-function with respect to the color 
label, which takes on the ‘values’ red, green and blue [4, 5]. Experimental evidence
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awarded the 1990 Nobel prize for physics.xThe physicists responsible for this experiment were

for the existence of three colors came from the lifetime of a 
R-factor defined in e+e“ annihilation [5].

The QCD Lagrangian is invariant under local SU(3) transformations which change 
the color of the quarks and gluons. The hypothesis is that physical particles are 
colorless. This explains why the existing hadrons are made up of either three quarks 
(baryons) or a quark-antiquark pair (mesons) [5]. The local S(7(3) color symmetry is 
an exact symmetry, so the quark masses must be color independent. They do however 
depend on the flavor quantum number: the up, down, strange, charm, bottom and 
top quarks all have different masses. Where these mass differences come from i 
known.

One of the achievements of QCD is that it yields an improvement of Feynr 
parton model [6]. In this model hadrons are composite particles made up of pai 
which were identified later on with quarks and gluons. The parton model tried to 
explain the results of the deep inelastic electron-proton scattering experiments1 done 
at SLAC in 1968 [7], for a review see [8]. In these experiments one observed that the 
dynamics of deep inelastic scattering is independent of the interaction scale, which 
equals the four-momentum squared of the virtual photon exchanged between the 
electron and the proton. This phenomenon is called scaling [9]. The parton model 
could explain this by assuming that the partons are free point-particles and that 
deep inelastic electron-hadron scattering is the incoherent sum of electron-parton 
scatterings. To be more specific, the hadronic cross-section is equal to the incoherent 
sum of partonic cross-sections weighted by parton distribution functions (also called 
parton densities) f^(y). They give the probability of finding in hadron H a parton 
’i’ carrying a momentum fraction y of its parent hadron. The quantity y is usually 
called the scaling variable.

However, later experiments at Fermilab and CERN, with better statistics, showed 
a slight breaking of scaling [10]. This could be understood in the context of QCD, 
where quarks are no longer considered to be free, but instead couple to gluons. How­
ever the effective strong coupling constant a9 vanishes logarithmically for increasing 
energies, a unique feature of non-abelian gauge theories like QCD. At sufficiently high 
energies the quarks behave as if they are free, a property called asymptotic freedom 
[11]. For this reason only a minor deviation of scaling is measured. For small values
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of the energy, so at a large distance scale, the self-interactions of quarks and gluons 
cause to rise to infinity. This could explain another experimental fact: free quarks 
have never been observed. (This property is called confinement.) It also implies 
that in the low-energy range cta grows too large to make a convergent expansion in 
it around the free field theory, a method named perturbative QCD. In this region 
non-pcrturbative techniques [12] have to be used, which will not be discussed in this 
thesis.

) inelastic electron-hadron scattering (DIS) the parton model is the lowest
■ - of the QCD perturbation series. S.D. Drell and T.M. Yan constructed an 

•die parton model for another process involving hadrons, namely massive 
production in hadron-hadron scattering [13]. This is generally called 

: Yan process (DY). The lepton-pair is produced by the decay of a virtual
> boson (photon, W±- or Z-particle). According to the Drell-Yan model the 

■ cctor-boson is created by the annihilation of a parton from one hadron with an 
antiparton from the other hadron. The DY model also predicts scaling. One could 
expect a QCD induced breaking of scaling here too, but the Drell-Yan experiments 
that have been carried out so far were not accurate enough to observe this. However, 
the theoretical prediction for the DY cross-section that was made by the DY model 
had to be multiplied by a large normalization constant, the so-called /<-factor, to 
fit the experimental data [14]. This is due to the omission of higher order QCD 
corrections.

It is clear that QCD is a model for the strong interaction which is theoretically 
attractive, because it has the same general structure as the theories for the other 
three fundamental forces, and experimentally successful, in the sense that its global 
predictions are not contradicted by experiments. Unfortunately it requires a lot of 
work to obtain precise theoretical predictions that can be compared with the results of 
the experiments. We will give an overview of some calculations done in perturbative 
QCD and mention the difficulties and uncertainties in the calculations.

Both for DIS and for DY the first order QCD corrections were calculated already 
15 years ago. To simplify the calculations quarks are taken to be massless. Together 
with the fact that gluons are massless, this gives rise to the appearance of mass 
singularities, also called collinear divergences, in the expressions for the partonic 
cross-sections. One can get rid of these singularities by absorbing them into the
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parton densities [15]. This is a renormalization procedure called mass factorization 
(QCD is a renormalizable theory [16]). Since the parton densities play a role in both 
the parton model and the DY model, the DIS and DY partonic cross-sections should 
yield the same mass singularities, if one wants the renormalized parton densities to 
be process-independent. At first order this turned out to be indeed the case.

After removing the mass singularities from the partonic cross-section by means of 
mass factorization, one was able to determine the first order QCD corrections to the 
DY- and DIS cross-sections [17]. The corrections could more or less explain the- scaling 
violations found in DIS and the large K-factor in DY. However, the large si. 
first order corrections is alarming. For low energies it can partially be explaint 
increasing coupling constant, but the first order corrections remain large in 
energy region. This raises the question whether the perturbation series is coir 
It is hard to judge this when having only the first order terms at ones 
although some authors have tried to estimate higher order terms by an expon< 
of the first order corrections (known as resummation techniques [18, 19]). A-othc.r 
point of concern is the strong dependence of the first order corrections on the energy 
scale at which the mass factorization is performed, which makes the results somewhat 
arbitrary. This is due to the truncation of the perturbation series and can only be 
reduced by including higher order corrections.

So one felt the need for the computation of at least the second order QCD cor­
rections. Another motivation for more precise calculations was the progress in ex­
perimental high energy physics. Colliders provide us with an increasing amount of 
high-precision data covering various strong interaction processes. When experiments 
become more accurate, one needs better theoretical predictions with which to com­
pare the data. In 1989 a first start with this was made in [20, 21], where part of 
the second order corrections to DY and DIS has been calculated. Here the so-called 
soft gluon limit was taken, which amounts to keeping only those contributions that 
are singular in the limit y —♦ 1, where y is the earlier mentioned scaling variable. It 
means the gluons have a very low energy. This not only simplifies the calculations 
but also reduces the number of parton processes that have to be taken into account. 
In the case of DY it was suspected that the soft gluon contributions dominate the 
cross-section. In 1991 the calculation of the second order contributions to DY was 
completed in [22]—[24], where the hard gluon part has been calculated. Notice the 
large time span between the performing of the first- and second order calculations! 
It is an indication of the complexity of second order QCD computations.

This thesis aims at completing the calculation of the second order QCD contri-



References

[i] H. Fritsch, M. Gell-Mann and H. Leutwyler, Phys. Lett. B74 (1973) 365

•2) v nr.g and R.L. Mills, Phys. Rev. 96 (1954), 191

'./.V' -jre--uberg, Phys. Rev. Lett. 13 (1964), 598

R.P. Feynman, Phys. Rev. Lett. 23 (1969), 1415[6]

[7]

[8)

[9] J.D. Bjorken, Phys. Rev. 179 (1969), 1547

[10]

[11]

5

buttons to DIS. We will explain in detail how the work was done and also present 

many graphs and tables to illustrate the consequences of including second order QCD 
corrections for the analysis of several collider experiments.

R.E. Taylor, Rev. Mod. Phys. 63 (1991), 573; H.W. Kendall, Rev. Mod. Phys.

63 (1991), 597; J.I. Friedman, Rev. Mod. Phys. 63 (1991), 615

R.E. Taylor, Proceedings of the International Symposium on Lepton and Photon 

Interactions at High Energies, Stanford 1975

D.H. Coward et al., Phys. Rev. Lett. 20 (1968), 292; E.D. Bloom et al., Phys. 

Rev. Lett. 23 (1969), 930; M. Breidenbach et al., Phys. Rev. Lett. 23 (1969), 

935

H.D. Politzer, Phys. Rev. Lett. 30 (1973), 1346; D.J. Gross and F. Wilczek, 

Phys. Rev. Lett. 30 (1973), 1343; S. Coleman and D.J. Gross, Phys. Rev. Lett. 

31 (1973), 851

: M nn, Phys. Lett. 8 (1964), 214; G. Zweig, CERN reports TH-401 and 
' •ri \ 2

and M. Gell-Mann, Proc. 16th Int. Conf, on High Energy Physics, 

Batavia, 1972, vol. 2, p. 135; M. Gell-Mann, Acta Phys. Austr. Suppl. 

i, /?2), 733

[12] K.G. Wilson, Phys. Rev. D10 (1974), 2445; J.M. Drouffe and C. Itzykson, Phys. 

Rep. 38C (1978), 133; A. Hasenfratz and P. Hasenfratz, Ann. Rev. Nucl. Part. 

Sci. 35 (1985), 559



[15] H.D. Politzer, Nucl. Phys. B129 (1977), 301

[16] G. ’t Hooft, Nucl. Phys. B33 (1971) 173

[18] G. Parisi, Phys. Lett. B90 (1980) 295; G. Sterman, Nucl. Phys. 281 (19! 0.

[21] T. Matsuura, Ph.D. thesis, University of Leiden, The Netherlands (1989).

[22] T. Matsuura, R. Hamberg and W.L.

Neerven and T. Matsuura, Nucl. Phys. B359 (1991) 343.

[24] R. Hamberg, Ph.D. thesis, University of Leiden, The Netherlands (1991).

6

[13] S.D. Drell and T.M. Yan, Phys. Rev. Lett. 25 (1970), 316; Ann. Phys. 66 (1971), 
578

[14] J. Badier et al., Phys. Lett. 89B (1979), 145; R. Barate et al., Phys. Rev. Lett.
43 (1979), 1541

[20] T. Matsuura, S.C. van der Marek and W.L. van Neerven, Phys. Lett. B211 
(1988) 171; Nucl. Phys. B319 (1989) 570.

d
B

van Neerven, Nucl. Phys. B345 (1990) 331.

[23] R. Hamberg, W.L. van

[17] J. Kubar-Andre and F.E. Paige, Phys. Rev. D19 (1979), 221; G. A'- ’!>,
R.K. Ellis and G. Martinelli, Nucl. Phys. B157 (1979), 461; B. Hump' 
W.L. van Neerven, Nucl. Phys. B184 (1981), 225; G. Parisi, Phys. Let.' 
(1980), 295

[19] D. Appel, P. Mackenzie and G. Sterman, Nucl. Phys. B309 (1988) 259; S. -ii 
and L. Trentadue, Nucl. Phys. B327 (1989) 323; ibid. B353 (1991) 183; E. 
Laenen, J. Smith and W.L. van Neerven, Nucl. Phys. B369 (1992) 543



Chapter 2

Higher order QCD calculations

Production2.1

«, + H -» 4 + ‘X’ ,

(2.1.2)

(2.1.3)

and

(2.1.4)

7

three quantities 

used.

<?2 = -92 ,
_ P-9

U M

(2-1.1) 

where the interaction is mediated by one of the vector bosons of the standard model 
(V = -y, W* or Z). The incoming lepton is denoted by £i, the incoming hadron by H, 

the scattered lepton by ^2 and the remnants of the broken up hadron by ‘X’, which 

can contain any combination of hadronic states that is allowed by conservation of 

quantum numbers.

As shown in the figure, q represents the momentum of the vector boson, while 
p and px denote the momenta of H and X, respectively. The mass of the hadron is 

M. The measurable quantities in the process are p, q and M. For convenience these 

are recombined into three other variables, which will be frequently

- ve will outline the procedure for calculating higher order QCD con- 

‘.he theoretical cross-sections of deep inelastic scattering (DIS) and the 
process (DY). The emphasis will be on DIS calculations.

. going into the details of deep inelastic scattering, we will define some of the 

. van:. quantities of DIS and DY. In figure 2.1 we have depicted the deep inelastic 
scattering process

x = ,
2pg



Fig. 2.1. The kinematics of the DIS process.

(2.1.5)
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where v and x represent the energy transfer to the hadron in its rest frame and the 

DIS scaling variable, respectively. The ultimate purpose will be the calculation of the 

DIS differential cross section. Because the outgoing hadronic states are not measured 

separately (only the outgoing lepton is detected), we have to consider an inclusive 

cross-section, i.e. we sum over the final state quantum numbers. Furthermore we 

consider for the moment unpolarized cross-sections and average over all possible initial 
state spins. Polarized deep inelastic scattering will be discussed in chapter 6.

The deep inelastic scattering process can be split in two parts:

a. A leptonic part, consisting of the emission of a vector boson by the lepton,
b. A hadronic part, consisting of the subsequent vector boson-hadron scatter

The inclusive DIS differential cross-section is proportional to the product of the lep­
tonic and hadronic tensors, which are indicated by Lplz and respectively. In the 

case of a charged current process where V = W, the cross section becomes 

d2^ __ __ g^_________
dQ2dv ~ 21°rr('72 - My)2E2M

where E\ is the energy of the incoming lepton in the rest frame of the hadron, 

Mv is the mass of the vector boson and g is the electroweak coupling constant. 

Because leptons are generally assumed to be point-particles, the leptonic part is easy 

to compute (neglecting electroweak radiative corrections). Using standard Feynman 

rules one obtains for the leptonic tensor in lowest order of electroweak theory

L"*' = 4(v2 + a2) + k\k^ - g^ky-ki] - Zivae^k^x, (2.1.6)

Px
H



^x.Q2) = -

+

(2-1.7)

(2.1.8)4-2va

(2.1.9)

case

/ = 21Va , (2.1.10)Mv = M-, = 0 ,

e2/4?r is the fine structure constant.

9

<Pa 
dQ2dv

where a =

— F2(x,Q2) + 
P'90 G"

-\i^p’qX — F3(x,Q^ , 
2 p-q

provided we assume that the hadronic (weak) current is conserved at high energies. 
The coefficients F, in (2.1.7), which are yet to be determined, are called DIS hadron 
structure functions. This decomposition of the hadronic tensor enables us to express 
the differential cross section of the DIS process in terms of the F,. It reads

—-—Gu2+(2F*sin2 ?+—cos2 D28tt(92 - Mv2) EiM V \ 2 u 27
E\ 4- Ez

p

where Ei and E? are the energies of the incoming- and outgoing leptons in the rest 
frame of the hadron and 0 is the lepton scattering angle (see fig. 2.1), which satisfies

^-^)f1(x,Q2) +

( pq

where the lepton masses are neglected and v and a denote the vector- and axial 
parts of the vector boson coupling to the lepton pair, which can be found in [1]. 
Further we use the convention e0123 = 1. The last term of (2.1.6) is absent in purely 
electromagnetic processes due to parity conservation.

The computation of the contribution of the hadronic part of the process is less 
straightforward, because the hadron is a composite particle instead of a point-particle. 
This means that without further investigation one cannot say much about the hadronic 
tensor VT/yp, except that one can write down the most general formula for it in terms 
of th" : ■-momenta occurring in the process. By imposing constraints on like

. variance and time reversal invariance, and neglecting terms proportional 
'. masses, some of the possible Lorentz structures are ruled out. The 
; utz structures are parametrized by dimensionless coefficients F{. This

Q2 =4E1E2sin2(i(?) .

In the case of a purely electromagnetic process, F3 = 0 due to parity conservation 
and one can use in (2.1.5) and (2.1.8)

((v2 + a2) (2F, sin2 | +

F3sin2|) ,

v = 1 , a = 0 ,

P'9
92



H,+H2-> V+‘X’
(2.1.11)

+ ^2,

Fig. 2.2. The kinematics of the Drell-Yan process.

W(x,<?2), (2.1.12)

where

S = (pi + P2)2 , (2.1.13)

10

We will now switch to the description of the Drell-Yan process, i.e. massive lepton 
pair production in hadronic collisions, proceeding through the following reaction

k hadronic 
states

^point 

dQ2

hadronic state allowed by conservation of quantum numbers. The colour averaged 
inclusive cross section is given by

where Visa vector boson, which subsequently decays into a lepton pair (£1,^2). 
The process is depicted in fig. 2.2. The symbol ‘X’ again denotes any inclusive final

dav
dQ2 X

X~ S

with pi and P2 denoting the momenta of the two incoming hadrons. The quantity 
jgr- is the pointlike DY cross section (the cross section that we would have if 

the hadrons were point-particles), which can be found in appendix A of [2]. The 
variables a/S and stand for the C.M. energy of the incoming hadrons Hi, Hj 
and the invariant mass of the lepton pair, respectively. Wy(x,Q2) represents the DY

2



The naive parton model2.2

2.

3.
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hadron structure function, indicating the deviation from pointlike behaviour. For its 
calculation more work needs to be done.

To make a theoretical prediction for the structure functions of both DIS and DY, 

we need a model for the composition of hadrons. In the subsequent sections we 
will describe how the hadron structure functions Wy(x,Q2) and Fi(z,Q2) can be 

determined using the QCD improved parton model.

be identified with the quarks; later 
as the collective name of both quarks

Step 1 : Define the parton density1 77/(y)of a parton of type i with momentum p 

inside a hadron H with momentum p. The variable y denotes the momentum fraction 
carried by the parton with respect to the momentum of its parent hadron, which

1 We will mostly use hatted symbols to denote parton level quantities. However in the case of the 
parton density the hat indicates that it is an unrenormalized or ‘bare’ quantity, without physical 
meaning. Although in the naive parton model the parton density does have a physical interpretation, 
we use the hat here in consideration of later sections, where the story continues.

The partons are free point-particles, they do not interact with each other. They 

only interact with leptons, via the exchange of vector bosons of the standard 

weak model.

The idea is shown in fig. 2.3 (taken from [4]). In order to compute the hadron struc­

ture functions which are necessary to make a theoretical prediction for DIS and DY 

cross-sections, the rather simple concepts of the parton model need to be incorpo­

rated in the calculation. For DIS this can be done in three steps:

: rton model [3] gives a description of the composite structure of hadrons 
highly energetic collisions. Its assumptions are:

r adrons consist of partons (which can 

a.- denomination partons will be used

and gluons.)

Deep inelastic collisions involving hadrons are determined by collisions involv­

ing partons. E.g. the cross-section of photon-hadron scattering is the incoher­

ent sum of elastic photon-parton scatterings and the cross-section of hadron- 
(anti)hadron scattering is the incoherent sum of parton-(anti)parton annihila­

tions.



hadronsvector boson
9

hadrons

partons

hadron P

Fig. 2.3. The parton picture of deep inelastic scattering.

is supposed to have the same direction: yp^ where 0 < y < 1.

(2.2.1)

(2.2.2)parton i + V —♦ some multi-parton state

as

(2.2.3)

For the Drell-Yan process three equivalent steps need to be taken [5]:

12

see (2.6.4). However, physically F'k must mean some- 
are point-particles, as stated by 
use that assumption later.

Step 2 : Define the DIS scaling variable at the parton level

-<72 
Z 2p ? '

This is the analogue of the hadron scaling variable z, which is related to z by x = yz.

Step 3 : Introduce parton structure functions F}, F2* and fj, which mathematically 
play exactly the same role as the hadron structure functions, namely parametrization 
of a tensor which shows up if we write the cross-section of the parton process

For the precise definition of W^„, 
thing else than Fk, because unlike hadrons, partons 
the second assumption of the parton model. We will



step 1 for DIS.

(2.2.4)z —

that *.' ■

efine

(2.2.5)

the

(2.2.7)

(2.2.8)

13

Step 1 : Same as

parton i + parton j —♦ V + some multi-parton state . (2.2.6)

Then a parton DY ‘structure function’ W'1 can be introduced in the same way as 
hadron DY structure function by

J?) . "’“<••«’> ■
/ point

Now we are able to make both for DIS and for DY a connection between the process 

at the parton level and the process at the hadron level, that is, we can express the 

hadron structure functions in the parton structure functions. According to the parton 

model we obtain for DIS

F,(*. Q2) = E e? fcdy fo'dz 6(x - yz)Z(y) F;(z, <?2) ,

Step 2 : Define the DY scaling variable at the parton level 

Q2 
(pi + P2)2

where and p2 denote the momenta of the incoming partons belonging to the two 

colliding hr.drons. If j/i and y2 denote their momentum fractions with respect to the 

moment the respective parent hadrons, we have the relation x = y\y2z. Note 
jale the DIS and DY scaling variables by the same symbols, although 

1;/ they have different meanings. This should not cause confusion, as we 
• a clear distinction between the discussion of DIS and DY.

- %(*.Q2) , 

the cross section of the process

where we integrate over all possible momentum fractions of the partons and sum over 
all possible parton types. The parton structure functions Fj(x, Q2) are weighted by 

the parton density j,(y). The delta-function implements the constraint x = yz and 

e, denotes the parton charge. Eq. (2.2.8) plays a key-role in the description of deep 
inelastic lepton-hadron scattering and we will refer to it as the DIS master equation. 

The DY master equation is very similar:

W(x,Q2) = Y2e<e3 Jo Jo dVz / dz8(x-yxy2z)fi(y1)fj(y2)W'1{z,Q2) .(2.2.9)

<&= _ 
dQ2 ~ Z



be

f,(x,Q2) = Z-(s/)®f;(z,q’) , (2.2.10)

W{x, Q2) = Z(3/i) ® Z(l/2) ® Q2} . (2.2.11)

(2.2.12)

F*(2, Q2) = 6(1 - 2) => F2(x, Q2) = fax) , (2.2.13)

IV«(2, Q2) = 6(l-z)=> W(x,Q2) = £(yi) ® £(3/2) • (2.2.14)

14

non-interacting point particles, ch

From now on we suppress the parton charges e,. These master equations can 
written in a short-hand notation as

(We take as an example pure electromagnetism and limit ourselves to F2.) The right­
hand sides of (2.2.13) and (2.2.14) do not contain any Q2-dependence. This implies 
that if one believes the assumption of the naive parton model that at the parton level 
we only have to deal with simple Compton scatterings of free, point-like particles (or 
an annihilation process in the case of DY), the hadron structure functions for DY 
and DIS should be independent of Q2. This property is called scaling [6], and this 
prediction of the naive parton model was confirmed (within the error bars) by the 
first measurements of DIS [7] and DY [8, 9] cross-sections .

However, later DIS experiments with higher accuracy showed a slight breaking 
of scaling [10]. So apparently the naive parton model just described is a bit too 
simple to give a satisfactory description of high energy strong interaction processes. 
As discussed in chapter 1, Quantum Chromo Dynamics (QCD) would be a better 
candidate for this. Still we would like to preserve some of the attractive features of 
the naive parton model, which has the advantage that it is intuitively appealing. This 
is achieved in the so-called QCD improved parton model, which will be discussed in 
the next section. It will give rise to <Q2-dependent corrections to the parton structure 
functions.

where the convolution symbol ® is defined by

(/®ff)(i) = [ dx-i [ dx2 S(x - xixi}f{xi}g(xi,) ■ 
Jo Jo

Further repeated indices are summed over.
It may seem that we did not gain much by the construction of the mastei 

tions: we only shifted our attention from the hadron structure functions to the <: 
concept of parton structure functions. However, we can now use the assump 
the naive parton model that the partons are 
implies that



2.3 The QCD improved parton model
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In the previous section we have seen that the naive parton model establishes a link 

between the processes at the hadron level and the parton subprocesses in an elegant 
way, but fails in giving an explanation for the observed breaking of scaling in DIS 

experiments. With the advent of QCD it was possible to identify the partons with 

the quarks and gluons. However, there is one essential difference: unlike the partons 

of i he naive parton model, the quarks are not free particles, because they couple to 
T >. The strong coupling constant cta decreases with growing energies, so only

- gh energy the quarks do become more or less free and we are allowed to
perturbative expansion in ct3 around the free field theory (which equals 

irton model), and b) maintain the incoherence assumption of the naive 

idel, according to which a photon-parton collision proceeds unaffected by 

hbourhood of other partons. At low energy however, the quarks are in tightly 

bound states and the quark-photon scattering becomes coherent. In that region 

perturbative QCD is no longer valid.

In this section we will discuss DIS and DY calculations in perturbative QCD. 

The parton subprocesses can be calculated using QCD Feynman rules. The processes 
contributing to DIS and DY up to order aj, are listed in table 2.1 and 2.2.

Note that the zeroth order DIS and DY processes correspond to the DIS and 

DY processes of the naive parton model, giving parton structure functions that are 

proportional to delta functions (see (2.2.13) and (2.2.14)). All higher order QCD 

contributions to the cross-section will be added to the parton structure functions F 

and W. This means we do not have to change our master equations but instead 

change the contents of F and W, which is the reason why they are useful quantities, 

even though they have nothing to do with any ‘structure’ of the partons as their 

name may suggest.

The calculation of higher order corrections to parton structure functions involves 

many complicated phase space and loop integrals, because we have to integrate over 

the outgoing momenta (we consider inclusive processes). As most of these integrals 

are divergent, one should introduce a regulator to display the singularities in a con­
venient way. We have chosen the dimensional regularization method [11], i.e. we 

perform our calculations in n = 4 + e instead of 4 dimensions. The singularities, ap­
pearing in the integrals, will manifest themselves as £-z terms (where £ is a positive 

integer). These poles can be classified according to their origin. We distinguish three 

types:



DIS subprocessesfigure

-» q(q)v + q(q)3.1

(one loop correction)“J:3.2

3.3

3.3

“J:3.4

3.5

3.6

3.7

(one loop correction)3.5

3.6

Table 2.1. List of deep inelastic lepton-parton subprocesses up to O(a2).

Type 3 : Mass singularities :
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V + q(q)

V + q(q)

(two loop correct io r 

(one loop correction

Type 2 : Infrared divergences :
This type of divergence is encountered in both loop- and phase space integrals. They 
are found in the low energy region where the integration momentum goes to zero. 
According to the Bloch-Nordsieck theorem [12], these singularities have to cancel 
between the virtual processes (with gluons in the loop) and the bremsstrahlung pro­
cesses (with gluons in the final state).

v + q(q) -» q(q)

v + q(q) — q(q) + g

V + q(q) -» q(q) + g + g

V + q(q) -+ q(q) + q(q) + q(q)

V + g -» q + q

V + g -» q + q + g

-► q(q)

-» q(q) + g

V + g -» q + q

Type 1 : Ultraviolet divergences :
Ultraviolet singularities show up in loop integrals where the loop momentum k goes 
to infinity, |fc| —> oo. They are removed by coupling constant renormalization.



figure DY subprocesses

V4.1 q + q -»

(one loop correction)V4.2 q + q

Vq + q

q + q

4.6

(one loop correction)4.5

4.6

4.7, 4.8

4.8, 4.9

4.6 g + g

Table 2.2. List of Drell-Yan parton subprocesses up to O(oj).
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Subtype 3a : Final state mass singularities
In this case the integration momentum becomes parallel to the momentum of a final

(two loop correction)

(one loop correction)

q + q 

q(q) + q(q)

q + q 

q(q) + g

-> V + g

-» V + g + g

-» V + q(q)

-» V + q(q) + g

-> V + q + q

-» V + q(q) + q(q)

-> V + q + q

- v + g
-» V + q(q)

q + q 

q(q) + g 

q(q) + g

These divergences are sometimes called collinear divergences because they arise when 
the momenta of two massless particles become parallel. (To simplify the calculations, 
we take both gluons and quarks massless.)

In that case a propagator [(p — fc)2]-1 can be expressed by

(p  k)2 = -2|p||fc|(l - cos 0) 3=3 -|p||£|6»2, (2.3.1)

which gives rise to a singularity in both phase space and loop integrals. We can 
distinguish two subtypes of mass singularities:



Mass factorization2.4

f2(Q2) = fi ® F'(o! (2.4.1)
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initial state
trivial

Subtype 3b : Initial state mass singularities
Here the integration momentum becomes parallel to the momentum of an 
particle. It is not possible to get rid of the initial state mass singularities in a 
way.

state particle. According to the theorem of Kinoshita, Lee and Nauenberg [13] (see 
also [14]), the final state mass singularities cancel, because we are considering a final 
state inclusive process, where one sums over all degenerate (= experimentally indis­
tinguishable) final states.

where e denotes both initial state mass singularities and ultraviolet divergences. The 
summation index i labels the parton types (quark (q), antiquark (q) and gluon (g)).

Due to the initial state mass singularities arising from higher order QCD contribu­
tions, the parton structure functions Fj(z, Q2,e) and W(z,Q2,e) contain poles in 
e. We will remove these singularities by using mass factorization [15]. This is a 
renormalization procedure which amounts to factorizing the mass singularities out 
of the parton structure functions and absorbing them into the bare parton densities. 
Because we would like the renormalized parton densities to be process independent, 
the mass singularities must be universal. For example, they are the same for DY and 
DIS.

We will explain mass factorization by considering the DIS master equation for Fj 
(2.2.10). Suppose we have performed a higher order QCD calculation. Infrared di­
vergences and final state mass singularities have vanished, but ultraviolet divergences 
and initial state mass singularities are still left. We add the result to the DIS parton 
structure function, which then becomes dependent on Q2, e and on p, an arbitrary 
mass scale which is an artefact of dimensional regularization. We now have

It is clear that one does not have to do much work to remove the poles c : 
1 to 3a, but the initial state mass singularities remain present in the parton 
ture functions. Because the hadron structure functions are physical quantities h 
should be finite, the initial state mass singularities must be disposed of, one ' 
another. How this is achieved will be discussed in the next section.



(2.4.2)

(2.4.3)

(2-4.4)

absorbed into F,jt-

F2(Q2) = fi® r,Wei„A(Q2), (2.4.5)

(2.4.6)

(2-4.7)
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For convenience we choose the arbitrary scales M and R both equal to Q, which 

yields

Finally we

so that we can write

S’£) ’

F2(Q2) = /t,sd.em«(a4<32).Q2) ® .

In contrast to the bare parton density /, the renormalized parton density f is finite, 
but scheme- and scale dependent. How do we know it is finite? It should be finite, 
because the hadron structure function F2(Q2) is directly related to the measurable 

cross-section and thus cannot contain divergences. Further C2 is finite by definition. 

Along the same lines one can argue that f does not depend on pi.

We remove the ultraviolet divergences by renormalization of the bare strong cou­
pling constant a3, which we perform at a renormalization scale R. We denote the 

renormalized, running coupling constant by aa(R2). This yields

F2(Q2) = fi ® Fi(a.(R2), e) .

Now e stands for the initial state mass singularities only. The next step is to separate 

the pole part of F2 from the non-pole part. The part containing poles is called the 
transition function F,fc (z, k = q,q, g), which is process independent. The residues of 
the pole terms l/e* = 0,1,2,...) in F.jt are given by the so-called Altarelli-Parisi 

: ' ’ ’motions [16]. The finite part is called the (Wilson) coefficient function Ck 
< paration takes place at a mass factorization scale M.

■ = fi ® rlJt.schcmc(aa(/?2), £)

® C,2,fc,schemc(^3(^2)) ^2 j ^2") •

\ alerent schemes for separating the pole terms from the non-pole terms,
because . is arbitrary what one factorizes into r,t, as long as r,t contains at least 

the pole terms. In the literature one has chosen the following two mass factorization 

schemes:
The MS scheme [18]: This implies only the pole terms of Fj are 

The DIS scheme [19]: The complete FJ is absorbed into f,*.

pT, e) ® C,2,t,sa>eme(a:»(<22)) 

redefine the parton density:

fk,scheme(ocs(Q2\ Q2) — fi ® ^'ik,»cheme(ocs (Q ),



In the DIS scheme we get a simple expression for F2(a:,<22), namely

(2.4.8)

■9)

After mass factorization

W(Q2) = /,>cheme(Q2) ® fif (2.4.10)

(2.4.11)

2.5 Calculable quantities in perturbative QCD
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,schem«(<22) ® A,j.scheme NQ2)) ,

where A.j is the finite DY coefficient function, which satisfies 

wij = riMcheme ® me ® At|,scheme

we have

perform the mass factoriza- 
i mass factorization thee P;* 
well. The DY master e . on

In this section we give an outline of what will be calculated in the chapters hereafter. 
The starting point of these calculations is given by the mass factorized master equa­
tions (2.4.7) and (2.4.10). In these equations the renormalized parton density fi is

In the remainder of this thesis the scheme label will be omitted most of the time, 
because we will separate the discussions of the DIS- and MS scheme results. We 
must admit that the explanation of mass factorization is a little bit simplified in the 
sense that we did not specify what exactly is meant by the summation over parton 
labels hidden in the equations. We will see later that different parton types mix in 
the higher order corrected master equations, a fact that was partly ignored here to 
keep the discussion transparent. Furthermore we suppressed the dependence on the 
scaling variables. Later we will show explicitly worked out formulas.

The main achievement of this section is the derivation of the equations (2.4.7) 
and (2.4.10). In the following section we will take a closer look at them.

e) -

k

This is the reason why some people prefer the DIS scheme. However, the price one 
pays is that the expressions for the other hadronic structure functions become more 
complicated. We should remark that of course one can also define different schemes 
for the coupling constant renormalization. In this thesis we will always renormalize 
the coupling constant in the MS scheme.

Having explained mass factorization for DIS, we can 
tion for DY in one step. Recall that according to the 
is process independent, so we can use it for DY as 1 
(2.2.11) containing QCD corrections is

IV(Q2) = Z- ® fi ®



(2.5.1)

i
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® ^2,i,MSA*J ^MS ® ^2, j, MS •

the unknown quantity in which we are interested. The DY and DIS hadron structure 

functions depend on the same renormalized parton densities, which are universal as 
stated by the mass factorization theorem. Only the DIS and DY coefficient functions 
differ and they can be calculated up to order a2 from the subprocesses listed in table 

2.1 and 2.2.

The relation between the DY coefficient functions in the DIS and MS scheme, 

which we denote by Aj}IS and respectively, is given by

•wts to calculate W(x,Q2) up to second order in the DIS scheme (which 

.. in chapter 4), one needs to know the DIS coefficient functions of 7*2 up 
iJc? in the MS scheme (which will be calculated in chapter 3). Also the 

ic coefficient functions belonging to 7*Y and F3 can be calculated both 

and in the DIS scheme (see chapter 3 and 5). If we could perform an 
. - .iation, that is, compute all higher order contributions, we would not have 

-y scheme dependence, because there should be no ambiguity in physical quantities. 

However, the truncation of the QCD perturbation series introduces both a dependence 

on the mass factorization scheme and on the mass factorization- and renormalization 

scale. This will also be subject of investigation.

The deep inelastic structure functions are measured more or less accurately at 

several colliders, so if one knows the coefficient functions, it is possible to extract 
the parton densities from the deep inelastic data by means of (2.4.7) and use them 

as input for the DY mass factorized master equation (2.4.10). Then we can make 

a theoretical prediction for the DY structure functions (up to second order in the 

strong coupling constant), which can be compared with the data as a test of second 

order QCD.

Although the parton densities cannot be calculated in perturbation theory, we 
can say something about their scale dependence. From the discussion in section 2.4 

it is clear that the Q2 dependence of comes from the scales R and M, which are 

introduced at the moment of renormalization and mass factorization, respectively. In 

the original master equation (2.4.1) M is absent, from which we conclude that the M 

dependence of compensates that of Ctk- Apparently the scale dependence of is 

closely related to the pole part of FJ, which is universal. This implies one must also 

be able to derive both the pole terms and the dependence on the mass factorization 
scale in other ways. One of these ‘other ways’ is the operator product expansion [17]. 

Besides the dependence on M, T,* also has an indirect dependence on 7?, via the



= /?(«.(fi2)) , (2.5.2)

(2.5.3)

nd
ice

■4)

(2 5.5)

2.6 Phase space integrals

3
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q(Pi) + q(P2) -» s(Pa) +s(p<) + v(g) 
q(ft) + V(?) -» ff(pa)+ p(p<)+ q(ft)

The three particle phase space integrals occurring in the calculation of inclusive 2 
processes, like

(DY) ,

(DIS) ,

(2.6.1)

(2.6.2)

However, to determine the dependence of fi on the scaling variable z, one needs 
the coefficient function belonging to the specific structure function considered (F2, 
Fl or F3), together with measurements of that structure function. Furthermore 
an additional Q2 dependence enters the structure function because of the aa(Q2) 
occurring in the perturbation series of the coefficient functions as well cis the transition 
functions.

Summarizing, the theoretical ingredients for the extraction of parton densities 
from the measurements of deep inelastic structure functions are the splitting functions 
and the coefficient functions, which both can be computed in QCD perturbation 
theory. Once the parton densities are known, they can be used to make predictions 
for the Drell-Yan structure function, which provides us with a consistency check of 
perturbative QCD. The main goal of this thesis is to calculate the second order QCD 
corrected DIS coefficient functions of F2, Fl and F3.

aa(R2) dependence. This is given by

r-^r-
where the well-known ^-function (3.2.28) has been calculated up to third order in a3. 
Putting both M and R equal to Q, we can write the resulting Q2 dependence of the 
transition function r.-fc as

d
dQ

where Pij denote the so-called AP splitting functions, which are known up to 
order in ota. As rtJ is contained within the conclusion is that the Q2 dep< 
of the parton densities can be predicted theoretically. We have

<?4/i = <2^(r-‘® 7*) = (Q-4r,*)®A

= — Pij ® ® fk = — Pij; ® fj .



be defined similar to

(2.6.3)

>’) = -

(2.6.4)

be

(2.6.5)

(2.6.6)
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where i = q,q, g, the type of the initial state parton. For 
projected out by

defined completely similar to the hadron tensor 
•..-sed in terms of the parton structure functions.

wl
th.

j dPS™(<r + 12^(1 + |£)^)(M>*).v ,
Fi(z,Q2,e) = 

1 1 
~ 4>r 1 +

where denotes the amplitude of the parton subprocess, which is obtained by 
summing the results of all second order Feynman diagrams where a parton of type i

example, F2l(z, Q2) can

+ 12^^)iv;u(z,q2) , 

where is the momentum of the incoming parton of type i and the factor 1/(4%) 
is needed to get the right normalization, W^z^Q2) contains the contribution of 
the parton i subprocesses, averaged over the initial state quantum numbers, summed 
over the final state quantum numbers and integrated over the outgoing momenta. 
Because we will regularize the divergences in the integrals in n dimensions, the phase 
space integration has to be done in n dimensions (n = 4 + e) as follows.

f;(2,q2) +

+ (k -
-1^ap"9A7A-F’(z,Q2) .

2 p-q

constitute the biggest stumbling block in the calculation of second order contributions 
to the DIS and DY coefficient functions. For the calculation of the coefficient functions 
we need to compute the parton structure functions, which will be mass factorized 
later by means of the transition functions. In this section we will outline how the 
integrations over the three outgoing momenta in the parton structure functions are 
performed. First we need to give some more details of the processes at the parton 
level.

As already said in section 2.2, the partonic cross-section can 
the hadronic cross-section as

1 At/ z-»2\ 
Pl"3V*’““ >

(2.1.7), except

1
P?



is in the initial state. Further

j dPS™ = Jd^j <Pp3 J <Fp< 6+(p’)«+(p’)5+(p’)

(2.6.7)5"(Pi + 9 - Pi - P3 - pt) .

(2.6.8)
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1
(2%)s"-3

(1 — cosy cos B — sin x cos $ sin 0)|

1. The angular integration.
After partial fractioning and reduction every term in the matrix element contains 0, 
1 or 2 types of factors out of the ‘angular’ set

|(1 — cos0) , (1 +

The partons are taken to be massless.
The 5 momenta can be parametrized in some convenient C.M. frame and expressed 

not linearly indepe> ent (see 
/,-■ A ‘' and

jr am 

Pie­
hat

-•s 6, 
■ - oing

The integration over B and <f> is always done by expressing the result in a hyper­
geometric function of the form: F(a, b, 1 + c(x,y,z)) [20, 21]. (Note that the
remaining candidate variables to integrate over are x, y and z; the final result will be a 
function of x.) In the case a and b are both unequal to 0 or to fee, the hypergeometric 
function is reduced using Kummer relations [20] until a or b is 0 or ke. After this it is 
possible to expand the hypergeometric function in polylogarithms, as a power series 
in e. Polylogarithms are integrals that cannot be evaluated analytically. In a second 
order calculation we need to expand up to di- and trilogarithms (Lij(z), Li3(z) and 
Si.j(z)) for which many identities have been derived [21]. If we would want to do a 
third order calculation, quadrilogarithms would be needed, the mathematics of which 
is less developed.

in convenient variables x, y, z, 0, x and i]>, which are 
appendix A). After applying the projection operator g1"* + \2z2 / q2p“p'' on 
working out the traces (which we did by using the algebraic manipulation 
FORM [25]), the resulting matrix element can be expressed in terms of P,} = 
It is important to reduce and partial-fraction the matrix element in such a 
no term contains more than two types of that depend on the angular vs 
X and <f>. For this one can use identities following from the symmetry in the 
momenta and momentum- and energy conservation.

Now we will outline how one in general can compute the integrals. The major i ty of 
the integrals are very similar to each other and can be solved by taking the same steps.

cos 6) , (1 + cos x cos 0 + sin x cos sin 0) ,



k(x,y,z,e) = f(x, y,z,e) g(x, y, z) h(x, y,z,e) , (2.6.9)

(2.6.10)

(i+£n<5+i^n2<5)/(0) . (2.6.11)
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In some cases it is not allowed to expand F, because the remaining z-integration 
(or even both z- and ^-integration) has to be done exactly.

2. The z-integration.
After the angular integration

Jo dy Jo dz k^x,y,z,e^ ’

one is left with integrals of the form

dz zl

3. The ^-integration.
Basically one can perform the same operations as for the z-integration. Expansion is 
almost always possible. The final result, a function of the scaling variable x and of

.-•) coming from the Jacobian in f dPS, g(x,y,z) from the angular 
s left in the expression and h(x, y, z, e) from the result of the angular 
h these three ingredients k(x, y, z, e) can become a very complicated 
oles in the integration boundaries. These poles will be expressed in

- of e. (Maximum depth £“3, because the maximum number of outgoing 
, • in a second order calculation.) First fc(z, 3/, z, e) is reduced to simpler
functions by partial fractioning. After that large negative powers of z and 1 — z are 
increased by partial integration. Say we are left with something like

y* dz zc-1 f(z) = J dz ze~lf(z) + j dz ze-1 f(z) ,
with <5 a small constant. In the second term we can safely expand ze in e and the 
first term we can approximate as

Usually derivatives of f(z) yield e in the numerator killing the € in the denominator. 
Subsequently the expanded second term is evaluated by further partial integration in 
order to express it in some standard integrals. In the end £n 6 terms should of course 
drop out.

This is the method of integration by expansion and it is rather laborious, though 
straightforward. Less laborious, but also less straightforward, are the cases in which 
we do not expand the hypergeometric function in h(x, y, z,e), but instead perform 
an exact z-integration using identities in [20]. The result of the z-integration again 
contains polylogarithms, and Riemann zeta-functions.



Appendix

2A The kinematics of the DIS process
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In this appendix we give the set up for the calculation of 2- and 3-particle phase space 
integrals in DIS. For the kinematics of DY, which is very similar because DY is just

FORM
fandard

. It

•ver,
;sive

ivial

•mes

£ , with k = 0,1,2,3, can generally be expressed in polynomials, logarithms, dilog­
arithms and trilogarithms. After removal of the pole terms by summing all integrals 

in the matrix element and applying mass factorization and coupling constant renor­
malization, the remaining part can be evaluated numerically. We also have analytical 

programs to calculate moments of coefficient functions (for which integration over x 

is needed).

Most integrals (about 200 each for DIS and DY) can be handled by our 

program which performs the previously mentioned steps and fills in the 

integrals. The standard integrals of DIS form a subset of those needed f 
would be extremely time consuming to calculate matrix elements by hand, 

we did part of the integrals by hand as a check, or because they had 

propagator in the denominator which makes them hard to program. A n 

check is provided by calculating a phase space integral in different kinematic, 
or by interchanging an outgoing gluonline with an outgoing quarkline, which ould 

not influence the result.
Integrals from the process 2 —► 2 (plus one loop) arise after tensor reduction of 

the matrix element, which we performed according to the Passarino-Veltman method 

[22]. The tensor reduction as well as the solving of the resulting scalar integrals can 
easily be programmed. We used the algebraic manipulation programs REDUCE [23], 

SCHOONSCHIP [24] and FORM [25].

In this chapter we discussed some important concepts like the parton model, 

the QCD perturbation series, renormalization, mass factorization and the specialized 

techniques of n-dimensional phase space integrations. The understanding of these 

concepts is a necessary condition for being able to do higher order QCD calculations. 

The next chapters will all deal with the calculation of second order QCD contribu­

tions. A detailed description of first order QCD calculations in DIS and DY can be 

found in [26].



For the DIS process

v(t) + ?(pi) ?(pa) + ff(pa) (2A.1)

space is given by

(1,0,...,0,0,1) , (2A.3)Pi

(2A.4),0,...,0,0,-9

(2A.5)Pa

This gives

si (2A.6)

0) ,and (2A.7)

in terms of which the DI 2-particle phase space integral becomes

y dps^ = (2A.8)
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2% (-g2)!"-2
(4%)in T(|n - 1)

where T denotes the well-known gamma-function. It turns out to be convenient to 
use the variables

The 2-particle phase space integrals

the 2-particle phase

__ 1
(2tt)»-

-92 
s — q2

a crossing of DIS, we refer to appendix D of [26].

Tr’-i" 
r(|n-l)

J <PP2 y <Pp3 <5+(P2)5+(P3)<5"(pi + 9 - Pa - Pa) ■ (2A.2)

■ . we no longer use hatted symbols to denote the parton momenta.) We 
vhe n-dimensional momenta in the C.M. frame of the incoming particles 

ScUc.'. ■ = (pi + 9)2).

)|n"2f0'dy {p(i-v)}’n'2 ■

/” de (sine)' 
Jo

(1 - aM—2

y dPSm = 2'*-2n

y = ^(1 + cos

s ~92
2^/s

= (i7r’0’--’0’0’__27r) 1

= -v/3(l, 0,... ,0,0, cos 0) .

-92 
x = «------2pi ■ q



integrals

(2.A.9)

10)

11)P3

; 1A.12)6) ,P<

(2A.13)(1,0,...,0,0,1) ,Pl

(2A.14)Pi

(2A.15)

(sin W

(2A.16)

(sin </>}

(2A.17)

x

u

t
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(2A.18)

(2A.19)

(2A.20)

The 3-particle phase space

1
(2tt)2’

1 (s — q2)3~n 
(4ir)n T(n — 3) Jo Jo

du (sn)5n-2^"-2{(s - g2)u - g2t}in-2 .

2sut
(s - t - 92)(s - s12)

2pi • 9, 3 = (pi + g)2 and sI2 = s — t — u. Applying this

(~)"’3d0 J’ (*in«)n’3

We will present the parametrization of the 3-particle phase space integrals in the 
C.M. frame of the two outgoing gluons. In this frame the integrals are easier to 

calculate than in the C.M. frame of the incoming particles. For the DIS process

V(?) + g(pi) -» g(Pi) + ff(ps) + s(p<) ,

the 3-particle phase space is defined as

/ dPS<3) = l<FpiJ<rp* HpD«+(p^+(pS)

^n(pi + 9 - Pi - P3 - Pl) •

The n-dimensional momenta are parametrized as follows.

= — x/$i2(l, 0,..., sin <£sin 0, cos <£sin 0, cos 0) ,

= £-\/sn(l,0,..., — sin <£sin 0, — cos sin 0, — cos

(s - t - 92)
2-v^n

= ~-^^(l,0,...,0,sini/>,cost/,) ,
2^/311

COS Ip = 1 —

with t = 2pi ■ p2, u = 

parametrization to (2A.10), we obtain

/ dps™ = 1 r M F (sinJ (4ir)" r(n - 3) Jo Jo v '

r^dtr 
Jo Jtq"i/a—q'2

This result can be rewritten as
[ dPS& = ■■ 1 ■ 3
J (4tt)" T(n - 3)

jT’ dy dz yi^(\ - y)"-3{z(l - z)}^~2 , 

where the variables x, y and z are defined by
= -I2 -<?3

2pi • 9 3 - q1 '
= {1 -x-y-(l -i)(l -y)z}(s-g2) ,

= y(s-q2) .
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c lepton-hadron scattering experiments, started by the SLAC-MIT group 
[1] a- che end of the sixties, opened a new era in the study of strong interaction physics. 
These experiments revealed that hadrons are composed of pointlike constituents, 
called partons, which were later on identified as quarks and gluons. In the framework 
of the parton model [2] the early data could be interpreted by assuming that the 
scattering process between the lepton and the partons is incoherent. In this way 
one could explain the apparent scaling behaviour of the hadron structure functions 
appearing in the deep inelastic cross section. These structure functions also appear 
in the various sum rules, derived in the context of the parton model, of which the 
validity was subsequently confirmed by the data.

Considerable progress was made after the advent of Quantum Chromo Dynamics 
(QCD) [3], a non-Abelian (here S(/(3)) gauge field theory, which describes the strong 
interaction between the quarks and gluons inside the hadron. In particular it is 
supposed to give an explanation for the phenomenon that the quarks and gluons are 
confined [4] in all existing hadrons. Another important feature of QCD is asymptotic 
freedom [5] which implies that the renormalization group improved (running) coupling 
constant cta(R2) goes to zero when the renormalization scale R2 tends to infinity. This 
allows us to make a perturbative expansion in ota of many physical quantities showing 
up in so called hard processes. Here hard means that the kinematical invariants 
involved get asymptotic whereas their mutual ratios stay fixed. Deep inelastic lepton­
hadron scattering, which will be the subject of our study in this chapter, is an example 
of such a process and it provides us with a beautiful testing ground of the predictions 
of perturbative QCD. This became immediately apparent after the discovery of the



•1)Z^fcj) + J$T(p) -» Za(fc2) + ”JV” >

(3.1.2)

(3.1.3)(0 < y < 1)X =

the photon)

Q2 = ~q2 (3.1.4)q = fcj - k2 , 0 .

(3.1.5)
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scale dependence of the hadron structure functions, observed by the second generation 
of experiments [6], which can be considered as one of the most important successes of 
the theory. With the advent of HERA (DESY, Hamburg) and the planned electron­
proton facility at LEP*LHC (CERN, Geneva) a new generation of experiments will 
start to test QCD in kinematical regions which were inaccessible so far. Since in these 
experiments the hadron is represented by the proton we will concentrate on the effect 
of higher order QCD corrections to the proton structure functions, in particular in 
the above-mentioned regions.

Deep inelastic lepton-proton scattering is given by the reaction (see fig.

where Zj, l2 denote the in- and outgoing leptons respectively and H stand 
proton. The symbol ”X” denotes any inclusive hadronic final state allowed 
turn number conservation laws. In lowest order of the electro-weak coupling ant
the reaction proceeds via the exchange of one of the vector bosons of the : ard
model, i.e. V = y, Z, Hz± (see fig. 2.1). Since the above process is inclusive with re­
spect to the outgoing hadrons denoted by ”X”, only the outgoing lepton is detected. 
Here we will limit ourselves to V = 7 and Zi = l2 = e. In the case of unpolarized 
deep inelastic scattering the electron-proton cross section can be written as (see also 
(2-1.8))

K1 + 0 - Q2) - y'FL(x, Q2)] .

Here y/S denotes the C.M. energy of the electron-proton system. The variables x 
and y are defined by

(0<z<l) , y = ^4 
2p • q p-k}

and q denotes the momentum of the virtual vector boson V (in this case 
which is given by

The deep inelastic proton structure functions appearing in (3.1.2) are represented by 
Fi(x,Q2) ( i = 2,L). There exists a third structure function in the literature, i.e. 
Fi(x, Q2) which however depends on the two previous ones. It is given by

Fr(x, (?2) = ± [f2(x, Q2) - Fl(x, Q2)) .

(0 < x < 1) ,



be

x

(3.1.6)i -- 2, L .

•6)

S(x,M2)

(3.1.7)

A(x,M2)

(3.1.8)
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(3

>NS
«.q

= u(x, M2) — d(x, M2) + c(x, M2) — s(x, M2) + u(z, M2) — d(x, M2) 

+ c(x, M2) — s(x, Af2) ,

= u(x, M2) + d(x, M2) + c(z, M2) + s(x, M2) + u(x, M2) + d(x, M2)

+ c(x,M2) + s(x,M2) ,

In the QCD improved parton model the deep inelastic structure functions can 
expressed for an even number of flavours in the following way:

where u, d, s and c stand for up, down, strange and charmed quarks respectively. 
The same notation holds for the anti-quarks. The scale dependence of Fi(x, Q2) in 
(3.1.6) was observed for the first time by the SLAC-MIT group [6] and confirmed 
by many other experiments (for a review see [7]). Until now all these experiments 
were carried out in the kinematical range 0.01 < x < 0.95, Q2 < 300 GeV2. At 
HERA [8] this range will become x > IO-4 and Q2 < 2 • 104 GeV2, which probably 
can be extended to x > 10-5 and Q2 < 10s GeV2 when the ep facility at LEP*LHC 
[9] is put into operation. The small-x region is of utmost interest for the current 
(HERA) and future (LEP*LHC) experiments. Besides the study of perturbative and 
non-perturbative effects [11], the extraction of the parton densities from the deep 
inelastic data is one of their most important goals. In particular we want to mention 
the gluon density which is expected to increase very steeply when x gets very small. 
An accurate knowledge of these densities at very small-x values is necessary in order

F;(x, <?2) = x £ T C^2'M2>
,M2)C,g(z,Q2/M2)}+A

7).) Here G(x, A/2) denotes the gluon density and S(x, Af2), A(z, A/2) 
singlet (S) and non-singlet (NS) combinations of the quark densities 
The same nomenclature also applies to the deep inelastic scattering 
nt functions C,(x, Q2/Af2). All quantities defined above depend both 

factorization scale M and on the renormalization scale R. However in 
: scales are set to be equal. In the case of four flavours the S and NS 

par'on densities become equal to
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3.2 The calculation of the coefficient functions
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In this section we will give an outline of the calculation of the <9(a2) corrections to 
the DIS coefficients in (3.1.6) including their dependence on M and R. Following 
the procedure given in [19, 20, 23] the hadronic structure functions F,(x, Q2) can be

to make precise predictions for interesting processes like Higgi 
at the future pp colliders LHC and SSC.

As far as theory is concerned much progress has been made in the calculation 
of higher order QCD corrections to the anomalous dimensions of composite opera­
tors which determine the scale evolution of the parton densities. The inverse Mellin 
transforms of the coefficients in the perturbation series of the anomalous dimension 
represent the Altarelli-Parisi (AP) splitting functions which are known up to second 
order in aa [13]—[17]. Also known is the order ota contribution to the DIS ; ient 
functions appearing in (3.1.6) [18]—[20]. With the advent of HERA and th ned 
ep facility at LEP*LHC we are entering a new era in which the small-z regi 
explored. Due to improved detection techniques we expect better statistic 
the higher order QCD corrections beyond the next-to-leading order (NLG 
come noticeable and therefore have to be calculated. This requires the com 
of the three loop anomalous dimension (or the (9(aJ) AP splitting functions) 
order a2 contributions to the DIS coefficient function. The latter will be calculated in 
this chapter. We will give many details of the calculation thereby stressing the pro­
cedure of mass factorization which is non-trivial in computations of QCD corrections 
beyond the next-to-leading order in ota. Further we will give examples of how the 
existing order aa predictions are modified by including the (9(a2) corrections, where 
we pay attention to recent as well as current experiments.

This chapter will be organized as follows. In the next section we present some 
details of the calculation of the second order contribution to the DIS coefficient func­
tion Ci(x,Q2/M2) for i = 2, L. In section 3.3 we discuss the effect of this C?(a2) 
corrected quantity on the proton structure functions F,(x,Q2) and its implication 
for the extraction of the parton densities. The most complicated three particle phase 
space integrals which occur in the calculation are presented in appendix 3A. The long 
expressions for the coefficient functions, not shown in section 3.2, are explicitly given 
for arbitrary R and M in appendix 3B.



F^,Q2) fc = q,q,g ; i = 2, L , (3.2.1)

k + V -> ‘X' . (3.2.2)

F,(x,Qy)

(3.2.3)+

A(z) (3.2.4)
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G(z) 

£(z)

E (Aw + Aw) > 
q=down

Since the object F\tk is collinearly divergent, indicated by the parameter e, 
to p • 
tha* 
func : 
ours 2 
gives

denoted in the following way

where fk and F\tk denote the bare parton density and the parton structure function 
corresponding to the parton k respectively. The latter describes the QCD radiative 
corrections to the parton subprocess

<7 [n{£®
5 Mf) •

for an even number of flavours, where we have put F;,q = F;,5 (S and NS). The 
gluon density g, the singlet quark density S and the non-singlet quark density A are 
related to fk (3.2.1) in the following way

we have
• tass factorization in order to remove the pole terms of the type 1/e. To 

i* is convenient to split the parton densities and the parton structure 
? a singlet (S), non-singlet (NS) and a gluonic part. Since we limit 
■\e one photon exchange process in 2.1 only (V = 7), equation (3.2.1)

= Aw ,
= E(AW + Aw) .

q

= 12 (AW + AW) 
q=up

where ‘up’ denotes the up, charm and top quark, and ‘down’ denotes the down, 
strange and bottom quark. The parton subprocesses contributing to the parton 
structure functions up to order a] are listed in table 2.1. The corresponding Feynman 
graphs for the 7"q subprocesses can be found in figs. 3.1-3.7. The diagrams for the 
7'g subprocesses can be obtained from figs. 3.3, 3.5, 3.6 by interchanging a quark 
in the initial state with a gluon in the final state. In calculating the loop- and 
phase space integrals one encounters three types of divergences: ultraviolet (UV), 
infrared (IR) and collinear singularities. They are regularized using the technique 
of n-dimensional regularization with £ = n — 4 where £ has already been mentioned



(3.2.5)

(3.2.6)

2.7)7* + P —* Pi + Pa + • • ■ Pt .

(3.2.8)+ 9^ 92

with

pT^ , (3.2.9)

{lV/ + (n-l)A(z,<?2) = - (3.2.10)

In zeroth order in a.

(3.2.11)

The first order results3.2.1
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2 
n —2

2.5) 
the 
ton

«<+’(p?)}(2xn(">(p+g-np.),

The first order corrections, denoted by have also been calculated in the litera­
ture [18]—[20]. In the case of n-dimensional regularization the order a, expressions, 
computed up to constant terms, can be found in [19, 20]. Since the mass factorization 
has to be carried out up to order a2 , one also needs those terms in F$(.z, Q2, e) 

which are proportional to e.

below (3.2.2). Notice that there are no 75 matrices in the matrix elements since 
we only consider photon-quark interactions. The parton structure functions can be 
obtained from the parton structure tensor which is defined by

^(p,g) = dPS^M^k)M.(k)- ,

with (see appendix B of [23])

/^'*>-{n/<^
where Mp(k) denotes the amplitude for the photon-parton reaction

we obtain the simple parton model results (fig. 3.1) 

^ = ^ = 0 , = <5(1 - 2) , F<°g> = 0 .

Further we have averaged over all spins in the initial state. The factor 1/2 i>. 
stands for the average of the quark spin. In the case when a gluon is preser. 
initial state, the 1/2 has to be replaced by l/(n — 2). For V = 7 (3.2.2) the pa 
structure tensor can be written as follows

^(P,9) = 5 (ft.. - FL(z,Q2) + { pppv - (p„g„ + ppgM)

(p-g)2 ) F2(z,Q2) , 
J pq

z = Q2/Ip ■ q (q2 = —Q2) and p2 = 0. From (3.2.8) it follows that



•> >

5.1. The Born contribution to the subprocess q(q) + V —♦ q(q).

Fig. 3.2. The one loop correction to the subprocess q(q) + V —► q(q).

(3.2.12)

(3.2.13)

(3.2.14)

(3.2.15)
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Therefore 
the results can

Al’
= rs‘

= 4% c

n^rs‘

p(i)

A,1’

A,’’

+ £“L.qj •

we have repeated the calculation of the graphs in figs. 3.2 and 3.3 and 
be presented in the following form

(?)"’['■•S’;+ «!+“?>) .

- ^-(<[
where /z2 and Se are artefacts of n-dimensional regularization. The mass parameter p,



■> »

Sc (3.2.16)

(3.2.17)

(3.2.18)

7/[8z(l — z)(fn(l — z) — tn (3.2.19)
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dimensions and
factorization

|-3C(2))(ln2(l - z)
1 — z

3-3)] ,

)+^

W =

4!’ = cf[(
i.
2-
3 1

+ 2Y^en 2 + (3 + 2z)(€n(l - z) - tn z) - 6 - 4z

+ |(l + 2)C(2) + 5(l-z)(9 + |c(2))] ,

Fig. 3.3. Diagrams contributing to the subprocess q(q) + V —> q(q) 4- g. T'. 
graphs corresponding to the subprocess g + V —► q + q can be obtained fro 
those presented in this figure by interchanging the incoming (anti)quark lin 
with the outgoing gluon line.

originates from the dimensionality of the gauge coupling constant in n 
should not be confused with the renormalization scale R and the mass
scale M defined in the introduction. The factor Se is defined by

= ezp{|(7E - £n4?r)} .

Further a" denotes the bare strong coupling constant and (i,j = q,q, g) stands 
for the lowest order contribution to the Altarelli-Parisi splitting functions [12]. Using 
our conventions they can also be found in eqs. (2.13)—(2.16) of [33]. The coefficients 
4‘i which already exist in the literature [19, 20], are presented in eqs. (3B.1), (3B.2), 
(3B.9), (3B.12). The coefficients a*',- are equal to

“1,, = Cp [2z(Zn(l - z) - tn z) - 2z] ,

------- tn ztnll — z) H------------ tn2z
1 — z 2 1 — z

\ 3 / fn(l — z)
/+~ 2 \ 1 -z

-l(l + zXnJ(l-z)-

1 - z / +



(3.2.20)

|M(2)|2 , (3.2.21)
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2< —2n

are obtained as 

performed in

are given by CF = (7V2-1)/27V, Tj = 1/2

a’;> = T/[(l - 2z + 2z2)(€n2(l - z) - 2£n

— 2(1 — 8z + 8z2) (fn(l — z) — tn

z fn(l — z) + tn2z^ 

z)—3(1 -2z + 2z’)C(2)

+ 6 — 44z + 44z2] ,

where the SU(N) colour factors Cf and Tj 
respectively.

3.2.2 Diagrams contributing at second order
The order ? contributions to F,tjt, denoted by F/fc , are obtained as follows. The 

calcui ‘ ' ie amplitude in (3.2.5) was performed in n dimensions
using de manipulation programs REDUCE [24], SCHOONSCHIP [25] and

FOR? fter having computed the traces, we have to integrate the matrix
elem. JI internal loop- and final-state momenta which is the most difficult

part tculation. In this thesis we take all partons to be massless. The case

of massive ..arks (e.g. when heavy flavours are produced in the final state) will be 

discussed at the end of this section. Even if all partons are massless the integrals are 

very numerous and far from trivial. This in particular holds for the two-loop integrals 

appearing in the quark form factor (fig. 3.4) and the three body phase space integrals 

showing up in the calculation of the graphs in figs. 3.6, 3.7. Some of them have pole 
terms starting in 1/e4 so that the numerator has to be expanded up to order e4.

The two-loop virtual contribution to represented by the graphs in fig. 3.4, is 
given by the quark form factor which can be found in (2.49) of [27] (see also appendix 

A of [28]). The result agrees with the one quoted in [29]. Notice that the last graph 

in fig. 3.4 does not contribute for V = 7 because of Furry’s theorem. It only plays a 

role in the case V = Z provided one sums over all flavours in a quark family in order 

to cancel the anomaly arising in this type of graph.

Next we have to compute the one-loop virtual correction to the radiative process 

in fig. 3.3. The corresponding graphs are shown in fig. 3.5. The amplitude of those 

two-to-two body subprocesses is denoted by M(2) and contains all one-loop integrals. 

The resulting two body phase space integrals (3.2.6) constitute the easiest part of the 

calculation. Expression (3.2.5) reads

y<iP5(2)|M(2)|2 = 24-2nr^2 _ i)3"/2-2 ^(sin^)n~3
where s = (p + q)2 is the C.M. energy of the photon-parton system and 0 is the 
angle between the incoming parton and one of the outgoing partons. The Feynman
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Fig. 3.4. The two loop corrections to the subprocess q(q) + V —♦ q(q). The 
ghost contribution to the gluon self energy is included but not shown in the 
figure.

integrals which contain loop momenta in the numerator can be reduced to scalar 
loop integrals using an n-dimensional extension of the reduction program in [30]. 
The expressions for the scalar loop integrals which are valid for all n can be found 
in appendix D of [28] (see also [31]). Following the procedure in [20, 23] we can split 
the phase space integrals emerging from (3.2.21) into a soft (singular at s = 0) and 
a hard (regular at s = 0) gluon part. The soft gluon integrals, which only show up 
in the 7*q subprocess, have already been calculated in [28]. The hard gluon/quark

I
I
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Fig. 3.5. The one loop corrections to the subprocess q(q) + V —► q(q) + g. The 
graphs corresponding to the subprocess g + V —* q + q can be obtained from 
those presented in this figure by interchanging the incoming (anti)quark line 
with the outgoing gluon line.
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Fig. 3.6. Diagrams contributing to the subprocess q(q) + V —> q(q) + g + g- 
The graphs corresponding to the subprocess g + V —► g + q + q can be obtained 
from those presented in this figure by interchanging the incoming (anti)quark 
line with one of the outgoing gluon lines.

integrals which appear for 7'q as well as for 7”g are very numerous so that we cannot 
present them in this thesis. Finally the last graph in fig. 3.5 containing the triangle 
fermion loop does not contribute when V = 7 for the same reasons as mentioned for 
the last diagram in fig. 3.4. Only in the case that V = Z and the quarks in the loop 
are massive it will give a contribution provided one sums over all members of a quark 
family in order to cancel the anomaly originating from the triangle fermion loop.

2

2
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and q + V -> q(l) + q(2) + q. If q(l) / q(2) 
A and C have to be considered. If q(l) = i 
B and D have to be added to A and C.

Fig. 3.7. Diagrams contributing to the subprocesses q + V —♦ q(l) + q(2) + q 
I or q(l) / q(2), only combinations 
q(2) or q(l) = q(2), combinations

2 2

2

2

2
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The most difficult and laborious part of the calculation can be attributed to the 
purely radiative two to three body subprocesses given by the diagrams in figs. 3.6, 
3.7 of which the amplitude is denoted by M(3). They involve the computation of the 
three body phase space integrals which appear in (3.2.6). Choosing the C.M. frame 
of the photon-parton system, expression (3.2.5) can be written as

/■ *■ r HH H
F d0 F d<f> (sinfl)n-3(sin ^)n_4|Af(3)|2 , 

Jo Jo
with s = (p + q)2, si = (pi + P3)2, s2 = (p2 + pa)2 (3.2.7) and 0,<f> are 
azimuthal angles as defined in appendix B of [27]. In many cases it is more ■ 
to evaluate the three phase space integrals in other Lorentz frames like the C 
of two outgoing partons. In this case (3.2.6) becomes (see appendix E of [:-

{(s + Q2)u + Q2t}n'2~2 j’ de £ d<f> (sin 0)n-3(sin 0)"-*|M(3)|2 , (3.2.23) 

with s = (p + g)2, t = 2p • pa, u = 2g ■ pa. The angles 9, <f>, corresponding either to pi 
or p2, are defined in the C.M. frame of the outgoing (pi,p2) system.

Before we could perform the angular integrations the matrix element |M(3)|2 in
(3.2.22) , (3.2.23) first had to be decomposed via partial fractioning in such a way 
that only two factors in a specific term contain the angular variables 0 and <t>. The 
angular integrals are of the form

= Fde Fd<t>---------- (g.1”?)-. (sin^)------------- , ,
vo Jo (a + 6cosfl)‘(A + B cos fl + C sin fl cos <^)J

where a, 6, A, B and C are functions of the kinematical invariants s, Q2, Si and s2
(3.2.22) or s, Q2, t and u (3.2.23). These integrals can be found in appendix C of 
[32]. For n = 4 + e and either a2 b2 or A2 B2 + C2 the expressions are very 
cumbersome, let alone when both a2 0 b2 and A2 / B2 + C2. Fortunately the latter 
case can be avoided by choosing an appropriate frame. Like in the calculation of the 
two to two parton process mentioned below (3.2.21), the three particle phase space 
integrals can be split in a soft and a hard gluon part. The soft integrals only show up 
in the 7*q reaction and are calculated in [28]. In this chapter we included the hard 
gluon/quark integrals which appear in the 7*q as well as 7"g subprocesses. Because 
of their large number we can only show the most difficult ones in appendix 3B. They 
belong to the class of angular integrals where either a2 b2 or A2 / B2 + C2 ■



3.2.3 Mass factorization in the MS scheme

(3.2.25)

^<1

(3.2.26)

(3.2.27)

A = yCa — jn/ , 92 = 4,ra. . (3.2.28)
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\4tT (^) [ |{ - + 
^-2^ + ^?®“^] .

/?(s)- ^°16t2 ^’(ic*2)2 ’

where Ca = N for SU(N) and nj stands for the number of light flavours. Notice 
that the above and subsequent expressions are written in a shorthand notation where 
all arguments in the functions like z, Q2 are suppressed. Further the non-pole terms 
are constructed in such a way that denotes the order al9 contributions to the 
DIS coefficient functions Ci,k (3.1.6) in the MS scheme. The non-singlet splitting 
function consists of two parts i.e. P^’NS and P^’NS. The former can be attributed 
to the processes in figs. 3.4-3.6, the process A in fig. 3.7 and the interference between

Adding all virtual, soft and hard gluon contributions, the IR divergences cancel while 
computing the parton structure functions Ft,*(z, Q2, e), in accordance with the Bloch- 
Nordsieck theorem. The left-over divergences are of UV- or collinear (initial state) 
origin. The order a2 contributions to F2,q(z, Q2,e) take the following form. The 
non-singlet part is determined by the graphs in figs. 3.4-3.6, the contributions A2, 
B2, AB and the interference term CD (identical quarks in the final state) in fig. 3.7. 
It cr be v,: b as 

p-

■(§)’« (?)'[?{p1™ -«"'■?}
+ | { ^'NS + P^’NS) - 2ft>c<’’ + P™ ® }

+ 4rs-2^+p<“)®42] ,
where the convolution symbol ® is defined by

(/®ff)(z) = ^ dxt f dx26(x - xtx2)f(x2)g(x2) .

Here pf1' stand for the second order AP splitting functions which were computed 
in [13]—[17]. The terms c,-1*, already appeared in the order a, contribution to 
Ftf (see eqs. (3.2.12)—(3.2.15)) and /30 denotes the lowest order coefficient in the 
/^-function which up to O(j5) is given by

Q3 o5
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FL.
(3.2.31)

= n' (:

(3.2.32)

(3.2.33)

(3.2.34)
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+ <’qPS

F&>

+1 { ~ + p« ® + p™ ® } 
i — 2A)<4*^ + ® <4’J + ® <4’^ ] •

f£>

f2(2),ps

reactions A and C in fig. 3.7, provided the quarks in the final state are not identical. 
The splitting function P^’NS is determined by the interference between reactions C 
and D in fig. 3.7 due to the presence of identical (anti)quarks in the final state. In a 
similar way we can also split the second order contribution to the coefficient function

£),ns = £)^^ , (3.2.29)

where c-^’NS’- is due to identical quarks in the final state and CJ^ NS + accounts for 
the remaining contributions. The singlet parton structure function F^’S ( * 2, L) 
equals

j=j(»).S _ p(2).NS + p(2).PS

where ,PS denotes the pure singlet (PS) part which is determined by ti 
C in fig. 3.7, provided the quarks in the final state are not identical.

+ ^)®«tl] .

1 p(l).PS 
2

+^o)®4:’}+4rs+^o)®^>] .
In the case the quarks in the final state are identical, we also have to include reactions 
B and D in fig. 3.7. However the answers for p!^ NS,+ and F^'PS do not differ from 
the ones derived for the non-identical quark case. Here pP>'NS,+ -s part p\(2>>NS 
(3.2.25), (3.2.26), which can be attributed to pWNS and c£>’NS-+ (3.2.29). Finally 
the order a2 contributions to F,iS(z,Q2,e) become

=n> O2 s‘ (?)*[!{- 2^+p« ® +p- ® }
+ c<’> - 2A>a<1’ + P£> ® a<’> + P<,°> ® a<’> ] ,
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(3.2.42)

(3.2.43)
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In the literature there are two popular mass factorization schemes, i.e. the MS and the 

DIS scheme. Starting with the MS scheme the transition functions take the following 

form

(3.2.36)

(3.2.37)

(3.2.38)

(3.2.39)

(3.2.40)

(3.2.41)

A = r^qs®A ,
s = rqq ® £ + 2n/rqg ® <5 , 
G = rgq ® £ + rEg ® <5 .

-1 - 
4tt 4ir

<*,(/?) 20o
4rr e

«>} + ;{ + ■
+ 2nyrqpqs

In all above quantities coupling constant renormalization has already been carried 

out. The collinear divergences are absorbed into the transition functions FtJ so that 

the DIS coefficient functions Ci,k are finite. Both functions depend on the mass 
factorization scale M and are scheme dependent. Combining the equations (3.1.6), 

(3.2.3), (3.2.37), (3.2.37) and (3.2.38) the mass factorized (scale dependent) parton 

densities are defined by

lp(o) 
e qq

■pS  pNS 
1 qq — 1 qq

Notice that using our conventions the second order AP splitting functions P^p can 
also be found in eqs. (2.36)-(2.39) of [33]. Further P^P (k > 1) is always understood 

to be represented in the MS scheme. After having computed we have to perform 

coupling constant renormalization. Choosing the MS scheme this can be achieved by 

replacing the bare (unrenormalized) coupling constant a" by

-m ■
wbf the renormalization scale. After having removed the UV singular­

ity - ;:ng pole terms can be attributed to initial state collinear divergences

on: is an inclusive quantity. The latter singularities are removed by

m; . ion which proceeds in the following way

rNS0CNs 
qq w >.q >

P,sq - r®q ® c?q + rgq ® c.^ , 
= 2n/rqg®c?q + r„®ci,1 .
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(3.2.45)qg

.46)

.47)
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2
Lm

(3.2.48)

2

. (3.2.49)

(3.2.50)(i = 2,L) ,

(3.2.51)
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;(i)
-.q

>(1),NS 
iq

eE-£[«] + (£)’ [{-«■« 
+c<rs] ,

=n> (£)2 [ {+<’-,ps ] •

] - (sy ({s^1 ®
+ p<Ts) - +|p<°> ® 4!’} lm + 4TS ]

+ ^’®4‘1}

i«].

r — — s 
v~ 4x ‘

«’]

L2M

1p(o)
4 <16

r»NS _
°2,q -

1+5
+{

The singlet coefficient function is given by

r«-1 + ss-

1 p(l).PS
4 qq

Le “

In order to obtain short expressions we have expressed the transition fur s in
the bare coupling constant a". The 1 in (3.2.42) and (3.2.47) denotes the ibu-
tion 6(1 — z). The same notation holds for the coefficient functions presented below. 

Further the Ty are sufficiently expanded in order a, to render the DIS coefficient 
functions finite up to order a’ . After having performed coupling constant renor­

malization (see (3.2.35)) we substitute T,, into (3.2.37)-(3.2.38) and obtain the DIS 

coefficient functions. Choosing the renormalization scale R to be equal to the mass 
factorization scale M they read as follows. The non-singlet coefficient function is 

equal to

4?r
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(3.2.52)

+ n/

(3.2.53)

(3.2.54)

<b(M2) = a.(R^ 1 + (3.2.56)

Mass factorization in the DIS scheme3.2.4

(3.2.58)
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In the case the mass factorization is carried out in the DIS scheme the transition 
functions become

(3.2.55) 

be very easily

(je”

'40) +
+"/(g)2[{pi0,®(^0, + ^0))

The gluon

^=^[^1]

+ ^?®42}/SPS
G2,q

C = ; r=, = ; n/Tqg = , (3.2.57)

where Fk,i are given in (3.2.26), (3.2.30) and (3.2.34). Unfortunately such a unique 
definition does not exist for the transition functions Fgq and Tgg because in deep in­
elastic scattering the gluon does not directly couple to the vector boson V. Therefore 
there is some freedom of choice except that all F’s have to satisfy the relations

/ dx + 2n/rq«] = 1 .
Jo

where

Lm = ^ri-^2 > q3 = »j(A/2) .

In the case M is different from the resulting coefficient functions can 
derived from the above expressions (3.2.48)-(3.2.54) by replacing

Explicit expressions for the coefficient functions (3.2.48)-(3.2.54) can be found in 
appendix 3B.1.

-”'(£)’[ {ps1 ®'S'}£"+
+4rs] •
coefficient function becomes
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(3.2.63)

2
(3.2.64)

(3.2.65)

(3.2.66)

(3.2.67)
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(3.2.60)

(3.2.61)

<!is in

x^PS
G2,q

(3.2.59)

rule. Following the definition in

-nj-^
_ 1
~ 4

+ -ci‘+ 2Cj'

°l-.q

/3oP<“> } L2m

j0 X [^qq + — 1 ,

which follow from the momentum conservation sum 
[34] we choose

rgq =

Ct*=]+ n/ (£) [ {- +5P“O) ®
+ J® 4?, } Lm + c<’> - 42 ® (c™ - nyc™) ] ,

+^(5)2[{|P-®(P«+P-1)

O^’-^’ + nyP^)}^] .

a" ( M2
4ir y fi2

“ + 4% \ p2 ) U ’

After substitution of (3.2.35) in the above expressions the coefficient fu. 
the DIS scheme read

cK-£[e]+(g)’[{-Mi
+ 4T‘-4::®4,1] .

+ + (£)’[{
+ {^,’NS + ^,'NS)-M2}^] ,

=^(S)2[{^0)®^}^+es

e/2[^.(?-^] .
'/2 ” i0)-n/42] •

+
-.(1)
2,g
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(3.2.68)Ti>

■ :-‘\j ■ (3.2.69)1;

For the Dio coefficient function this implies

G = (z-’)tA - (3.2.70)

(3.2.71)0(p,e) = o + £(<?) >

one can derive

(3.2.72)7o = Zu'rim(Z~1)mj + /3(g) Zu

(3.2.73)Z =
/

(3.2.74)

(3.2.75)
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70 = £(s,e)r,*

From the definition of the anomalous dimension 

c, x e 
dg ’ 2

m+1
7&

__  Q3 _(0) , 
7qq — ^Tqq +

‘U.z-'h
<ig 

If we want to determine the 7,7 (DIS scheme) up to <9(aJ) it is sufficient to know Z
up to O(a,). From the transition functions given above one infers

1 -

• + 5:42

Expanding 7 and 7 in a, i.e.

the singlet anomalous dimensions in the DIS scheme become

(g) 2 { 7<’> + 20OC& + 4^7<? + 4^’ } .

Notice that CJJS, Cf and C2,g vanish at Q2 = M2. Explicit expressions for the 
coefficient functions in the DIS scheme can be found in appendix 3B.2. The anoma­
lous dimensions of the composite operators 7,5 which are related to the AP splitting 
functions via

7'J‘),n = - f'dx xn-'p^ , 
Jo

change while going from the MS to the DIS scheme. Consequently the AP splitting 
functions will undergo a similar change. In [13]—[17] they are only calculated in the 
MS scheme. In the DIS scheme they can be obtained by performing a finite mass 
factor:; . ' ; . denoted by Z, which relates the transition functions P.-j computed in 
the (3.2.42)-(3.2.47) to the transition functions F,j in the DIS scheme
(3.2 . (3.2.61). In the singlet case Z becomes a matrix which is defined
by



2

(3.2.76)

2

7<’)-2M’’ + 4M)-7'°q))
'3.2.77)

78)

get

>. 79)7qq

(3.2.80)(i = 2,L) .

Checks on our results3.2.5

(3.2.81)
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,(').NS 
iq

+

+7£)(4i2+n/42)} .

‘ + 2A>c^}

(qj can also be derived from the coefficient func- 
presented in the DIS scheme, since they satisfy the

~ = £i~(o) 
7“ 4r7«

] Ci,* = 0 ,

^-2A>n/c‘1>-4,’7<?-W} ■
scalar only. Hence we

The anomalous dimensions 7qq and 
tions, (3.2.62)-(3.2.67), which are 
Callan-Symanzik equation

[{"®+^>5

As a check on our results we computed the Mellin transform of the coefficient function 
C,-,* in an analytical way. The latter is defined as follows

C^*(QW) = /' dz z^Ci^Q^M2) , i = 2,L , 4 = q,g .

+(£)’{«
The non-singlet case is trivial since Z becomes a

2

The above quantity has also been computed in the MS scheme up to order a? in 
[35] for n = 2,4,6,8,10 by using a totally different method [36]. We found complete 
agreement with their results. Notice that the method in [36] only provides us with 
the moments up to finite n (here n < 10) without giving the full z-dependence of the 
coefficient function. On the other hand using the method in [36] one can compute the 
Mellin transform in (3.2.81) up to order provided n is small. Using our method 
this is extremely difficult because of the very complicated three-loop and four-body 
phase space integrals which have to be carried out. Another important check is that 
in both schemes = 1 up to order . The latter is a consequence of the Adler 
sum rule which leads to the identity = 1 in all orders of perturbation theory

-7<°q)(4:’+n/4'’)} ,



1

2

with
(3.2.83)

n
1
2 17.908 - 3.536 - 4.000

- 8.3443 22.322 8.161
- 12.74131.842 21.4344

43.805 35.635 - 16.9805
- 21.0106 58.478 49.609

63.363 - 24.8277 74.722
76.638 - 28.4448 92.394

- 31.8789 110.94 89.510
- 35.14610 130.27 101.91

Table 3.1. The first ten moments of c^’’NS , see (3.2.82)
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where c:
bersom
(five si:.
eq. 19 o

(irr) Bi,f + CaCf A + njCF ----  , (3.2.82)

' _(i),NS,n 
^.q —c2n:-(i)=jdZ c2Nqs(2,i)=f

B$

0

B$ 

0

B&

0

1 + ^^^ +

cPlAS.n _ .(2),NS,+,n ^CO.NS.-.n

coefficient function Cl,*(x, 1) has been calculated already earlier in the literature. 
For C£q see [37]—[39], [42] (MS ) and [41] (DIS). The coefficient function Cf q can be 
found in [40], [42] (MS ) and [41] (DIS). Finally Cl,,s is presented in [41] (DIS) and

rder coefficient B"F can be found in [61]. Because of the cum- 
•: we have resorted to a numerical evaluation of the moments only 
its). The numbers listed in table 3.1 agree with those given in 
^-dependence of the order a? contribution to the longitudinal

[19]. In table 3.1 we have listed the first ten moments of c22’’A,s. They appear in the 
perturbation expansion of the Mellin transform



3.2.6 The omission of the third order anomalous dimension

(3.2.84)

(3.2.85)
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larks

when

also
astic

g.(Q2) 
4tt

C2Nq’n(<22/A/2) = BNS''■"(M2) [ 1 +

[42] (MS ). We disagree with all results in the above literature except for C£®, Cf,q 

in eqs. (8) and (9) of [42]. Concluding this comparison with the literature we note 

that there only exists complete agreement between our results and the ones found in 

[35]-

{«+

At the end of this section we want to discuss the two missing pieces in our calculation 

which are needed in order to make a full phenomenological analysis of ih deep 

inelastic lepton hadron data. The first piece refers to heavy flavour contri ons to 

the DIS coefficient functions. In our calculation we have assumed that 

have zero masses. This is correct for the light quarks but certainly incor 

heavy flavours like bottom or top appear in the final state. The assumption 
be incorrect for the charmed quark. Heavy flavour contributions to deep 
lepton-hadron scattering, where the exchanged photon in fig. 2.1 is highly ual, 

have been investigated in [43]. The second piece, which is the most complicated one, 

is the three loop contribution to the anomalous dimension — q,q,g). It
determines the scale evolution of the parton densities in the next-to-next-to-leading- 

logarithmic (NNLL) approximation. Notice that the coefficients of the perturbative 

expansion of the DIS hadron structure function in the running coupling constant are 
only scheme independent if as well as y-^ are known [13, 45]. This is important 

for the determination of the running coupling constant cis well as the QCD scale A. 
The implication of omitting the three loop anomalous dimension 7^ in the analysis 

of the deep inelastic data will be discussed below. From [21, 22] we infer that at 

large x (x > 0.3) the deep inelastic structure function F2(z,Q2) is dominated by the 

quark densities and the non-singlet part of the coefficient function. Taking the Mellin 

transform we obtain

[' dx xn-'F2(x,Q7) = An(M2)C2s,n(Q2 /M2) , 
Jo

with
5 1

A"(M2) =-E"(A/2) +-A"(M2) .
Io 0

The coefficient function C^S" is the asymptotic solution of the Callan-Symanzik 

equation in (3.2.80). Up to order a2(Q2) it is equal to

<bNS
2/30 2^o
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(3.2.86)

=(>').nscm - (3.2.87)

or

(«,!)- (3.2.88)

Furthermore in [14]

pb).Ns(2) (3.2.89)

or

(3.2.90)
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0S

In1 (I — z)
1 — z

£ (
j=0 \

£ a',)-£-(€n n)j+1 
i=o 3 + 1

one has made the following conjecture

a^tn n

>y(2).NS 
'qq

0o

^(1),NS 
'qq

0o

which is confirmed by the existing calculations carried out for i = 0,1, see [13]— 

[17]. This conjecture is further corroborated by a combination of the findings in 

refs. [46] and [47]. In the latter it is shown that there exists a relation between the 
coefficients of the large logarithms appearing in C2,qNS and the coefficients of the same 

terms in P^*NS. If we combine this result with the series expansion in aa of the soft 
gluon resummation formulas in [46], one can infer that 7^’NS maximally behaves as

in (3.2.86) has to 

we 
the non-singlet structure function the anomalous dimension 7^’NS 

. glected with respect to <4^’NS in the region where the corrections 

11 coefficients are calculated in the MS scheme. An analysis of 

* corrections reveals that for x > 0.5 F2 is dominated by the soft 
vhich show up as large logarithms of the type £nJ’(l — z)/(l — z)+ 

,. Js(z). The calculations carried out in this chapter and the soft 

i formulas presented in [46] reveal the behaviour

_(.),NS,n

-(i),NS,n n—»oo 
'qq

/Q'«(<22)y f (2),NS
I 4ir )
1

+ 4

, 1
2 V & 01

_ /MV,NS 0^ , 11
01 01 01 J I i

where /3{ are the coefficients in the series expansion of the beta-function (3.2.28) which 
are known up to i = 3 [44]. The factor Bn(Af2) is determined by putting Q2 = M2 in 

the above equation. As is known in the literature [13, 45] the coefficients between the 

curly brackets are scheme independent which, for the order cta(Q2) term, can be easily 
inferred from (3.2.79). Therefore the scheme dependence of C2^’NS 
be compensated by 7^,NS and the lowest order coefficients c^q and 7^,NS. Now 

can argu' that f- 

can prol .

are larg< 
the knc 

gluon c< 

in
gluon res..

cl1’ + 1 <=2.,+8
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Unfortunately the above arguments, regarding the omission of the seco- 
anomalous dimension with respect to the coefficient function, do not apply a 
to the singlet hadron structure function. Atsmallz (z < 0.01) Fj(z, Q2) gets ; Kbce- 
able contribution from the product of the gluon coefficient function C21g(z, Q2/Af2) 
and the gluon density G(x/z,M2) appearing in (3.1.6). A part of these large cor­
rections is due to the logarithmic terms of the type tn’z/z, which show up in the 
coefficient function C2,g(z) and the AP splitting function Pgq(z). They also appear 
in C£q(z) (3.2.52) and •Pqg(z) but the latter are of minor importance because they 
mainly influence the contribution of the sea quarks which is always smaller than 
the contribution of the gluon part. The physical origin of these corrections can be 
traced back to soft gluon exchanges in the t-channel graphs which contribute to F2g 
(3.2.34). However there are other important contributions to F/ (z, Q2) which cannot 
be attributed to these type of logarithms only. A thorough analysis of the order or2 
correction reveals that at z = 10~4 part of the order o2 correction can be traced 
back to those terms which dominate the coefficient function Cj2g(z) near z = 1. They 
are given by the logarithms ZnJ(l — z) (see (3B.12)). This is not surprising if one 
looks at the integral in (3.1.6). In the limit z —♦ 0 the gluon density G(z/z,Af2) 
in the integrand gets very large near z = 1. Since in this region C;,g(z, Q2/M2) is 
dominated by the terms tn’(l — z) it is understandable that the integral in (3.1.6) 
gets an important contribution from the region z ss 1. This does not mean that the 
tn’z/z terms are unimportant. On the contrary if the latter would be omitted the 
correction to F2(z, Q2), which is negative in the small-z region, would be positive. 
Actually the analysis shows that the tn’z/z terms are compensated by the regular 
part in Cj2g(z) which dominates the region 0 < z < 1. Notice that the whole analysis

J(2)fn2(n) for n —» oo. However nothing can be said about !><2h Its vanishing can 
only be shown by an explicit calculation. If we assume that the above asymptotic 
expressions hold for all i, in particular for i = 2, one can neglect 7qq’,NS with respect 
to Cj'q'N8 and ^JqNS in the second order coefficient of (3.2.86). Therefore the large 
corrections for z > 0.5 can be attributed to the coefficient functions <4'qNS only. 
For z < 0.5 the O(a2) correction to F2(z,Q2) due to <42qNS turns out to be small 
(on the one percent level), because of a strong cancellation between the regular and 
singular terms in the coefficient function. Since the same type of terms also appears 
in 7^'ns, we expect that this cancellation happens here too so that the con- 
to F2(z,Q2) due to the NS anomalous dimension will be small. Summa 
above we conclude that for corrections above the one percent level the cor 
due to 7^2' ns can be neglected in the whole z-region.
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with 

(«' = 
using

[ dz zn' 
Jo

Here regular means that no
The Mellin transform of the above expressions

About the higher order a, corrections to Cj,g and Plg not much is known but we 
expect that the most singular behaviour of P&) is given by tnz/z. This prediction 
is corroborated by the findings in [48] for the C\ part of PW (see (1.5) and (7.36) 
in [48]). About the other colour structure parts nothing is known. This implies 
that probably P£^(z) is more singular at z = 0 than Cj^z). The Mellin transform 
of the renormalization group improved singlet hadron structure function is much 
more complicated than the non-singlet expression presented in (3.2.86). Up to order 
oa(Q2) its expression can be found in [18]. Because of the discussion above we cannot 
neglect in the order a](Q2) contribution the third order anomalous dimension 7^ 
with respect to the second order coefficient function Therefore 7W has to be 
calculated exactly which is far from trivial in view of the complications described in 
[49], This implies that our ignorance about 7^(z) (or PU*(z)) hampers the analysis 
of deep inelastic data in the small-z region. In the next section we show that c^g 
is appreciable in the range 10-4 < x < IO-2 and it is not unlikely that the missing 

leads to even larger corrections. Moreover we expect that in this range non- 
perturbative effects in the gluon density become very important. Therefore it will 
be very difficult to distinguish perturbative and non-perturbative contributions to 
the hadron structure function in the small-x region. Contrary to the situation with

terms show up of the type tnjz/z 
can be easily calculated

depends on the chosen parametrization of the gluon density G(x/z, M2). The steeper 
it rises at small x the more important the region near z = 1 becomes, because of the 
logarithmic behaviour of cSQfz) which is given by ZnJ(l — z), see above. Even if the 
(.njz/z terms would dominate the radiative corrections there are no arguments that 
their power j in the AP splitting function PJj9(*) would be smaller than the one 
appearing in d^^z). This is in contrast with our findings for the £nJ(l — z)/(l — z)+ 
corrections present in P^,NS(^) and C2fcq’NS(z). Actually the opposite happens as is 
reveal-, by the existing calculations. In the limit z —> 0 we have:

n,CA (-g C(2) + ,



(3.2.94)
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c£*’n(Q2/M2) = BNS'
,(1).NS 
'qq

ft
1

+ 2

jT1 dx xn-iFL(x,Q2) = X"(M2)C?S’"(Q2/M2) , 

with

^i(x, Q2)^ the existing order a2 corrected anomalous dimensions are sufficient to 
provide us with the renormalization group improved longitudinal structure function 
Fl(x,Q2) which is now corrected up to order a2(Q2). As an example we give the 
contribution to Fl(x, Q2) due to the quark densities and the non-singlet part of the 
coefficient function.

Bearing in mind the uncertainties due to the missing third order anomalous dimen­
sion, we will study the effect of the order a2 corrections to the deep inelastic proton 
structure functions F,(x,Q2) (i = 2,L). In order to make a comparison with the al­
ready known complete order aa renormalization group improved structure functions 
(3.2.84) and (3.2.94), we will use the parametrization for the parton densities as given 
in [50] (HMRSB) and [51] (MTB) which are based on the BCDMS data [53] L The 
MTB set contains the next-to-leading-log (NLL) parametrization in the DIS as well 
as MS scheme whereas the former (HMRSB) describes the NLL parton densities in 
the MS scheme only. They are all listed in table 3.2 including the corresponding QCD 
scale parameter A. This parameter also appears in the two loop corrected running

’The parton densities in [50] and [51] are defined to be equal to xfi(x, M2) (I = q,q,g) where 
fi(x,M2) stands for the parton densities appearing in E(z, M2) (3.1.7) and A(z, Af2) , (3.1.8)

_(2),NS 
CL,q

the 
no soft 

shown in (3.2.87), (3.2.88). However 
terms of the type tn’z/z appear in the coefficient functions C£,(z) and Cl,s(z) which 
can be attributed to soft gluon exchanges in t-channel graphs (see the discussion above 
(3.2.94)). They show up for the first time in the O(a2) contributions c^qPS(z) and 
cL,g(z) which behave like 1/z. Like in the case of <JQ(z) their importance depends 
very heavily on the chosen parton densities, in particular on the gluon density.

The more complicated singlet expressions can be inferred from [13]. Comp : 
coefficient functions Cl,, with Cj,; (» = q, q, g) we note the following. There ar. 
gluon corrections present in Cl1’NS (k = 1, 2) as
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3.3.1 Results for Fi

K®(x,Q2} = (3.3.1)
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focus our attention on the data obtained from the BCDMS

0.75) and the data which will be collected from HERA

coupling constant where the number of light flavours nj is chosen to be four. The 
renormalization scale R will always be put equal to the mass factorization scale M. 
In the discussion below we will choose the MS scheme and take M = Q unless stated 
otherwise. The order a* corrected structure function is denoted by F<k\x, Q2) where 

k = 0,1,2 for f = 2 and k = 1,2 for i = L. Notice that because of the missing 
three loop anomalous dimension (splitting function) the next-to-next-to-leading-log 
(NNLL) parton densities are not available so that F?(x, Q2)|nll does not fully repre­

sent ■ complete order a2 renormalization improved structure function. The same 

hold: Q2)|nll for which the leading log (LL) approximation would be more

app ever in this chapter we are more interested in effects due to higher
ords : to the DIS coefficient function than in differences in F[k\x,Q2)

bet'. nd NLL parametrizations for the parton densities. In the following

NLL parton densities and only comment on the LL if necessary.

3.3.1 and 3.3.2 we will treat the following topics:

’iie effect of the order a2 corrections on the deep inelastic proton structure 

functions Fi(x,Q2) (i = 2,L) and the extraction of the parton densities from 
the data in past [7], present (54] and future [8, 9) experiments.

The improvement in the factorization scale- and scheme dependence of F<(x, Q2) 

when higher order corrections are included.

The modification of the relation between the gluon density and the longitudinal 
structure function El(z,Q2) due to O(or2) corrections.

In particular we 

periment [53] (0.1 < x < ( 
(10-4 < x < 0.5) very soon.

We start with the study of the order a2 corrections to F2(x,Q2) since this is the 

best measured structure function from which the data are mainly extracted. To that 

purpose we define the quantity

F}?(x,Q2)
F^(x,Q2)

The issue whether the discrepancy between the combined SLAC-BCDMS data 
and the NLL approximation of F2(x, Q2) can be attributed to higher twist 

effects or to soft gluon corrections.
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Note that the parton densities represented by G(z, Af2), E(z, A/2) (3.1.7) and A(x, A/2) 
(3.1.8) occurring in (3.1.6) are determined in such a way that F^fx, Q2) fits the data. 

The deviation of from 1 will then indicate how the free (non-perturbative) pa­

rameters describing the z-dependence of the parton densities have to be modified in 
order to bring F^Xx^Q2) in agreement with the data.

Fig. 3.8. The quantity K(2>(x,Q2) (3.3.1) (MTB1MS) in the region 0.01 < 

x < 0.9 for Q2 = 10 GeV2 (solid line), Q2 = 100 GeV2 (dashed line) and 
Q2 = 104 GeV2 (dashed dotted line) and in the region 10-4 < x < 10-2 for 
Q2 = 10 GeV2 (solid line), Q2 = 50 GeV2 (dashed line) and Q2 = 100 GeV2 

(dashed dotted line).

1-1

r105
I

.95

.01

.85 =*

.0001



.0001

61

1

c

"o
X

Fig. 3.9. Parton density dependence of K(2\x,Q2) at Q2 = 10 GeV2 in 
the region 10-4 < x < 0.9: MTB1MS (solid line), MTB2MS (dashed line), 
HMRSB (dashed dotted line).

In fig. 3.8 (MTB1MS set) we have plotted the ratio (3.3.1) for the values 
Q2 = 10,100 and 104 GeV2 in the range 0.01 < x < 0.9 which is accessible to current 
and past experiments. For future as well as current experiments we have also studied 
the range 10-4 < x < 10-2 for Q2 = 10,50 and 100 GeV2. Fig. 3.8 reveals large 
corrections in the regions x > 0.5 and x < 0.01 in particular at small Q2 values. For 
x > 0.5 the large positive corrections are wholly due to soft gluon radiation which is 
represented by the logarithmic terms W(1 — z)/(l — z)+ appearing in the non-singlet

95
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.01.001
x
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Fig. 3.10. Parton density dependence of K^2\z,Q2) at Q2 = 100 GeV2 in 
the region 10-4 < x < 0.9: MTB1MS (solid line), MTB2MS (dashed line), 
HMRSB (dashed dotted line).
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part of the coefficient function. As has been discussed in the last part of the previous 
section, the large negative corrections to Fi(x,Q2) in the region 10-4 < x < IO-2 do 

not only originate from soft gluon exchanges in /-channel graphs, represented by the 
Mz/z terms in c^(z) near z = x. It turns out that the region z > x is important 

too. Moreover the contribution of the third order anomalous dimension cannot be 
neglected here like in the non-singlet case. In fig. 3.9 (Q2 = 10 GeV2) and fig. 3.10 
(Q2 = 100 GeV2) we have investigated the dependence of (3.3.1) on the chosen
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3

parton densities. Here we have taken the MTB1MS, MTB2MS and HMRSB sets (see 
table 3.2). Note that the gluon density G(z, M2) in MTB2MS shows a much steeper 
rise near z = 0 than in the other two sets. Comparing fig. 3.9 with fig. 3.10 the 
difference between the three predictions for becomes less when Q2 gets larger, 
which can be attributed to the decrease of the running coupling constant. The figures 
reveal that the parametrization with the steepest gluon behaviour provides us with 
the smallest correction. This feature can be traced back to the characteristics of the

Fig. 3.11. Factorization scale dependence represented by the quantity 
&&(x,Q2) (3.3.2) at Q2 = 50 GeV2 in the region IO"4 < x < 0.9. A<1)(x,Q2) 
(solid line), A^2l(x,Q2) (dashed line). (MTB1MS parametrization.)
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AP equation which mixes the gluon density G(z, M2) and the singlet combination of 
the quark densities E(z, M2), (3.2.40). Like the gluon density the latter gets very large 

at small x which can be wholly attributed to the contribution of the sea quarks. Now 
E(z, M2) already shows up at the Born level (F20'), whereas G(z, M2) only appears 
in F^ and F[2\ It turns out that when the gluon density gets steeper it strongly 

enhances Fj1' via S(z,M2) so that the negative effect due to the coefficient function

Fig. 3.12. The proton structure function F2(x,Q2) in the large x-region:
Fj1t(z,Q2): NLL + higher twist, see [55] (solid line);
F2T(x,Q2): NLL see [55] (dotted line);
F^pp(x,Q2): see (3.3.3) (dashed line)

X = O.K

x = 0.6E

10010
Q2



Notation in text Notation in ref.ref.

HMRSB

MTB1DI Table 13-FIT Bl-DIS 0.194

MTB1MS Table I4-FIT Bl-MS 0.194

MTB2DI Table 15-FIT B2-DIS 0.191

MTB2MS Table I6-FIT B2-MS 0.191

sTSL Table II3-FIT SL 0.144
0.215
0.215

Tai parametrizations for the parton densities used in this chapter.

A« = (3.3.2)
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[50]

[51]

[51]

[51]

[51]

[51]

[52]

[52]

•(DO) 

l(D-)

AqcD(GeV)

0.190

Fig. 3.11 reveals that A*2* 
F2’\ except in the region x 
to stress that this improvement in the small z-region is very sensitive to the choice of 
n/ (the number of light flavours) and it completely disappears when nj > 5. This is 
mainly due to the gluonic coefficient function Ci,f (3.2.54) which is proportional to nj. 
For x = 0.5 we also studied the improvement of the factorization scale dependence by 
comparing (F2(0))Ll, (F2(0))nll, (F2(1))ll and (F2(1))nll- We did not see any difference 
between the LL and NLL parametrization for F^ as well as F2’\ However Fp^ is 
considerably less sensitive to the chosen scale than F2°\ showing that the coefficient

-(2)g is co): ., ms . Furthermore we expect that the experimentally observed gluon 
density shows a smaller increase near z = 0 than the one predicted by the existing 
parametrizations. This expectation is based on the presence of non-perturbative 
effects which may alter the AP evolution equation [11]. This implies that will 
deviate even more from 1 than predicted by the HMRSB parametrization in figs. 3.9, 
3.10.

In fig. 3.11 we study the factorization scale dependence of the structure functions 
F?1) and F^. For the factorization scale we have taken the values M = Q, 2Q. 
To investigate the A/-dependence it is very convenient to define the quantity

max (F2(,)(|Q), F?(2Q)) - min (F2W(|Q), F2(,)(Q), F2(,)(2Q))

average (F2W(|Q), F2(i,(Q), F2W(2(?))

so F22) is less sensitive to the chosen scale than 
0.2 where no improvement appears. However we want



(*,!)} .k;pp(^,q2) (3.3.3)

3.3.2 Results for Ft,

66

leading 
er fit 

a into
■n by 
fleet
way 

a the

: observe that
,pp a little bit 

be improved by

We now focus our attention on the effect of the order a2 contribution to the longi­
tudinal structure function Fl(x,Q2). In particular we are interested in the ratio of 
the longitudinal and transverse cross section defined by R = ol/vt- The order aj

which is a reasonable approximation since c2’’,PS and c,’’ are negligible in this region. 
Expression (3.3.3) is represented by the dashed line in fig. 3.12 and we 
the latter is closer to F^y than F^. Notice that we have rescaled F?' 
so that F^pp = F?T at Q2 = 316 GeV2. The approximation can 
including soft gluon corrections beyond O(a2) . In order to get a better description 
of the deep inelastic data taken at large x and small Q2 one should resum these 
corrections using the soft gluon resummation techniques in [46].

function plays a more important role in the improvement of the factorization scale 
dependence than the second order contribution to the anomalous dimension. Notice 
that the latter accounts for the difference between the LL and NLL parton densities.

In fig. 3.12 we try to improve a recent fit made in [55, 56] to the combined SLAC- 
BCDMS data. In this reference one has shown that in the region x > 0.5 the combined 
data cannot be fitted by the fully order a, renormalization group improved structure 
function F2LT (dotted line in fig. 3.12). Here the superscript LT refers 'o 
twist and F2LT can be identified with the NLL structure function F2*’. 
(solid line in fig. 3.12) was only possible when ’’higher twist terms” were 
account, so that additional free parameters had to be introduced. This fit 
the function F2HT = F2LT(1 + C(z)/Q2), where C(x) represents the higher 
and is given in table 3.2 of [56]. The function C(x) had been chosen in si 
that the best fit to the data was obtained. In our opinion the difference be. 
data and F2LT can be attributed to the large logarithmic terms of the type m .oned 
in (3.2.87) which show up in the higher order corrections to the non-singlet coefficient 
function. These contributions, which are due to soft gluon radiation, were not taken 
into account in the analysis of [55, 56]. To estimate the effect of the missing order a2 
part of the NS coefficient function in F2LT [55] we approximate F?2\x, Q2) for x > 0.5 
by



corrected is given by

Rin)(x,Q2) = (n = 1,2,3) , (3.3.4)
1 +
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Fig. 3.13. The quantity RW(x,Q2) (3.3.4) (MRS(DO)) in the region 0.01 < 
x < 0.9 for Q2 = 10 GeV2 (solid line), Q2 = 100 GeV2 (dashed line) and 
Q2 = 104 GeV2 (dashed dotted line) and in the region 10“4 < x < 10-2 for 
Q2 = 10 GeV2 (solid line), Q2 = 50 GeV2 (dashed line) and Q2 = 100 GeV2 

(dashed dotted line).

4Mpx2 
Q2

where Mp denotes the proton mass.

F}n)(x,Q2)____________
) F?n~I\x,Q2') - F[n\x,Q2)
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Fig. 3.14. The quantity ^(z.Q2) (3.3.4) (MRS(DO)) at Q2 = 10 GeV2 in 
the region 10-4 < x < 0.9: R^\x,Q2) (solid line), R(2l(a:,Q2) (dashed line) 
and J?l3)(z, Q2) (dashed dotted line).

In fig. 3.13 (MRS(DO)) we have plotted RF> in the range 0.01 < x < 1 for 
Q2 = 10,100 and 104 GeV2 and in the region 10-4 < x < 10-2 for Q2 = 10,50 and 100 
GeV2. The figure reveals that is very small in the large-z region (0.1 < x < 1). 
For x < 0.1 it increases very rapidly at decreasing z-values. Furthermore when Q2 
gets small (e.g. Q2 — 10 GeV2) R& hardly varies in the range 10-4 < x < 3 • 10-3. 
For x > 0.1 the non-singlet part of the coefficient function dominates the longitudinal 
structure function Fl(x, Q2)- Here the contributions due to c£’^NS as well as c^NS

0 >- 
.01
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Fig. 3.15. Parton density dependence of R('\x,Q2) (3.3.4) at Q2 = 10 GeV2 
in the region 10~4 < x < 0.9: R™(x,Q2) (MRS(DO), solid line), R&(x,Q2) 
(MRS(DO), short dashed line), RW(x, Q2) (MRS(D-), dotted line), RW(x, Q2) 
(MRS(D-), long dashed line).

are positive although there are no soft gluon corrections of the type Zn*(l —z)/(l — z) 
present in c^qNs. For x < 0.1 Fl(x,Q2) is dominated by the gluonic coefficient 
function although the pure singlet part is not negligible. In the large-a; region F^ > 
F^ and their difference is small. At small x (x < 6 • 10~3 for MRS(DO)) F^ > F^\ 
but here the difference between F^ and F^ is much larger. This difference is due to 
c£2g which leads to negative contributions to Fl(x, Q2) in the small-x region. However
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Fig. 3.16. The quantity p(z,Q2) (3.3.5) (MTB1MS) in the region 10 4 < x < 
10"2 for Q2 = 10, 50 GeV2: FL(z,Q2) = F^\x,Q2) (solid line), FL(z,Q2) = 
Fp\x,Q2) (dotted line), xG(x,Q2) (short dashed line), 2.5zG(2.5x,Q2) (long 
dashed line).

the sign and size of the contribution at small x wholly depends on the chosen gluon 
density G(x/z,M2). If the latter rises very steeply near x = 0, as is for instance 
the case in the MRS(D-) parametrization, the correction due to c^g(z) is positive 
because the large z-region becomes more important.

The above findings for Fl(x,Q2) also hold for R(x,Q2) because of the relation 
between these functions (3.3.4). This is revealed by fig. 3.14 where we compare R^
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Fig. 3.17. Scheme dependence of R{2\x,Q2) (3.3.4) at Q2 = 10 GeV2 in the 
region IO"4 < x < 0.9: MTB1MS (MS scheme, solid line), MTB1DI (DIS 
scheme, dashed line).

to RW for Q2 = 10 GeV2. We observe that in the range 0.01 < x < 1 is slightly 
above Rf1', whereas for x < 0.01 > R^. Furthermore in the small-z region
the difference between R^ and R^ is quite large and can amount to 40% of R^ at 
x = 10“4. In fig. 3.14 we have also plotted RP\ where F^ is put equal to F® since 
nothing is known about the order aj contribution to Fl. In the range 0.01 < x < 1 
J?(3) ~ R& whereas for x < 0.01 is slightly larger than R.W. However this 
result has to be interpreted with caution since one should bear in mind that F^
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Fig. 3.18. Comparison of R^(x,Q2) (3.3.4) (MRS(DO)) with the BCD Me. 
data [59]: Rfl\x,Q2) (dashed dotted line), R^2\x,Q2} (solid line).

5

has not been calculated yet and F^ is partially unknown, due to the missing of the 
three-loop anomalous dimension.

In fig. 3.15 we have studied how R^ depends on the chosen parton density (see also 
[60]). For a comparison we have taken the MRS(DO) and MRS(D-) parametrizations 
listed in table 3.2. In the large x range the MRS(DO) set provides us with larger values 
for (t = 1,2) than MRS(D-), whereas in the small x range the MRS(DO) set leads 
to smaller values for (i = 1,2) than MRS(D-). The difference is in particular 
striking in the small x range where R^ (MRS(D-)) can become approximately 1.3 
times larger than R.W (MRS(DO)). This is because F^ is much more sensitive to the 
gluon density than Fj°\ Notice that the <9(or^) corrections are positive in the case of 
MRS(D-) and negative in the case of MRS(DO). Therefore if second order corrections 
are included (MRS(DO)) even moves further from RW (MRS(D-)) (factor of 2.5). 
We should remark that the picture looks different when one makes a comparison 
between the MTB1MS and MTB2MS parametrizations, which are considered to be 
the obsolete equivalents of MRS(DO) and MRS(D-), respectively. For this comparison 
we refer to [10]. Also striking is that when the gluon density shows a steep behaviour 
near z = 0 (The Lipatov pomeron effect included in MRS(D-)), the higher order 
QCD corrections get smaller than in the case of MRS(DO), where the gluon density 
shows a less steep behaviour. Irrespective which parton density one chooses, the



Fl(z,Q2) ,S(a:,Q3) = fG(f,Q2) = 1.77 (3.3.5)
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convergence of the perturbation series for R is very slow in the small-z region. As 
a consequence the extraction of the gluon density from the longitudinal structure 
function, as proposed in the literature [57, 58], will be hampered. From the lowest 
order approximation for Fl (i.e. F^) one can derive the following relation which 

holds in the small-z region (see eq. 9 in [57]).

3%

: rary parameter which for Fl = F^ is usually chosen to be 0.4 [57, 

□covered that in the case of the MTB1 set the above approximation 
,ter when a = 1 and Fl = F^\ In fig. 3.16 this is checked for 

it Q2 = 10 and 50 GeV2. The figure also reveals that at low Q2 
nation breaks down when F^ is replaced by F[2\ which can be 

large negative contribution of the second order gluonic coefficient 
.-.c assume that F[2) gives a much better description of the data than 

Fl the rei?.: i (3.3.5) is not suitable any more to determine the gluon density. In 
the case of the MTB2 set F^ is very close to F^\ so that the relation (3.3.5) can be 

used to determine the gluon density. However as explained above we expect that the 

measured gluon density will deviate from the one given by the MTB2 parametrization 

in particular in the small-z region.
We have also studied the factorization scale (M) and scheme dependence of F^ 

and 7?h) Qne observes a considerable improvement in the scale dependence of F^ 

with respect to F^' in particular in the region 10“4 < x < 10-2. The difference 

disappears in the large-x regime where the plots are almost the same as the ones 
shown for A^1) and A^2) in the case of F^ and F^ (see fig. 3.11). Further it turns 

out that and R^ are much more sensitive to the choice made for M than 
the corresponding F^ and F^\ This can be wholly attributed to the strong scale 

dependence of appearing in the denominator of (3.3.4) which is of course 
improved for F^\ but not to that extent as is exhibited by F^- In fig. 3.17 we 

have also com pared RW calculated in the MS scheme with fi(2) calculated in the DIS 

scheme, using the parametrizations MTB1MS and MTB1DI (table 3.2) respectively. 
The figure reveals that a change of scheme has little effect on R^ in the range 
10-4 < x < 10-2. The difference is of the order of about 6% of 7?(2) computed in 

the MS scheme. Our general experience is that the above quantities are much more 

dependent on the factorization scale M than on the chosen scheme. Finally we have 
also plotted R^ and RW in the range 0.05 < x < 0.65 for which BCDMS data 
are available [59] (see fig. 3.18). For each data point the average value for Q2, i.e.

where a 
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Appendices

3A Phase space integrals

(3A.1)Pl + Ps -> P2 + P3 + P4 ,

74

Here we list the most complicated two to three body phase space integrals which 

emerge after the decomposition of the matrix elements in the way described below 

(3.2.21). All of them contain massive denominators carrying the virtual photon mo­
mentum. Some of these massive denominators depend on the polar angle 0 and the 

azimuthal angle 4> (see (3.2.24)). The kinematics of the two to three body process is 

given by

Summarizing the above we have completely calculated the second order contribution 

to the DIS coefficient functions including their dependence on the renorm a ization- 

and mass factorization scale. The effects on the first order renormalization g: im-
are 

ted 
Fl 
ied 
the 

the chosen parton density set and the be our

with Pi = 0 and Ps denoting the photon momentum. Therefore we have p2 = 0 

(:= 1-4), p2 = q2 = — Q2 and further we define = (p, + pj)2. The above momenta

proved proton structure functions are studied. It turns out that the correct 
appreciable and positive for Q2) when x > 0.5, which can be wholly at 

to soft gluon radiation. In the small-x region the corrections to F2 as we 
are negative and large in particular at small Q2 values, which cannot be e. 

by multiple soft gluon exchanges in t-channel graphs only. The size and sig 
radiative corrections also depend on

of the gluonic coefficient function Ci,g(z) in the whole z-region. These large correc­

tions and the still unknown three loop contribution to the anomalous dimension will 

seriously hamper the extraction of the gluon density from the proton structure func­

tion. Since in the small-z region also non-perturbative aspects will play an important 
role, the extraction of the gluon density will become difficult because of theoretical 

uncertainties present in perturbative as well as non-perturbative QCD.

(Q2), can be found in table 2 of [59]. It varies from (Q2) = 15 GeV2 at x = 0.07 to 

(Q2) = 50 GeV2 at x = 0.65. As already discussed above there is not much difference 
between F^ and F^ in this region and both are in agreement with the data.
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can be expressed in the angular variables 0 and <f> and the kinematical invariants 
indicated in (3.2.22) and (3.2.23), depending on the chosen frame (see appendices C 
in [27], E in [28]) and D in [31]). The most complicated integrals are (e = n — 4)
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The DIS coefficient functions in the MS and DIS scheme3B
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In this appendix we will present the explicit expressions for the DIS coefficient func­
tions Citk(z, Q2/M2) (i = 2, L, k = q,q,g) which are calculated in section 3.2. In 
order to make the presentation self-contained, we also give the order as contributions 

which have already been presented in the literature [18]—[20]. The non-singlet 
and pure singlet part of the longitudinal coefficient function can be found in [42]. 
We will refer to them where appropriate. Finally the renormalization scale in the 
coupling constant a, is always taken to be equal to the factorization scale M. If one 
chooses R different from Af, a3(M2') has to be replaced following the prescription in 
(3.2.56).

4 _z - - + -z + -z

The coefficient functions presented in (3.2.48)-(3.2.54) read as follows

= ^CF [4* ] + (S)2 [ { ^ ( 8z^n^ *)
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where Ca, Cf denote the colour factors (Cf = (A2 — 1)/2A and C,\ 
SU(N)) and nj stands for the number of flavours. Further c<3>’NS,+ and c^' 
respectively
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Further we have
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+- (-162 + 82z + 72z2 + -)
5v z'

g
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In the above expression the terms of the type Zn’(l — z)/(l —z) have to be understood 
in the distributional sense, like in (3B.2).
In the case we have a Z instead of a photon or a W, vte should also take into account 
the (finite) contribution of the axial part of the AC interference term, which equals

= ^32(3z3 - 3z2 + z)Li2(l - z)

32(P+r - +en z w+z>} + 16(¥z3 -
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The second moment (3.2.82) of the above expression reads (Ty = 1/2)

which agrees with the result presented in eq. 17 of [35]. The higher moments were 
checked both numerically and analytically. They also agree with the ones listed in 
eq. 17 of [35].
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The second moment (see (3.2.82)) of the above expression reads (7} = 1/2) 

^2 = ^(>)-S)+c4-^(3) + g) .
which agrees with the result presented in eq. 21 of [35].

+2CXTZ p(l + z)’{Si,z(l - z) - 2Li3(-z) + 4S1>2(-z) - 2tn z Li,(l - z) 

+4Zn(l + z)Li2(-z) + 2tn z Li2(-z) 4- 2<(2)£n(l 4- z) 4- 2tn z tn2(l

+tn2z Zn(l +z)}+8(l + 2z + 2z2){z,i3-Li3

fn(l - z)€n(l + z)}+ (-24 +

+M z Zn(l + z))+z2(—4Si,a(l — z) + 16Li3(-z) + 8tn z £i2(l - z) 

n
+8£n2z £n(l + *)) + g(l - 2z + 2z2)Zn3(l - z) + (24z - 8z2)tn z £n2(i - z)

f „ 122z2 8+1 —2 + 36z---— + —\ .
+ (8 - 144z + 148z2)Zn z €n(l - z) + (4 + 40z - 8z2)6i(1 - z)Li2(l - z) 

-(20-24z + 32z2)C(2)/n(l - z) - | (186 + 1362z - 1570z2 - — )fn(l - z) 

+ (—4 — 72z + 8z2)Li3(l — z) + 1 ( : 
o \

4 OO 194*2
— 1 + 88z----—

647
15

80z2
3

36z2
5

20z
3



3B.2 Order
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4z{2frr

z — 2£ij(l — z) — 2tn z ln(l — z)}
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In O(a2) the leading 
those alreac1. 
scheme to 
non-log cc 
we only gi 
the longit

c^ = c^ + CFT^16z{in2

4'1 = 0 ,
whereas the mass factorization parts, which are proportional to Lm, remain unaltered, 

mass factorization parts in the DIS scheme do not differ from 
cd in the MS scheme. Therefore we limit ourselves in the former 

vtion of the next-to-leading mass factorization parts and the 
sent in (3.2.62)—(3.2.67). In order to avoid long expressions 
ace between these terms and their MS analogs. Starting with 

. ent functions (see (3.2.29)), we have

c<2,-N: L,g

corrected coefficient functions in the DIS scheme

In order a, the longitudinal coefficients c^, c^ do not change while going from the 
MS to the DIS scheme. However the order a, coefficients c2'q and do change. 
They become

Ji) - 0

+n/T2 64z(l + z){2Lf2(l — z) — In2 z + 2tn z £n(l — z)}

2£n2(l — z)}+4(2 — z)fn
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+ 4(7 + 12z2 - 16z)£n(1 - z) - 8(1 - 2z)Lt2(l - z)

+ 4(5 + 16z2 - 12z) ] Lm + 4!qPS ] ,

2z)(fn2z

[cF Tj{ -4(1 +4z2 -2z)(Mz

)+"12

)+*

ln2(l — z) 
1 — z

j ^n2z — tin zln(l — z))

+ (1 + z)(itn z £n(l — z) — 2€n2z — 12€n2(l — z)

+ 4Li,(l -z) + 16C(2))-8(l + 2z)£n z + 8(2 + 3z)6i(l - z)

+ 6(7 + 4z) + 5(1 - z)(16f(3) - 27) } LM + 4’,’NS ] ,

C2, = C2,f - nyg 4*’ - »/ (g) [ { CF T, ( 4(1 + 4z2 -

- 2£i2(l - z)) + 16(l + 2z2 - 2z)(M(1 - z) - C(2))

- 8(3 + 8z2 — 6z)€n z Zn(l — z) + 4(1 + 32z2 — 16z)5n z

- 4(5 + 32z2 - 36z)€n(l - z) + 4(7 - lOz) )

+ ntT2 ( 8(1 + 4z2 + 4z)(2Lf2(l - z) + 2€n z €n(l - z) - Ai2z)

- 32(1 + 5z2 + 8z)Zn z + 32(1 - 3z2 + 2z)Zn(l - z)

-8(11 -59z2+48z)} Jim + cI2’] .

+ 42),NS'“

/ \ 2 '

The above transition formulae agree with those in the appendix of [60]. The coefficient 
functions C2,k in the DIS scheme become

r»NS _ zSNS Q»

-(32<(2) + 45) (

Mi -^) \
1 - z J +

where

=(’).ns _ Ja),NS,+
^.q - ^.q

— 2£n z Zn(l — z))
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Chapter 4

an K-factor in the MS and DISThe I?
schen

4.1 Introdi ion
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Higher order QCD corrections enable us to examine the behaviour of the perturbation 
series for physical quantities at energies in the range of 10 to 104 GeV. In the past 
decade attempts have been made to improve the perturbation series beyond leading 
order in a, (strong coupling constant).

The first interesting property of the perturbation series to study is its depen­
dence on the chosen renormalization and/or mass factorization scale. In the so-called 
optimized perturbation theory one tries to control the variation of the series un­
der changes in the renormalization and/or mass factorization scale. Examples are 
the method of fastest apparent convergence (FAC) [4] and the principle of minimal 
sensitivity (PMS) [5].

A second interesting feature is the appearance of large terms in the perturbative 
expansion due to some physical effects. An example is soft gluon radjation which 
gives rise to large corrections near the boundary of phase space [1]. In addition they 
may also contribute, together with the virtual gluonic corrections, to large constants 
in the various K-factors [2]. In the deep inelastic and Drell-Yan coefficient functions 
soft gluon radiation manifests itself near x = 1 as large logarithms of the type ln'(l — 
z)/(l—x) where x denotes the Bjorken scaling variable. Another example is the small- 
x behaviour (a: ~ 0) of the coefficient function which is due to soft gluon exchanges 
in the t-channel of the process under consideration [3]. The large corrections due to 
physical effects can be dealt with by using various techniques like the exponentiation 
of the large constants [6] and the resummation of the large logarithmic terms in the
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coefficient function near x = 1 [7] and x = 0 [8].

A third feature which is more of phenomenological origin, is the sensitivity of the 
perturbation series to the parametrization of the input parton densities, in particular 
of the gluon density about which little is known at small x values. The problem of 
the dependence of the series on the parametrization of the parton densities can be 
solved when the new data from the experiments carried out at HERA [9] and the ep 
facility at LHC [10] become available.

At this moment only a few calculations of physical quantities are knov 
order a9. They all bear on the pure leptonic induced process e+ + e~ 
on the semi-leptonic induced processes as deep inelastic lepton-hadron 
Z1 + ZZ —> li+uX” and massive lepton pair production 77i + H2 —♦ (/i,G)+“ 
Yan process). Here the symbols Hi and “X” stand for the lepton, h; 
any inclusive final hadronic state respectively. Examples of higher order cc 
to quantities measured in electron-positron collisions are the ratio R = c. 
uXn)/a(e+e~ —> /2+/x“), known up to order aj [11] and the two jet cross-section which 
is computed up to order aj [12]. In deep inelastic lepton-hadron scattering order 
aj corrections to various sum rules have been calculated in [13] and the coefficient 
function in deep inelastic lepton-hadron scattering was computed up to order a? in 
chapter 3. The same has been done for the Drell-Yan /C-factor which is known up 
to order aj in the MS scheme [14], [15]. Notice that the quantities in the electron­
positron reactions only depend on the renormalization scale, whereas the coefficient 
functions in the semi-leptonic induced processes also depend on the mass factorization 
scale. The reason why the calculations of these higher order corrections are feasible 
is the relative simplicity of the above reactions. First the order a23 corrections are 
obtained from an amplitude where the maximum number of external particles is five, 
i.e. a vector boson and four partons. Second in the case of the order a, term in the 
perturbation series, one can often find elegant tricks [13] which however are applicable 
to integrated quantities only. Unfortunately this situation considerably changes if one 
deals with hadron-hadron reactions with many partons in the final state. This can 
be mainly attributed to the intricate phase space integrals which show up in the 
calculation of the various distributions characteristic for these processes.

The Drell-Yan (DY) process is a nice example in which one can illustrate all 
features of the perturbation series mentioned in the beginning of this section. In [14] 
the cross section and the corresponding X-factor were calculated in the MS scheme up 
to order <P(aJ). Here we want to present these quantities in the DIS (deep inelastic 
scattering) scheme in order to study the uncertainty in the prediction due to the



4.2 T1 correction to the DY process

(4-2.1)
h + f-i

(4-2.2)

■

(4.2.3)
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choice of mass factorization scheme. For the calculations in the DIS scheme one 
needs to know the second order coefficient functions of deep inelastic lepton-hadron 
scattering, which have been calculated in chapter 3.

This chapter will be organized as follows. In section 4.2 we present the results 
of the complete order a2 correction to the DY /C-factor. Here the coupling constant 
renormalization is presented in the MS scheme, whereas the mass factorization is 
performed in the DIS scheme. In section 4.3 we 
corrections 
colliders. A 
in the MS 
presented i

= rav(Q2,M5)Wv(T,Q2) ,

Massive lepton p?.n iroducth 
reaction:

ion in hadronic collisions proceeds through the following

H] + H2 —» V+ “X”

^v(r,Q2) = £ /'
i.i Jo
O2

x A,j(z,-^,a,(Af2)) ’

mass
study the effect of higher order 

vector boson production at current and future large hadron 
• will be made with earlier predictions which were obtained 

long expressions for the order a2 coefficient function, not 
can be found in appendix 4A.

where V is one of the vector bosons of the standard model (7, Z or W) which subse­
quently decays into a lepton pair (Zi, Z2). The symbol “X” denotes any inclusive final 
hadronic state allowed by quantum number conservation laws. The colour-averaged 
inclusive cross section is given by

dcrv
dQ2

The quantity cry (see appendix A of [14]) is the vector boson production cross section 
where the incoming hadrons Hi and H2 are pointlike. The variables y/S and 
stand for the C.M. energy of the incoming hadrons #1, //2 and the invariant mass 
of the lepton pair respectively. The hadronic structure function is represented by 
Wv(r, Q2). According to the DY mechanism it can be written as (see also 2.4.11)

dxx J dx2 J dx6(r — xx1x2)PD^J{xi,x2, M2)
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The functions PD^ stand for the usual combination of parton densities which depend 
on the mass factorization scale M. The indices i and j refer to the type of incoming 
partons. Furthermore the PD'jj contain all information on the couplings of the quarks 
to the vector bosons, such as the quark charges, the Weinberg angle flw and the 
Cabibbo angle 6C (the other angles and phases of the Kobayashi-Maskawa matrix 
are neglected). The explicit way in which the functions PD^- combine with the DY 
coefficient functions A,, is given in (A.20) of [14]. Actually the parton densities do not 

the renormaliz; on scale 
ion, 
ing 
Che 
be 

■ ant 
- iing

only depend on the mass factorization scale M but also on
R. This is because the anomalous dimensions, which determine the scale 
depend on operator renormalization (= mass factorization) as well as on 
constant renormalization. The same holds for the coefficient function term 
dependence of the parton densities and A,y on the renormalization scale 
very easily obtained by changing the argument M in the running coupling 
a,(M2') into the variable R. As has been mentioned in 3.2.35, in next to 
order this is achieved by the substitution

-..(«■) (1+^
\ 4%

where flo is the lowest order coefficient function of the 0 function (4.2.28). Notice that 
in the existing parametrizations of the parton distribution functions the two scales 
M and R are always set to be equal. The DY coefficient function is obtained 
from the DY parton structure function W\j through mass factorization.

= 52 / [ dx8{z — xxix2)
•* k [ Jo Jo Jo

xr«(x1,^,Q.(M2),e)r1Xx2,^,a,(M2),£)A*,(x,^,a.(M2)) <4.2.5)

Here W;; is determined by the partonic subprocess

i+j-> V+UX” (4.2.6)

and Ft, represents the transition function (parton i —» parton fc). The Bjorken scaling 
variable z in (4.2.5) is defined as z = Q2/s, where s stands for the C.M. energy of 
the incoming partons i and j in (4.2.6). In (4.2.5) we assume that coupling constant 
renormalization has already been performed, where R is set equal to M. If R is 
chosen to be different from M, one can replace or,(M2) occurring in the quantities W 
and T by the right hand side of (4.2.4). The collinear divergences showing up in W 
and r (4.2.5) are dealt with by using n-dimensional regularization. They manifest 
themselves as pole terms of the type 1/e (e = n — 4). The accompanying parameter 
fi is an artefact of n-dimensional regularization.



4.2.1

Fig. 4.1. The Born contribution to the subprocess q + q —* V.

Fig. 4.2. The one loop correction to the process q + q —♦ V.

(4-2.7)h + H
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Z2 + “X”

However in this chapter the mass factorization of Wjj proceeds in the DIS scheme, 
whereas the coupling constant renormalization is still done in the MS scheme. To 
determine in the DIS scheme one needs to know the parton structure functions 
A,« (for the definitions see [16], [17]) which have been calculated in chapter 3. They 
show up in the calculation of the hadronic structure functions of deep inelastic lepton­
hadron scattering (DIS)

Diagrams contributing at second order
The parton subprocesses (4.2.6) contributing to the DY cross section are listed up 
to second order in a3 in table 2.2 (see also figs. 4.1-4.9). The corresponding coeffi­
cient functions (4.2.5) have been calculated from in (9(aJ) and the result is 
presented in appendix B of [14], where both coupling constant renormalization and 
mass factorization were carried out in the MS scheme.
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00000000 ;

Fig. 4.4. The two loop corrections to the process q + q —► V.

The parton structure functions F2.»

(4.2.8)
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*(p) + V(9) -> “X”

can be obtained from the parton subprocesses

which are listed in table 2.1. The Feynman diagrams for process (4.2.8) can be derived 
from the DY graphs in figs. 4.1-4.9 by interchanging the outgoing vector boson with

Fig. 4.3. Diagrams contributing to the subprocess q + q —► V 4- g. The gra 
corresponding to the subprocess q(q) + g —► V + q(q) can be obtained fr 
those presented in this figure via crossing.

I
I I
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4.2.2 Mass factorization in the DIS scheme

t

(4.2.9),a,(M2)) .
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cx>

g

be expanded in a power series of aa(Af) in 

are represented by the AP splitting functions

c>

g

one of the incoming partons (crossing).

x C2,k(Xl,

Here the comments regarding M and R are the same as given below (4.2.6). Note 
that in DIS the Bjorken scaling variable z is defined by Q2/2p- q (see (4.2.8)). In the 

MS scheme the transition functions Fy can 

which the residues of the pole terms 1/e

Fig. 4.5. The one loop corrections to the process q + q —> V + g. The diagrams 
corresponding to the one loop correction to the subprocess q(q) + g 
can be obtained via crossing.

The DIS coefficient function C2 can be obtained via mass factorization

/ dxi(z - zzi)I\,(a:, ^r,a,(M2),e) 
r . Jo Jo r
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(4.2.10)

hat) to

(4.2.11)q»

(4.2.12)q,

(4.2.13)g
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(4.2.14)

(4.2.15)

Fig. 4.6. Diagrams contributing to the subprocess q+q—>V + g + g. The 
graphs corresponding to the subprocess q(q)+g —» V4-q(q)+g can be obtained 
from those presented in this figure via crossing. By crossing two pairs of lines 
one can obtain the diagrams corresponding to the subprocess g + g —► V + q + q.

we have the

[2] (explicit expressions for Ty can be found in eqs. (2.28)-(2.34) of [14], see also 
[18]). The relation between the anomalous dimension 7-^ and the splitting functions 
is given by

The transition functions connect the bare parton densities (indicated by a 
the mass factorized (scale dependent) parton densities in the following way

= rqig + r^% + r^. + r^s£(q/ + tl) ,

I

= r«ql2(q' + q/) + r«g ■ 
1

Here the index i indicates the type of flavour. In the above equations 
following identities

pNS  pNS . pNS  pNS . pPS  pPS  pPS  pPS1 qq ” 1 qq ’ 1 qq “ 1 qq ’ 1 qq “ 1 qq ~ 1 qq ~ 1 M ’

= Tqg ; Tgq = Tgq .



A

Fig. 4.7. Annihilation graphs contributing to the subprocess q + q—>V + q + q.

(4.2.16)

(4.2.17)

(4.2.18)1 ,
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x[' dx
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Notice that since mass factorization in the case of DY is more complicated than for 
the DIS process, our notations for the splitting functions differ a little bit from the 
ones used in chapter 3. Here we distinguish between and Fj^. Furthermore 
the transition functions are flavour independent. The superscripts NS and PS stand 
for non-singlet and pure singlet respectively. The singlet (S) transition functions are 
defined by

qi(z,A/2) + q,(z, M2

rs„ = r"® + n/r^ , rs_ = r£ + nzr« .
The lowest order contribution to the pure singlet part , which originates from fig. 
4.8 or fig. 4.9, starts in order a2 and is determined by one of the combinations C2, 
D2, E2 or F2 (4A.21). The splitting function also starts in O(a2) and receives 
contributions from the interference terms CE and DF in figs. 4.8 and 4.9. It can be 
attributed to identical quarks in the final state (4A.24). Since the bare and mass 
factorized densities have to satisfy the momentum conservation sum rules

f0 dx x J12 {qi(*) + + swj = 1 >



1

c 3

3

(4.2.19)

(4.2.20)

2

N

. (4.2.21)
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Fig. 4.8. Gluon exchange graphs contributing to the subprocesses q + q 
V + q + q and q + q-tV + q + q.

(7ns = CN- =

[ + 4" ] + (£)'[{
+{ 5(^)iNs+^hNS) - } lm+4rs ]

dzzfr^ + r^ + r,,] =i ,

one can derive the following relations 

jo dx x [r„ + Zn/r^j = i ,

L2M1 + ^ 
4x

which automatically hold when the r.j are computed in the MS scheme. Using the lat­
ter scheme for the coupling constant renormalization as well as the mass factorization, 
one can derive from (4.2.9) the deep inelastic coefficient function in lepton-hadron 
scattering. The non-singlet (NS) as well as singlet (S) part will be presented below 
up to order a’ . The non-singlet coefficient function is given by

2

?

3

2



1

E 4

2- 3

4

be split into

(4.2.22)

(4.2.23)

(4.2.24)

+ rij
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Fig. 4.9. Gluon exchange graphs contributing to the subprocess q + q —► 
V + q + q with identical quarks in the initial and/or final state.

i
The gluon

r-ps _ zsps 
°2,q — ^2,q

1

r'S _ zSS _ z=»NS . zSPS
b2,q - ^2,q - C2iq + U2 q

The function <7£q, which is determined by fig. 4.8 or fig. 4.9 (see the comment below
(4.2.16)) denotes the pure singlet part. It is equal to

+ 5Pg(qO)®41l}iM + 4^’PS] •
coefficient function is given by

fe)2[{^0,®(p«+pqq,)aa

lo(l).PS 
2 qq

The O(a’) non-singlet coefficient can

=(2).NS _ _(2),NS,+ , -(2),NS,—
- C2,q + ^.q

In (4.2.21) and (4.2.22) C’^,NS,“ and P^),NS are due to identical quarks in the final 

state (CE and DF combinations in figs. 4.8, 4.9). The singlet coefficient function 
equals

3

2



(4.2.25)

a, = a,(M2) (4.2.26)

27)

by

(■:.28)

(4.2.29)

(4.2.32)<72,q|<J3=MJ = 1 > = 0 .
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(4.2.30)

(4.2.31)

which is sufficient for the calculation of the DIS- and DY coefficient functions up to 
O(aJ) . In the DIS scheme the former become

pNS  pNSi „1 qq - ^2,9 Iq2=M* ; rqq = f2s,|qJ=M2

C2,g|Q3=Ap

Unfortunately such a unique definition does not exist for the transition functions Fgq 
and rra because in deep inelastic scattering the gluon does not directly couple to the 
vector boson V. Therefore there is some freedom of choice except that all T’s have 
to satisfy the relations in (4.2.19) and (4.2.20). Following the definition in [19] we 
choose

and the convolution symbol is defined by 

(_f®p)(z)=/ dx2 [ dx26(x — xix2)f(x2)g(x2) .
Jo Jo

The first coefficient in the beta-function is given

= yCx — |ny ,

where Ca = N for SU(N) and ny stands for the number of light flavours. The lowest 
order contributions to Citi (i = q, g), which have been computed more than ten years 
ago, can be found in many review papers, see e.g. [2]. The second order contributions 
to are presented in chapter 3.

In this chapter we will perform the mass factorization in the DIS scheme, whereas 
the coupling constant remains determined in the MS scheme. In DIS the transition 
functions become

Fgq — 

r„

-} ^ + { ® 42
+ p<£)®412}i«+42] ■

The above equations are written in a shorthand notation where all arguments in 
the functions are suppressed. The bar on these functions indicates that they are 
computed in the MS scheme. Furthermore we have the definitions

Lm = 1“ ap ,

i n/rqg =

^W-42] ,



■

(4.2.33)

® (r0 ® r;n’) ® ah . (4.2.34)®r

it follows

(4.2.38)®(c2Nqs)-'®Asr ■

2

(4.2.40)

(4.2.41)
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(4.2.35)

(4.2.36)

(4.2.37)

•(0) _ 
iq

+ f^S)®C2NqS(l,a.) ,
q + rqq) ® <?2sq(l,a.) + r,q ® C2,,(l,a.) ,

■ qg ® Cf q(l,as) + Pgg ® C2,s(l, a.) ,

J

can now be obtained from (4.2.5) 

shorter way if one bears in mind that 

factorization. This can be seen as

pi I

AN-S = ! £. 
qq 4t 

+ {^

= (£)’[{ 1^O) ® } ^ + {|p£’-PS+
P£)®A£}£m + aW-ps]

(f
From (4.2.9) a

Amn

•(l).NS _ 
iq

Aps qq

1
2

r*,- ® Tp ® Ah = Th ® Fy ® Ah ,

where the barred and unbarred symbols stand for the quantities calculated in the MS 

and DIS scheme respectively. Hence we have the relation

The DY coefficient function in the DIS scheme 

and (4.2.29)—(4.2.31). However there exists a 

a change of scheme only involves a finite mass 
follows. From (4.2.5) we infer

= (C2Nqs)

pNS . p?

rs +rsqq '

Tq,

(4.2.39)

1/wS1

In the other cases the computation of Ay involves some algebra because as well 

as become a matrix. After a straight forward calculation the expression for 

can be cast in the following form [14]

*+A« ]+(S) [ {lFqq) ® Fq‘ 
^oA'V + Pg> ® a£> } Lm + A$'NS ]

where q can be replaced by q and vice versa.
Using (4.2.34)-(4.2.37) we can now obtain the expressions for the DY coefficient 

function in the DIS scheme. In the case of the non-singlet part this is very easy. Here 

we have



(4.2.42)

(4.2.43)

2
Jl)A^ = A£-2

(4.2.44)

(4.2.45)‘qq

=(2).ps

(4.2.46)

(4.2.47)

(4.2.48)

still missing.
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■(o) 
iq

1 p(°) » r(1) / - ?'z'"
4 rqs ® °2,q

1
,qs 2

= a-= A£+(£)’[
+ 42®(A£-|42)]

- + Ai)] + fe)2[{^°,®(3^q) + ^O))
~ + 5AW ® (P<°> + P™)

= (£)2[{^0,®p-)}l-+{p-®a«}Lm+a«]
The lowest order coefficients A^ and A^ can be found in many places ir. 
ature, see e.g. [2]. The O(or’) contributions A-J’ have been recently calcir 
are presented in appendix B of [14). The DY coefficient function in the D 
can now be expressed in the MS coefficients of C, in (4.2.21)-(4.2.25) a 
(4.2.44)-(4.2.48) as follows

(£)«+(£)’[-“«
+ 42 ® (342 - 2AJ.V) ]

® 42^-m - 242,NS,+

1P»L.

(s)«+(£)■[{ -pff®<42-42)
- pS? ® 42} r« -142+42 ® <A™ -142 - lag + 42)
-42®iSS]

liter-
and
me
in

2 =(2).NS,- 
°2.q

®2 [ -l^0) ® ® (2A£ -
The expressions for A,j are explicitly given in appendix 4A.

Summarizing this section we conclude that the DY coefficient function has now 
been completely calculated up to order az in the MS as well as DIS scheme. How­
ever in order to make a full phenomenological analysis two pieces are

A«=£[
- } L2m + {
+ ^®a<V}lm + ap)]

A« — +

l^qg —

2^)]
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4.3 Total cross sections for W- and Z-production

(4.3.1)

■(4.3.2)

(4.3.3)

be found in (A.20) of [14]. The DY coefficient

small compared
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<A<t(S) = /dQ2rav(Q^Mv2)lVv(r,(32) .

I

is'

9{j(x,M2) = .
Jx y y

The explicit form for Wy(r, Q2) can
functions are listed in appendix B of [14] (MS scheme) and in appendix 4A of 
this chapter (DIS scheme). At high energies the total cross section is dominated by 
W- and Z-production. Since the widths of these vector bosons are

Wv(t,Q2) = £ 4.ii(x,M2)A,y(->Q2,M2) ,
ij A x x

where denotes the parton flux which is defined by

we assume all heavy flavours to be 
: .Sly correct for c and b production at large hadron colliders 

top-quark production. However we expect that this effect 
k contributions to the triangle graphs of figs. 4.4 and 4.5 

: It turns out that these corrections are smaller than one 
..action.

The pointlike hadron cross section cry(Q2, Afv2) for V = 7, Z, W is explicitly given in 
appendix A of [14]. The hadronic structure function Wy(r, Q2) (4.2.3) can be written 
as

In this section we will show results for vector boson production and compare them 
with the most recent data from the UA1 [22], UA2 [23] (CERN, SppS) and CDF [24] 
(Fermilab, Tevatron) experiments. The total inclusive cross section is given by (see 
(4-2.2))

The first piece is the three-loop contribution to the anomalous dimension 7^ which 
determines the scale evolution of the parton densities. Notice that the coefficients of 
the perturbative expansion in the running coupling constant for the DY cross section 
are only scheme independent if as well as 7^' are known [20]. We will estimate 
the error due to the missing of the third order anomalous dimension 7,^ in the next 
section. Another part that has to be calculated is heavy flavour production in the 
DY process. It is given by the reactions q + q->Q + Q + V (graphs A and B in fig. 
4.7) and g + g Q-rQd-V (fig. 4.6). In this thesis
massless, whi: 
but certainly 
will be small 
have been st 
percent of th



Notation in text Ref. Notation in ref. ^■QCD^GeV)

MTEDI Table Il-FIT E-DIS 0.155

MTB1DI Table I3-FIT Bl-DIS 0.194

MTB1MS Table I4-FIT Bl-MS 0.194

MTB2DI Table I5-FIT B2-DIS 0.191

MTB2MS Table I6-FIT B2-MS 0.191

MTSND1 Table Hl-FIT SN-DIS 0.237

MTSNMS Table II2-FIT SN-MS 0.237

MTSL Table II3-FIT SL 0.144

DFLM4 Set 4 0.200

Table 4.1. List of parametrizations for the parton densities used in this chap
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[25]

[19]

[25]

[25]

[25]

[25]

[25]

[25]

[25]

can be performed using the narrow widthto their masses, the integral in (4.3.1) 
approximation.

We will now present the DY cross section and its 7<-factor for both pp and pp 
collisions at current and future high energy colliders. The C.M. energies under con­
sideration are \/S = 0.63 TeV (SppS), a/S = 1.8 TeV (Tevatron), \/S = 16 TeV 
(LHC) and y/S = 40 TeV (SSC). For the electroweak parameters we take the follow­
ing values : Mz = 91.17 GeV, Mw = 80.29 GeV, GF = 1.166 • 10“5 GeV"2 (Fermi 
constant), sin2 0w = 0.224 and sin2 0c = 0.05. Further we assume the top-quark to 
be heavier than the W. The running coupling constant o,(7?2) is determined up to 
two loop order in the MS scheme. The number of flavours nj is chosen to be five and 
the QCD scale parameter A in aa(R2) is the same as the one appearing in the parton 
densities (see table 4.1).

In this section we will make a comparison between the DY cross section calculated 
in the DIS and in the MS scheme. Therefore we need parton densities parametrized in 
both schemes, which however are based on the same set of data. Here we have taken 
the parametrizations of [25], in particular the ones based on the BCDMS experiment 
[26]. They are listed in table 4.1. We have also included the DFLM4 set [19] of parton 
densities which however are only available in the DIS scheme. Unless stated otherwise, 
all figures are obtained using the MTB1DI parametrization. The renormalization
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K<* = '■ (4.3.4)

(4.3.5)

(4.3.6)
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2. Which of the four different subprocesses, i.e. qq, qg, qq and gg, dominates the 

O(aJ) Pai>t of the DY cross section?

scale R is always taken to be equal to the 
below (4.2.4)), for which we 

section is calculated in the 
boson mass). The dependence 

the end of this section. Since i 

and W-production, all figures 

aw where for convenience we 
this chapter ar /reduced by >

For the dis ;e various contributions to the Drell-Yan coefficient function
it is convenie, _ce the /<-factor. In this chapter the theoretical Jf-factor is
defined as fol.

3. How does the cross section depend on the various parametrizations chosen for 

the parton densities?

cross section and ao the Born contribution.

will try to answer the following questions:

1. How large is the C?(aJ) contribution to the /V-factor compared to the
O(aa) one (K^1))?

mass factorization scale M (see the comment 
have chosen the canonical value Q. Since the total cross 

narrow width approximation, this implies Q = My (vector 

of the cross section on M and R will be discussed at 

we did not observe any difference in the behaviour of Z- 

and almost all tables are given for the W cross section 

have taken crw = ^w+ + o'w- • All numerical results in 
our Fortran program ZWPROD.

||

I

where is . . , contribution to the /C-factor. It is given by

^(n) = _ q(")

WA0)(t,C?2) <r(o) ’

The functions W<n>(r, Q2) and cr<n> are the O(a") corrections to the hadronic struc­

ture function IVvfr,Q2) and cross section respectively, see (4.2.2). They both origi­

nate from the O(a”) part of AtJ (4.2.3). To study only the effect of the corrections 
to Ay, we will use the same densities in the numerator as well as denominator of 
(4.3.5). In principle one should take the leading log (LL) approximation for o-<0) or 
W4°\ but, as we will show later on, in practice one obtains better results if the next 

to leading log (NLL) parametrization for the parton densities is used. The order a\ 

corrected /C-factor is defined by

K{ = Y, I<m = ~ , 
i=o o’°

where <r; is the O(a)) corrected DY

In the discussion of the results we



the chosen scheme, i.e. DIS

The size of the corrections4.3.1

for W-
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4. How does the cross section depend on the different choices made for the factor­
ization scale M and the renormalization scale R?

entails 
to the 
e and

■ and 
ieme.

5. How do the answers on 
versus MS ?.

questions 1-4 depend on

In fig. 4.10 we show the various IC-factors defined in (4.3.5) and (4.3.6) 
production at pp colliders where 0.5 TeV < >/S < 50 TeV. The figure reveals that 
in particular at large \/~S the O(a2) contribution to the -factor i.e. is much 
smaller than so that in this region the first order corrected cross section ai is 
hardly modified by including higher order QCD corrections. In the MS scheme K® 
[14] even becomes negative (LHC and SSC energies). However this depends on the 
specific choice made for the parton density parametrization. The property that 
is small at very large energies can be wholly attributed to the qg subprocess. Notice 
that the latter gives a negative contribution to the AT-factor in the whole energy range 
so that the positive contribution of the qq subprocess is always compensated (see fig. 
4.11). Notice that the O(aa) part from the qg subprocess to the /<-factor is 
negative too. However in this case its absolute value is always smaller than the one 
computed for the qq reaction at the same order of aa (see fig. 4.11).

The separate contributions to the /<-factor coming from the four subprocesses in 
table 2.2 are shown in fig. 4.11. The features of this figure are exactly the same as 
already had been shown by choosing the MS scheme. Like in the case of MS , the 
DIS scheme shows that the -fact or is dominated by the qq and qg subprocesses, 
whereas the contributions from the gg and qq channels are very small. The reason 
why some channels are more important than other ones, depends on the interplay 
between and Ay in (4.3.2), since a contribution from a specific subprocess only

As was already mentioned in [14], the answers to 1 and to lesser extent to 2 and 3 
very heavily depend on the scales M and R and the chosen scheme. A. change of 
scheme at a fixed value of M and R alters the coefficients in the pertur : ion series 
for Ay. The same happens if in a given scheme Af or R is varied, 
a redistribution of the contributions from the various production mecb- 
cross section. Therefore the answers on 1, 2 and 3 only make sense 
scale are specified. In this section we answer questions 1-4 in the DE 
compare them with the results found in [14], which were presented in th-
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Fig. 4.13. Mass factorization scale (M) dependence of Z-production for SppS, 
VS = 0.63 TeV. Solid line: <z0 + <r^'S+V + a^’S+V. Long-dashed line: 

71,exact + 7qq'S+V. Dash-dot line: <z2,exMt.

, . 7.~.T'
10 

(TeV)

Fig. 4.12.

W+ + W~ production at a pp collider (see eq. (4.3.5)). 1:

3

The soft+virtual (S + V) and hard (H) gluon part of for 
K^'S+V', 2:

S,/2

J__ L

I I I I I I | 

1



I

111

becomes large when the flux 4>,j and the correction term A,-,- get large in the same 

x-region.

We also want to comment on the contributions coming from the distributions 
T>i and <5(1 - x) in Aqq (see (4A.3), (4A.8)), which are known as soft/virtual gluon 
contributions. As has already been mentioned in the literature ( [16], [17], [27] ) Aq-"' 

is dominated by these corrections provided they are calculated in the DIS scheme and 
M (= R) is chosen to be equal to My. To examine their importance we have plotted 

the correspo: .'actors denoted by A"qq (DIS scheme) in fig. 4.12. Here we have
split int .irtual (/<^’S+V) and a hard (K,b)’H) gluon part, according to

the descript 2). Fig. 4.12 reveals that Aqq is dominated by the soft/virtual
gluon correc ugh its relative importance with respect to the hard gluon

part is less p for /<(2) than for Further the hard gluon corrections are
negative ove energy region. The above picture completely changes if the K-
factor is com the MS scheme. Instead of the soft/virtual gluon contributions
it is now the hard gluon part that dominates and the former is small and negative 
in the region 0.5 < x/S < 50 TeV. This observation illustrates very nicely that 

the answer to the question, which reaction or production mechanism is dominant, 

depends very much on the chosen scheme and scale. The above characteristics are 
also observed for W-production at pp colliders, so that there is no need to illustrate 
this in separate figures. Moreover, at very large C.M. energies the cross sections and 

/V-factors take the same values for pp as for pp collisions because in this energy region 

both reactions are dominated by the sea quarks.

In table 4.2 we make a comparison between the MS and DIS predictions for the 

various contributions to the DY cross section. The table reveals that the order aa 
corrected cross sections crt are not very sensitive to the choice of scheme, although the 

difference becomes larger when i increases. As we will show later on, the difference 

between the two schemes is in the region covered by the change of the mass factor­

ization scale M except for <72 at the Tevatron collider. The Born cross section (Tq for 

MS is always slightly larger than the one obtained in the DIS scheme. On the other 

hand we find that a,(DIS) > a,(MS) for i > 1. However this inequality depends on 
the chosen parton density. Although the O(ota) and (9(a2) contributions from the 
soft/virtual and hard gluon parts heavily depend on the chosen scheme, the total 

qq result is hardly affected by this choice. For the qg subprocess this dependence is 

stronger and we find both for the <9(a3) and (9(a2) contributions that the MS result 

is always more negative than the one obtained for DIS. Finally we observe that when 

the energy increases from 0.63 to 40 TeV the soft/virtual part of a,- becomes less
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important. Therefore at very large energies the soft gluon approximation to the total 

DY cross section breaks down. In this case resummation of the soft gluon terms, 
which entails the exponentiation of the large coefficient of the <5(1 — z) function, does 
not make sense any more and overestimates the cross section. For VS < 0.63 TeV 

one can still apply resummation techniques provided one chooses a different factor­
ization scale. An example is given for Z-production at the SppS (\/S = 0.63 TeV) in 

fig. 4.13. Here we have plotted <72,exact, fi,exact + fq|' ,S+V and + ^'S+V + ^S+V- 
This figure shows that when the hard gluon part and the other parton reactions are 
omitted one introduces a large scale variation in the total cross section. However if 

we choose M = 148 GeV, that is 1.6Mz, the cross section <72,exact is nicely reproduced 
by fi,exact + fqq’S+V• This property can be used if we want to estimate the effect of

Table 4.2. Comparison of MS and DIS scheme results at SppS", Tevatron, LHC 
and SSC. The results were obtained using the MTB1MS (MS) and MTB1DI 
(DIS) parton density parametrizations (see table 4.1).

W+ + W~ production (nb) 
Tevatron 

Xis | dis

SSC
MS | DIS
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tables for

1.

2.

3.

4.

The experiments done in the past provide

113 3

The parametrization of the parton densities fi(x,M2) (i = q,q,g) with respect 
to x at some input value for M2. At large energies the small-z behaviour is 
very important, in particular for the gluon density G(x, M2).

il

The specific data set obtained from different experiments like EMC [28], BCDMS 
[26] or CDHSW [29].

The evolution with respect to the scale M which is determined by the AP 
equation. It contains the AP splitting functions which are known for I = 
0,1. Since they have not been calculated for I > 1, only leading log (Z = 0) and 
next to leading log (Z = 0 and I = 1) parametrizations for the parton densities 
exist.

3

the (9(a,) contributions to differential distributions like (Pa/dydQ2 or Pa/dxpdQ2 
in the DY process for which exact expressions do not exist. Here y and xf denote the 
rapidity and longitudinal momentum fraction of the dilepton pair respectively. This 
estimate is only possible if one knows at least the soft/virtual gluon part of the above 
differential cross sections up to O(a2) • Notice that besides the normalization one also 
gets a good approximation for the shape of the distributions, since in many processes 
the latter hardly change when higher order QCD corrections are taken into account. 
Finally the d of figs. 4.11, 4.12 and table 4.2 also applies to Z-production at
pp and pp cc . that there is no need to present separate figures or
this reaction.

4.3.2 Dej on the parton density parametrization

Next we wan ..s the dependence of the DY cross section on the parametriza­
tion of the V-'•. .arton densities used in this chapter. These densities are mainly
extracted from data obtained in deep inelastic lepton-hadron scattering which are 
taken for 0.01 < x < 0.9 and 2 GeV2 < Q2 < 230 GeV2. They depend on:

The order of a3 in which the DIS coefficient function is taken into account. 
Since the parton densities are obtained from the DIS hadron structure function 

(j = 2,3), one also needs the corresponding coefficient function up to 
O(a’), provided the AP splitting functions are known up to O(orj+1).

us with different data sets which do 
not always agree. The quality of the data depends on statistical and systematical 
errors, detector efficiencies, luminosities etc. Often the data obtained from different
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experiments have some discrepancies with respect to their mutual normalization. It 
is clear that these experimental uncertainties will influence the z-behaviour of the 
parton densities.

Although the parton densities give a reasonable fit of the current deep inelastic 
lepton hadron data, they are still inadequate to describe vector boson production 

at future high energy colliders. This process requires the knowledge of the parton 
densities at x ~ My/y/S. For LHC and SSC this implies x ~ 6 • 10-3 a 

respectively. A recent analysis [20] has shown that W- and Z-prodi. 
future colliders even probes sea quarks at x ~ 10Mv2/S, which is abo 

SSC. Therefore one has to extrapolate these densities to z-regions v 

accessible to the deep inelastic experiments carried out up to now. 
this situation will improve when the HERA machine is put into op. 

above-mentioned uncertainty in the small-z dependence in particular aff. 

density which is experimentally badly known. In the literature many pari . -ations 

for this density exist, depending on the theoretical assumptions. Notice chat such a 
change of the parametrization of the gluon density G(z, M2) at some input value for 
M2 will also strongly influence the small-z behaviour of the sea quarks at higher M2, 

because the sea quarks are coupled to the gluons through the AP evolution equations. 

This implies that at high energies considerable differences in the size of the DY cross 
section can be expected, even at the Born level, if one changes the x —> 0 behaviour 
of G(z, M2) at some input value for M2. To incorporate this kind of uncertainties in 

our predictions for the W- and Z-production rates, we have taken the sets MTB1DI 

and MTB2DI in table 4.1, where for MTB2DI the gluon density shows a much steeper 

rise at x —♦ 0 than for MTB1DI.

The total cross sections for W- and Z-production are displayed for the four collider 
energies in tables 4.3 and 4.4 respectively. They show the same characteristics as 

observed in the MS scheme [14]. For SppS and Tevatron the difference between the 

various parametrizations is so large that one can hardly distinguish the O(as)- from 
the O(or2) corrected cross sections. The situation becomes worse at LHC and SSC, 

where it even might become difficult to identify the first order corrections. This in 

particular holds for the MTB2DI set which yields a cross section which is roughly 

two times larger than the one obtained by the other parametrizations. The different 

predictions are mainly due to the different parametrizations of the small-z behaviour 

of the parton densities rather than on the data set from which the latter are derived. 
At the SppS (v/S = 0.63 TeV) the predictions obtained from the parton distributions 

in [25] (table 4.1) fairly agree. However the DFLM4 [19] leads to cross sections which

z ~ 3 ■ 10~3 

t these 
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4.87
6.34
6.72

15.6
19.3
19.9

259.
297.
302.

118.
138.
139.

4.80
6.26
6.64

199.
238.
243.

223.
254.
258.

14.5
17.8
18.2

102.
118.
119.

MTEDI

0.114
DFLM4

0.118

rn

MTB2DI 

0.117

Born
O(«.)a

Born 
<?(«.)

Table 4.3. The total cross

W+ + W production (nb)
MTB1DI

0.118
SppS (x/S = 0-63 TeVy

T36
5.73
6.09

16.2
20.2
20.9

LHC (y/S = 16. TeV)
131.
153.
154.

SSC (>/S = 40. TeV)
233.
263.
267.

are below the ones obtained from [25]. Unless the uncertainty originating from the 
use of different parametrizations for the parton densities is reduced, it will not be 
possible to learn much about higher order QCD corrections at future colliders by 
studying vector boson production.

Since the different parametrizations mainly affect the normalization of the cross 
sections, one gets a better impression of the size of the corrections by studying the 
/("-factor (see (4.3.4)-(4.3.6)). Here the /("-factor is defined in such a way that the 
same parametrization is used in the numerator as well as denominator in (4.3.5) and 
(4.3.6) so that the normalization effect, mainly due to the small-z: behaviour, drops 
out. The first and second order /("-factors for W- and Z-production are given in tables 
4.5 and 4.6 respectively. Here one hardly sees any differences in /("i and K? obtained 
from the various parametrizations except at very high energies. This is due to the

4.72 
6.09 
6.43

Tevatron (x/S = 1.8 TeV) 
16/2 
20.2 
21.0

576.
686.
701.

section for W-production at SppS, Tevatron, LHC and SSC.
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4.3.3 The omission of the third order anomalous dimension
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Born 
O(a,) 
O(^)

Born
O(a,) 
O(aJ)

Born 
O(a.) 
O(^)

1.55
2.03
2.15

4.81
5.96
6.16

36.1
42.0
42.5

80.4
92.1
93.6

1.52
1.98
2.11

4.91
6.13
6.37

58.8
70.6
72.2

172.
205.
209.

1.58
2.03
2.15

31.0
35.8
36.2

69.1
78.6
80.0

MTEDI

0.112
MTB2DI

0.115

Z-production (nb)
DFLM4 

0.116

steeply rising gluon density in the MTB2DI set, which mainly influences the K-factor 
via the qg subprocess. From these tables one can also observe that the /("-factors are 
roughly the same for W- and Z-production which implies that the ratio 

aw B(W -» Ivt') 
az B(Z -> (+£-)

is almost independent of QCD corrections.

4.93
6.17
6.40

LHC (y/S = 16. TeV)
40.0
46.8
47.4

SSC (y/S = 40. TeV) 
~~ 75.9

85.8
87.1

Besides the uncertainty in the small-z behaviour, which can be settled when the new 
HERA data become available, we also have to deal with the large scale extrapolation 
of the parton densities. These are extracted from measurements at scales which vary 
between 0.5 < Q2 < 230 GeV2 and which are about two orders of magnitude lower

Born 
O(«.) 
0(°D

Table 4.4. The total cross section for Z-production at SppS, Tevatron, LHC and SSC.

MTB1DI

0.115
SppS (y/S = 0.63 TeV)

L36
1.79
1.91

Tevatron (y/S =1.8 TeV)
A50
5.52
5.68
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•G
/G

1.24
1.28

1.17
1.18

1.15
1.17

1.31
1.40

1.30
1.38

1.25
1.30

1.20
1.23

1.19
1.22

1.16
1.17

1.14
1.16

MTEDI

0.114
MTB2DI 

0.117

G
■'G

1.29
1.36

Tevatron (y/S = 1.8 TeV)
L23
1.26

MTB1DI

0.118
SppS (y/S = 0.63 TeV)

1.30
1.38

I____
/G

I fG
Table 4.5. A'-factors for W-production at SppS, Tevatron, LHC and SSC.

W+ + W~ production
DFLM4

0.118

1.25
1.29

LHC (y/S = 16. TeV)
L17
1.18

SSC (y/S = 40. TeV)
1.13
1.15

| :

I ■
than those characteristic for W- and Z-production where Q2
to the small-x behaviour, one has a good theoretical knowledge of the extrapolation 
of the parton densities from low to high Q2 values, since the scale evolution is de­
termined by the AP equations. However in order to give an accurate determination 
of these densities at large scales one needs to know the higher order AP splitting 
functions in the evolution equation. That this is necessary one can immediately infer 
from table 4.7. Although the leading log (LL) and the next to leading log (NLL) 
approximation fit the low Q2 data equally well, they give a different prediction for 
the W cross section. Here one has to compare the LL Born approximation with the 
fully C?(a3) corrected NLL cross section in the DIS as well as in the MS scheme. 
Notice that the LL parametrization MTSL and the NLL parametrizations MTSNDI 
(DIS scheme) and MTSNMS (MS scheme) are based on the same data set. The 
discrepancy can be partially removed by including the O(a3) DY coefficient function 
in the LL approximation. In this case the error for \/S = 0.63, 1.8, 16 and 40 TeV 
amounts to 5%, 12%, 25% and 28% of the exact O(aa) corrected cross section respec­
tively, provided the correction is calculated in the DIS scheme. In the MS scheme the

LJ r

-
' £

i: =
P
3
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Table 4.6. JC-factors for Z-production at SppS, Tevatron, LHC and SSC.
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Ki
Ki

Ki
Ki

Ki
Ki

1.31
1.39

1.17
1.18

1.15
1.16

1.30
1.38

1.25
1.30

1.20
1.23

1.19
1.21

1.23
1.26

1.15
1.17

1.14
1.16

Z-production
MTB1DI

0.115
DFLM4

0.116
SppS (\/S = 0.63 TeV)

1.32
1.40

MTB2DI

0.115
MTEDI

0.112

1.28
1.36

Tevatron (\/S = 1.8 TeV)

1.28
1.25
1.30

LHC (VS = 16. TeV)
1.17
1.19

SSC (VS = 40. TeV)
1.13
1.15

discrepancy is larger and becomes 8%, 17%, 35% and 36%. The difference between 
the O(a,) corrected cross section in the LL and the one calculated in the NLL ap­
proximation can be wholly attributed to the missing second order splitting function

(4.2.10) in the former quantity. Therefore the error expressed in the percentages 
above is proportional to a,. The fully O(a2) corrected cross section requires besides 
the O(a2) contribution to the DY coefficient function AtJ- also the second order DI co­
efficient function and the third order AP splitting functions which are necessary 
to determine the next-to-next-to-leading log (NNLL) approximation for the parton 
densities. Although the coefficient functions are now known up to O(a2) , the third 
order AP splitting functions have not been calculated yet, so that the NNLL parton 
densities are still not available. Therefore we have to rely on the NLL approximation 
in order to compute the cross section. Due to the absence of the third order splitting 
functions the error in the O(a2) results obtained by MTSNDI and MTSNMS in table 
4.7 is of O(orJ). This error can be estimated by squaring the relative errors expressed 
in percentages mentioned above for the O(aa) case. Here the discrepancies in the 
MS scheme will serve for guidance. Hence we quote as error for the O(a2} corrected
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233.
258.
258.

4.59
5.92
6.25

105.
119.
119.

14.4
17.6
18.1

105.
112.
107.

311.
361.
366.

16.0
20.0
20.1

4.77
6.26
6.67

351.
391.
383.

17.1
20.1
21.1

4.93
6.36
6.70

152.
172.
168.

Born
O(«.)

Born
OM
O(^)

Born
O(Qj) 
Q(<#

Table 4.7. The total cross
and SSC. In column 1 and 2 the DY coefficient function is determined in the 
DIS and MS scheme respectively.

DIS

MTSNDI 

0.121

MS

MTSNMS

0.121

W+ 4- W“ production (nb)
DIS

MTSL

0.112

I

I

cross sections at VS = 0.63, 1.8, 16, 40 TeV the percentages 0.5%, 3%, 12% and 13% 
respectively.

Summarizing the above discussion, we have seen that the Born cross section using 
the LL approximation for the parton densities disagrees with the fully O{a,) corrected 
result. The difference is mainly due to the absence of the O(a.) DY coefficient 
function and to a lesser extent to the missing second order splitting function. 
Generalizing this to higher orders we expect that A,j constitutes the bulk of the 
radiative corrections to the DY process, so that our O(a’) corrected cross section 
fairly approaches the exact O(a’) result. Here exact means including the NNLL 
order parton densities.

MS

MTSL

0.112
SppS {VS = 0.63 TeV)'

4.59
5.78
6.04

Tevatron {VS =1.8 TeV)
14.4
16.8
16.9

LHC (y/S=16. TeV) 
136. 
160. 
162.

SSC (VS = 40. TeV) 
233. 
244. 
232.
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(4.3.8)

and

(4.3.9)
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scheme 
hich is

(Oj)mln

(o’.).*
s- = max

After having discussed the uncertainties due to the choice of schemes, the set of 
parton densities, the small-z behaviour and large scale extrapolation, we investigate 
the factorization and renormalization scale dependence of the DY cross section. In 
[14] the variation of the cross sections was studied where the factorization scale M 
was put equal to the renormalization scale R. This was done because there is no 
distinction between these two scales in the parton densities. However in this chapter 
we will also study the cross section when M is varied independent! - R. Using 
the MTB1DI parametrization we have plotted the cross section fo? 
in the range 10 GeV < M < 1000 GeV with M = R in figs. 4.14-4 
characteristic for the current and future colliders.

Here we show the O(o£) corrected cross sections a, (4.3.6) for L 
(MTB1DI set). In addition we have also plotted tr2 in the MS sc 
computed using the corresponding MTB1MS set. At increasing i we o a con­
siderable improvement in the scale dependence of a,, as was to be exp :'.cc. In fig. 
4.14 (SppS) and fig. 4.15 (Tevatron) there is a maximum in cr2 which is not present 
in <To and a\. According to the principle of minimal sensitivity (PMS) there is an 
optimal scale which however depends very heavily on the chosen scheme (see e.g. fig. 
4.15). Notice that in fig. 4.15 the maximum in <t2 for DIS turns into a minimum for 
MS . Figs. 4.14, 4.15 also show that aQ never intersects aj or a2, a feature which was 
also observed in the MS scheme. This picture changes in fig. 4.16 (LHC) and fig. 4.17 
(SSC) where the maximum in <r2 has disappeared and cr2 = (To near M = 100 GeV. 
The latter represents the optimal scale according to the principle of fastest apparent 
convergence (FAC). Comparing the DIS with the MS scheme we notice that in the 
range 10 < M < 1000 GeV, (cr^IS)max — (<rPIS)min < crPIS — a™s for all collider en­
ergies. We also see that aPIS is closer to cr^s than crPIS to <rPIS, except for fig. 4.15 
(Tevatron). Further <r^IS > crj45, but this depends on the chosen parton density (here 
MTB1). In the case of MTSN (table 4.1) a^18 < cr^18 as can e.g. been seen in table 
4.7. In order to study the variation of the cross sections under the change of scales 
and schemes more carefully, we have shown in table 4.8 the following quantities

L, =----------z----------
(T2
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M = R (GeV)
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Fig. 4.14. Mass factorization scale (Af) dependence of criV++w- for SppS, 
>/S = 0.63 TeV. Solid line: Born, DIS scheme. Long-dashed line: O(a,), DIS 
scheme. Dash-dot line: C?(aJ), DIS scheme. Dotted line: O(aJ), MS scheme.
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Fig. 4.15. Mass factorization scale (Af) dependence of <zw++ir- for Tevatron, 
■/S = 1.8 TeV. Solid line: Born, DIS scheme. Long-dashed line: O(as), DIS 
scheme. Dash-dot line: O(ct’), DIS scheme. Dotted line: O(a’), MS scheme.
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Fig. 4.17.
Vs
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Mass factorization scale (Af) dependence of crw++lv~ for SSC, 
40 TeV. Solid line: Born, DIS scheme. Long-dashed line: O(a,), DIS 

scheme. Dash-dot line: O(aJ), DIS scheme. Dotted line: O(aJ), MS scheme.

Fig. 4.16. Mass factorization scale (Af) dependence of for LHC,
VS = 16 TeV. Solid line: Born, DIS scheme. Long-dashed line: O(a,), DIS 

scheme. Dash-dot line: O(a^), DIS scheme. Dotted line: (Pfo^), MS scheme.
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MTB1MS

0.03

0.06

0.17

0.200.13

(4.3.10)
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1.46
0.48
0.04

1.18
0.36
0.06

0.22
0.06
0.02

0.36
0.24
0.05

1.18
0.33
0.09

0.42
0.23
0.06

0.16
0.06
0.01

1.41
0.45
0.07

0.48
0.25
0.07

1.06
0.23
0.14

1.35
0.36
0.17

0.09
0.11
0.02

I
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So
Si
St I
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So
Si 
s2 
e2

So
Si
St

0.11
SSC (VS = 40. TeV)

1.46
0.43
0.11

0.06

LHC (VS = 16. TeV)
1.13
0.33
0.09

Z-production 
MTB1D1 |

SppS (VS = 0.63 TeV)
0.41
0.24
0.05

0.04

Tevatron (VS =1.8 TeV)
0.14
0.08
0.02

W+ + W production
MTB1DI MTB1MS

where (<z,)iv is the average value of <z, and cr2 is defined by

- . KIS)»> + (aFU
2 2

From table 4.8 we infer that the scale variation in the cross sections decreases when 
higher order QCD corrections are taken into account. One also observes S2 > S2 ex­
cept for \/S = 0.63 TeV (SppS), which leads to the conclusion that a change in 
schemes leads to a slightly larger variation than a change in M (factorization scale). 
However this difference is not very significant if one realizes that the DIS parametriza­
tion in [25] is obtained from the MS densities via a finite mass factorization where

Table 4.8. Scale dependence of the cross section for W- and for Z-production 
at SppS, Tevatron, LHC and SSC (see eq. (4.3.8) and (4.3.9)).
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the second order coefficient function is not taken into account. Moreover the third 
order splitting functions are omitted in all existing parametrizations.

In the three dimensional plots fig. 4.18 and 4.19 we show the variation of <72 (DIS) 
when M is varied independently of R and vice versa in the range 0.5Miv < M, R < 
2.0A/w. We see that the variation in M introduces more or less the same changes 
in <72 as the variation in R for y/S = 0.63 TeV (fig. 4.18) as well as y/S = 1.8 TeV 
(fig. 4.19). Notice that changes in the DY coefficient function due to a variation in 
M can be compensated by the parton flux (4.3.3), since the latter d< nd? on the 
mass factorization scale too. However R does not appear in the parto. ■ ■ o that 
one would expect that <j2 is much more sensitive to the renormalizatio: which
is actually not the case as one can see in figs. 4.18 and 4.19.

Bearing in mind the uncertainties due to the parametrization of the pa< imsity, 
the choice of scale and the choice of scheme, we can now predict the ere sections 
measured by the UA1 [22], UA2 [23] and CDF [24] collaborations. In particular we 
focus the attention on the decay channels W —» hq and Z —» 1+1" for I = In 
this case we have to multiply the total cross sections <z, with the branching ratios 
BR(W — !>/,) and BR(Z —

Starting with the CERN collider SppS (v/S = 0.63 TeV, see table 4.9), we find 
that the central values of the UA1 results for W- and Z-production [22], which were 
obtained in the /x, channel only, are well below our second order predictions. How­
ever due to the large statistical and systematical errors, all our results are compatible 
with their data. In the case of UA2 [23] for Z-production the second order corrected 
cross sections oj are in very good agreement with the experimental values, although 
the first order corrected ones <Ti can accommodate the data rather well too. However 
like for UA1 the UA2 data for W-production lie systematically below our pre­
dictions. For the Tevatron collider at FNAL =1.8 TeV, see table 4.10), the Born 
approximation as well as the higher order corrected cross section agree with the data 
due to the large systematic errors in the CDF experiment [24]. The predictions in 
tables 4.9, 4.10 are not very sensitive to the chosen scheme. They also do not depend 
too much on the chosen parametrizations, although the parton densities based on the 
EMC data (MTEDI, MTEMS) lead to values for the cross sections lying below the 
ones derived from the BCDMS group. Since the C.M. energies are not too large, the 
difference between the predictions based on different parametrizations for the gluon 
density (MTB1 versus MTB2) does not become significant yet.
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Fig. 4.19. Mass factorization scale (M) and renormalization scale (J?) depen­
dence of (Tw++w~ (nb) for Tevatron, \/S =1.8 TeV. M and R are expressed 

in units of GeV.

Fig. 4.18. Mass factorization scale (M) and renormalization scale (R) depen­
dence of (nb) for SppS, x/S = 0.63 TeV. M and R are expressed in

units of GeV.
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G...12 
~53.6

67.7
71.4

UA1
UA2 

a/.Ww)
Born
O(a.)

0.118
531.
691.
733.

0.115
51.9
68.0
72.1

0.118
535.
682.
715.

0.115
51.9
66.7
70.0

0.115
51.4
66.1
69.7

0.114
514.
663.
701.

0.112
53.0
68.0
72.1

UA1
UA2 

o.(Afz)
Born

O(^)

VS = 0.63 TeV________
MTB1MS MTB2DI MTB2MS

Q-W £?(W —> Z 1Z/) (pb) 
609±41±94 
660±15±37 

0.117 
523. 
682. 
723.

azB(z-*e+e-) 
58.6±7.8±8.4 
70.4±5.5±4.0 

0.115 
50.9 
66.3 
70.7

Summarizing the contents of this chapter, we have presented the complete O(a*) 
correction to the DY coefficient function, which is now calculated in the DIS scheme. 
This correction has been used to make predictions for weak vector boson production in 
pp and pp colliders at large energies. The total cross section and the corresponding K- 
factors are analyzed and the results are compared with those published in [14] where 
the coefficient function was computed in the MS scheme. Our most important finding 
is that the <9(a2) corrected cross sections hardly depend on the chosen scheme (DIS 
or MS ). This is connected to the insensitivity of the O(aJ) corrected cross sections 
to changes in the mass factorization and renormalization scale. However the results 
heavily depend on the chosen parametrizations for the parton densities. In particular 
we want to mention the difference between the LL and NLL approximation and the 
sensitivity to the small-z extrapolation of the parton densities, in particular the gluon 
density. The two dominant parton subprocesses are the qq- and the qg-process. The

Table 4.9. <zw • B and <zz • B for SppS [22, 23]. We have used B(W 
0.109 and B(Z -» Z+ Z") = 3.35 • IO"2.

I MTB1DI T

0.117
535.
686.
722.____

(Pb)
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I

0.118
1.73
2.06
2.09

0.117
1.85
2.24
2.28

0.114
1.58
1.94
1.98

0.114
1.68
1.98
2.01

CDF

Bort
O(a.)

i

■ ‘A

• .'00
. 206

0.118
1.70~

2.10
-.17

2

0.115
0.164
0.196
0.199

(°b)
0.197±0.012±0.032
0.115
0.165
0.205
0.213

0.115
0.170
0.207
0.213

0.112
0.151
0.185
0.190

0.112
0.159
0.189
0.193

CDF 
o.(Mw) 

Born 

O(a.)

ei/e) =Table 4.10. <r\v • B and az ■ B for Tevatron [24]. We have used B(W —» 
0.109 and B(Z -» e+ e") = 3.35 ■ ID-2.

VS = 1.8 TeV
MTB1MS MTB2D1 MTB2MS

<rw B(W —» eize) (nb) 
2.06±0.04±0.34

0.117
1.77
2.20
2.28

az B(7j —> e+ e~)

mtedi I

contribution of the latter in O(a,) as well as in O(or2) is negative over the whole 
energy range, whereas qq always leads to positive corrections. At very large energies 
both processes cancel each other leading to a very small correction to the /F-factor 
and cross section. In this case the soft/virtual gluon approximation breaks down and 
resummation techniques highly overestimate the cross section.

To complete the study of the DY process it is still necessary to compute the third 
order splitting function. However we have estimated that its effect will turn out to be 
small. Moreover one also has to investigate heavy vector boson production together 
with an heavy quark-antiquark pair in the final state.



Appendix

4A Drell-Yan coefficient functions

I. quark-antiquark (non-singlet and other contributions)

IL (anti)quark-gluon,

III. the quark-antiquark (pure singlet) and non-identical quark-quar

IV. the identical quark-quark and

V. gluon-gluon.

(4A.1)

(4A.2)
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I The quark-antiquark contributions A^5

The lowest order contribution originating from the Born graph in fig. 4.1 is given by 

A$ = J(l-x) .

Before presenting the results, we want to make two remarks. Firstly, in the expres­
sions below the scale in the running coupling constant aa is always taken to be the 
renormalization scale R. Secondly, for the interference terms, we use the convention 
that AC = ACf -|- CA^, etc. (see figs. 4.7—4.9). The way the parton densities combine 
with the various A.j is explicitly given in (A.20) of [14].

The O(aa) correction to the qq subprocess which receives contributions from the 
graphs in figs. 4.2 and 4.3 has been calculated in the literature [16, 17, 27]. From the 
numerical as well as the theoretical point of view it is convenient to split A^ into 
two pieces \ viz.

A«(x) = AW^(x) + A^w(x) ,

In this appendix we will present the explicit expressions for the DY coefficient func­
tions Ay, the calculation of which is outlined in section 4.2. In order to make the 
presentation self contained we also give the O(a3) corrections already calculated in 
the literature [16, 17, 27]. We distinguish the following contributions t.

where the superscripts S + V and H denote the soft/virtual and hard gluon part 
respectively. The soft (5) gluon part is obtained from fig. 4.3 by taking the soft

1Note that in O(at) A^{? = A^J.
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(4A.5)(1 - *)

= ^CF 
4t

(4A.6)
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- 8x - 12 }

ihh

A(1_),S+V _ a, 
™ ~ in

limit x —► 1 in the phase space integrals. The virtual (V) part is determined by the 

Feynman graphs in fig. 4.2. The expression for equals

gcF{f(l-x)[61n (g)+16C(2)+2] 

(g)+^1+67?0}
The distribution T- vhich is defined by

originates fr J ons only, whereas the coefficient of the function 6(1—x) receives
contributioi. soft cis well as virtual gluon corrections. The parameter 6 [17],

[27] is intro- i order to distinguish between the soft (x > 1 — 6) and hard 

(z < 1 — 8) f. . gions in the phase space integrals, showing up in the calculation 
of the graphs in fi • . 4.3. The In 8 terms arise when the factor (1 — x)-1+< appearing 

in these integrals is replaced by the distribution

-» 1$‘«(1 - x) + (1 - x)-1+'9(l - x - S) •

In the literature the In 6 terms are often omitted and the distributions 7?,- are then 
denoted by (ln’(l - x)/(l - i)} , see e.g. [2), [16]. The hard gluon part which 

originates from the region x < 1 — 8 in the phase space integrals is given by

with CF = (TV2 - 1)/27V for SU(N).
The (9(a2) contribution to Aqq is determined by the diagrams in figs. 4.4—4.7. It 

also includes the interference between the quark-antiquark annihilation graphs in fig. 

4.7. and the gluon exchange graphs in fig. 4.8. It can be split into two parts. The 
first part originates from the graphs in figs. 4.4-4.6 and the combinations in figs. 

4.7 and 4.8 represented by A2, AC and AD. Since the corresponding renormalized 

parton structure function Wqq has collinear divergences we have to perform mass 
factorization. Therefore this first part does not depend on the produced vector bo­
son V, so that it shows up in the DY hadronic structure function Wv(t, Q2) in (2-3) 
for V = 7, Z and W. The second part of A^ consists of the contributions 

A^bc = A<1>bd, A<^c and 2, see figs. 4.7 and 4.8. The appearance of

2Here V and A refer to vector-vector and axial vector-axial vector interference terms.
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(first part) 

(second part:

[ 24«3)

Qi)
M2 J

V
M2

a«,NS = A^ + A^ + A^' + A™,, 

+^5.b’+<1’.bc+a^-Ic + A<y;c 

—) 
M2

16C(2) ] -D. -

origi-
: sym- 

nively.
Let us first discuss the contributions of the first part to Aq^'NS (4A.7 ;. 4 A.2)

it can be split into a soft/virtual (S + V) part and a hard (H) gluon part :>e former 
is determined by the two loop graphs in fig. 4.4, the soft gluon radiative corrections 
coming from figs. 4.5, 4.6 and the collinear quark-antiquark pairs originating from 
the combinations A2 in fig. 4.7 and AC, AD in figs. 4.7 and 4.8. The expression for 
the S 4- V part is equal to

this part in iVv(r, Q2) depends on the specific type of vector boson under consider­
ation, which implies that the corresponding from which Aqq is derived has to 
be collinearly finite. The total resulting coefficient function is denoted by (see also 
(2-39))

where (3q represents the lowest order coefficient of the /3-function (2.21 
nates from coupling constant renormalization and A^ is given in (4A 
bols M and R stand for the mass factorization and renormalization scab.

+ + A„5

47F

32<(2) ] to" + | 24«2) + 112«3) + 15 ] 1«

+ ^C(2)2 - 3C(2) + 120<(3) ] + nfCF [ 2 In2 (-g)

+ >)-^(2)-^]}
+ C'xCF[-^©oln2 (S) + [{?-16<(2))Po 

44©2 + [^

- y <(2) - 57 ] ©0 ] + CF2 [ [ 64©! + 48©O

+ [ 96©2 + 144©, + (52 + 64<(2))©O ] In

193  
3

+ CF2 [ [ 18 - 
548

5 '
34 i 

-yln
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oh
AP J

Inz ]

A(2),C 
qq

+ 327?3 + 72P2 + (52 + 64<(2))T>1 + (112<(3) + 24f(2) + 15)©0 ] 

r g
+ rijCp 1^ -T>0 In2

44+ 8A - —

Adding the hard gluon contribution from figs. 4.5 and 4.6 to the interference terms 
corresponding to he combinations AC and AD in figs. 4.7 and 4.8 yields A and 

whe • th: superscripts Ca = N and Cf = (A^2 — 1)/2AT refer to the two 
colour strut. :■<? expressions for these quantities are

CACF{ y(l+z)ln2 (

— 16 Lia (1 — z) — 4 In2 x 4- 

60
3
[ 8Slt2(l—z) — 4Li3(l—z)

(9L\ 4. [ 1 In ($L\
^AP J + 1 3 1)1 9 ®° 1 \^AP )

-(10 + yC(2))7?o .]

21n3z
3

+ 221n2(l — x) ] + 4(1 Oz — 2) [ Li2(—z) Inz — 2Li3(—z) ]

8 1— -(9z3 + 30z2 — 5z — 25------) [ Li2(—z) + lnzln(l 4- x) ]

9
4- 8(1 4- 7z) S,.2(l -z) + 16(1 - 2z) ln(l - z)<(2) + -(25z 4-13) Li2(l -z)

- 4(~x3 4- 12z2 - |z 4- |)<(2) 4- (y3 4- 24z2 - ~x - y)ln2 z
 O O  o o

1 913 8
4- 8(3z 4- 1) In z ln(l — z) 4- -(72z2---- —x — 311— —) Inz

4Z , , , 2, 2 2591 998 4 ]4- -(5z 4- 98) ln(l - z) 4- ~(36z---- —x - — 4- - J

Oi+eiz)]1" +

— Li2(l — z) 4- 12 Li2(l — z) Inz — ln3z 4- 8^(2) In z

IT v!
884- (1 4- z) [ 8<(2) 4- y ln(l - z)

4
“ 9

22 T. , ___ _ ,, 2
3 / 3

4- 4 In2 z ln(l — z) 4- 48 Lia(—z) — 24 Li2(—z) In z —

4- 36f(3) 4- y lnzln(l — z) 4- 33Inz 4- (1 4- z) [ — 4Lia(l—z)

4- 12<(3) 4- 8Li2(l -z) ln(l - z) - 4 Li2(1 -z) Inz -
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be found in [33].
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i

— 56C(3) — 4 In2 x ln(l — x) + 8 ln2(l — x) In x

— 16(11 + 5z)ln(l -

1 — x

- 96 Li3(—x) + 24<(2) In x + 8 hr

— 481nxln(l - z) ] + (1 + x) [ 16Lia(l-z) - 32<(2) - 41n2x

+ 161n x ln(l — x) — 481n2(l — x) ] — 16(3 + 5x) + 16(4 + x) In x

[ — 6481,2(1 — 1) — 40 Lia(l — x)lnx —

?x

^■CF

- In3 x
3

ln(l — x) — 321n2(l

+ 12 In2 x — 481nxln(l — x) + 48 In x Lia(—z) ——■ hi;

+ (1 + z) [21n3z - 161n3(l - x) - 8Li3(l-x) - 4<(2)lnz

16 1 + x2 ------------ In x
3 1 - x

+ 20Li2(l — x)lnx ] -48(1 - x) ln(l - x)<(2)

+ 16(1—5x) [ S1,2(l —x) — 2Li3(—x) + Inx Li2(—z) ]

+ — (9x3 + 30x2 — 5z — 25---- [ Lia(—x) + In x ln(l + x) ]

2
— —(36x3 4- 120x2 — 25z 4- 65) In2 x 4- 16(7 4- x) In x ln(l — x)

-8(11 4-5x) ln2(l — x) 4-4(19 4-13x) Li2(l — x)

36 1 32+ 4(yz3 + 24x2 - 37 - 37z)f(2) - —(288z2 - 1079z - 399 - —)lnz 
-4(15 +43z)ln(l - x) - |(72z2 + 107z - 82 + -) ) . (4A.10)

The functions Li„(x) and Sn,p(z) denote the polylogarithms and can
The hard part of quark pair production due to the diagrams A in fig. 4.7 is equal to

In x + 8(1 + z) [ In z — 4 ln(l — z) ] 

[ 16 Li2(l -x) + 8 In2 x - 24 In z
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+ 1 — X

(4A.11)

(4A.12)

and

(4A.13)

(4A.14)
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{ (1 + ®)2 [ - ? Li2(-x) - ^<(2) + | In2 x 
A «5 O O

!- x) ] + |(3 + 3x2 + 4x)lnx + y(l - x2) |

I
II!

| In2 x 
3

Inxlnfl - x) j + (1 + x) [ 1 Lij(l —x)

= (S) Cf(Cf
+ 16Li2(l — x)lnx]+(l + x)2 [ — 48Si,2(—x) — 8Lia(—x) + 24Li2(—x)

- 48 Li2(—x) ln(l + x) + 12<(2) - 24<(2)ln(l + x) 

xln(l + x) ]

^.■aVb = 0

A(2) 
^qq.BC - a(2) ^qq.BD

a(2) -
qq.B2 -

32
3

I

(l + x2 + 3x)[32S1,2(l-x)

- y (1 + x) ln(l - x) - |(1 —11a:)] In

+ jj Li2(l-x) — 61nx — y 
o 9 2

+ xC(2) — 41n2(l — x) + - In2 x 1 + -(15 + 7x) Inx 
o o 1 o

- ~(2 - x) ln(l - x) + 1(42 + 47x) } .

where ny denotes the number of light flavours.
The second part of (4A.7) could be obtained without performing mass factor­

ization, which implie. hat it is scheme and scale independent. The contributions 
originating from grams B in fig. 4.7 and the interference terms BC and BD 

(see figs. 4.7 and -

+ 24 Li2(—x) In x

+ 8^(2) In x + 20 In2 x ln(l + x) — 241n2(l + x)lnx + 241n

+ 36(1 - x2) Li2(l —x) + 1(1 + x2 + 4x)ln3x + 4(9 + llx)lnx

- 2(—6 + 15x2 + 8x) In2 x - 2(-27 + 13x2 + 14x) } .

The matrix element corresponding to the interference term AB (fig. 4.7) involves 
the product of two fermion traces, each containing a vertex of the form 7M(v + a7s)- 
Therefore we have to distinguish between the vector-vector (V) and axial vector-axial 
vector parts, which we will denote by an<^ ab respectively. The first part

is zero due to Furry’s theorem



(4A.15)

(4A.17)

— 8 Lij(—i)

- 16(1 + 2z2 - x)<(2) + 8(1 - 2x2 + lOz) In x ln(l - x)
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qual to 
rocess,

+ 3 + 9x2 - lOz } , (4A.16)

= (j^) CaT) { 4(1 + 4z) In x + 4(1 + 2z2 — 2x) ln(l — x) 

+ |(3 - 31z2 + 24z + |) ] In2 + [ (1 + 2z2 + 2z) [

— 8 In x ln(l + z) ] — 8(1 + 3z) In2 x + 8(3 + 2z2 + 6z) Li2(l —x)

whereas the axial vector-axial vector contribution is given by

2

A(2).Ca 
■U

^qq,AB

A(l) 
q«

II The (anti)quark-gluon contribution Aqg

At O[a,) the qg subprocess shows up for the first time. The Drell-Yan coefficient 
function for this reaction has been calculated in refs. [16, 17, 27] and it is given by

= 2(1 + 2z2 — 2z)ln (
Af2

+ ^’Cf + In (£)

The calculation of Ajj? requires both mass factorization and renormalization. The 
latter gives rise to the (30 term in (4A.17). Notice that the expressions given below 
depend on the choice made for Pgg in (2.31). The two parts A^,Cx and A^,Cf are 
equal to

with Tj =
The second order contribution to can be written as

= (iTr) x In x + 32z In z + 16(3 — x) }

The above term does not show up for V = 7, since the axial vector part is absent 
in the vertex. It does not contribute to W-production either, because the quarks in 
the final state of A and B in fig. 4.7 are different, so that the interference term AB 
vanishes. For Z-production the contribution from (4A.15) disappears when the up as 
well as the down quark are taken into account.

With the coefficient functions mentioned above we have exhausted mtribu- 
tions to Aqq except those belonging to the singlet part. Since the latte 
the corrections Aqq calculated for the non-identical quark-quark scattv 
we will present them there.



I

+ 4x) In2 x In(l + x) + 4(1 — 4x2 + 16x) In x ln2(l — x)

+ 16x(x — 2)C(2) In x + 8(1 — 2x2 + 9x) Inx Li2(l — x)

+ 8(1 + 3x2 + 2x) In x Lij(—x) + 8(1 + 2x2 - 2x) ln3(l - x)

- 4(3 + 8x2 - 2x)((2) ln( 1 - x) + 4(13 + 12x2 + lOx) ln(l - x) Li2(l -x)

+ 2(3 + 2x2 - 2x)<(3) - 8(7 + 7x2 + 8x) Li3(l-x)

(4A.18)

and
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J
I

2
:.5x + 12 4—) [ Li2(—x) 4- Inx ln(l 4- x) ]

; In3 x — 8(1 4- 3x) In2 x ln(l — x)

+ 4(3 4- 28x2 — 2x) In x —

A<i2)'Cf = (j^) CfTj { [ 12(1 + 2x2 - 2x) In(l - x) - 6(1 + 4x2 - 2x) Inx

I

4 (3 — ; ; 8 — .)
- 3V x' v ’

58 146 , 8 88 1 , (Q2 \
t + -r+dlnM

- Li2(-x)ln(l — x)- Li3 (•

+ 4(17 + 8x2 + 30x) Si,2(1 -x) - 24x2 Li3(-x)

38
- 4(1 + —x2 + 22x)ln2 X + 4(3 + 28x2 + 26x) lnxln(l — x)

10 4
+ 16(1 + —x2 - 2x)C(2) + 4(10 + 46x + -) Li2(l-x)

3 x
4 2

+ 2(5 - 31x2 + 24x + -) In2( 1 - x) + -(31 + 196x2 - 296x)In x
x 3

4
- 2(13 + 79x2 - 84x - -) ln(l - x)

X

2 38 1
+ -(150 + 1055x2 - U49x------ ) >9 x )

+ 12(1 + 2x2 — 2x) ln2(l — x) + -(9 — 71x2 + 54x 4—) ln(l — x)

58 146 , 8
33 ■ !

+ 8(l + 2x2 + 2x) [ Li3 (]4^)

— In x ]n( 1 —x)ln(l + x)] — 8(1 + x2 + 2x) [ Inx In2 (1 + x)

+ 21r-.(l z)Li2(-x) + C(2)ln(l+x) + 2Si.2(-x)]

8..+ - •
3
4

+ 3



— 16z2 [ lnzLi2(—x) — ln(l

— 4(3 + 8x2 — 6z) ln(l — z) Li2(l —z) + 16(1 + 3z2 — 6z)f(3)

(4A.19)

and
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— i)C(2) ] + 4(1 + 2z2 — 2z) ln3(l — z)

- 3(1 - 4z) ] In2 + [ 16(1 + 2z2 - 2z) [ <(2) + ln2(l - z) ]

+ 4(1 — 4z2 — 2z) Li2(l —z) + 2(1 + 4z2 — 2z) [ In2 z — 6 In z ln(l — z) ]

815^)lnl

8 MX 15 z J

— 4(7 4- 24x2 — 14x) Si,2(1 —s) — 16(1 — x2 4- 2x) Li3(—x)

24 4
4- 2(—x3 4- 30z2 4- -x — 7) In2 x 4- 4(4 — 27x2 4- 4x) In x ln(l — x) 

5 3
4- (5 4- 36x2 — 36z) ln2(l — x) — 2(^z3 — 30z2 4- -|~z 4- 1)£(2) 

o 3

+ 24(1 - 3z2 - z)Li2(l-z) + 4(11 +32z2 - 42z)ln(l - z)

,589 374 , 522-(nr+^r -v*-
,109 403 2 166

+ (iy- w-1 +v:

+ 4(2 - 15z2) In z + 2(1 + 30z2 - 20z) ln(l - z)

+ 2(3 + 27z2 - 26z) ] In

+ 8(1 + z2 + 2z) [ 21n z ln2(l + z) — In2 z ln(l + z) + 41n(l + 1 Li2(—z)

+ 21n(l + z)C(2) + 4S112(-z) ] + (1 + 4z2 - 2z) [ 4 Li3(l -x)

— 6 In z ln2(l — z) ] + 4(5 + 12z2 — lOz) [ In x((2) — — In3 z j

8 1— yg(36z3 4- 90x2 4- 100x 4- 60 4—-) [ Li2(—x) 4- lnxln(l + x)

4- 2(3 4- 8z2 — 6z) In2 x ln(l — x) 4- 4(1 — 4x2 — 2x) In x Li2(l — x)

^■T' = {[4(1+4x2+4i) [ln2 x
— 21nzln(l — z) — 2 Li2(l — z) ] + 16(1 + 5z2 + 8z) In z



+ 4(1 +

ln2(l — z) ] + 6(1 + 8z2 + 8z)ln2z + 4(1 - 4z2 + 8z)lnzln(l - z)
- 4(3

(4A.20)+

i

-
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2<(2) ] + 2(20z2 + 4z + 5) In x

- 16(1 — 3z2 + 2z)ln(l — z) + 4(ll - 59z2 + 48z) ] In

4z2 + 4z) [ In2 x ln(l — z) — 2 In x ln2(l — x) — 4 ln(l — z) Li2(l — z)

- 2 S1>2(1 -z) + 4 Li3(l —z) + 2^(2) In z ] + 16(1 - 3z2 + 2z) [ f(2)

' ) Li2(l — z) + 2(15 + 141z2 + 180z) In z

+ 60z) ln(l - z) + 3(23 - 149z2 + 126z) ] .

I he functions £(1 — x) and T>i(x) in Aqg, which were present 
Aqq. Although the second order contribution corresponds to 

the final state these singular functions do not show up since 
x = 1.

the prescription for Fgq in (2.30). In this 
all equal and are given by

A(2->n, = A(2>„2 = A(2)
2

;:)  A (2)  A (2)
qq.D’ - ^qq.C’ ~ “qq, D’ ~

+ |(3-4z2-3z + ^)]ln2

2 In x ln(l — x) ] + 2(4x + 10) Lij(l —x)

III The non-identical quark-quark contributions A^

The reaction represented by the diagrams in fig. 4.8 describes quark-antiquark as 
well as quark-quark scattering, where the quarks in the final state are not identical 
[34], [35]. The contribution to the DY coefficient function can be split into two parts. 
The first part, represented by the combinations C2 and D2, needs mass factorization, 
which depends on the prescription for F„n in (2.30). In this case the contributions for 
qq, qq and qq are

(S)’C'T'{ [‘I1+ ')>"*
+ [ 2(4z2 - 6z - 3) [ In2 z -

+ 4(2z2 -2z + 1) [ln2(l -z)

9 16
- (52z2 - 36z + 9 - —) ln(l - z)

3 x
9 44 1 (O2 \- ~(188z2 - 186z + 123 - —) ] In II

+ 8(1 + z) [ 1 In3 z + 21nxLi2(l-z) ] - 4(4z2 - 5z - 2) Inz ln2(l - z)

Notice the <■ . 
in the exprc..
graphs with l gh.. . m
the lowest order term is integrable in
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— 96Li2(—x)ln(l + x) ] + (1 + x) [ 80Li2(—x) + 801nxln(l + x)

+ 40<(2) ] + 8(-6 + 3x + |) Li3(l—x) - 16(—10 + 3x + y) Li3(-x)

... - ........................ .... x, 16 3z ix----—x In
X o

= (^)2CfT/{(2 + z)[32S1,2(1-x)

- 24(—6 + x + -)<(3) + 8(10 - x) Li2( 1 -x) Inx
5

+ 32(2x + -) Li2(—x) In x + 8(10 + x)<(2) In x + 8(5 - 4x) Li2(l-x) 
x

— 52x In2 x — 16(5 + 4x) In x — 160(1 — x) }

Notice that there is a relative minus sign between the expressions for the qq and the 
qq (qq) processes. The A-part is given by

a_ aWA _ a PM^qq, CD — ^qq.CD — CI

+ 2(4x2 - 6x - 3) In2 x ln(l - x) + (y x2 - 48x - 1) In2 x

+ 8(x + 4) [ln(l-x)Lij(l-x)- Li3(l-x)]

+ 4(2x2 - 2x + 1) [ ln3(l - x) + 2f(3) - 4 In(1 - x)<(2) ]

+ 4(10x + 13) Si,2(l — x) + cr(x2 + 3x + 3 + -) [ In x ln(l + x)
3 x 1

4- Li2(—x) ] 4- 4(z2 + 12z 4- 4) In x ln(l — z) 4- 4(4x2 — 4x - J )£(2) In x

4 1 o- 2(7x2 - 3x 4- 1 - -) ln2(l - z) - 2(^z2 - 14z 4- 1 )<(2)
x 3

8 2
4- 2(8z 4-19 4—) Li2(l — x) 4- — (94z2 4- 7z 4- 31) In xx 3

4
- 2(46z2 - 47z 4- 17 - -) ln( 1 - z)

2 38 1
- -(358x2 - 192x - 123 + —) > . (fA.21)9 x J

The second part originates from the interference between the graphs C and D in fig.
4.8. Here we have to distinguish between the vector-vector (V) and the axialvector- 
axialvector (A) terms, denoted by and respectively, since they are not
equal to each other. The expressions for the V-part equals

= -a£>£d = -Ag>’^D = (g)2^ { (2 + X + j) [ 32S1i2(1-x)

- 96Si,2(—x) — 481n2(l + x)lnx — 48^(2) ln(l + x) + 401n2xln(l + x)

qq, CD - ^qq.CD



- 96 S^-z) - 48 ln2(l + x) - 48£(2) ln(l + z) + 40 In2 z ln(l + z)

+ 8<(2) ] + 8(2 - z) Li3(l -z) - 16(6 - 5z)Li3(-z) - 24(2 - 3z)<(3)

+ 12

■
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I

• Identical quarks in the initial state. In this 
either the graphs C and F or

case the contribution comes from 
D and E and there is no statistical factor.

Finally we w. 
of diagrams c. 
final state), 
interference t. ■

— 96 Li2(—z) ln(l + z) In z ] + (1 + z) [ 16 Li2(-z) + 16 In z ln(l + z)

IV The identical (anti)quark-(anti)quark contributions A^®

In case there are identical quarks in the initial and/or final state, we have in addition 
to the graphs in fig. 4.8 also the ones in fig. 4.9. As the results for E2, F2 and EF are 
equal to those for C2, D2 and CD (of course one has to implement the right statistical 
factors), we will not discuss them here (see the section on non-identical quark-quark 
scattering). The new contributions come from the interference terms CE, CF, DE 
and DF. Before giving the results let us explain in some detail how we have taken 
care of the statistical factors in our calculations.

In case of V = 7 or Z all four sets of diagrams C, D, E and F contribute and 
we have a statistical factor |. However, in the case of V = W we have to distin­
guish between two cases (for W-production the diagrams C and D cannot contribute 
simultaneously).

• Identical quarks in the final state. Now only the combinations C and E or D 
and F give contributions. Moreover, in this case there is a statistical factor |.

For the expression of the hadronic structure function (2.3) (see A.20 of [14]) it turned 
out to be convenient to use the statistical factors of the W-production case. Therefore 
a statistical factor | is included in the results for CE and DF, but this is not the case 
for CF and DE.

4- 8 Li2(l - z) + 8(2 4- 3z) Li2(l-x) In x 4- 8(2 4- 5z)<(2) In x

t) In x ——x In3 x — 4z In2 x — 16 In x — 32(1 — x) J . (4A.23) 

of the two sets

16
3

.-nark that in case of W-production only one
: (C or D, depending on the quark flavours in the initial and 

4ies that for W-production there is no contribution from the
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The expression for the interference terms CF and DE is
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+ 1 + x

+ 16 Lis

‘qq.CF -

2

a(2) _
^qq.DE -

){(l-x)2[-16S1,2(l-x)

= Au> = Ap) = AP) =
^qq.CE t-kqq,DF qq, CE qq, DF

— 16 Li3(—x) — 16 In x ln(l + x) ] + 8(1 + x) In x + 16(1

[ 24 Sj.jfl-x) - 16 Li3(l —x) - 16 Lis(-x)

(l±Z)_16Li,(

Ap) _ A<2> - a(2)^qq,CF — ^qq.DE ~

(£) Cf (Cf

Apart from the statistical factors there is another difference between CE (DF) 
and CF (DE). The first contains collinear divergences and needs mass factorization, 
whereas the latter is free of mass singularities.
The correction corresponding to the interferences CE and DF is equal to [35, 36]

- 12((3) + 16Li2(l-x)h 
1 — 3/

4- 16Li2(—x) Inx — 16 Li2(—x)ln(l — z) 4- 12£(2) In x

2
— 8£(2) ln(l — x) — - In3 x + 4 In2 x ln(l — x)

o
+ 8 In2 x ln(l + x) — 16 In xln(l — x) ln(l + x) + 8 In x ]

+ (1 — x) [ 4((2) In x — ln3x + 161n(l — x) ] +8(1 + x) In x ln(l — x)

+ 24x [ 4Si,2(—x) — 2Li3(—x) - 2<(3) + 41n(l + x) Li2(—x)

+ 2f(2) ln(l + x) + 2 In x ln2(l + x) — In2 x ln(l + x) ]

+ -(9x3 — 30x2 — 15x — 15 —[ Li2(—x) + In x ln(l + x) ]
5 x

Q
+ 16 Li2(l -x) + 8(-x3 - 6x2 - 2x + l)f(2)

Q 8 1
— 4(-z3 — 6x2 — z) In2 x — 7(9z2 — 22z 4-8-----) In x

5 5 x
— ^(9x2 — llx + 1 + 1) }

0 X )

qq.DE
qq.DE


121n2z ]

(4 A.25)

(4A.26)

a

(4A.27)

In2
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V
M2

is collinearly finite and is therefore scheme and scale

— -(6 + 75x2 + 38z) In x —

mass factorization

can be obtained from the quark-anti- 
phs in fig. 4.6 via crossing. This subprocess shows up for the 

. We have divided its Drell-Yan coefficient function into two

+ ^ — 16(1 + 4z2 + 4z) [

- 24(1 + 8z2 + 8z) In x - 32(1 - 3z2 + 2z) ln(l - x)

- 12(5 - 17z2 + 12z) j In

+ 16(1 + z)2 [ 31n2zln(l + z) - 21nz ln2(l + z) -21n(l +z)f(2)

V The gluon-gluon contribution Agg

The diagrams gluon-gluon subprocess
quark annihikvi' 
first time at < 
parts, viz.

A<2) = Z 
gg

The Ca contr;
independent. The

+ 16 Li3(l —z) — 24 Li2(l-z) - 16Li2(l-z)lnz-

— 4(7 — 6z) In z — 2(15 + 13z2 — 28z) } .

Notice that the above expression is scheme and scale independent.

"‘gg

■fe to W„ 
corresponding coefficient function equals

{ (1 + z)2 [ 16SU-Z) + 24 Li3(-z) + 16<(3)

+ — Lij(—z) — 24 Lij(—z) In z + 16 Li2(—z) ln(l + z) + 8f(2) ln(l + x)

+ gC(2) — 12 In2 x ln(l + z) + 8 ln2(l + z) In z + — Inz ln(l + z) ] 

o
— 8(1 — z)2 Si,2(l —z) + -(—2 + 25z2 + 2z) In2 z

2,„ . „ 2 „„ 47 191 , ,o 1
3- ' - ; T + “1 -48xJ •

The Cp contribution to IVgg contains collinear singularities. After 
we find

= I [ -8(1 +4z2 + 4z)lnz - 16(1 - 3

Li2(l-z) + lnzln(l-z)]

|ln3z-



41n(l + z)Li2(—z) — 4Si,2(—z) ] + 8(1 + 4z2 + 4x) [ 2Li3(l-z)

16(1 + 10z2 + 16z) S112(l-z) + 32(1 + z) [ Li2(-z) + lnzln(l + x) ]

- 24(3 + 2z2 + 12z) Li2(l -z) + 16(2 - 3z2 + 3z)((2)

- 4(7 + 6z2 + lOz) In2 z - 12(5 - 17z2 + 12z) ln(l - z)

- 8(12 + 13z2 + 48z) In z - 2(73 - 83z2 + lOz) | 0A.28)
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Chapter 5

5.1 Introd

H

145

The stru< function F$

In chapter 3 we ';■: ■ ted the order a2 contributions to the singlet and non-singlet 
coefficient functions belonging to the deep inelastic structure functions Fi(x,Q2) (t = 
1,2, L). These structure functions appear in the neutral current process £ + H —♦ £+ 
anything”, where in chapter 3 we have limited ourselves to the one photon exchange 

mechanism only. Summarizing our findings in chapter 3, we found that the order as 
corrections to Q2) are appreciable in the large-x (0.5 < x < 1.0) as well as in the 
small-z region (10-4 < x < 10-3). Here they can amount to 10% (x < 1) and —20% 
(x ~ 10~4). The same observation has been made for Fl in the small-x region where 
the correction even can become —50%. Notice that the corrections at small x heavily 
depend on the set of parton densities in particular on the gluon distribution function. 
The large corrections near the boundary of phase space (x —♦ 1) which show up in 
^2(2:, Q2) can be wholly attributed to the non-singlet coefficient function and they 
originate from soft gluon bremsstrahlung. Notice that these effects due to soft gluon 
bremsstrahlung do not appear in the longitudinal coefficient function which explains 
why the corrections to Fl(x,Q2>) are small in the large-z region.

Having finished the calculation of the coefficient functions mentioned above, we 
should also compute the coefficient function belonging to the structure function 
^3(2:, Q2). The latter shows up in the charged current reaction ut 4- H —♦ £+ any­
thing” and the aforementioned neutral current process, where now the Z-boson ex­
change mechanism is also taken into account. This structure function is of much 
experimental as well as theoretical interest since it provides us with a beautiful test 
of perturbative QCD. One of the reasons is that it only receives contributions from 
the non-singlet part of the coefficient function and the valence quark densities which



5.2 The calculation of the second order coefficient fuF-tion

(5.2.1)

FL(x, Q2) = F2(x, Q2) - 2xF\(x, Q2) . (5.2.2)

isoscalar the

^(x,<?2)

(z = 2,L) , (5.2.3)

F3(x,Q2) (5.2.4)
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e are
i via

= x/JyV(^,M2)C3N^,(22/M2) ■

In the case of the charged current interaction where the target H is an 
structure functions are given by (see e.g. [5])

= * £ V [e(x/z, M2)C?q(z, Q2/M2} + G(x/z,M2)C.-g(z, Q2/M2)]

are very well known. It is not marred by the presence of the sea quark- and gluon 

densities about which we have very poor information in particular in the small-x re­

gion. The other reason is that at this moment we have an abundance of data obtained 

in various experiments. For the most recent ones see [1] (CDHSW) and [2] (CCFR). 

Furthermore one also intends to measure F3(z, Q2) at HERA [3] and the ep facility 
at LEP [4].

The unpolarized deep inelastic cross sections of the processes mentions 

determined by the structure functions F,(x,Q2) (i = 1,2,3), which ar< 
the hadronic tensor

^(p.g) = [jt(p), J„(0)] |p)

= (-Sm- + ‘^■')F1(x,q2') + (pM - (pp - — ■<'

- i|eMp«pP“g/’—F3(x, q2) ,
2 p - q

where is the electroweak current and |p) is the unpolarized hadronic state. The 
Bjorken scaling variable x is defined as x — Q2/2p ■ q, where Q2 = — q2. The same 

definition also holds for the partonic tensor where now |p) stands for the struck 
parton and F<(x,Q2) is replaced by the partonic structure function Fi(z,Q2) with 
z = Q2/2p ■ q (for notations see (3.2.5)—(3.2.10)). Notice that the parton structure 

functions contain the collinear divergences which have to be rendered finite by mass 

factorization in order to obtain the coefficient functions denoted by C.-.i. In addition 

to the structure functions above, we also have the longitudinal structure function 

which however depends on Fj and F2 via the relation

P ■ 1
?2



(5.2.5)V + q

(5.2.6)V + q q + g •

(5.2.7)V + q -» q + g + g ,

(5.2.8)V + q—tq + q + q .

II

5.2.1
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J

where V stands :<>r 
the one

'■■■: intermediate vector boson W or Z. Second one has to include 

loop correction to the process

n dimensions

In the latter reaction only the non-singlet part contributes after integration over 
the whole final state whereas the singlet part vanishes. The contributions due to 
processes with a gluon in the initial state are equal to zero. The vanishing of the 
above contributions follows from charge conjugation arguments from which one can 
derive the relation aa = — for the parton cross sections, where a and a denote the 
parton and anti-parton, respectively. If a is an eigenstate of the charge conjugation 

operator then cra = 0.

The regularization of 75 in
The computation of the parton cross sections proceeds in the same way as has been 
done for the coefficient functions Citt (t = 1,2, L), see chapter 3. The ultraviolet, in­
frared and collinear divergences which show up during the calculation are regularized

Here G(x,M2) denotes the gluon density and S(z,M2) and V(x, Af2) stand for the 
singlet (S) and valence quark combination of the quark densities, respectively. The 
same notation also applies to the coefficient function Ci,t(z, Q2/M2) (£ = q,Q»g) 
where M2 denotes the factorization scale, which we have put equal to the renormal­
ization scale. The expressions for C^q, C,\q and Ci,g UP f° or<^er (* = L) 
are the same as those derived for the one photon exchange mechanism (chapter 3), 
provided all partons are massless and one sums over an even number of flavours in 
the internal fern on -oops. For massive quark contributions see [6].

The first orc • : ction to is already known in the literature (see [7]-[9]).
The second orc bution which will be presented below receives contributions
from the follow n subprocesses. First we have the two loop corrections to the
Born reaction

Finally we have to compute the following 2 —> 3 body reactions



= i/,7(-7s’/’ V’7<’7‘,7t0 ■ ■5.2.9)

Za = 1-^Cf(a 
47T v

(5.2.10)
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ias to 

? can 

t and 
1 that 

matrix ele. - as the 
more

-5e) + (^) [c^(22)+CxCF(_44 _ 107\
3c 9 )

Q^lipar1

by using the technique of n-dimensional regularization. This means that the ma­

trix elements as well as the phase space and the loop integrals have to be computed 

in n dimensions. An important difference between the calculation of Cs.q and C,,z 
(i = 1,2, L) is the appearance of the 7$ matrix in the matrix elements contributing to 

Cs,q. Since the 7S matrix is only well defined in four dimensions, we have to find an 
appropriate extension into n dimensions. We have adopted the prescription in [10], 

which is also used in [11]. They make the following substitution for the axial current.

Furthermore the sum over dummy Lorentz indices which appear in the 

be performed in n dimensions. We will explain this in more detail la. 
show [10, 11] that this prescription is equivalent to the one given by 

Veltman [12] or Breitenlohner and Maison [13]. For reaction (5.2.8) we 

before integration the prescription in (5.2.9) leads to the same 
method proposed by the authors of [12, 13]. However prescription (5.2.9) is 

convenient if one has to compute long traces which e.g. show up in the calculation 
of processes (5.2.6) and (5.2.7). The only drawback of the above 7S prescriptions 

is that the axial vector current in (5.2.9) gets renormalized. In order to undo this 
renormalization one has to multiply the parton cross section by the renormalization 

constant given in eqs. (8), (11) of [11]. It is equal to

where e = n — 4 and nj stands for the number of flavours. The colour factors for 
SU(N) are given by CF = (N2 — 1)/27V and Ca = N. The integration of the matrix 

element can be done in two different ways. The tensor integrals containing the internal 

momenta can be reduced to scalar integrals . However this method is only feasible 

for the rifCF part of process (5.2.8). Therefore we prefer another method which was 

also used in the calculation of the coefficient functions corresponding to the structure 

functions Ft and F2 in (5.2.1) (see chapter 3). The parton structure function ^3, 

corresponding to F3 in (5.2.1), is obtained by projecting out the Levi-Civita tensor 
which appears in (5.2.1) as well as in the matrix element (because of (5.2.9)).

This is achieved by multiplying (5.2.1) and the matrix element by e‘“','>'pKqx- It leads



to products of two Levi-Civita tensors which in four dimensions has the usual form

(5.2.11)EaPar = -

g«0h(p ■ ?. 92) + Po9fl^(p ■ 9’ 92)

(5.2.12)
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6r

%

I

ing in the product of 
l“'KXelt„a0 (tWO

'■I

The projection c ; i . a sum over dummy Lorentz indices appeari 

the Levi-Civita For instance in the projection of F3 we find e‘

in the projection of the matrix element one also encounters 
(three dummy indices). One is now faced with the 

the sum over dummy indices: in n or in 4 dimensions. Since 
right-hand side of (5.2.11) is derived from a 4-dimensional 

that the projection can be done in 4 dimensions. However

dummy indices 

combinations 1 
problem how tc 
the determinai 

object, one mi 
this is wrong a ’ , explained below.

Suppose it would be allowed to project out F3 (5.2.1) in 4 dimensions. In principle 

one could then also apply the same procedure to F\ and F? which are the partonic 
equivalents of Fi and Ft in (5.2.1). However we explicitly checked that this will lead 

to the wrong result for F\ and F3. This is obvious because the internal momenta 
appearing in the n-dimensional phase space and loop integrals are taken in n dimen­
sions whereas the external momenta p and q in (5.2.1) are now 4-dimensional objects. 

This will violate Lorentz covariance which becomes apparent if we reduce a tensor 

integral into scalar integrals like

l<rkj dnt kalp f(kt,kp,k-q,tp,tq)

+ 9aP0h(p ■ q,q2) + PcPpI^p ■ q,q2) + qaq0h(p ■ ?> ?’) •

It is clear that p and q are n-dimensional objects. The projection in 4 dimensions leads 

to expressions for (i = 1,2) which cannot be rendered finite by mass factorization. 
The residues of the collinear divergences appearing in do not correspond to the 

usual Altarelli-Parisi splitting functions so that mass factorization breaks down. The 
same happens with F3 if the sum over the Lorentz indices on the right-hand side of 

(5.2.11) is carried out in 4 dimensions. Here we discovered that in two loop order the 
Cp part of F3 could not be made finite via mass factorization using the Altarelli- 

Parisi splitting functions. Moreover the tijCf part of the coefficient function due 

to process (5.2.8) disagrees with the result obtained from the on-shell regularization 
method discussed below. Finally it is also in disagreement with the tijCf part if it



.ions

Results for the coefficient functions5.2.2

q2/m2) = E(g)zc£,’(z, Q2/m2) , (5.2.13)

150

;?nces 
ed by

After we have computed the parton cross sections (parton structure functions), we 
have to perform coupling constant renormalization and mass factorization in order 
to remove the remaining ultraviolet singularities and collinear divergences. For both 
procedures we have chosen the MS scheme. The coefficients appearing in the 
perturbative expansion of the coefficient function Ci,q are defined by

is calculated using the tensor integral reduction into scalar integrals as indicated in 
(5.2.12). Notice that in this case the projection method can be avoided. If we now 
forget about the left-hand side in (5.2.11) and treat the Kronecker delta functions 
as n-dimensional objects the summation over dummy indices can be carried out in n 
dimensions. In this way the contractions e^^e^ap and e^^e^^p which appear in 
the matrix elements get a different n-dependence. Since only e^KXe^ap shows up in 
front of F3 (5.2.1), this structure function and the contracted matrix element have no 
common n-dependent overall factor anymore, which could otherwise be '>vided out.

one. 
atisfy 
-shell

This explains why the 4 dimensional projection differs from the n-dinr : . al 
Only if the projection is carried out in n dimensions does the calcul .C 
all the desired properties like mass factorization and the agreement wit 
regularization method which can be applied in 4 dimensions.

As a check we calculated the difference between the parton struct 
F3 and F} for the tijCf part of process (5.2.8). Here the ultraviolet 
are regulated by an ultraviolet cut-off and the collinear divergences are 
giving the quarks a mass. Since we work in four dimensions there is no ambiguity 
in the definition of 75 or the Levi-Civita tensor. After renormalization and mass 
factorization the results obtained by the on-shell- and n-dimensional regularization 
only agree if in the latter case the contraction of Levi-Civita tensors is performed in 
n dimensions. This check also shows that the 75-prescriptions given in [10]—[13] are 
correct. Another indication for the correctness of our procedure is that the parton 
cross sections for the singlet part of (5.2.8) and the processes with a gluon in the 
initial state all vanish, as is to be expected on theoretical grounds (see the statement 
below (5.2.8)).

where a, = a9(M2). If we want to choose the renormalization scale R different from 
the factorization scale M, one can perform a simple transformation, see (3.2.56). The



be split in two parts

C'q),NS(z, Q2/m2) = C.<2)’+(z, Q2/M2) ± C!2q’'-(z, Q2/M2) , (5.2.14)

-2tn

(5.2.15)— 2(z + 5)€n z — 28z — 8

computed the sum rule

(5.2.16)

|
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be found in (3B.19). The explicit 
are available on

second order non-singlet coefficient function can

where C^’NSi 
expressions for C3 
request.

As a final check on our result we

‘( :)=C^’NS(^Q2/M2)

, Q2/M2) - Q2/M2) + C2f [ 2(1 + z)(2Z,G(l - z)

z €n(l - z) + 2€n2(l - z) - 3Zn(l - z) + tn2z - 4<(2))

/o‘dzC3,q(z,Q2/M2) =

+ 4n/CjJ ,

I
J i

where the plus sign holds for occurring in Cftq of (5.2.3) and the minus sign 
for C3^,ns occurring in in (5.2.4). The coefficient function Cfq’ is only due to 

contributions from identical quarks in the final state of process (5.2.8). The expression 
for C3^q,NS is the seme as that for the second order correction to the non-singlet 
polarized coef; unction, which will be given in appendix 6A (6A.1). We have 
also computer .ere now the mass factorization is performed in the DIS scheme.
The transitioi .e MS scheme to the DIS scheme (denoted by omitting the bar
above the exp is given by

C(2),NS|

which agrees with the result in eq. (13) of [11], see also eq. (5.14c) in [14]. No­
tice that in these references the authors computed the above sum rule by using a 
completely different method. Their method only allows for the computation of the 
lowest moments of the coefficient function. However it can be extended to include 
the order correction. In our case this would be very difficult because of the very 
cumbersome three loop and four body phase space integrals that would have to be 
performed. The advantage of our expression is that the full z dependence is given 
which makes it more amenable for phenomenological applications.

(s,(?2/M2) - C^,NS(2r,Q2/M2) can
3?q NS can be found in our computer programs and
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5.3 Results for F3

dom.:-. ^ed by the 
n inglet 

terms 
. e the
;rs of 
ition

■ i rge-x 

be attributed to the non-singlet 
densities in [15] which 

well as MS
we have 

taken the two loop corrected running coupling constant (A = 194 MeV) with four 
active flavours (ny = 4).

In fig. 5.1 we have compared the order aa corrected structure function Fp^x, Q2) 
with the order a2 corrected structure function Fj2\x, Q2), using MRS(DO). The plots 
are made for three representative x-values of the CCFR experiment [2], i.e. x = 0.045, 
x = 0.275 and x = 0.65. In addition we have chosen three different factorization 
scales, namely M = Q, 2Q. It turns out that for the three chosen x-values 
F3 (x, Q2) lies within the range given by the mass factorization scale variation of 
Fp^x, Q2) and therefore the second order corrections are not noticeable. However, 
this depends on the chosen parton density parametrization. Fig. 1 of [17], where the 
MTB1MS parametrization was used, reveals that the order aj corrections are very 
small for x = 0.045 and x = 0.275 but become noticeable for x — 0.65. The reason 
why at larger x-values the corrections become noticeable can be attributed to the 
soft gluon bremsstrahlung mechanism, as discussed above.

In fig. 5.2 we have compared the order a2 corrected structure function Fp^x, Q2) 
in the MS and DIS scheme. The figure reveals hardly any difference between F32^’MS(x, 
Q2) and Fj2)’DIS(x, Q2). Hence the order a2 corrections are almost the same in the

We will now study the effect of the order a2 corrections on the deep inelastic structure 
functions F2(x,Q2) (5.2.3) and F3(x,Q2) (5.2.4). Here one has to bear in mind 
that for a complete next-to-next-to-leading order analysis one also needs the three 
loop contributions to the Altarell-Parisi (AP) splitting functions which are not 
known yet. Nevertheless we can make an estimate of the order o2 corrections in 
particular in the large-x region where the structure functions are 
logarithmic terms of the type €nfc(l — z)/(l — z) which appear in th- 
part of the coefficient function as well as in the AP splitting function, 
can be attributed to soft gluon radiation. In the MS scheme one can a 
discussion in chapter 3) that k = 0 for the AP splitting function P^s in 
perturbation theory. On the other hand Ajmax = 2Z — 1 for the order al3 
to the coefficient function (i = 2,3). Hence the large logarithmic tc- 
are suppressed compared to those appearing in (i = 2,3) so that in 
region the whole correction to F<(x, Q2) (i = 2,3) can 
coefficient function. For our plots we have chosen the parton 
are represented in the DIS scheme ([15], table 13, FIT-B1) (MTB1DI) as 
scheme ([15], table 14, FIT-B1 (MTB1MS) and [16] (MRS(DO)). Further
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.55 j—

two schemes. We expect that figs. 5.1 and 5.2 will not be seriously altered when the 
three loop splitting function P^’NS is taken into account. For x < 0.5 the corrections 
due to the contribution from P(<2>’NS will be of the same order of magnitude as those

x = 0.65
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(MTB1DI).

(z > 0.5) the corrections 
as has been explained

10
’T

and are therefore small too. At large x 
can be wholly attributed to Cj2,^3

obtained for dj2,^3

to the structure function 

above.

In fig. 5.3 we have repeated the analysis for the structure function ^(z, Q2). Here

x = 0.275

x = 0.65

10 100
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we observe the same features as is shown for Fz(x^Q2) in fig. 5.1. The corrections 
are small for the three chosen rr-values. In [17] we saw that when the MTB1MS 
parametrization is used, the corrections are small for x < 0.5 and increase when
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Chapter 6

The polarized structure function

Introduction6.1

158

The disagreement between the theoretical prediction for the first mome; • e po­
larized structure function Q2), which is given by the Ellis-Jaffe sum rule [Ij, and 
the combined SLAC-EMC data [2, 3, 4] has attracted much theoretical interest dur­
ing the past years. This discrepancy between theory and experiment came as a great 
surprise because one expected that sum rules corresponding to conserved quantities, 
which are derived in the context of the constituent quark model at low energy scales, 
would also be valid at large energy scales characteristic for the current (parton) quark 
regime. Notice that sum rules which correspond to conserved quantities do not show 
scaling violating effects due to QCD corrections. This principle, which seems to work 
for unpolarized quantities, is apparently violated in the polarized case.

Many theorists have tried to explain the above discrepancy, for reviews see [5, 
6, 7, 8]. One of the issues was the question whether the experimental result for the 
Ellis-Jaffe sum rule, which turns out to be much smaller than expected, can either be 
explained by a large positive polarized gluon density or by a large negative polarized 
sea quark density inside the proton. A combination of both is also possible. In this 
chapter we adopt the point of view advocated in [8, 9] that the above parton densities 
which were used to explain the measured size of the sum rule depend on the mass 
factorization scheme chosen for the Altarelli-Parisi (AP) splitting functions and the 
polarized coefficient functions. However one has to be careful with this explanation 
because the first moment of the structure function <?i(x,Q2) also depends on the 
x-behaviour of the parton densities. The latter is of a non-perturbative origin and 
cannot be determined within the framework of perturbative QCD. In the literature 
the x-dependence of the polarized parton densities is determined in such a way that



res;:
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the experimentally observed first moment of the structure function g\(x,Q2) is re­
produced at Q2 = QJ  |0 Qey2 However as we will show in this chapter, this 
>s not sufficient to predict the x-behaviour of the parton densities at scales different 
from Qo. It will turn out that the polarized structure function <7i(z,Q2) for Q2 Qq 
considerably depends on the two extreme choices made for the sea-quark and the 
gluon density at Q2  Qg Since the large negative sea-quark density and the large 
positive gluon density ; re related to different schemes, one would get the impression 
that (x, Q2) is dependent which is not acceptable. This seeming scheme de- 

d when parton densities are fitted to 0i(x,Q2) measured for 
?2-values. At the moment this procedure can only be applied 
ure function Q2) where we have an abundance of data 
and past [12] experiments. However the data obtained for 

•i scattering are still too poor to determine the z-dependence 
*Q2-values. Future experiments as will be carried out by SMC

pendence can b 
a wide range of 
to the unpolar* 
collected in cu? 
polarized elect r: 
of 9\(x,Q2) at d'. i’erc 
[13] or HERMES [] -;■; will certainly improve upon this situation. Only if this proce­
dure is carried out and the perturbative quantities are calculated in sufficiently high 
order in a9 in different schemes, the scheme dependence of the structure function will 
disappear. In this way one is able to determine the full z-dependence of the parton 
densities in the different schemes with a much higher accuracy as could be done in 
the past.

In this chapter we want to determine the Q2-evolution of <71(2:, Q2) and to inves­
tigate its dependence on the input parton densities in particular the sea-quark and 
gluon density. For that purpose we have calculated the order a2 corrections to the 
singlet and non-singlet coefficient functions contributing to the structure function 
^i(xjQ2)- From the mass factorization of the corresponding parton cross sections we 
also infer the order a2 contribution to the polarized AP splitting functions Pqq and 
Pqg- These corrections are included in the analysis of gi(x,Q2). We will show that 
the Q2-variation of the latter considerably depends on the two extreme choices for 

the polarized parton densities made in the literature.

This chapter will be organized as follows. In section 6.2 we introduce our notations 
and some useful formulae. The calculation of the order a2 contributions to the 
polarized coefficient functions is presented in section 6.3. In section 6.4 we discuss 
the effect of the order a, and order a2 QCD corrections to the structure function 
9i(x> Q2). We also investigate the dependence of the latter on the input polarized 
parton densities. The long expressions for the second order corrected coefficient 
functions can be found in the appendix.



Kinematics6.2

Deep inelastic lepton-proton scattering is given by the reaction

(6.2.1)Z1(fc1) + ^(p) Z2(i2)+”X” ,

ding

(6.2.2)

iPa'

(6.2.3)

(6.2.4)(0<y<l)X =

the photon)

Q2 = -q2>0 . (6.2.5)q = ki — k2 ,
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are polarized, the cc-

The lower arrow above <r in (6.2.2) and (6.2.3) indicates the polarization of the incom­
ing lepton in the direction of its momentum. The upper arrow on <r in (6.2.2) stands 
for a polarization of the proton which is parallel or anti-parallel to the polarization of 
the incoming lepton. The vertical arrows in (6.2.3) also belong to the proton which 
is now polarized perpendicular (transverse) to the polarization of the lepton in either

, instant
osons V of 

: set to 
cted. 
ector

where the energy of the incoming lepton is represented by E and M denotes the mass 
of the proton. The variables x and y are defined by

(0 < x < 1) , y = ^ 
2p • q p ■

and q denotes the momentum of the virtual vector boson V (in this case
which is given by

2-y-^}S1(x,Q2)-^2(x,Q2)] ,

where Zi, I2 denote the in- and outgoing leptons respectively and H stands for the 
proton. The symbol ”X” denotes any inclusive hadronic final state allowed by quan­
tum number conservation laws. In lowest order of the electro-weak cou 
the reaction proceeds via the exchange of one of the intermediate vecto 
the standard model, i.e. V = 7, Z, W±. The above process is inclusive v. 
the outgoing hadrons denoted by ”X”, because only the outgoing leptc. 
In this chapter we will limit ourselves to process (6.2.1), where the exc 
boson V is given by the virtual photon 7.

When the incoming lepton and the target proton 
lepton-proton cross-sections can be written as

d2^-* d2^-* _ 87ra2
dxdy dxdy q2

c?a~* cPa~* Sira2/2Mx(l — y)yi/2 
dxdy dxdy q2 ' yE *

X Q2) + 2g2(x, Q2)] ,

Mxy 
2(1-y)E'

(0<z<l) ,



ffi(s,Q2)

(6.2.6)

(6.3.1)
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>;■?. ensities respectively. The 
the polarized de.:.. v.vstic scattering (DIS) 
quantities defined above depend both

9V 
92

which is analog- 
and£(x,M2), A. 
of the polarized

’ ion density 
ringlet (NS) combinations 

nomenclature also applies to
All 
the

6 3 The calculation of the order corrections
an outline of the calculation of the O(ct3) and C?(a2) 

:oefficient functions in (6.2.6) including their dependence

^(P,9) = |

1 /■' dz_ 
Jx Z

9“" -

will only discuss the O(a.) and O(or2) corrections to the struc- 
' ' can be expressed for

the up or down direction. The polarized structure functions appearing in (6.2.2) 
and (6.2.3) are represented by ji(x, Q2) (longitudinal spin) and gi(x, Q2) (transverse 

spin).
In this chapter we

ture function 9i(x,<?2). In the QCD improved parton model it

an even number of flavours in the following way

[A{S(|,m2)G:(z,qw)+ 
z,Q2/M2)}+| ,M2) C"s(z,Q3/M2)] ,

.2.3). Here G(x, M2) denotes the polarized glu< 

stand for the singlet (S) and non-si
* same

coefficient functions Ct(x, Q2/M2).
on the mass factorization scale M and on 

renormalization scale R. However in (6.2.6) these scales are chosen to be equal.

In this section we will give an 
corrections to the polarized cg~. 
on M and R.

The coefficient functions receive contributions from the parton subprocesses listed 
in table 2.1. The corresponding Feynman diagrams can be found in figs. 3.1-3.7 of 
chapter 3. Apart from some small differences in the details, which will be given below, 
the calculations of the polarized parton cross sections will be analogous to the ones 
performed for the unpolarized structure functions Fjt(x, Q2) (& = 1,2,3, L) in chapter 

3 and 5.
The reactions in table 2.1 are described by the parton structure tensor Wpi/, 

defined as in (3.2.5). For V = 7 in table 2.1 the parton structure tensor can be 

written as follows

^(p, q, 3) = W^(p, g) + iW^(p, g, s) , 

with the symmetric part given by

•) FL(Z, Q2) + { pV - + PU9“)



(6.3.2)

. (6.3.3)

e we

B"“'(p, 9, s) = |Tr(l + 75SO(jS + m)G"1'(p, 9) . (6.3.4)

G'“'(p,9) = Gr(p,9) + mGr(P,9) , (6.3.5)

where Gq“'(p, 9)

(6.3.6)

(6.3.7)

with

(6.3.8)

1Do not confuse them with the earlier defined parton densities fi(x, M2).
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^,o(p. 9,3) = (p, 9)}= Q2) + T^g^x, Q2)

+ 2Tv(x,Q2) ,

{75,CT(P,9)}=0 ,

The antisymmetric part in (6.3.3) can now be split into two parts.

^r(P.9^) = lTr{75/(ji + m^^q)}
I kXo(P.9^) + ^(p,9,3) ,

sq
S(3----------- P(3

P’9

and

9o Wi(z>Q2) + (■

A(z,Q2)
P-9 

and the antisymmetric part is equal to

the momentum
Q2/2p-9- 

the partonic . ?.iogr of the 
ions1 
) and 
5(«2)

and Gi“(p, 9) satisfy the properties (in 4 dimensions!).

[7s,Gr(P,9)]=0 .

+ <

Here G?M*/(p, g) is the amplitude where the external quark lines with momentum p are 
amputated. For the calculation it is essential that terms linear in the quark mass m 
are kept in G?Mlz(p, g) even if one employs n-dimensional regularization in which case 
such terms are usually put equal to zero. One can now write G?p*z(p, g) as follows

2p • 9

Here q denotes the virtual photon momentum. Further p and s are 
and spin of the incoming parton respectively, with s • p = 0, s2 = 1 and r 
The structure functions defined in (6.3.2) and (6.3.3) are 
hadronic structure functions. Therefore we will call them parton struc 
(indicated by a hat) since they correspond to the parton subprocesse 
table 2.1. The unpolarized quantities A and Fl have been calculate 
in chapter 3. The calculation of pi proceeds as follows.

Starting with the subprocesses in table 2.1 with a quark in the ii 
follow the procedure in [15] and write the partonic tensor as

(P • 9)2 1
92 J



(6.3.9)

(6.3.10)Tf"1 = -

(6.3.11)?o(-S0

(6.3.12)rr = Pc.S/3 .

(6.3.13)
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^(P,?^) = |mTr{75/j5Gr(p)9)}= T^g^fz, <?’) + ^gt.^z, Q2) 

-T^z,Q2)

are given by

T<
"2-p

The mass m wh. 
and (6.3.9) will b. di 
can be put equal to zero, 
proportional to the structure function v, violates 
that W^o and 
The above 
put sa = pa/m

and the tensors

m
2p <?' <7as0 j

. ars on the left as well as on the right hand side of (6.3.8) 
ted out so that in the case of n-dimensional regularization it

Notice that the last term in (6.3.8) and (6.3.9), which is 
current conservation which means 

have to be added (see also the remark below eqs. (19a,b) in [15]).
expressions simplify if one is only interested in gi. In this case one can 

so that Tf" = = 0. Furthermore if one puts m = 0, Ji.i in
(6.3.9) becomes equal to zero too and we are only left with g\to = gi in (6.3.8). The 
calculation of gx is then the same as that carried out for F3 in chapter 5. Here F3 
is the partonic structure function which appears in the parity violating part of the 
structure tensor for deep inelastic neutrino-parton scattering.

For the parton subprocesses in table 2.1 where a gluon appears in the initial state 
we follow the procedure in [16] (see eq. (3.11) of [16]). If we do not contract the 
amplitude squared in the integrand (3.2.5) with the external gluon polarizations the 

antisymmetric part can be written as

iV-(P,9) = ^-[e‘“'^eTppffq^(g1{z,Q2)+g2(z,Q2)) 

-^^eTpa0q>.p,gapPg2(z,Q2)] .

The Lorentz indices /z, v and A, a refer to the electromagnetic current and the external 
gluon respectively. To compute the difference between the cross sections due to left 
and right handed polarized gluons one has to contract (6.3.13) with
The result is given by (6.3.3) provided p2 = 0 and s.p = 0 (p is the gluon
momentum). Setting s = p the structure function g2 drops out and only <71 remains, 
so that we are in the same situation as in the case when there is a quark in the

sq „ 'I -----PPI > 
pg '

T!? =__ r
2p



£^x<,P>'q'’W^{p,q,plm) . 3.14)

(6.3.16)

— 4(7f

(6.3.19)
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(6.3.17)

(6.3.18)

nitial 
ption 
>n Ji

p(°) 
qq

^q0)

p(°) 
Kg

initial state. The structure function can now be obtained in the same way as 
in the case of F3 for neutrino-parton scattering by contracting with €^xapxq°■ 
However this contraction depends on the method one uses to regularize the three 
different types of divergences which show up while calculating Jj. These divergences 
are represented by the ultraviolet (UV), infrared (IR) and collinear (C) singularities. 
In order to regularize these singularities we choose the method of n-dimensional 
regularization. This method turns out to be the most convenient one in particular 
if one wants to compute QCD corrections beyond C?(a3) . However the use of this 
method requires that one finds a suitable n-dimensional prescription for \ - matrix 
which appears in the matrix element (6.3.4) for processes with a quark 
state. We encountered the same problem in chapter 5 and we will use th/, 
explained in section 5.2.1. Following this prescription the projection c 
reads as follows.

?i(*»Q2) =
2_______ 1

(n-2)(n-3)pg
For our algebraic computations of the traces, the partial fractioning of t; c matrix 
elements and the analytical evaluation of the integrals we have used the algebraic 
manipulation program FORM [22].

We will now present the results of the calculation of gx up to O(a2a) . Using our 
convention in (3.2.3) and (6.3.3) the zeroth order result is given by

$> = tf(l-z) . (6.3.15)
The first order corrections, denoted by g\l- (i = q, <7), have already been calculated in 
the literature [9, 15, 16, 23, 24] by using different regularization schemes. In the case 
of n-dimensional regularization the results for g\1^ (= F3) can be found in [25, 26] 
while for g{'^ they have been calculated in [9, 24]. Since the mass factorization has to 
be carried out up to order a] , one needs to know those terms in (z, Q2, e) which 
are proportional to e = n — 4. Therefore we had to repeat the first order calculations 
and the results can be presented in the same form as (3.2.13) and (3.2.15). The 
lowest order contributions to the polarized Altarelli-Parisi splitting functions P^ 
(i,j = q,q, g) [26] are given by (using our conventions)

2 -z] ,
= 87z[2z-l] ,
= 8Cx[j47 + l-2z + ||5(l-z)]-ln/«(l-z) ,



(6.3.20)
+ 6(1 -

(6.3.21)

3.2.30)

(6.3.22)
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Zn(l — z) + €n2z) 

1)<(2) - 12 + 16z] .

3
2

pO).?5

appendix 6A. The O(oj) 
* are also equal to the 

notation see also eq. (2.36)

in the case 
r. ’ i is extensively explained in 

The phase space integrals appearing in the 

also be taken over 1   ,

= cF [ (

where the SU(N) colour factors are given by Cf = (N — 1)/2JV 
and nf denotes the number of light flavours. The coefficients a, ( 

first order polarized coefficient functions read

6n2(l - z) \ 
1 — z / +

a<1) = T/[(2. ,2(l-z)-2/nz

+ (6 — 82 1 ' 1 — z) — f.n z^ —3(2z —

The calculation of the (9(a^) correction proceeds in the same way as 
of the unpolarized structure functions. The procedure L---------
section 3.2, so we do not repeat it here. ' r
2 —» 2 and 2 —> 3 body processes can also be taken over from chapter 3, except 
that we had to compute some new 2 —► 3 body phase space integrals for the process 
7‘ + g -> q + q + g. It is important to note that the expressions for the second 
order contributions g\2- (i = q, g) to the polarized parton structure function have 
exactly the same structure as those given for F2 in section 3.2, therefore we do not 
repeat them here. The collinear divergences in Ji,,- (t = q,g) are removed by mass 
factorization which proceeds in the standard way characteristic of quantities which 
only receive contributions from twist two operators. The procedure is the same as 
for the unpolarized parton structure functions calculated in section 3.2.

The results for the coefficient functions are given in a] 
non-singlet polarized AP splitting functions P^,NS and 
unpolarized ones and can be found in [28, 29] (in our n-------
of ([30])). Contrary to the unpolarized AP splitting functions, the second order 
contributions to the polarized AP splitting functions are not known yet. However we 
can derive them because we need them in our mass factorization procedure in which all 
other occurring quantities have been calculated. The polarized AP splitting functions 

are given by (for the definition of PS (pure singlet) see 3.2.30)

= 8CFT, [ - 2(1 + z)<n2z - 2(1 - 3z)6n z + 2(1 - z) ] ,

- |(1 + z)6n2(l - z) - z€n(l - z) + LL^.fn2z
z 1 — z 2 1 — z

, 3 1 3+ 2~ '2 + 2)^n(1 - ^) - z - 2) + -(1 + z)f(2)



(6.3.23)

vn, we can

(6.3.24)

Results6.4
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I,NS ,are alrea
which is given by

p(i)

In this section we will discuss the effect of the O(aa) and O(a2) QCD corrections 
on the hadronic structure function pi(x, Q2) and its first moment which is given by

— 4CFTf 2(1 — 2z)(—2£n2(l — z) 4- 4£n z£n(l — z) — £n2z 

+ 4((2))+16(l - z)fn(l - z) - 2(17 + \6z)tn z - 92 + 102z j 

+ 4(7x7’/ 4(1 — 2z) (fn’(l — z) — tn2z — 2tn z fn( 1 + z)

— 2£ij(—z))— 8((2) + 4(1 + 8z)tn z — 16(1 — z)€n(l — z)

4-4(12 —llz)j .

Since the polarized splitting functions Pto’NS and 
compute the singlet AP splitting function

p0)3 _ pU).NS + pW.NS + pUJ.PS

Unfortunately we could not obtain the other two second order po- riz ;d splitting 
functions P^ and P^\ since they will only show up in the third order contribution 
to Ji. This is because the gluon does not interact directly with the virtual photon as 
the quark does.

Before finishing this section we want to comment on the polarized coefficient 
functions and AP splitting functions mentioned above. They are all regular in the 
limit z —♦ 0, which is in contrast to the behaviour of the unpolarized quantities 
^'qS(z)» ^gq(*)» ^gg(2)- The latter behave like(.nkz/z as z —♦ 0. This behaviour
originates from multiple gluon exchanges in the t-channel processes like 7' + q —» 
q + q + qor7'+g —» g + q + q. However this can only happen if the incoming 
gluon or quark helicity is not flipped. In the case of polarized scattering the helicity 
has to flip and the above singular contributions decouple. The above phenomenon 
is the same as observed in Regge theory where the pomeron can only contribute to 
unpolarized structure functions but it decouples in pi(z,Q2). Another feature is the 
appearance of the large logarithmic terms (fn‘(l — z)/l — z))+ which show up in 
the non-singlet coefficient function C^*s. These corrections can be attributed to soft 
gluon radiation, which however also appears in the unpolarized coefficient function 
(see chapter 3).
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where the n'

6.4.1 Preliminaries

The nth moment of the polarized structure function gt(x, Q2) is defined by the Mellin 
transformation of (6.2.6).

■-^r^.Q2) = 5[n{£n(A/2) Cs'n((?2/M2)
■Q2/M2)}+i An(M2) CqNS’"(<22/M2)] ,

jf the coefficient functions C, (i = q, g) is given by

C?(Q2/M‘j dz z^C^z.Q2/^2) ,
Jo

with a similar definition for the moments of the parton densities. For the case of 
the MS scheme the first ten moments of the coefficient functions C^s (6A.1), Cq 
(6A.4) and Cg (6A.5) are presented in tables (6.4.1), (6.4.1) and (6.4.1) respectively.

Analytically they could be expressed in rational numbers and the Riemann zeta 
function <(m) (m = 2,3). However in order to shorten the expressions, we present 
the moments numerically, up to seven digits in the tables. Notice that up to finite n, 
Cf can also be calculated by using an alternative method (see [17, 32] and references 
therein), which provides us with an independent check of our calculation.

The first moments of the coefficient functions and the parton densities determine 
the size and the Revolution of the Ellis-Jaffe sum rule. Starting with the coefficient 
functions, the first moment of the non-singlet quark coefficient function presented in 
the MS scheme is equal to

^’WW) = dzC"s(z,Q2/M2) = 1 - |{3Cf} +

+ (IILm — 23)CaCf + (—2Lm + dJn/Cf} - (6.4.3)

Although the first moment of is factorization scheme independent, it still 
depends on the renormalization choice made for «,(= a,(Af2)). This is revealed by 
the logarithmic term LM = tn^Q2/M2) which carries a factor proportional to /?o 
(3.2.28). Notice that we have put the renormalization scale R equal to the mass 
factorization scale M. Up to O(a2), C’,S'1 equals the first moment of the coefficient

the Ellis-Jaffe sum rule [1]. In particular we will investigate how the Q2-evolution of 
5i(x>Q2) depends on the chosen parton densities of the sea quark and the gluon at 
some input value Q2 = Q^.

th m



n

4

— 12Lm

(6.4.4)

(6.4.5)
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Table 6.1. The first ten moments of the O(a2) contributions to the non ;,s; 
polarized coefficient function C^s (6A.1). The numbers in the table a;e ti 
coefficients of the (a,/4!r)2 terms at Af2 = Q2 (Lm = 0).

1
2
3

8
9
10

5
6
7

70.6212
84.0411
96.8539

<7qS,1(Q2/A<2) = £ dzC™(z,Q2/M2) = n/CFTz(^)2[ 

+ 16C(3) + y] .

CaCf 
-23.0000 
-17.3440 
-3.4943 
11.6410 
27.2034 
42.1577 
56.7369

ntcf 
4.0000 

-0.0741 
-5.0567 
-9.9443 
-14.5485 
-18.8566 
-22.8925 
-26.6862 
-30.2660 
-33.6563

C»(Q7M2) = ]' dzCt(z, Q2/M2) = 0

The vanishing of the first moment of the gluonic coefficient function in the MS scheme 
has as an important consequence that the first moment of the polarized structure

Cf _
10.5000
12.5432
15.8800
24.5188
36.1052
50.7538
66.9620
84.7833
103.4109
122.9214

Contrary to the first moment of the non-singlet coefficient function in (6.4.1) the 
singlet one receives a scaling-violating part which is due to C,3’1 (6.4.4). It turns 
out (see the discussion later on) that contrary to the non-log part in (6.4.4), the 
coefficient of Lm is scheme independent.

Up to O(a2) the first moment of the gluonic coefficient function is equal to

function C^3 in deep inelastic neutrino-hadron scattering, see (5.2.16) in chapter 5 
and eq. (13) in [17]. In O(a2) the coefficient functions C£s and start to deviate 
from each other due to the contributions of fermion loops which are proportional to 
nz (see the difference between eq. (13) and eq. (19) in [17]). The first moment of the 
pure singlet coefficient function which is factorization scheme dependent is given by
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(6.4.7)

(6.4.8)

(6.4.9)

(6.4.10)

(6.4.11)

n

1
2

3
4

5
6
7

8

9
10

CpTjnj 
22.8996 
7.7322 

4.4927 
3.0901 

2.2976 
1.7915 

1.4441 

1.1934 

1.0058 
0.8612

Table 6.2. .Che e :.e. ten moments of the O(o() contributions to the pure singlet 
polarized coefficient function CgS (6A.4). The numbers in the table are the 
coefficients of the (a3/4?r)2 terms at M2 = Q2 (Lm — 0).

function does not receive any contribution from the gluon density. Before discussing 

this let us first present the first moments of the anomalous dimensions of the twist 
two operators contributing to pi. The anomalous dimensions are obtained from the 

AP splitting functions as follows

* = ■ 

k=0

dz zn~1P^\z') , 

results (see (6.3.16)—(6.3.19) and (6.3.22), (6.3.23)) 

= _,(!), ns, i = 0 
'qq ’

= o , 7W-8-1 = 24CPT/ ,

-6Cf , 

7<i)4 = 0 , 
-2Z?0 = -(yCA

^(O).NS.l
/qq

zy(0),S,l
/qq

~(O),1 _ 
'gq ~ I

~(o).i _ 
*qg

= -2^0 = -^-^)

The value of the singlet anomalous dimension was already calculated in [16].

It is due to the axial anomaly which contributes via the triangular fermion loop to
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Table 6.3. The first ten moments of the O(a2) contributions to the 
polarized coefficient function Cs (6A.5). The numbers in the table « 
coefficients of the (a./dtr)2 terms at M2 = Q2 (Lm = 0).

e the

n

1

2

3

4

5
6

7

8
9

10

CFTf 

0.0000 

7.0840 

2.7478 

-1.8179 

-5.4281 

-8.1651 

-10.2363 
-11.8152 

-13.0291 
-13.9692

CaT, 
0.0000 

-13.5982 

-15.1280 
-15.4209 

-15.3327 

-15.0791 

-14.7508 

-14.3923 
-14.0267 

-13.6659

r« = 4tt
1p(o)
4

7qq’,S|1 >“ second order perturbation theory. The vanishing of 7^’’ was 

general grounds in [33], see also [31]. From the last reference we infer (see eq. (22)) 
that 7^'* = —2/?i (MS scheme, two loop level), although we do no know 7gg' n f°r 

general n yet. Here /3i stands for the second order coefficient in the ^-function, see 
(3.2.28). The non-vanishing of 7^,s'1 in the MS scheme implies that the conservation 

of the singlet quark helicity is broken at the two-loop level. The vanishing of C2 (see 

(6.4.5)) has as a consequence that the Ellis-Jaffe sum rule can only be reconciled 

with experiment by assuming a large negative sea-quark density at a scale Qq ~ 10 
GeV2 although this density is supposed to vanish at very small scales according to 
the constituent quark model. For this reason one prefers a scheme (see e.g. [33, 34]), 

where the first moment of C, is negative and 7^'S'1 = 0 which allows for a large 

positive gluon density and a small sea quark density. In order to increase the use 

of this chapter we will therefore adopt another scheme which satisfies the properties 
that < 0 and 7^'s'1 = 0. To that purpose we alter Tqg, which otherwise would 

be defined according to (3.2.45), in the following way



(6.4.14)

(6.4.15)

(6.4.16)

(6.4.21)
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(6.4.17)

(6.4.18)

(6.4.19)

(6.4.20)

pPS
1 qq

(6.4.13)

-(£)>(£
+5^’®/?’}] ■

The new splitting functions in the primed scheme become 

^(i)'ps = ^’■ps+^o,®/r) •
P^(1) = ^)-2A>/‘1, + ^0)®^1) ■

Taking the first moment the anomalous dimensions read 

7^1,'S’1 = MCFT, - 6CFf™-' , 

_ nI qg — v .

The singlet anomalous dimension in (6.4.19) vanishes when 

/(D.1 = 4T/

The above transition function can 
for ?i,»» i = q,g (which are similar to 
lowing coefficient functions are 
scheme in the last section.

C:S = n;'

+ 42'

{l^,)’ps + ^)®

+ 4” ~ 4” ] + "/(£)’[ {k- ® + p£’)

• <6-4-12>
be substituted in the mass factorization formulae 

(3.2.37)—(3.2.38)). This implies that the fol- 
altered with respect to the ones presented in the MS

- <Ai + {

+® <” -p<£’ ® /?’} +4” - 
where denote the AP splitting functions in the primed scheme. Because the par- 
ton structure functions giti (i = q,g) are scheme independent, we have the additional 

constraints that /<2> in (6.4.12) has to be equal to

and the transition function F^ in (3.2.44) has to be equal to 

y[p{

1
2-qs



c;ps = cps , (6.4.22)

-ny

(6.4.23)

(6.4.24)
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(S)’[{5pS'k4u}‘m

and the one in (6.4.20) remains zero irrespective of the scheme chosen. Substituting 
the splitting function in (6.4.17) and (6.4.18) into expressions (6.4.13) and (6.4.14) 
we obtain

'oes not 
lie non­
Dression 
cient of 
fficient

negative contribution - o J.-.e Ellis- 
Jaffe sum rule (6.4.1), provided the first moment of the polarized gluon density is 
positive. Taking the first moment of C' and imposing the condition (6.4.21) we get 
with c^’1 = — 3>Cf (see (6A.1) and Tj = 1/2.

= -nt<± [2]+n,Cp (g)’ [6CF]
At M2 = Q2 = 10 GeV2, the O(a2) correction in (6.4.24) changes the lowest order 

value for C’1 by about 14%, which means that in the case of a positive gluon density 
the Ellis-Jaffe sum rule will be slightly modified by including higher order corrections. 
Summarizing the above, we have seen that in a scheme where /I1’’1 1 (6.4.12), the
first moment of the gluonic coefficient function Cs gets a non-zero contribution and 
the singlet anomalous dimension 7qq changes with respect to the one presented in the 
MS scheme. Furthermore it appears that the coefficient of Lm in the first moment 
of Cps (6.4.13) is scheme independent. The non-vanishing of C'1 allows for the 
contribution of a large positive polarized gluon density to the Ellis-Jaffe sum rule. In 
the special case that f^’1 = 4Tj (6.4.21) the singlet anomalous dimension 7qq'^’ = 0, 
so that up to two-loop level the singlet quark helicity is conserved. Here we want to 
emphasize that a non-zero contribution to C' (6.4.23) and the vanishing of 7q^1’,s'1 
(6.4.19) are unrelated. One can still choose a scheme where the first moments of 7qq 
and Cg are both non-vanishing.

As has already been mentioned above, a different choice of scheme for the co­
efficient functions leads to a different parametrization of the parton densities. For

<4
+4”®/?’] ■

We see that C?s is the same in the MS and the primed scheme, 
mean that (7qSis scheme independent. One can show that another chci 
pole part of the transition function Tgq in (3.2.46) will lead to a diffe 
for CqS. However if one takes the first moment it turns out that tb 
Lm which equals — 12njCpTj (6.4.4) is scheme independent. The glu< 
function changes in such a way that one gets a
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6.4.2 Plots of Gi(x,Q2)
Before presenting our results we would like to emphasize that a complete next-to-next- 
to-leading (NNLO) order analysis is not possible, since the three loop contributions 
to the polarized AP splitting functions have not been calculated yet. Even the two 
loop contributions P^ and P^ are not known and P^’ps (6.3.22), P^ (6.3.23) 
are presented in this chapter for the first time. In the literature the parton densities 
satisfying the Ellis-Jaffe sum rule are scale independent and supposed to hold for 
M2 = 10 GeV2. This value is chosen because it represents the average Q at which 
the SLAC-EMC data are taken. If the scale variation is not too large, we can compute 
<7i(x,Q2) in (6.2.6) for values of Q2 which do not deviate too much from M2 = 10 
GeV2. In this case M2 is kept fixed at 10 GeV2, while the Q2 dependence is only 
carried by the coefficient functions Ci (i = q, g) and not by the parton densities as is 
usually the case when M2 = Q2. This fixed order perturbation theory is correct as 
long as a,(M2)^n(Q2/M2) < 1. This condition is satisfied if Q2/M2 < 100 GeV2. 
When Q2 > M2 the logarithmic terms have to be resummed via renormalization 
group methods. We have tested this approach for the unpolarized structure function 
^x} Q2) for which at least the next-to-leading order (NLO) result is completely 
known. Since we want to compare the ^2-evolution of Pi(x> Q2) with that of </i(x, Q ), 
it is important to note that ^(z, Q2) *s given by an expression which has the same

instance in the MS scheme where C* = 0 one has to choose a large negative sea-quark 
density to reconcile the first moment of g\ with the data. On the other hand if one 
chooses a scheme where C* 0, one can allow for a large positive gluon density. In 
the literature the ^-dependence of the parton densities is determined in such a way 
that the first moment of gx agrees with the data at an average value for Q2 = Qq =10 
GeV2. A large negative sea quark density as well as a large positive gluon density 
give an equally goo-' ch ^iption of the first moment of <?i(s,Q2) at Q2 = Qo ~~ 
GeV2 depending g osen scheme. However the above findings do not imply
that these parton s lead to the same result for the higher moments of the
structure function the Q2-evolution of ^i(z,Q2) does not depend on them.
On the contrary, . llustrate below, the negative sea quark and positive gluon
densities which ar .cd in the literature lead to a different Q2-evolution of the
polarized structure iY... on, which is of course unsatisfactory. Only when more ac­
curate data become av<. .able, which allows us to distinguish between g\(x, Q ) taken 
at different Q2 values, we are able to determine the shape of the parton densities with 

much higher accuracy at different scales and x-values.
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• s com- 
= q,g)

-- 0.144 
lin the 
3.2.49)

• and the

form as the one presented for gi(x, Q2) in (6.2.6), except that the coefficient functions 
and the parton densities take their unpolarized representation. In the plots discussed 
below, the unpolarized and polarized structure functions are computed using the 
two-loop corrected running coupling constant with four active flavours (ny = 4). The 
same nj is also chosen in the coefficient functions. Furthermore for the unpolarized 
structure function F2(^,Q2) we have chosen the set of parton densities in [35] which 
are parametrized in the MS scheme. The set of the polarized parton densities will be 
presented after we have discussed fixed order perturbation theory for /7?(.t,Q2).

In fig. 6.1 we have compared F^Xx.Q2) for M2 = 10 GeV2, Q2 ’.0. 50, 100 
GeV2 with F2(1)(x,Q2) for M2 = Q2 = 10, 50, 100 GeV2. Here F2(1' 
puted by using the 0(0',) corrected coefficient functions (721,- (MS sc 
and the leading log (LL) parametrization of the parton densities in 
GeV, nj = 4, table H3-FIT-SL). The O(as) corrected coefficients C 
logarithmic term Lm = tn(Q2 / M2) and the non-log term c,’; (the same 
and (3.2.54)). In the case M2 = Q2 the Lm appearing in Cj,,- equals 
Q2-evolution of Fp^z, Q2) proceeds via the parton densities where all leading logs 
are resummed. In fixed order perturbation theory, where M2 is kept fixed, the Q2- 
evolution of F2’ \x,Q2) proceeds via the term Lm which appears in the coefficient 
function Cj,,-. Fig. 6.1 reveals that the difference between these two evolutions is quite 
small as long as Q2 < 100 GeV2.

In fig. 6.2 we have made the same comparison for F22\z, Q2), where now we have 
combined the Ofa2) corrected coefficient function Cj,,- (MS scheme, i = q,g, see 
chapter 3) with the next-to-leading log (NLL) parton densities given by the MTB1 
set [35] (A = 0.194 GeV, nj = 4, table I4-FIT-B1-MS). In the case M2 is fixed, the 
Q2-evolution proceeds via the terms Lm occurring in C^.i, which is an improvement 
with respect to the single logarithmic approximation presented above. When we get 
M2 = Q2, the L^-terms occurring in the coefficient functions vanishes and the Q2- 
evolution is taken over by the NLL parton densities where now the leading as well 
as the next-to-leading logs are resummed in all orders of perturbation theory. We 
see that fig. 6.2 shows a slight improvement with respect to fig. 6.1 in particular 
for Q2 = 100 GeV2. The curves for M2 = Q2 lie always above the ones obtained 
from fixed order perturbation theory. However the differences are so small (< 1.5%) 
that they cannot be observed in view of the accuracy reached in experiments on 
unpolarized as well as polarized lepton-hadron scattering.

After having discussed the validity of fixed order perturbation theory we will 
present our results for the polarized structure function gi(x,Q2). The polarized
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are given byare taken from [36]. These densities

Fig. 6.1. The unpolarized structure function Q2)- The LL parametriza­
tion is chosen for the parton densities and the coefficient functions are cor­

rected up to O(a,) .
Solid line: M2 = Q2 = 10 GeV2; dotted line: M2 = Q2 = 50 GeV2; 

long-dashed line: M2 = 10 GeV2, Q2 = 50 GeV2; short-dashed line: 
M2 = Q2 — 100 GeV2; dashed dotted line: M2 = 10 GeV2, Q2 = 100 

GeV2.

V
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fW = ( (6.4.26)a(z) = z°™ ,
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The unpolarized structure function F22\x,Q2')- 

parametrization is chosen for the parton densities and the coefficient func­
tions are corrected up to O(o2) . The meaning of the curves is the same as in 
fig. 6.1.

where we have chosen z0 = 0.75 and p = 0.76. The uv(z, M2) and dv(z, M2) are the 
unpolarized parton densities given by the DFLM4 set (A = 0.2 GeV) at M2 = 10 

GeV2 (37). The sea and gluon parton densities are chosen in such a way that the

\

0 L
.01
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heis a zero polarized 
density

(6.4.27)

(6.4.28)

(6.4.31)

(6.4.32)

b. At M2 = 10 
positive polari:

(6.4.29)

(6.4.30)

the one proposed in [38].

AG(z) vanishes at some scale

sea-quark density and a large

sea-quark density and a

experimental result for the Ellis-Jaffe sum rule is reproduced up to O(a,) . According 

to [36] we can adopt the following parametrizations

a. At A/2 = 10 GeV2 one has a large negative polarized
zero polarized gluon density

-1’,., -OM(1 -z)5s(z,M2) ,

AG(z) =- 0

As(z)
AG(z) - 6.' 76(1 — z)3G(z,M2) .

The above gluon density is about the same as

c. In a realistic situation it is unlikely that As(z) or 
for all z. Therefore the authors in [36] also proposed

As(z) = —3.39z0 62(l - z)'*s(z,M2) , 

AG(z) = 2.69z°'76(l - z)3G(z,M2) ,

for M2 = 10 GeV2
In a., b. and c. s(z, M2) and G(z, M2) represent the unpolarized parton densities 

belonging to the DFLM4 set [37], The normalization of the parton densities above 
is chosen in such a way that their singlet and non-singlet combinations in

equal to
. , x (6.4.33)

E(z) = Auy(z) + Adv(z) + 3As(z) ,
, , (6.4.34)

A(z) = Auv(z) — Adv(z) — As(z) ,
Notice that the charm density has been neglected although we assume that (massless) 
charm quarks are produced in the final state so that n, in the running coupling 
constant and the coefficient functions is put equal to 4. In case a. th 
gluon coefficient function is irrelevant since it is multiplied by a zero parton density 
However in b. and c. we have to choose a gluon coefficient function of which the rs 
moment is non-vanishing. We adopt the factorization scheme in eq. (2) of [36J w i 

is equivalent to the following choice of in (6.4.12)

4’>(z) = 47/[(2z - l)(a - 1) + 2(1 - z)] ,
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Using the above parton densities one can now determine ^i(x, Q2) in (6.2.6) by using
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xPi°\x,Q2); dotted line Q2); short-dashed line:

Fig. 6.3. The O(aJ) corrected polarized structure function 
xg[k\x,Q2). Parton densities given by set a (6.4.27), (6.4.28). Af2 
GeV2.
Solid line:
xgi2\x,Q2)-

and

c^ ® /<’) = 4CFT/^& - l){(2z - l)(2Li2(l - z) — 4C(2) - 2tn z €n(l - z) 

+ 2Zn2(l - z) + €n2z)+3(3 - 4z)€n(l - z) - (3 - 8z)€n z + 5 - 14z} 

+ (1 - z)(4L£2(1 - z) - 8f(2) - Un z tn{\ - z) + 4£n2(l - z) 4- 2€n2z 

- 14£n(l - z) - 12)+(2 - 10z)£n z

where a can be arbitrarily chosen. Here we will take a = 2 (see [36]). The above 
choice leads to the results presented in (6.4.19) and (6.4.20), which are independent of 
a. From P^f (6.3.16) and c^> (6A.1) we infer the O(a2) coefficients of C' in (6.4.23).

= 8CFT/[(a - l){(2z - l)(2Zn(l - z) - tn z)+|}

+ (1 — z)^4£n(l — z) — 2fn z — 1
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observe that the O(aa) corrections
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are small and the <9(aJ)

Fig. 6.5. The same as in fig. 6.3, but now

Fig. 6.4. The same as in fig. 6.3, but now for set b (6.4.29), (6.4.30).

fixed order perturbation theory. In figs. 6.3, 6.4, 6.5 we present <7i(s,Q2) by giving 
xg[k}(x,Q2) for Q2 = M2 = 10 GeV2 and 0.01 < x < 1. Here g(k\x,Q2) stands for 
the O(o£) corrected structure function which means that the coefficient functions are 
included up to (9(aJ).

In case a (fig. 6.3) we

0



0.2, the

180

e O(aa) con­
otice that in 
once quarks, 
4) contribu- 

eas at large x 
:iati. ;. The latter

sea quark

Fig. 6.5 shows a picture intermediate between figs. 6.3 and 
tributions are still appreciable but the (9(a2) corrections are 
all figures for x > 0.2 the structure function is dominated b 
whereas at small x (x < 0.2) either the sea- (fig. 6.3) or the glu 
tion dominates. In the small ^-regions all corrections are negate 
(x < 1) the corrections are positive which is due to soft gluon 
reveals itself via the distributions (£n*(l — z)/(l — z))+ occurring in the non-singlet 
coefficient function C^s (3.2.49). (See also (6A.1) and (6A.2)).

contributions are unobservable. Therefore the large negative polarized 
density already gives a good description of the data on the Born level.

In figs. 6.6-6.8 we show the C?(a2) corrected structure function xg\2\x,Q2) at 
three values of Q2 (Q2 = 10, 50, 100 GeV2) as a function of x in the range 0.01 < 
x < 1.0. In fig. 6.6 where we have a large negative polarized sea density there is hardly 
any variation with respect to Q2. Even if the data would have small statistical errors 
there is no way to distinguish between <7i(z,10) and ^(x, 100). This is, as we can 
infer from fig. 6.3, due to the small O(ct3) and O(cx2) corrections which are wholly 
due to the quark coefficient functions C^s (3.2.49) and C?s (3.2.52). In the case of 
a large positive polarized gluon density (fig. 6.7) one can easily distinguish between 
91(B) Q2) taken at different values for Q2, even within the current data. Besides to 
the gluon density this effect can also be attributed to the gluonic coefficient function 
Cg (3.2.54), which gives a noticeable contribution in particular in C?(a3) . From 
the above we can conclude that using the parametrization for the parton densities 
presented in [36], the Q2-dependence of <7i(z, Q2) is much more sensitive to the gluon 
density than to the sea-quark density. Therefore in order to get the same result for 
Pi(x,Q2) at Q2 > 10 GeV2 one has to modify these parton densities in such a way 
that the scheme independence of the polarized structure function will be ensured. 
This program can only be carried out when more accurate data become available.

In case b (fig. 6.4) where the gluon density dominates in the region x 
O(ot9) corrections are large whereas the O(a2) contributions turn out to be small. 
The size of the (9(a,) corrections can be attributed to the gluonic coefficient function 
Cg which starts at O(aa) . Therefore the gluon density enters on the O(ot3) level and 
is absent in the Born contribution 9i°\x,Q2). The large difference between the Born 
contribution (where now the negative polarized sea is absent) and the data can only 
be removed by introducing a large positive gluon density.
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Summarizing this chapter we have calculated the contributions to the polarized 

coefficient functions in the MS scheme. Another scheme is chosen to allow for a large 
polarized gluon density contributing to the Ellis-Jaffe sum rule. As a byproduct we 

also obtained the two loop contributions to the AP splitting functions Pqq and Pqg. 

We have shown that the Q2 behaviour of the polarized structure function appreciably 

depends on the chosen sea quark and gluon density. Future data will provide us with 

more information on the behaviour of these parton densities.

' ig. 6.G. The Q2 dependence of the O(a2) corrected polarized structure func­
tion denoted by xg[2\x, Q2). Parton densities given by set a (6.4.27), (6.4.28). 

M2 = 10 GeV2.
Solid line: Q2 = 10 GeV2; dotted line: Q2 = 50 GeV2; short-dashed line: 
Q2 = 100 GeV2. The data are obtained from [3].
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Fig. 6.7. The same as in fig. 6.5, but

Fig. 6.8. The same as in fig. 6.5, but now for set c (6.4.31), (6.4.32).
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Appendix 1

6A The polarized DIS coefficient functions in the MS scheme
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in (3.2.
we al
ature
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scale.
the p.
part .rented by Ly = ^n^Q2/M2j and the poly logarithms £»n(z), Sn,p(z) [39] 
characteristic for higher order radiative corrections.

Up to O(a2} the non-singlet coefficient function is given by
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In this appendix we will present the explicit expressions for the polarized DIS coeffi­
cient functn s Ci (i = q, g), the general form of which in the MS scheme can be found 

.2.52) and (3.2.54). In order to make the presentation self-contained 
in O(as) contributions which have already been calculated in the liter- 
23, 24, 25, 26]). In the expressions below the renormalization scale R 

■ coupling constant ota is always taken to be equal to the factorization 
• e chooses R different from M, ota(M2) has to be replaced following 
ion in (3.2.56). In the expressions one encounters the mass factorization

-«i-.)+S!cd4(
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+ n/ F \ 3 I
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(6A.3)

the discussion below (5.2.14).
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For the origin of c^,NS,+ (6A.2) and c<2hNS’- (6A.3), see
The singlet coefficient function is equal to the sum of the non-singlet and the pure 

singlet one (see (3.2.52)). The latter is given by
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The gluon coefficient function (3.2.54) equals
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1 “Partonen” is de verzamelnaam voor quarks en

Samenvatting
Twee QCD correcties op zeer inelastische processen

Het gi hadronen in hoog-energetische botsingen met leptonen of met andere

hadrc . ..it bepaald door de sterke wisselwerkingskracht die werkzaam is tussen 

de qu?; <3 v jruit hadronen zijn opgebouwd. De veldentheorie die de sterke wissel- 

werking probeert te beschrijven is Quantum Chromo Dynamica (QCD). Volgens QCD 

vertonen quarks onderlinge interacties door de overdracht van gluonen. De quark­
gluon koppeling wordt gegeven door de sterke koppelingsconstante as- De grootte 
daarvan neemt af naarmate de energieschaal waarop het sterke wisselwerkingsproces 

plaatsvindt, toeneemt. Dit betekent dat bij zeer inelastische verstrooiingsprocessen 

Qs dermate klein wordt dat we een storingsreeks in as rondom de vrije-quark-theorie 

mogen maken. Op het moment is dit de beste manier om in QCD voorspellingen te 
kunnen doen die met de experimentele resultaten vergeleken kunnen worden.

Een voorbeeld van een proces waarin de sterke wisselwerking een rol speelt, is zeer 
inelastische electron-proton verstrooiing. Dit proces verloopt in twee fasen. De eerste 

fase bestaat uit de uitzending van een foton door het electron. Omdat het electron 

als een puntdeeltje (zonder structuur) beschouwd wordt, is dit deel van het proces ge- 

makkelijk uit te rekenen. De tweede fase bestaat uit de daaropvolgende foton-proton 
verstrooiing. Om dat deel te berekenen moet het feit dat het proton structuur heeft 
tot uitdrukking gebracht worden in de werkzame doorsnede. Dit gebeurt door mid- 

del van een parametrisatie in termen van zogenaamde structuurfuncties. Als gevolg 

van de hogere orde QCD correcties worden de structuurfuncties afhankelijk van de 

energieschaal waarop het proces plaatsvindt. De oneindigheden die ontstaan door de 

manier waarop deze correcties worden uitgerekend, kunnen verwijderd worden door ze 
te absorberen in een onfysische grootheid, de ongerenormaliseerde partondichtheid1 

van het proton. Deze renormalisatieprocedure wordt massafactorisatie genoemd. Na 

renormalisatie wordt de partondichtheid verondersteld wel fysisch te zijn. Ze dient
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SLAC (Stanford) en in muon-prot. - -gen bij

de vooruitgang in de experimentele hoge-energiefysica. Dec. sellers 
tllende 
•rat ere

Met behulp van de resultaten van hoofdstuk 3 kunnen nu ook de tweede orde cor- 
recties op vectorbosonproductie in proton-(anti)proton botsingen uitgerekend wor- 
den in het DIS massafactorisatieschema. Dit doen we in hoofdstuk 4. Er blijkt 
weinig verschil te zijn met de eerder gepresenteerde resultaten in het MS massa­
factorisatieschema. Net als in dat schema zien we dat de tweede orde correcties 
weliswaar klein zijn, maar de ongewenste afhankelijkheid van de berekende totale 
werkzame doorsnede van de massafactorisatieschaal vrijwel geheel doen verdwijnen. 
Deze afhankelijkheid was op eerste orde nog aanzienlijk. Ze ontstaat doordat de 
berekening niet exact is, d.w.z. slechts tot op eindige orde uitgevoerd wordt. De 
massafactorisatieschaal- en -schema-onafhankelijkheid van het tweede orde resultaat 
geeft aan dat dit de exacte werkzame doorsnede al goed benaderd en is een indi­
cate voor de convergentie van de storingsreeks. Onze resultaten liggen binnen de 
foutengrenzen van de metingen gedaan bij de proton-antiproton versnellers van SppS 
(Geneve) en Tevatron (Fermilab). Verder doen we ook voorspellingen voor de werk­
zame doorsnedes zoals die gemeten zouden worden bij de in de toekomst misschien 
te bouwen proton-proton versnellers van LHC (Geneve) en SSC (Texas).

onafhankelijk te zijn van het proces waarbij het proton betrokken is. Dit legt restric- 
ties op aan de residuen van de oneindigheden die ontstaan bij de berekeningen van 
hogere orde QCD correcties op andere processen.

Het hoofdonderwerp van dit proefschrift is de berekening van de tweede orde QCD 
correcties op alle relevante structuurfuncties van zeer inelastische electron-proton 
verstrooiing. De eerste orde correcties zijn reeds 15 jaar geleden uitgerekend. Onder 
andere door de ontwikkelingen op het gebied van computers is het nu mogelijk om ook 
de tweede orde correcties uit te rekenen. Een van de redenen om deze berekenmgen te 
doen was
leveren een toenemend aantal hoge-precisie metingen in een groot aan; 
sterke wisselwerkingsprocessen. Daardoor ontstaat ook de behoefte 
theoretische voorspellingen om de data mee te kunnen vergelijken.

In hoofdstuk 3 berekenen we de structuurfunctie F2 en de longitud 
functie Fj,. Deze worden gemeten in electron-proton botsingen doo 
groepen bij HERA (Hamburg) en
NMC (Geneve). Onze berekeningen laten zien dat de tweede orde c*. vecti groot 
zijn, ze varieren van —20% tot +10% van de eerste orde gecorrigeerde resultaten. 
Dit zou voor een deel kunnen verklaren waarom het niet mogelijk is gebleken om 
de SLAC-BCDMS metingen te beschrijven met behulp van slechts de eerste orde 
correcties.
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Hoofdstuk 5 is gewijd aan de berekening van de structuurfunctie F3 die geme- 

ten wordt in neutrino-proton verstrooiingsexperimenten, welke bijvoorbeeld door de 
CCFR-groep gedaan worden. In het kinematische gebied dat door dit experiment 

bestreken wordt, is het tweede orde gecorrigeerde resultaat nauwelijks te onderschei- 

het eerste orde resultaat, waarvan al bekend was dat het de data goed kon 

H •’.ten dit gebied zou de tweede orde correctie wel merkbaar kunnen 
van F3 is het nodig om de Diracmatrix 75 naar n dimen- 

n, een onderwerp waarover in de literatuur veel discussie is geweest. 

is een niet-triviale manier om de uitbreidingsmethode te toetsen. 
ruikte voorschrift blijkt consistente resultaten op te leveren.

voorschrift hebben we 00k nodig in hoofdstuk 6 bij de berekening 
seerde structuurfunctie gi die door SLAC en EMC gemeten is in 

. • :en gepolariseerde electronen en protonen en in de toekomst door SMC 
(Geneve) ne .iwkeuriger bepaald zal worden. Als belangrijkste resultaat vinden we 

dat c/i sterk afhangt van de keuze die men maakt voor de gepolariseerde zee-quark- 
en gluondichtheden. Toekomstige metingen zullen kunnen uitwijzen welke keuze de 

juiste is.
Samenvattend mogen we zeggen dat de tweede orde QCD berekeningen in dit 

proefschrift laten zien dat bij de huidige nauwkeurigheid van de experimenten de 

tweede orde QCD voorspellingen in goede overeenstemming zijn met de metingen 
van diverse zeer inelastische verstrooiiingsprocessen. Dit is een versteviging van de 

status van QCD als theorie voor de sterke wisselwerking. Op het moment wordt de 

onzekerheid in de theoretische voorspellingen voornamelijk bepaald door de vrijheid 
in de keuze van de partondichtheidsparametrisaties. Deze keuzevrijheid zal hopelijk 

grotendeels verdwijnen door de experimentele resultaten die in de nabije toekomst 

verwacht kunnen worden.
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