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Introduction

Quite a few physical problems give rise to quantum lattice models. Among these are de­
scriptions of high-Tc superconducting materials, metals, insulators and magnets. A quantum 
lattice model is characterised by quantum objects —spins, fermions or bosons— nicely 
positioned on a regular lattice. We will restrict ourselves to spins. These are located at the

• i ce points. The low temperature behaviour of such a model is strongly influenced by 
ii.'.it i zero point fluctuations. These usually suppress the classical order. Sometimes the

. - order is even destroyed giving room for other, non-classical types of ordering.
: ;S thesis insight in the low temperature behaviour will be obtained by a numerical 

he ground state at zero temperature. Two schemes are possible for this purpose
• v. ill be employed.

. first scheme makes a direct estimate of the ground state wave function. An approx- 
im.. c ground state is built and the properties are analysed afterwards. The most successful 
: mber of this class is the Density Matrix Renormalisation Group (DMRG). It consists of 

systematic, iterative procedure. At every iteration step the energy is minimised in a given 
subspace of the configurational Hilbert space. This gives a variational approximation to the 
ground state. Afterwards, a part of the subspace is enlarged and another part is truncated. 
This transformation is tuned to keep an optimal fraction of the approximation within the 
altered subspace. To preview one of the comparisons with the second scheme, the DMRG 
does not suffer from the ’sign-problem’ that hampers many other approaches. Below the 
sign-problem will be explained.

White introduced the DMRG in 1992 [51] and it has proven to be extremely successful 
for one-dimensional quantum models [19, 33, 53] and two-dimensional classical models 
[7, 10]. Applications to higher dimensional quantum models are relatively rare [15, 28, 54, 
55, 57]. In this thesis we investigate what can be achieved in two dimensions and find that 
the method has substantial more difficulty with the two-dimensional geometry. We will try 
to explain this limitation.

The second scheme does not attempt to approximate the ground state but aims at a 
direct sampling of the properties instead. From this class we will employ the Green Func­
tion Monte Carlo simulation (GFMC) [11, 37, 48, 40]. Dimensionality does not play such 
an important role here as it does in the DMRG method. The essential assumption of the 
Green Function Monte Carlo simulation, like that of any Monte Carlo simulation, is that 
the properties of a system can be obtained by measuring them in many representative con­
figurations. Every measurement Xa is accompanied by a weight Ma to express its im­
portance and the average over these measurements, XaMa/ TLa will yield the
properties. Green Function Monte Carlo simulations suffer from two important shortcom­
ings. The most important one is that quantum mechanical models that contain either frus­
tration or fermions require an extension of these weights M to negative values and the 
average XaMa/ Ma becomes prone to noise as the individual, positive and neg-
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ative weights Ma are exponentially larger that their sum. This complication is called the 
sign-problem. The second limitation is that a priori a good estimate of the ground state has 
to exist to help the simulation distinguish relevant configurations from less relevant ones. 
With the introduction of the Fixed Node Monte Carlo (FNMC) the sign-problem can also 
be cured by incorporating a very good approximation to the ground state in the simulation. 
The extension of the Fixed Node Monte Carlo to the Green Function Monte Carlo with 
Stochastic Reconfiguration (GFMCSR) [46] makes the end result less dependent on the 
quality of the approximation. Still a good approximation remains vital for the method.

The objective of this thesis is two-fold. First, we study the DMRG method to understand 
its capabilities and limitations in two dimensions. Second, the DMRG will be integrated 
with a Green Function Monte Carlo simulation. DMRG provides a systematic 
ation to the ground state based on the energy. The correlation functions are b; 
implementation of the method. This shortcoming can be overcome by a Gre 
Monte Carlo simulation using the DMRG wave function as a guiding wave n 
thesis introduces this new and promising combination of the DMRG and a G.».
Monte Carlo simulation for the first time.

To achieve these objectives, we will first study a well-known model, the 
in a Transverse Field (ITF) to analyse the DMRG method. Afterwards the D 
plied to an unsolved problem, the two-dimensional, antiferromagnetic, frustra 
berg model. Although this model has been attacked by a variety of methods [!•■. io, i7, 
26, 41, 44, 45, 46, 58] no definite results exist so far for the quantum phase diagram of 
this model as Monte Carlo simulations are hampered by a fundamental problem called the 
sign-problem. Strong indications for the existence of a phase without classical ordering are 
found by DMRG calculations and the combined effort of the DMRG and the Green Func­
tion Monte Carlo with Stochastic Reconfiguration. The next paragraphs describe this brief 
outline in more detail.

The first two chapters focus on the method itself. Chapter one introduces the two- 
dimensional Ising model in a Transverse Field. It has a direct and clear mapping to a highly 
anisotropic three-dimensional Ising model, making it almost a blue-print for a model with a 
quantum phase transition. It does not suffer from the sign-problem and cluster Monte Carlo 
simulations have yielded high quality numerical results [6] to which we can compare our 
results. DMRG can only handle relatively small systems and finite-size scaling techniques 
are necessary to extend the results to larger system sizes. A large fraction of the first chapter 
is devoted to developing these finite-size scaling techniques. Thanks to the power of the 
DMRG combined with these scaling relations we can numerically establish the critical field 
of the two-dimensional Ising model in a Transverse Field upto three significant figures.

The main subject of chapter two is the DMRG technique. A new variant of the method 
is introduced and afterwards the general properties are described. It seems that DMRG will 
need amendments or modifications for larger two-dimensional systems. In combination 
with scaling relations we can however establish the two-dimensional behaviour.

In the following two chapters the DMRG technique is applied to the frustrated Heis­
enberg model. The frustration in that model appears by competition of nearest-neighbour 
and next nearest-neighbour interactions, an the consequences for the phase diagram are
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unclear. The essential question is whether a phase with no classical equivalent exists for 
intermediate range of frustration. Chapter three is dedicated to the description of the model 
and the introduction of the spin stiffness ps. The spin stiffness is an excellent indicator 
of long-range order and should reveal whether an intermediate phase exists. It is studied 
using a mean field approximation in the Schwinger-boson representation. The reason to 
resort to a relatively complex mean field approximation is that the ground state of the frus­
trated Heisenberg model is rotationally invariant. The mean fields can thus not be simply 
the spin expectation values ( (<S) = 0). The Schwinger-Boson Mean Field approximation 
(SBMF) inserts the mean fields in the interactions of neighbouring spins, <S, • Sj. This not 
only overcomes the complication of the rotational invariance, but it also extends the mean 
■ ■■■ids to local correlations. It yields a rotationally invariant ground state but the spin length 

■> iol be strictly conserved.
1 spin stiffness in this approximation does not reveal an intermediate phase, but it 
■ ry well for an analysis of the finite-size scaling behaviour. This helps us to extend 

; rical results of the next chapter to an infinitely large system.
•;>ter four outlines the numerical calculation including the technique to obtain the 

..: ' less, guided by the results of chapter three. Like many other methods, The DMRG 
give a definitive answer on the existence of an intermediate phase, but it provides 

, .nibrmation on infinitely long strips of widths upto eight sites.
The final chapter combines the DMRG and the Green Function Monte Carlo with 

Stochastic Reconfiguration. The frustrated Heisenberg model belongs to the class where 
Monte Carlo simulations suffer from the sign-problem. As mentioned above a good guid­
ance is essential for the Green Function Monte Carlo with Stochastic Reconfiguration. For 
a long time finding an proper approximation to the ground state has been the bottleneck of 
all Green Function Monte Carlo variants as a large amount of research time had to be spent 
on designing it. The DMRG can provide such an approximate ground state for many differ­
ent models, including the frustrated Heisenberg model. In this chapter it is outlined how to 
combine both methods and the phase diagram of a 10 x 10 system is studied. This combin­
ation of the DMRG and a Green Function Monte Carlo simulation is new and promising. 
Further extensions, along the lines of forward-walking schemes [8], may even be able to 
obtain accurate values for the spin-spin correlations.

This thesis will hopefully provide a good understanding of the intricacies of the DMRG 
method. The last chapter resolves a long standing problem of the Green Function Monte 
Carlo and the last three chapters give indications of the intermediate phase of the frustrated 
Heisenberg model although no definite statements can be made.
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1 Ising model in a Transverse field

1.1 Introduction

The Model1.2

(1.2.1)

Consider a two dimensional square lattice with length L and width W. The lattice is peri­
odic in both directions and each lattice site contains a spin-?. The Hamiltonian is given 
by

Since the beginning of the 1960s, the Ising model in a Transverse field (ITF) has been 
Mndied. In first instance, this quantum mechanical model was employed to describe the 
> ’ ’ disorder transition in some double-well ferroelectric systems like KH2PO4 crystals.

merest has survived to the present day, but the scope has widened.
.cede later the renormalisation group and with it the notion of universality was
< d. The Ising model often served as a test ground and consequently it was scrutin- 

i; d dimensional ITF can be mapped onto a d 4- 1 dimensional Ising model. This 
nakes it an excellent vehicle to introduce the concepts of phase transitions in the 

•; quantum mechanics.
adev. Read and others [42, 13] have used the ITF for the same role as the Ising 
has played in the context of classical critical phenomena: a blue-print of phase 

.. ins i dons and universality. Maybe the most important difference lies in the fact that it 
r, not the temperature T that induces a phase transition, but a coupling constant H that can 
drastically alter the properties of the system. With the disappearance of the temperature, 
T = 0, it is the ground state that exhibits this quantum phase transition.

On the outset our intention is to investigate the density matrix renormalisation group 
(DMRG). The ITF is chosen as a ’toy-model’ both because of its rich behaviour and its 
simple description.

In this chapter, the model will be explained. The exact results in one dimension (a 
chain) will be reviewed and subsequently a large effort is made to uncover the finite-size 
scaling behaviour for the two-dimensional case. Given the restriction of the DMRG, which 
will be discussed in the next chapter, it is worthwhile to scale the length of the system to 
infinity first, after which the finite width can be scaled away. The results, table 1-3, clearly 
support such a two-stage process.

A good review of the ITF has been published by Chakrabarti et al. [13], relieving us of 
the duty to go into great detail. The numerical treatment is left to the next chapter.

l w
Hitf = 5? 52 +<5/!u>+i) + 2//<S?.wf

/=1 w=l
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(1.2.4)

are the usual spin-| matrices satisfying the commutation relations

LW
+ ~T

where the Sfw

[•Slw’sr.w'l ~ i&i.i'&w.w'(a^YSii.w ■ a,p,Y=x,y,z (1.2.2)
Clearly the energy scale of this Hamiltonian is set to unity. We have chosen the convention 
of spin-1, in contrast with the Pauli-matrices frequently used in this field. The factor of 4 
and 2 are inserted in the definition (1.2.1) to make our results directly comparable to the 
main part of the literature.

Let us summarise the main symmetry properties of this model. The Hamiltonian with 
field H can be transformed into one with — H by a spin rotation round the Sv axis over 
180 degrees. This is a unitary transformation so we have the freedom to choose V 
The model is translation and reflection symmetric in both directions.

An important symmetry that will be extensively used, is the spin-reversal opc­
is associated with a rotation over 180 degrees round the Sz axis;

Sl.S-'S = -Sx , S'SyS = —Sy , = Sz.
and can be expressed as

5 = exp ur^X

M.w
The offset of LW/2 allows us to associate the quantum number 5 = 1 with the ground 
state | V^o) for different system sizes. (In short: S\y//o) = l^o))- One can state that the spin 
reversal operator samples the number of up-spins and returns whether it is even, <S = 1, or 
odd, <S = -1.

If H —> 0, we end up with a simple, classical, two-dimensional Ising model. The 
ground state is degenerate; all spins point forwards or backwards in the 5'-direction. The 
associated phase is named the classically ordered phase. The two classical solutions, for­
ward and backward pointing spins, can be superposed in a quantum mechanical sense. In 
this manner states can be obtained that are either even (5 = +1) in spin-reversal or odd 
(5 = —l).The statement made before about the ground state, S|i/<o) = IV'o) still holds for 
one of them, but the other ground state lies in the odd subspace, = —IVq).

In the other extreme, H —> oo, the degeneracy is lifted. The model essentially describes 
free spins in an external field. The ground state is unique and has all spins pointing down 
in the ^-direction. This is the reference state for the quantum disordered phase and again 
has the quantum number 5 = +1. The lowest excitation differs from the ground state by 
the reversal of one spin. So it belongs to the class S = — 1. We will extensively study the 
energy gap A between the lowest excitation (in 5 = — 1) and the ground state (in <S = +1). 
A = £i — Eq.

There is a phase transition between the classically ordered and the quantum disordered 
state. A clear signature of this phase transition is the appearance of the gap A, which occurs 
for a critical value H = Hc. In figure 1-1 all these properties are summarised in a graphical 
representation. As we will show later the relation between the gap A and the field can be 
made more explicit by
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Classically j
ordered

A

1.3 Connection with the 3-dimensional Ising model

(1.3.1)

The ITF has an intimate connection with a highly anisotropic Ising model in one dimension 
higher. Although we will only show this explicitly for the 2-dimensional ITF, the argument 
holds in general.

As starting point we take a highly anisotropic, ferromagnetic Ising model in three di­
mensions. The classical spins sz = ±1 interact according to the Hamiltonian

on a cubic lattice at an inverse temperature /J. The first term contains the interactions 
between nearest neighbours (denoted by (iJ)) in the plane perpendicular to the anisotropy 
axis. The second term contains those along the anisotropy direction. The coupling con­
stants K± and Xj| give rise to this anisotropy. We link them to the field in equation (1.2.1)

The phase diagram for the ITF and the energy gap A associated with it At the critical 
a phase transition occurs and the gap A opens up. Further explanation is given in the text.

-PHdas = + K|| Y^sisj'
<iJ1 (<j)

' Quantum
i disordered

for H > Hc. Below the critical field. H < Hc, the ground state becomes degenerate. The 
gap A should then be defined as the energy difference between the ground state and the first 
excitation within the even subspace for equation (1.2.4) to hold. In the rest of the chapter 
we will not redefine the gap but only consider H > Hc.

It will take another section to prove that the critical exponent v is identical to the critical 
exponent of the three-dimensional classical Ising model. After that we focus on extracting 
both the critical field Hc and the critical exponent v for the two-dimensional ITF.
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(1.3.2)

l«„+i).

'A ere

+ -S/Z.w+l)l“-'+l>

Ze~NKlt — Tre“^c^/rf

The connection to the quantum mechanical world is made by introducing sum:.. 
complete bases |or„) for the slices in this product;

N 

z=£2n<a"ie 
|a„) n=l

with periodic boundary conditions, |a/v+i) = |ai). The parameters K± and 
chosen so anisotropic that we may approximate the exponentials;

(a„|exp I K|| Y^sisj
\ (i.j)

= eKii<a„|l+2e-2jf|1
l.w

,~P'Htrans

~LW

E E +-?Ui)+2HSQ
_/=l w=\

K± is a small, positive parameter and Aj| is a large one.
The partition function can be calculated by the transfer matrix method. We choose the 

transfer direction along the anisotropy axis. The Hamiltonian 'Hcias can be split in inter­
actions between slices perpendicular to the anisotropy direction. For each pair of adjacent 
slices we then obtain a local, transfer Hamiltonian Htrans for all N slices. The connections 
with the 1TF will be found in the partition sum,

N
Z - Tre-^Wrf“ = Tr

(1.3.3)

Careful analysis reveals that this relation holds up to order <9(s2). Along with this connec­
tion come quite a few others; the correlation function f, formally defined by the covariance 
of Ising spins located at location (/, w, 1) and (/, w, n);

where the energy scale was set to unity,

Kj. = e , e~2K" = sH , e « 1,

(a„|exp I K± Es^sj I l“"+l> = (“"I1 +4^J-E'Sd(5/+i.w 
\ (>.;) / l.w

All of the above is combined in the resulting partition function
N

Ze~NK« = Tir [j
n=l

The right side of the equation can easily be mapped onto the definition of the ITF in 
equation (1.2.1) by some simple, unitary transformations; we exchange the Sz- and 5'- 
direction and afterwards rotate the spins over n round the Sx axis (using the unitary op­
erator exp(irr 5J)). The trace is invariant under these unitary transformation, so the 
outcome is
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(1-3.4)

1
tzv -t A /ru.

. ...pression we use that for the 3D Ising model z = 1

Exact solutions for the ITF chain

S+ = f[e'C>%-.

In terms of these operators the Hamiltonian reads

(1.4.1)

(1.4.2)5.

.< perties of the two-dimensional system can only be obtained by use of finite-size 
In doing so, the results for the open ITF chain will provide a crucial reference. 

r.\ ... we briefly review those. The reason not to follow Pfeuty [38] is that he considers 
an infinitely long chain, whereas here it is essential that the chain is both finite and open. 
Given the beauty of exact solutions, we can not resist in presenting also the results for the 
finite periodic chain.

The essential ingredient to the exact solution of the ITF chain is a Jordan-Wigner trans­
formation [38] to spin-less fermions cj,

4- 1~Lpcr-

Hper

L L—\
H = -HL + 2H^ c'cj - J £ 0 - c,) (c}+1 + c,+1)

can be related to the gap A in the ITF by inserting complete bases in the same fashion as 
above. The result is

. e~eEx$-l = ln^- = e(El-E0) = eA.

As mentioned before in the paragraph after equation (1.2.4) this relation only holds for 
H > Hc. Below the critical field the gap has to be redefined.

The reduced temperature t = (T — Tc)/Tc in the classical model is replaced by the 
reduced field h = (H — Hc)/Hc. The relation for critical exponent v thus also finds its 
equivalent;

The term Hper governs the interactions between the first and the last site. If the chain is 
open, these do not exist, Hper = 0. For a periodic chain

J (4 - cl) (4+c°)
This equation reintroduces another observable, the spin-reversal operator S, defined as
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1.4.1 The periodic chain

(1.4.3)

(1.4.4)k - , 0 < I < L.

H - -HN

■0,71 »

'H-o.n — allowed P(O)coco + allowed P(7r)cic^-

We want to Fourier transform the particle creation and annihilation operators ir. 
manner

For even number of fermions, 5 = 1, the boundary conditions are antiperiodic and the set 
of ^-values has to be adjusted accordingly;

The Hamiltonian H is now converted to the momentum space representation and to repres­
ent it compactly we define p(k) = —2H + 22 cos(Jt) and q(k) = 2J sin(Jt). It reads

where the allowed it-values are defined in (1.4.3) and (1.4.4). The wave vector k = 0 and 
k = rr —treated in — are not always allowed. If they are, see table 1-1, they play a 
special role in that they already appear in a diagonal form;

(2/ + l)rr 
L

Q<k <7t

+i 2_ 
0<k<7t

22 PW (c[ck + cLtc_*)

22 (4c-t+c*c-*)+1

The allowed ^-values depend on the number of fermions present on the chain; J 
number ,5 = —1, the boundary term 1-1 per, equation (1.4.2), has the same 
other interactions. The Hamiltonian H becomes translational invariant and we can take the 
regular fc-values;

The current definition is identical to the original one in equation (1.2.3). It is a conserved 
quantity as the only change in the number of fermions occurs in the second term of the 
Hamiltonian (1.4.1) by pair creation or annihilation. As an empty chain corresponds to 
all spins pointing downwards, the ground state has to be in the even, 5=1, subspace. 
Moreover these pairs of operators in the Hamiltonian H make it already clear that it can 
be diagonalised via a Bogoliubov transformation. For the periodic chain we can go even 
further and derive exact expressions for the excitation spectrum. The open-chain proper­
ties require the numerical diagonalisation of a L x L matrix to get all energy levels and 
eigenstates.

k = ^ , 0</<L.

,ikl„ 
■ Cl.

1=1
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S=-l

k = n

Table 1 -1. The k = 0 and k = it values will only occur for certain length and number of fermions.

1.4.2 The open chain
In the case of the periodic chain we are fortunate that the translational invariance allows 
a Fourier transformation. The modes become almost decoupled afterwards and an exact 
expression can be derived by a Bogoliubov transformation.

The open chain is not translation invariant and no further analytical steps can be taken. 
The numerical procedure remains straightforward. Van Hemmen [24] describes in detail 
how to derive both the energy spectrum and all eigenstates of a fermionic system for a 
general pair-wise interaction. Applying the relevant transformations leads again to a diag­
onal Hamiltonian containing excitation occupation numbers offsetted by the ground state 
energy Eq.

In figure 1-2 the scaled gap LA, on which we will focus from now on, is depicted for 
both the open and the closed chain. They show similar behaviour, although in the vicinity 
of the phase transition their ratio becomes quite large.

Length 
even 
odd

S=1 
k = 0, rr 

k = 0

Apart from these, all the terms have to undergo a Bogoliubov transformation. Next we 
provide the main formulas to diagonalise those: define the canonical transformation

ck = u(k)ijk - iv(Jc)rf-k,

£off —, « ^7 Mfr)-
z k

It is important to stress that the form of the Hamiltonian depends on the number of 
fermions present. Creating one excitation by creating a single fermion will change the 
parity of the number of particles; the only allowed excitations within the subspace are 
built from pairs of fermions, i. e. zj/z/jIV'o)- To obtain an excitation in the other subspace, 
we have to start with the lowest energy state within that subspace and create pairs of 
excitations on that.

w(fr) = cos#* , v(k) = sin#*,

= T77T ,*(*) = /pW+W)-p(k)
*.(*)

expression for the Hamiltonian now is

' Eoff + X(*) (nlni + ilk’i-k) +Ho.^,
0<k<n



18 Ising model in a Transverse field

15

10

3

5

-2.5 0 5 7.5 10

1.5 Finite-size scaling

Figure 1-2. The behaviour of the energy gap A as function of the combination of x = ■; 
the length L of the system. The only difference between the lines is the boundary Condi r

Although the Density Matrix Renormalisation Group (DMRG) will not be introduced 
until the next chapter, the results are incorporated in the following scaling analysis. DMRG 
calculations were performed to obtain the lowest energies in the even and odd subspace. 
The difference is the energy gap A. The parameters of the calculations were H = 3.00  
3.10 in steps of 0.01 and L/W = 2,..., 5 in steps of 0.5. For widths W = 7, 8 the largest 
ratio was L/'N = 4.

Open Ising chain
Closed Ising chain

°7 5 2.5
xL

We want to establish properties of the 2D ITF through numerical means. In general it 
is not possible to obtain direct quantitative information on an infinitely large system. A 
widely used indirect route is to calculate the desired quantities for a set of finite systems 
and extract their values for the infinite-size limit by investigating their dependencies on the 
systems size. This method is called finite-size scaling. Anticipating that for our numerical 
method, the density matrix renormalisation group, the length of the system imposes less 
restrictions than the width, we will first develop the scaling relations to scale the length 
L -» oo. Afterwards we derive the relations for W —> oo. A final subsection is spent on 
studying the scaling behaviour for fixed aspect ratio L/ W and L -> oo. The properties of 
the 2D system are independent of the route taken to derive them, therefore both approaches 
should yield the same results in the limit of infinite system size.

J
12.5 15
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1.5.1 1-Dimensional, W fixed, L oo

LA(.r, W, L) (1-5.1)

This scaling relation contains quite some new elements that deserve either an introduction 
or an explanation:

• LA. Given the connection to the Ising model, A has to correspond to an inverse 
length. Rescaling the length will thus automatically lead to the appearance of the 
combination LA.

• xL. Universal behaviour concerns the system properties in the vicinity of the phase 
transition. Every width has its own critical field HC(W), so x = H — HC(W). One 
dimensional critical behaviour is accompanied by the critical exponent v = 1. The 
combination thus has to be xLv = xL.

• A(W) and B(W). The theory of universality makes predictions on the exponents near 
a phase transition, not on the overall scales. These can vary for the different width 
strips.

• /0(. • ■) and f\(.. .)/L. These are respectively the leading order and the first cor­
rection of the finite-size behaviour of the open ITF chains. We obtained these func­
tions numerically. Knowing that the correction arises from a surface contribution (the 
chain is open), the factor 1/L in f\(.. .)/L is obvious.

There are two reasons to scale the length L to infinity first. The first one has to do with the 
open boundary conditions. As we will discuss in the next chapter, closing the boundaries in 
the length direction and making the system translation invariant will severely hamper the 
accuracy of the calculation. Open systems give rise to complex finite-size effects by their 
lack of translational invariance. These effects will disappear if we scale the length L —► oo 
where open and periodic systems become indistinguishable.

The second reason is of a more practical nature. The fact that DMRG functions so 
; •. mely well for quantum chains [51], indicates that varying the length L of the system 

•t have a large impact on the accuracy. Unfortunately this does not hold for the 
of the system. In the next chapter, section (2.6.1), we will show that in order to 

•i. the accuracy, the size of the calculation grows exponentially with the width W 
■em. With a large range of lengths and only a few widths that we can handle, it 
e to remove all the dependence on the length first. We will thereby obtain fairly 
esults for infinitely long strips.

js now outline the procedure: once the length L has become sufficiently large, a 
:;f dimensions L x W, with fixed width W, will start to behave as a one-dimensional 

• Such a system will by arguments of universality resemble an open chain, so we 
. .. jet for fixed width W, that

A(W) |/0(B(W)xL) + ^-/t(B(W)xL) + ...}.
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Figure 1-3. The critical field HC(W') can be obtained by ’smoothing’ the curve of \ 
Depicted is the case for W = 5 and HC(W) = 2.867.

It has to be stressed that only the form of the leading term, fo(B(W)xL), is fixed by 
universality. The form of the correction term, f\(B(W)xL)/L, is an assumption. We just 
take the simplest form that also suits the open chain.

The scales A(W), B(W) and the critical fields HC(W) can be considered fitting para­
meters to make relation (1.5.1) agree with the data. In the following we will describe how 
we obtained these parameters and what the outcome is.

The standard fitting procedure is to adjust the parameters such that all data points are 
fitted best according to a least-square functional. The critical field /7C(W) can also be 
derived independently through another, simpler route. In practice this approach is taken. 
If the right //C(W) is chosen, plotting LA versus xL must give a smooth curve for large 
enough L. From this feature we will extract HC(W). An example of this procedure is given 
in figure 1-3.

With HC(W) already found, only A(W) and B(W) have to be obtained from data col­
lapse. We can fit the data x, L, A to the formula (1.5.1), as both fo and f\ can be obtained 
from the open ITF chain. Figure 1-4 reveals that indeed the data shows nice, universal 
behaviour with the calculated /o- The corrections due to f\ are removed from this figure. 
They are relatively small. Table 1-2 lists the results.

The general expression for the gap A at infinite system length L = oo can be found 
by examining the behaviour of /b(y) and f\ (y) at large argument y more closely: for large 
argument y (or field) the ITF Hamiltonian describes free spins in an external magnetic field

5 6 7
8 

2

° HU»I = Hc(5) - 0 01 

' H,« = He(5)
° = Hc(5) + 0 01
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8

2 6 8

6

2

Figure 1-4. The data obtained by DMRG calculations is fitted to scaling relation (1.5.1). The figure 
shows scaling collapse nicely.

Table 1-2. From the one-dimensional scaling procedure these values can be extracted. The expres­
sion of the gap for the infinite long periodic strip is given in equation (1.5.2) .

4 
B(W) xL

h a

A(W)B(W)
2.219
2.567
2.922
3.262
3.579
3.898
4.197

W 
2 
3 
4 
5 
6 
7 
8

HAW)
2.296
2.646
2.792 
2.867 
2.912
2.941
2.961

A(W) 
2.601 
3.096 
3.343 
3.492 
3.586 
3.695 
3.754

B(W) 
0.853 
0.829 
0.874 
0.834 
0.998 
1.055
1.118

0 
0

■ W=2
• W=3
• W=4
■ W=5
• W=6
• W=7
- W=8

Calculated 1D scaling function
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(1.5.2)

o

■,e

1.5.2 2-Dimensional, W oo , L = oo.

(1.5.3)

—

lim A(W)B(W) = oo.
VV->oo

The trend is in the data but W = 8 is far to small for this combination to grow excessively.

with strength y. An excitation can be made by flipping one spin upwards, thus

.. /o(y) ,lim --------= 1,y—»oo y

with no corrections dependent on size. Therefore the gap A will become

lim HC(W~) = Hc. 
W—.oo

The combination A(W)B(W) also shows a trend to the two-dimensional situat 
dimensions the critical exponent v < 1. The first derivative with respect to ■! 
which is here A(W)B(W) and in equation (1.2.4) it is v(H — , should di
phase transition point. So

A(x,W) = lim A(x, W, L) = A(W)B(W)[H -
L—*tx>

This relation for the gap A of a finite-width strip and the numerical value of the quant­
ities appearing in it, table 1-2, are the results of this subsection. In the light of the gap 
expression, the trends in the numerics become clearer:

The critical field HC(W) is monotonically increasing and should approach 
dimen-sional value,

A(W')B(W)W = W'l/u — (0,0)4- VV1/v+>'u,-hA-(0. 0). 
dh du, oh

Standard scaling methods as described in [9], can be implemented now;

A(A,W) = ^S(/iH'1/v,u,^i).

The reduced field h is given by h = H — Hc (remember Hc = Hc(oo) ); true two- 
dimensional scaling behaviour is considered, in contrast with equation (1.5.1). The finite- 
size corrections are anticipated by the inclusion of the irrelevant field u, and exponent y, . 
In the previous subsection also an expression for the gap A was given in equation (1.5.2). 
As both, this one and the scaling relation above must hold, they have to be identical:

A(W)B(W) [h + Hc- HC(W)} = •hgdtW17’',

The left side of this identity is linear in h. The right pan also contains higher order terms, 
which we will neglect. Expanding both sides up to linear order yields:

A(W)B0¥)W[Hc-Hc(W)] = g(0,0) +W*M/^(0,0),
duj



1.5 Finite-size scaling 23

Literature L = QW oo

2-Dimensional, L, W —> oo with fixed aspect ratio L/ W.1.5.3

(1.5.4)

natives denote differentiations with respect to the first or the second argument. 
■’V), B(W') and HC(W) for widths W = 2 8, both the critical properties 

id the fitting parameters g(0, 0), u;8g(0, 0)/8u,, 8g(0, 0)/8/t and u,32g(0, 0)/ 
.: be obtained.

. ults are listed in table 1 -3. The critical field we obtain is of similar quality as ob- 
. uster Monte Carlo calculation by Blote [6], The critical exponent is of substantial 

•tlily. Still, it remains striking to observe that this quality can already be achieved by 
considering such a narrow systems, W < 8 !

The aspect ratio Q = L/W is fixed and the second step (1.5.3) in the previous approach 
can be implemented immediately;

As we consider fields close to the critical field, |/i| 1, and the corrections to scaling are
expected to be relatively small, this is expanded up to linear order:

3.0444 
0.63029 
-0.83

3.0439 
0.62 

-1.21(*>

Hc 
V 

yi

The critical properties Hc, v and y, are not dependent on the aspect ratio Q. All oth- 
ers, /(0.0, 2), «,3/(0.0. 2)/9u„ 8/(0, 0, Q)/9h and u,32/(0,0, Q)/dUi9h, do. The 
parameters were extracted by a least square fit to all of the data available. The systems con­
sidered had a range of properties; widths 4 < W < 8, Q = 2,2.5, 3, 3.5, 4, 4.5, 5 (the frac­
tional aspect ratio’s were only considered with even width W) and fields 3.00 < H < 3.10. 
In total 471 points were fitted to this behaviour. An optimal fit can be made for a large range

first L -> oo 
then W —> oo 

3.0449 
0.61 
-1.21

Table 1-3. Comparison of the results for the critical properties of this work with those by Blote [6] 
. The first result corresponds to the two step approach: the length is scaled to infinity, L —> oo, 
afterwards the width VV —> oo. The second approach is scaling with fixed aspect ratio.the value 

. .. irrelevant exponent was taken from the anisotropic scaling.

A(/t, W, L) = UiU‘, 2).

la = /(o,o, 2) + ^i«1~(0,0, 2)
dUi

+hL'/v °’ 2) + Ly'M-°- 2)) •
\dh dUjdh )
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1.6 Conclusion

/

of parameters. We therefore had to fix y, = —1.21; the value found in the anisotropic scal­
ing. If the least square fit is made unrestricted, unreasonable critical exponents will result. 
The outcome is listed in table 1-3.

of the

In this chapter we derived the critical field Hc and exponent v of the two-dimensional ITF. 
Two routes were taken: one was to scale the length of the system to infinity and afterwards 
the width. The other route followed the usual path of scaling; the linear dimension was 
rescaling in both directions.

The two-step scaling approach was prompted by the strengths and weaknes 
DMRG. Table 1-3 clearly indicates that this makes sense; the accuracy of the ci ■ 
Hc may be considered unexpected in view of narrow systems considered. The 
ponents are not too impressive.

Although the essential ingredient in these calculations is the DMRG, no tint 
on the procedure or the properties. The next chapter contains that half of the re. 
complication that was mentioned, strong limitations on the width of the system 
general feature of the method. Later on, in chapter 4 where the frustrated Her 
investigated, the same problem will reappear.

Apart from two constants, Hc and v, this chapter has given us an excellent pl jcnd 
to test the DMRG and a first taste of finite-size scaling in quantum magnetism. Tills will 
be of use for the frustrated Heisenberg model.



2 Critical properties of the ITF through DMRG 
calculations

2.1 Introduction in the Density Matrix Renormalisation
Group
hunter the density matrix renormalisation group (DMRG) is introduced and stud- 

method was originally proposed by White [51] in 1992 to resolve some of the 
the real space renormalisation group (RSRG) suffers from; in contrast with 

'. '1 treatment of the Kondo problem, the RSRG gives —relatively— poor results 
: 7 interacting quantum chains.
.-il established by now, that the DMRG can handle this class of lattice problems 
well, making it the method of choice for one-dimensional quantum lattice sys- 

iready in the initial papers [51] the promise became apparent. The treatment of the 
Heisenberg chain [53] demonstrated the capabilities of the method. The accuracy 

was unprecedented.
I’he method is variational and systematic. If the computation is scaled up sufficiently, 

the approximation the ground state that is made, has to be accurate. The surprise lies in 
the fact that this situation can easily be achieved with a minor computational effort. Some 
theoretical investigation on the grounds for this tremendous accuracy has been made [35], 
but no clear understanding exists at the present. At the same time the applications have 
started to diversify. Three main trends can be observed.

The first one is usage of the method in two-dimensional classical problems. Bursill 
et al. [7] followed the standard route of a transfer matrix description to transform a two- 
dimensional classical model into a one-dimensional quantum system. Carlon and Drzewin- 
ski [10] build on this extension to settle some of the outstanding issues in that field.

The second diversification is in the direction of chemical molecules. Historically, phys­
icists and chemists alike have tried to develop simple models of chemical compounds that 
allowed a theoretical treatment. A good example is the Su-Schrieffer-Heeger Hamiltonian 
to model the valance electrons in a polymer. It simplifies the individual atoms to lattice 
points, whereby a one-dimensional quantum lattice model is formed. For a proper treat­
ment the Coulomb interaction has to remain long ranged and should not be restricted to in­
dividual sites. Despite this long-range interaction, it seems that the DMRG can still achieve 
good accuracy although the issue is not completely decided yet [5].

The other direction, upgrading the method to deal with more realistic molecular mod­
els, has also been tried. White and Martin [56] have applied the DMRG to the orbital 
description of water. They concluded that the accuracy compares favourably with many 
other numerical methods.

The third extension is also our main interest, the application to wider systems. Noack et
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2.2 The Density Matrix

=

is
is

• ie
o

Suppose we have a state |0o). This can be the ground state, but for the moment we leave that 
open. In the DMRG we want to find a basis to represent this |</>o) as well as possible. For 
the entire system, this statement is trivial; the only required basis vector is the state itself. 
If on the other hand the system is divided in a part A and B, both containing a number of 
sites, as depicted in figure 2-1, we can find the most relevant fraction of the basis in part 
A. Our aim is to truncate the basis to this relevant part and remove the rest of the basis. A 
restriction to these basis states should allow an optimal representation \4>o) of the ground 
state |</>o). By optimal we mean that the truncation error P,

P = |l0o)-|0o)|2,

is minimal. We have to select those m basis states in A that minimise the truncation error

al. [34] focused on the two-leg Hubbard ladder, while White and Scalapino [55] investigate 
the t-J model on a 16x8 lattice. We [15] were specifically interested in the limitations of the 
DMRG on wide systems. It seems that DMRG is not well suited to handle two-dimensional 
quantum systems, although with tricks and brute-force computer power reasonable results 
can be achieved. In this chapter we explain what the difficulties are.

As a testing ground we use the ITF. The ITF constitutes of a well understood and simple 
case of a two dimensional model with a quantum phase transition. The performance of the 
DMRG is expected to decrease in the vicinity of a phase transition, making the ITF our 
model of choice. Moreover cluster Monte Carlo calculations [6] have resulted in accurate 
numerical values for its critical properties to which we can relate.

The aim of the method is to find an approximation to the ground state wave n. 
This is done by ’bootstrapping’; the approximation to the ground state is impro' 
ively. To represent the ground state a basis in the Hilbert space is necessary. Tn 
systematically improved by the DMRG. Typically, the route taken is to start v.: 
for one site and iterative enlarge the Hilbert space by adding sites. Without forth 
size of the basis would then grow exponential like the Hilbert space at each a< 
avoid this, the most relevant basis states are selected and all others are removed.

The route we follow in this chapter is first to introduce and discuss the dens 
which is the key ingredient of the method. Next the geometrical properties of th 
we

-x 
t-.-.ms

study are listed. Of the two procedures we implemented, one has extensiv n 
described in the literature [51, 19]. The other one was introduced by us [15] and will be 
reviewed here. With the method in place, a link with the RSRG is made. After that, the 
performance and the flexibility of the two procedures is compared. The original proposal 
by White is the more flexible of the two whereas our implementation has the potential to 
be the fastest.

The remainder contains two less related sections, one on the actual results for the ITF 
model and one on implementation issues.
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B

(2.2.1)

and the truncation error P, which we want to minimise, is a function of all these parameters.

(2.2.2)P

dP 
du?

Figure 2-1. The system is divided in a left part A and a right part B, both containing a number 
of sites With both these parts an incomplete basis is associated. In the future, a generalisation 
s ill oft.-;: be used; the system is split in three or four parts by treating either one or both of the 

ue sites (last site of A and first site of B) separately.

The truncation error has to be minimised over the parameters, whilst the orthonormality 
condition (2.2.1) is fulfilled. Lagrange multipliers are introduced for this purpose. 
The optimum satisfies

dP

dfiaj

We introduce the density matrix p„- of A,

The best approximation |0o) can be expressed in these states,

I0o) = ^20»;|or)|y)

dP 
--------= 0. 
dPaa'

- • select the m most relevant basis states {|<x)}”=1 from part A. They are contained 
.isis {|i)J and orthonormal, thus

!<*) = 52““l‘> , <«l«') = 52““"““ =
i i

PH' = 52

= | i0o) - i0o> | = 52 - 52

the aim is conceptually clear, we will perform the algebra and obtain the 
- We have a basis {|f)J in A and (|y)) in B to represent |0o). Note that these 

necessarily complete. The only requirement is that the space contains |0p),

<i
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or

2

= E (2.2.3)

(2.2.4)

=

After some elementary algebra the prefactors <j>ay and the Lagrange multipliers /zacr' can 
be obtained,

0aj = * Maa' = 0.

The remaining equations read

Pu>u° — u° uf pi>i"U°, = 0.
i' i'i"a'

This equation becomes more transparent when we switch to vector notation,

i-e**".p u"=o.
L«' J

This equation can be interpreted as a projector acting on the vector p • u". Thi 
removes all components of the vector along one of the vectors u“ as

i-e^kT
L a'

The basis spanned by {u") has to contain all vectors |/5 ■ u“ |. A set of eigen-. tors of 

p clearly satisfies this condition. Set (u“) to be eigenvectors of p with eigenvalues so 
p ■ u“ = X„u". We know that

= u“’ • p • ua = E= E E°- 
ii’j j i

The complete set of eigenvectors u“ is orthonormal, so

y? = y
a ii'ja ii'j

Pa = E^‘7 = *•

To decide which eigenvectors to select, we note that if m vectors are selected with eigen­
values A.a, then

p = i-E^.

This relation can be derived by inserting uf and <j>aJ in the definition of the truncation error 
(2.2.2).

Given (2.2.4) it is immediately evident that the eigenvectors u" of p corresponding to 
the m largest eigenvalues have to be selected to build the basis

• u“ = 0.
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(2.2.5)

It is worth to continue these algebraic manipulations a bit further and show how the 
optimal basis in part A is related to the optimal basis in part B. This can be derived step 
by step. For instance White [51] came to similar conclusions when investigating the con­
sequences of a singular value decomposition. Here we simply present the result and discuss 
its consequences.

The relevant bases states {|a)™=1 ] in B are given by

i«> = Ev“i»-

whe.u- the vector v“ is related to the vector u“ through the relations

■ -^= E^X* <=> < = -4= E<M-
v / V Aot j

. s:aces are orthonormal and they are indeed the largest eigenvectors of the 
.x = 22, as can be seen by insertion;

zr— 0(*j4>ij'u<i' = u®.
V ii'j' i

state obtains a very elegant form in these bases,
m

\<m = E^-ioij) = E Aj“)i“>-
ij a=l

To every basis stale |a) in part A there corresponds exactly one |a) in part B. The set size m 
is the minimal number of states available in either part A or B. This equation (2.2.5) makes 
(2.2.4) trivial; the approximation |0o) is simply be given by |0o) = V^al«)l«)-

Let us elaborate on the equation (2.2.5), as there are a few important consequences of 
it. If there are as many states in B as we wish to select in A, two further assessments can 
be made.

First, the truncation error vanishes, P = 0; there is no approximation made in trans­
forming |</>o) to |0o), |0o) = |0o) ■ All properties of the wave function in the truncated basis 
are identical to those in the full basis.

Second, if to every element of the basis in B a set of quantum numbers can be assigned, 
then the distribution of the quantum numbers in part A, contained in the set {|or>}, is fixed. 
Every element has the correct quantum numbers to pair up with the quantum numbers of 
his partner in B to form the required quantum numbers of the wave function |0o) •

In the past few paragraphs we developed a method to distinguish important states in 
a part of the system by the density matrix. This selection criterion can be generalised to 
incorporate several wave functions |0^). This is not a hypothetical situation since we will 
actually target several states in chapter 4 . A weight wp is introduced to differentiate these 
states 10/;) in importance. We now minimise

P = - I00>| •
P
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2.3 Geometry and symmetries of the ITF

L

Figure 2-2. The truncation error P as function of the number of states kept m. The system 
with periodic boundaries in both directions and L x W = 6 x 3. Part A contains the left 
sites. H = 3.0.

As a last stop before commencing the description of procedures to implement the density 
matrix principle, we have to define the system geometry and investigate the consequences

20 
m

The underlying framework of minimising P remains linear algebra and therefore (he dens­
ity matrix becomes the linear superposition of density matrices for each

pu' = 
p

An approximation scheme based on the density matrix would be useless if this truncated 
basis {|a))”=1 does not represent |</>o) properly. Clearly the indicator to study is the trunca­
tion error P. Figure (2-2) shows that the density matrix can indeed be an excellent selection 
criterion as the truncation error P falls off exponentially with the number of states kept m. 
In this case only m = 13 states need to be kept of the 29 = 512 to obtain an accuracy of 
P ~ IO-4 in the wave function.

In the following procedure we will make approximations to the ground state and select 
the optimal bases to represent them. As these approximations are not identical to the ground 
state, some caution is needed in using the truncation error P as a measure of the accuracy; 
As stated before, the truncation error will vanish, P = 0, if the environment contains as 
many states as we want to select. This does not mean that |0o) is a perfect representation 
to the ground state. Instead it means that |0o) = |0o).

*xx xx
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Xxx»xxx
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XXX
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L

(2.3.1)|a) , <S/i|a) = so|a).

Similar relations hold for the other two sets. Thus

ka + kf, + kc = 0 mod 2tt , sasi,sc = 1.

' .ie systems we consider are of dimensions L x W. The system contains three parts: a 
'. (shaded), an intermediate band B (black) and a right-hand part C (white). At every

■ • A and B are contracted.

I0o) =
abc

and application of the symmetry operations together with (2.3.1) yields:

.'metrics of the ITF. As is depicted in figure 2-3 we consider systems of sizes 
, i.e length L is in general larger than the width W. The system is periodic in 

ti e v i.ith direction and open in the length direction. It will be split in a left-hand part A 
and a right-hand part C, both containing m states. A intermediate band B, containing the 
complete basis of 2" states, separates them.

The Hamiltonian of such a system contains many symmetries that we can incorporate 
in our calculation. The general form of the included symmetry operators is that they are the 
direct product of three components. Each component acts on one part of the system only. 
For example, consider the translation operator T in the width-direction. This operator is the 
direct product of three translations in the individual parts; T — TaTbTc- The same holds 
for the reflection 72 in the same direction,??. = 'JZa'^-b'B-c, and the spin-reversal operator 
5 = exp(irr Y.ij Si,j + i-^/2) = 5aSbSc.

The ground state I i/ro) of the system is translational, reflection and spin-reversal invari­
ant; TltAo) = 7?|V'o) = SfV'o) = IV'o)• For systems of infinite size in the classical ordered 
region (L, W —> oo and H 1), it will become degenerate with a state that is spin­
reversal anti-symmetric. In order to take advantage of the symmetries, the bases of part A, 
B and C are chosen to be eigenvectors of the symmetry operators T and S. 7? is used later 
on. So if (|a)), {|fe>), {|c)) are the bases of the individual parts then

TA\a) = eik°

2.3 Geometry and symmetries of the ITF

B

W
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These relations lead to the appearance of delta-functions.

n

Hab =

(2.3.2)S^S^TaTb)"

2.4 Procedures
■

It is also possible to set up the program to find the lowest state in other symmetry classes 
by forcing other values than 0 and 1 in the equations above.

The Hamiltonian can be written as the sum of Hamiltonians within the separate parts: 
Ha, Hb and He combined with interactions between parts: Hab, Hbc and Hca- H — 
Ha +Hb + He + Hab + Hbc + Hca- To show how to implement the symmetries, we 
will discuss one element of both types.

First Ha'- it is translational and spin-reversal invariant, thus

(a'\HA\a) = (a'\T^'HArA\a) = (a'\HA\a}

= {a'\S-'HASAW =sa-so(a'|WA|a)

It only contains elements within symmetry classes, as one would expect.
Second Hab- once again, it is translational and spin-reversal invariant. Mor, 

be written as

iv
= -4J2(TxTb) 

n=l

where / is the length of part A. Sf, flips a spin, so Sf ,S 4- SSf _• = 0. Inserting this and
(2.3.1) in (2.3.2) gives

In the section on the density matrix, a selection criterion was developed. Now this criterion 
will be incorporated in a procedure. We have employed two distinct procedures: the first 
one was originally proposed by White [51], and trivially extended to two dimensions by 
Liang and Pang [28]. In this scheme, part A, figure 2-1, is enlarged iteratively at the expense 
of part B. Each step one site is moved from part B to part A. The basis on part A will thus 
incorporate more and more sites, while the total system size remains the same. Excellent

^k^+kf/.ka+kb ’ &sa',-sa8sbi,-sb-

This substantially reduces the computational effort. Finally: the reflection operator 7Z is 
used to make matrix elements like real. In fact we could have used this last
symmetry TZ more, but it only reduces the effort by a factor of 4 while making the program 
far more complex.
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■ TIM = S|0o) = I0o). thus

-■ e'^la} , Sc|a) =«!«)■

; diately dictate the quantum number of the newly built |a);

„,c.) = <?-'*»|<2) , S^Sa|a) = s„|d).

basis states for a system of length

and span the space we previously denoted by (|a))™=1.

introductions already exist to which we refer [51, 19]. The second procedure we introduced 
ourselves in [15], This will be reviewed next.

When the split-up of figure 2-3 is made, it is tempting to use the ID DMRG method 
directly: a site is replaced by a band. The ground state |</>o> of the entire system ABC 
is calculated and the optimal basis for block AB is selected through the density matrix. 
However, one runs in severe difficulties. In the section on the density matrix it was shown 
that when we select as many states from part A combined with B as there are in part C, the 
outconting basis has to have the appropriate quantum numbers be to combined with part 
C. So if we also would transform part C in the density matrix basis, we can write

l/U = 
a,b

• We construct the combined system as depicted in figure 2-4-a by taking this basis 
in part A and C together with the complete basis in the intermediate band B. (L = 
2Z + 1)

• We calculate the ground state |0o) and obtain m
I + 1 by orthonormalising {|/SC)},

= 22^|a)|a). 
a

Thus 5q, — s- and ka = —ka- The distribution over the symmetry classes in part C forces 
the selected states in block A B to be in “conjugate”-classes. To overcome this problem, we 
need to increase the number of states in part C. In that case we can really make a selection 
and it allows us to change between symmetry classes.

In the 1D procedure the solution is to add one extra site to the environment. The number 
of states in the environment is then doubled. In our set-up this would correspond to adding 
an extra band between B and C. This is computational far too expensive.

We now introduce variants on White’s infinite-size and finite-size algorithms [51 ] that 
increase the number of states in the part C.

First we consider our infinite size approach. We only have to describe one step in the 
process as it is an inductive method. We have a basis of m states for a system of length /. 
We then proceed as follows:
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A B C

a) start-up m

I I1

A C

]b) iteration 2m m

I l+l1

states on basis of the density

B■
Figure 2-4. A inductive step in the infinite-size procedure consists of a start-up to obta 
approximation for states in a system of length / 4- 1 and iterative calculations to ma! 
converge. The numbers in the rectangle are the number of states in the parts. The intern)-. 
B always contains the complete basis of 2W states.

• Suppose that block AB has f symmetry classes. To every symmetry class we add 
m/f basis states constructed randomly from the m2w states in A and B. We end up 
with m + f mlf = 2m basis states for a system of length I 4- 1.

• We calculate the ground state |0o) and obtain 2m basis states for length / 4- 1 by 
orthonormalising {|/3C>}- We replace the basis of part C by this basis and repeat this 
step a couple of times (~ 3).

dal 
sis 
-nd

• In part A we now take the m basis states for a system of length I and in part C we 
take the newly constructed 2m states for length I 4- 1. (L = 21 4- 2) This yields the 
configuration in figure 2-4-b.

• We select from the 2m basis states for length I 4- 1 m 
matrix.

Now we have returned to the original situation with the exception that I has increased by 
one. The new ingredient is thus to add m random states to the basis and iterate until the 
result has converged.

In the same line our finite size approach lies. Suppose we have basis sets of m states for 
lengths l,L — I — 1 and L — I — 2, where L is now fixed and independent of I. The iteration 
step consists of the following actions:
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. 'late the ground state |0o) and obtain 2m basis states for L — I — 1.

\ from the 2m basis states for length I + 1 m states on basis of the density

<

• In part C we take the 2m basis states for length I + 1 and in part A the m states for 
' lit- ': L — I — 2. This is depicted in the first of the two pictures in figure 2-5-b.

• We take the basis for / in part A, the basis for L — I — 1 in part C and the complete 
basis of the band in part B. See figure 2-5-a.

• We calculate the ground state |<pn) and obtain a basis for length I + 1 by orthonorm­
alising {|&)}.

e In the same way as in the infinite-size algorithm we add m randomly chosen states 
to this basis.

’•late the ground state |0o) and obtain 2m basis states for / -I- 1. These last 
• ?je repeated a couple of times (~ 3)

we take the 2m basis states for length L — I — 1 and in part A the m states 
U; see the second picture in figure 2-5-b.

Once again we have returned to our starting position while increasing the length / by one. 
By sweeping through the system we can therefore systematically improve the basis. This 
method convergences at a similar speed as the ID approach; after 3 sweeps through the 
system the final result is achieved.

The approximation scheme to the ground state is both variational and systematic. The 
energy of each state in the selected subspace is higher than the one of the ground state. As 
this includes the state we select by minimisation of the energy, our estimate to the ground 
state energy is variational. In section (4.2) we will meet other examples of variational 
principles that can be used within the DMRG scheme.

The systematics come in from the iterations. When a state is selected, it is truncated 
and transformed along with the basis. The next iteration it is used as a starting point for 
the minimisation routine. If the density matrix eigenvalues drop off fast enough and the 
truncation thus does not severely alter the state, the energy of the starting point will be 
almost the same as the outcome of the last iteration and the during the minimisation this 
estimate can improve further.

After several sweeps through the system, the energy will start to oscillate. This effect 
is small, but the cause of it gives ground for further improvement. Suppose we have found 
a state |0o) at the previous iteration. This state is truncation to |0o). In the truncation a part 
of the state is lost, so |0q) / |0o). The truncated space of |0o) lies in the subspace of |0o) 
though. We know that |</>o) corresponds to the lowest energy in that subspace, thus

<0olH|0o)
(0ol0o)

(0ol^l0o)
(0ol0o)
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A B C
a) start-up m m

I L-l-11

C B A

2m m

l+l L-l-2
b) iteration

A C

2mm

I L-l-11

i

Figure 2-5. A inductive step in the finite-size procedure also consists of a start-up to obtain an initial 
approximation for states in a system of length I 4- 1. Afterwards we move back and forth between 
lengths I and I 4- 1 to make this converge.
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2.S anection with the Renormalisation Group

2.6 Performance
In this section a discussion is given on the accuracy that can be achieved by the DMRG 
procedures. First we consider issues that affect both methods, afterwards a comparison 
between the two methods is made.

The name DMRG has led many people to believe that it is another implementation of 
Wilson’s renormalisation group. This is incorrect in at least two respects. First, this method 
does not contain a semigroup operation; where in the renormalisation group the Hamilto­
nian is mapped onto itself with different parameters, here we change —read truncate— 
the Hamiltonian all together. The name group is unfortunate and misleading, but it is well 
established and to avoid further confusion, we will stick to the name DMRG.

The second distinction lies in the fundamental difference of basis selection. The DMRG 
first calculates the approximate ground state of the entire system and afterwards makes a 
selection via the density matrix of this state. The renormalisation group, on the other hand, 
does not consider the properties of the entire system. The basis states are solely selected 
on merit of the energy within their own part of the system.

The well-known example [52, 33] of a particle in a box with impenetrable walls illus­
trates this selection criterion clearly. By its graphical simplicity figure 2-6 demonstrates 
that in the DMRG one basis state suffices whereas the renormalisation group needs many 
to represent the wave function properly.

(0ol0o)

WoIWo)
<0ol0o>

VMM
(MM

No strict statement can be made on the relation between the energies of |0o) and |0o) • The 
energy does not need to decrease monotonically and will start to oscillate.

Once this happens, we can assume that the basis states we use, lie in the most relevant 
symmetry classes and it is no longer necessary to increase at every location in the system 
the v.r • of slates in part C from m to 2m. Leaving out the iterations to increase the

•tes in part C, the previous estimate |0o) can still be represented exactly after 
•c lion , |0o) = I0o>- This is explained in the paragraph after equation (2.2.5).

u? i0o) of the next step satisfies

|0o> is transformed and thereby embedded in an other subspace. It is used as a starting 
point for the next minimisation. The next estimate |0o) will thus have a lower energy,

<0o|H|0q)
(0ol0o)
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Figure 2-6. On the left the wave function of a particle in a box is depicted. Al current : 
version of the DMRG does not exist, so one should consider the location in the box a \ 
of discrete points. On the right we see the selections of the DMRG, one stale suffices 
ordinary renormalisation group (RG) where many states are needed.

ns 
id 

..he

I 
I 
I
I
I

T
i 
i
7

I

The most striking limitation is that only systems of small width can be handled. As the 
width W increases, the number of states m kept in the procedure has to increase exponen­
tially to maintain the accuracy [28], In figure 2-7 this is exemplified for the ITF. To get a 
flavour of the background to this behaviour, we will discuss a pathological example where 
this statement can be proven exactly.

Consider a system containing a set of chains as depicted in figure 2-8. For each chain 
a DMRG calculation can be performed and it is found that mg states are required to obtain 
a given accuracy. To achieve the same accuracy for this system of width W = 4, for each 
chain mo states have to be preserved as there is no interaction between the chains. The 
basis of the entire part A is a product of bases for the individual chain pieces. Therefore 
there are m = states necessary for the same accuracy; a clear proof of the exponential 
growth of the number of states m with increasing width W.

In the study of the ITF we are fortunate enough to go somewhat further than this rough- 
and-ready argument. Far from the phase transition (H <g 1 or H 5> 1) a connection can 
be made with perturbation theory.

Consider the quantum disordered phase on a periodic system. Split the Hamiltonian 
into a unperturbed part Ho = 2H j Sf j and a perturbation V = — 4 j S-'j(S?+l j + 
<!>* +1). We split the periodic, rectangular system of size L x W again in two parts; A and 
B of sizes I x W and (L — /) x W where I is an arbitrary length smaller than L. They both 
contain 2W spins that border the other part. The unperturbed ground state |0) has all spins 
pointing down in the Sz-direction. It is the direct product of two equivalent states restricted
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Figure 2-7. The accuracy of the DMRG method for given number of states tn (numbers in graph) 
as function of the width VV. H = 3 and L = 20. The system is periodic in both directions. The 
reference value is taken from a DMRG calculation with m = 128.
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w

A B

L

100) = 10) + (2.6.1)

(2.6.2)

J

to A and B; |0) = |0>A|0)B. We know that «0|O) = -HLW|0) = £o|O). Perturbation 
theory yields

Figure 2-8. The system contains only interaction within the chains. Between the chains ,'■■■ 
lion exists. The system is split up, and the DMRG procedures grow part A on expense B. 
Either site by site or row by row.

I0o) = |0)A|0)B + — ^^2 [a)A|0)fl + 22 |0)A|fe)fl + ^2 |n)A|n)B^

I°)b + ^22|*)b

The perturbation flips a pair of neighbouring spins. This pair can be in a single part or it 
can cross the border between both parts. In the latter case the spins are adjacent across the 
boundary between part A and B. Define {|a)A) to be the set of states with the flipped pair 
in part A. Analogous for {|h)B). Moreover let {|n)A) be the set with one spin flipped on 
the nth boundary site with B and define in an equivalent manner (|n)B). The perturbation 
expansion can now be rewritten

1
---------  ' 2H

-GM
+ 2H

+OGM'
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.'hat basis to start from is still open. Xiang [57] chooses to treat the Hub-
• nentum space. This representation introduces an extra quantum number 

reived: the momentum. As this leads to a relatively strong restriction on 
; .. s of the different parts that can combine, the number of states kept m could 
Substantial. Moreover we expect to have a better starting point for the ground 

state by this conservation. On the other hand, from the view of perturbation theory it is un­
clear whether the orders in perturbation theory can be reproduced easily as the interaction 
between the parts becomes much more complex and much more extended.

In the case of fermions it is easy to change the representation of the particle creation and 
annihilation operators from real space to for instance momentum space. It is also possible to 
switch to the mean field quasi particle representation in which the ground state contains no 
quasi particles. This is done in the BCS theory by means of a Bogoliubov transformation. 
For a DMRG calculation such a representation may also be not ideal despite the fact that 
the mean field ground state can be represented by exactly one basis vector (with no quasi 
particles present). It could be a source of bias in the final result.

Other attempts have been made to avoid the issue of limited width all together by 
smoothing the boundary conditions and thereby reducing the boundary effects [49].

Another restriction is related to phase transitions. A clear indication of the vicinity of 
a phase transition is divergence of the correlation length. At the phase transition algebraic 
behaviour of the correlation functions is expected. This is conflicting with the manner 
in which the ground state is built by DMRG. Successive basis rotations and truncations 
where at every step a new site is included in the basis clearly favour exponentially decaying 
correlation functions [35]. For the ITF the accuracy of the DMRG at the phase transition 
indeed decreases although it remains unclear whether this is a general feature of phase 
transitions. Figure 2-9 illustrates this.

Several basis rotations and truncations applied to operators cause them to deteriorate. 
For the intermediate band or site the basis is complete and the representation of the operat­
ors on these sites is perfect, but for sites further away from the part boundaries, some basis

As H 1, it is necessary to reproduce all these terms for an accuracy which is equi­
valent to the first order perturbation theory. The minimal number of states needed in part 
A is therefore 1 for the first term in (2.6.2) plus 2W for all the boundary terms. We have 
confirmed this prediction explicitly in both the small and large H limit ( H = 1/50, 50).

The same line of reasoning also holds for the second and higher order perturbation 
terms. We expect for an error comparable to the nth order perturbation theory that m ~ Wn, 
8E ~ (1/H)n. This is always an upper bound for number of states m needed, m < Wn 
for a given accuracy 8E ~ (1///)". Only when the different orders in perturbation theory 
become distinguishable in size —the limit of large H— the equivalence holds. Through 
combinatorics even the prefactors can be calculated.

'• ' h ’ nents above indicate that it is of the utmost importance to limit the interaction 
s, although the statements are not identical. If there exists a representation 
faction between the parts is still large, but where the perturbation expan- 

slates, the DMRG easily obtains highly accurate results within that
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• Computational effort with given accuracy.

• Flexibility of the procedure.

truncation have been applied and the representation of the operators has lost the connection 
with the states truncated from the basis. A consequence of this is that the correlation func­
tions for sites that are simultaneously or successively included in a part by the procedure 
are of higher quality than those between sites that lie further apart.

2.6.2 Comparison of both methods.
In section 2.4 a version of the DMRG was introduced that added bands to a part. White’s 
original proposal was to add sites to a part. These two procedures, site and band, can be 
compared on two grounds:

Let us address these criteria in the same order.
A straightforward comparison of the two computer programs favours the site method 

heavily. Unfortunately this says more about the software than about the quality of the

3.0 
H

m=8 
m=16
m=32

UJ

I

-7.0
1.0

Figure 2-9. The accuracy of the DMRG method for different number of states m (number;, in graph) 
as function of the field H. The system is periodic in both directions with dimensions W = 4 and 
L = 20. The reference value is taken from a DMRG calculation with m = 64. The critical field of 
the two-dimensional system is Hc = 3.044
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2.7 Some considerations on the implementation
Choosing the right software language and tools is very much dependent on both the hard­
ware and software available. As the progress in these is rather swift, remarks in this section 
will be relatively soon outdated. Still it can be of tremendous use having an idea of what

method. A fair approach contains two steps: first the accuracy as function of the num­
ber of states kept m is related. Afterwards the computational effort of both procedures as 
function of the number of states m is estimated. We have done both for the ITF.

Figure 2-10 depicts the first step. The band method clearly needs fewer states for the 
same accuracy.

The bottle neck in the computational effort is finding the ground state |0o> in a given 
subspace. This is done by applying the Hamiltonian in the order of 5 times to the wave 
vector. In the site procedure this costs ?n3 • W/22 operators per projection. The factor 1 /22 
follows from conservation of the spin reversal operator S. To sweep through the system 
there er - .= i:lte = 5 ■ ?n3 ■ L • W2/22 operations needed. The band method has a far 

part B but it is possible to use translational invariance in the width direction 
have to be taken to sweep through the system. Per step it costs m3 • 2W/ W 

2,y). With the moving back and forward at one location (3 successive 
we get tband = 3 • 5 • m3 • L -2W/W operations for one complete sweep. 
3 these two estimates are similar,

:.v,3LW2/22 1 W3
vn3L2w/W ~ 3 2^+2 ’

- r ethod achieving higher accuracy with the same number of states m. After 
the ... . method clearly becomes faster.

To summarise the comparison of the computational performance: as long as the sys­
tems do not become too wide (W < 8 ) , both methods are comparable in efficiency. The 
band procedure is slightly preferential as it could be faster and the ground state is more 
symmetric. The difference in calculation time we observed is mainly the result of the qual­
ity of the software and specifically the use of the BLAS [3] routines. The difference in 
calculative performance is not conclusive.

Next we compare the flexibility. The computational performance is in practical situ­
ations irrelevant as a large fraction of the effort spent in research is dedicated to probing 
properties of models by changing parameters and such. This requires a degree of flexibil­
ity in the procedure. By this criterion the site procedure is clearly preferential as both the 
geometry and interactions can easily be changed. The band procedure obtains its better 
calculative performance from the translation invariance of the ground state. This fixes both 
the geometry and the interactions to support translational invariance. The only advantage 
of the band method in the terms of flexibility is that by strictly conserving the translational 
symmetry, also states with difference momentum can be targeted.

The overall conclusion is that if one wants to test a model the site procedure is prefer­
able, whereas if maximum accuracy is required the band procedure should be used.
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Figure 2-10. The accuracy of the site-procedure (asterisk ’*’) is compared to that of the band­
procedure (cross x.) for various system widths W and number of states m (numbers in the graph). 
The transverse field H = 3 and the system length L = 20. The geometry of a cylinder is used; Peri­
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Results for the ITF2.8

• Al current, it is one of the most widely used languages. This ensures the availability 
of tools, libraries and sophisticated compilers.

: representation touched immediately at another implementation matter; 
: to this wave function now transforms into matrix multiplications. There 

■••raries available that are highly optimised to perform this task of matrix 
... ;st notably BLAS [3].

si of remarks, the programming language that we used is C++. There are 
’•••<. also.- u do this:

the implementation could look like. We state our comments going from more conceptual 
to language specific ones.

In implementing the Hamiltonian, operators of the form 5, • 5i have to be applied to 
a wave function It is recommended to apply the members of this pair successively, 
5| ■ (52ld>)), not simultaneously, (5| ■ 52)10). Algebraically these two multiplications are 
identical, but computational the second one is far more expensive than the first.

Many sophisticated matrix manipulation libraries exist and these can be used. For that 
purpose the intermediate sites have to be merged with the larger parts; in the site procedure, 
the left intermediate site can be merged with the left part and the right intermediate site with 
the right pa.it. In this fashion we obtain two bases, one for the left part, {|i)), and one for

: -iglv. .■ (|j)). Now a wave function |0) can be expressed by a matrix <t>.

o C++ allows object oriented programming. This requires a different way of analysing 
a problem than the well-establish procedural approach, but it makes the code more 
transparent and reusable. Especially in combination with packages like STL 1 this 
provides a powerful programming environment.

Naturally C++ is not unique in either of these properties. FORTRAN90 also fits at least the 
second argument, but is less widely used.

Object oriented code in C++ is slower than FORTRAN or FORTRAN90, but in a 
DMRG implementation by far the most time is spend on finding the ground state. As this 
is code-wise only a fraction of the entire program, this can easily be implemented in a 
procedural fashion using fast libraries (BLAS).

The scaling analysis of the previous chapter is based on DMRG calculations. The ground 
state of the ITF model lies in the space with spin reversal quantum number 5=1. The first 
excitation appears when one spin is flipped, so 5 = — 1 for that state. We calculate in both 
spaces the ground state energy Eg =±l and the gap A is given by

A = g^-1 - Eg=l.
'standard template library, part of the C++ library
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The gap is thus the difference between two large numbers. This causes the relative error to 
increase by two orders of magnitude and the highest achievable accuracy is needed.

Experimentally it has been observed [54] that the truncation error P becomes propor­
tional to the error in the energy. This is not surprising as the truncation error P is a direct 
indicator of quality of the basis truncation. The estimate of the energy is improved by 
extrapolating to zero truncation error, P = 0.

As we mentioned earlier in section (2.6.1), the accuracy is highly dependent on the 
length of the boundary between the different parts. In a periodic system, each part is 
coupled on both sides to the rest of the system, so then the boundary is twice as long 
as in a open system. With the accuracy already so much under pressure, we cam•••’• afford 
to double the length of the boundary.

Unfortunately it is not possible to study system of larger width than VV = 
DMRG. This means that the DMRG method has strong competition from clu 
Carlo algorithms [6]. It has to be stressed though, that in cases where the M 
methods fail as a consequence of the sign-problem, DMRG can provide an e. 
placement.
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3 Spin stiffness and finite-size scaling of the 
frustrated Heisenberg Model

Our intention here is to employ the spin stiffness as a means of measuring the order 
present in the system. In this chapter, the spin stiffness will be calculated in the Schwinger- 
Boson Mean Field (SBMF) theory [2, 17, 31]. This mean field theory introduces the mean 
fields in the interactions between spins and allows for the ground state to be rotationally 
invariant. Afterwards the spin length is no longer conserved to be | and we will discuss the 
consequences in some detail at the end of section 3.4.

The spin stiffness in the SBMF serves as a guideline for the effects of finite-size 
scaling, which is an indispensable tool for the numerical calculations using the DMRG 
method. The next chapters contain the numerical parts of our investigations; in chapter 4 
the DMRG method is combined with finite-size scaling to obtain the spin stiffness of the 
two-dimensional system. In chapter 5 the correlation function are studied by a combination 
of the DMRG and Green Function Monte Carlo simulations.

A link can been made between this frustrated Heisenberg model and the material 
CaV^Og. If the spins are positioned on a rectangular lattice with every fifth site unoc­
cupied, the model may describe CaV^Og [47].

: jstrated Heisenberg model arose with the discovery of high Tc-super- 
•round state of the undoped compound shows long-range antiferromag- 

an be well described by the Heisenberg model. However introduction 
i holes destroys the long range order and triggers superconductivity.

p.d frustration have similar effects on the long range magnetic order. The 
-r <y is not really understood but efforts are made to connect them, see for 

.. by Auerbach [2]. To improve the understanding of these effects, it is of 
. > v, ? : a frustrated Heisenberg model.

In more recent years it has become a research topic of its own. It may serve as an ex­
ample of a system exhibiting a quantum phase transition going from Neel order to collinear 
order with increasing frustration. Hopes are that new and so far unknown phases will be 
discovered in the intermediate regime.
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3.2 The frustrated Heisenberg Model

<n

;e

3.3 The spin stiffness
To investigate the phase diagram, one could look for order parameters. However, if the 
frustration increases, a new and different ordering might appear with an unknown order 
parameter. So, many different order parameters would have to be examined. There exists 
a far more general approach. It is known that when a continuous symmetry is broken, a 
Goldstone mode appears. This is a ’symmetry-restoring’ excitation. For this kind of spin

lais of
• ite

.. J

This model describes interacting quantum spins on distinct lattice sites. The spins have 
length Hence |<S; |2 = The Hamiltonian is given by

H = J\ 5^5, • Sj + • Sj.
(ij) [ijl

It incorporates interactions between nearest-neighbour pairs (z j) with strength J\ and next- 
nearest-neighbour pairs [zj] with strength J2. We will focus on a square lattice in two 
dimensions with L x W = N sites. At the end of this chapter we will consider systems 
where L /= W. The next-nearest-neighbouring sites are connected through the dia- 
the lattice. The lattice is bipartite; it can be split into equivalent sublattices A and 
j is in sublattice A then all its nearest-neighbours are in sublattice B. The functic 
will therefore be 1 if j 6 A and — 1 if j e B.

Both J\ and J2 are taken to be non-negative. If J2/J\ is small the dominatii 
describes the usual antiferromagnetic interaction and the ground state will be Nee; 
For instance spin-up on sublattice A and spin-down on sublattice B or (—1);(«S 
For the opposite case, J2/J\ large, the system decomposes in two Neel ordered s 
which, however, have the same quantisation axis. This is the so-called collinear 
In this ordering alternating strips of up and down-spins will occur. Suppose the 
oriented along the x-axis, then (—l)y(«SJ) = ms where the j-th spin in on the y-th

Clearly these couplings frustrate each other on a square lattice when they are compar­
able in size. It is beforehand unclear what will happen then. Whether a different phase ex­
ists in the region between the N6el ordering and the collinear ordering remains uncertain. 
In the literature there have been speculations ranging from dimer - to disordered phases 
[16, 44, 58, 41]. In all of these cases it is conjectured that the intermediate phase has no 
long-range order. The correlation length thus becomes finite and a gap in the energy spec­
trum opens up. This energy gap is a good indicator for the existence of an intermediate 
phase. Unfortunately, it is very hard to achieve high enough accuracy in the numerics as it 
involves the subtraction of two numbers (the ground state energy is subtracted from 
the energy of the first excitation) to yield a 0(1) number, the gap.

Another indicator for long-range order is the spin stiffness. This quantity potentially al­
lows for higher numerical accuracy. In the current chapter the spin stiffness of both the N£el 
and the collinear phase will be derived in the Schwinger-boson mean field approximation. 
Part of the material in the chapter is published in [14].
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(3.3.1)c =

model, these are called spin waves, as they are wave-like fluctuation in the spin orientations. 
In [23] it was shown that for both types of order considered here (N6el and collinear) the 
dispersion relation is linear (a> = c|q|) for low energies. The velocity c of this mode 
satisfies

Here ps stands for the spin stiffness and x± is the magnetic susceptibility of the system 
perpendicular to the orientation of the ordering. A positive spin stiffness (p5 > 0) is an 
indication that a broken-symmetry is present, although the actual order parameter might be 
■:<ii nown! ’ ' -.fore it is an excellent measure of magnetic order that arises from a broken 

Heisenberg model an order related to a local organisation of spins in the 
of frustration has been suggested [16, 44, 58, 41]. The global rotational 

SroKen, therefore the spin stiffness should be zero, ps = 0. In short: the 
excellent indicator to distinguish between a broken symmetry ground 

i ther ground states (p5 = 0).

• privation at zero temperature
; Jasnow [18] showed that the spin stiffness ps, that is related to the

•: '.ic.- > system, can be obtained by a static twist in the order parameter. They im­
posed bounG.uy conditions to achieve this twist. Instead of following them in detail, we 
wii! directly focus on the order parameter. In [27] this route has also been followed and we 
could reduce the formula there to zero temperature, but the transition from finite temperat­
ure to zero temperature is subtle and we will instead make an explicit derivation of ps. In 
this way the concepts involved can be made more transparent and subtleties concerning the 
necessity of periodic boundaries can be addressed more directly. The resulting expression 
for the stiffness appears in several places in the literature, e.g. [16].

We consider the case of N£el order as an example. Afterwards it will be shown that 
the expression we found holds in more general cases. Before we start let us mention that a 
two-dimensional system exhibiting long-range order at zero temperature is not conflicting 
with the Mermin-Wagner theorem [30]. The theorem only forbids long-range order at finite 
temperature.

The ground state of an antiferromagnet satisfies
(0|H|0> = Eo,
(O|«SJ|O) = (-l)'m,. (3.3.2)

It is invariant under translations over lattice vectors respecting the bipartite breakup of the 
lattice. Later on we will come back to this feature. The search for the spin stiffness ps can 
be formulated as finding an excitation |q) such that

(q|H|q) = £0+^pJ|q|2 + ...,

(qISJIq) = (—l)Jmj cos(q ■ rj),
(qisjlq) = (-l)-'mjSin(q • r,).
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(3.3.3)

'St 57 + e—i(r>-r'>S;-S+ + 2SJS?

.)

(3.3.5)

The implementation of a twisted orientation like this is a hard task. It can be avoided by a 
similarity transformation. Define the unitary operator M(q) by

W(q) = exp ^iq j •

It corresponds to a rotation about the <Sz-axis. It is easy to derive that

U(q)Sti?(q) = Sje‘*ri , W(q)S/zAq) =

We will now transfer the twist from the order parameter to the Hamiltonian with this oper­
ator Z/(q). Define

H(q) = MfqlHi/tfq)

= — 22 e'q(r>-r',StSj~ + + 25)5?
2 <>7>

+ J-~ 22<’,, (rj“ri)S+S“ + e-iq-<r>-r')STS+ + 2SjSf
2 t<7)

and |q) = Z7(q)|q). Combining the expressions for |q) and H(q) it is trivial to de 
this new state |q) satisfies

(q|H(q)lq) = Eo + ^Prlql2 + ■ • ■,

(qlSjlq) = (-l)'m,.

|q) clearly is an excitation of H(q) as the ground state is trivially given by Z7(q) |0>. We 
know that

lim |q) = |0>, 
q—*0

which can be read as an invitation to apply perturbation theory. Still there is a quite subtle 
issue that must not be overlooked. If we would apply perturbation theory without further 
ado, the resulting wave function would be £/(q)|0). The order parameter would also be 
twisted and consequently it would not satisfy (3.3.5);

(0|Z7f(q)5JM(q)|0) = (-l);mJ cos(q • r;),
(0|Z/t(q)SjW(q)|0) = sin(qry).

The underlying physical idea is that if we apply a twist with wave vector q by slowly 
turning up this q, the system and the order parameter will follow adiabatically and no 
energy increase will occur. This is not what we set out to achieve. We are considering 
the case where an integer twist over the entire system exists. The wave vectors q that are 
allowed then fit the lattice; all terms exp(iq ■ (r,- — r;) can by simplified to exp(iq ■ rj) 
where rj is the smallest connecting lattice vector. Even when r, and r; are adjacent across 
the periodic boundary of the system this replacement can be done as q ■ (r, — ry) = q ■
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z;

Iq)

7io)Ps =

(3.3.6)

(3.3.7)

For expression (3.3.6) to hold, it is essential that the system is translational invariant in 
the direction of the twist q. Recapturing the subtlety in the derivation, it can be readily seen 
that open boundary condition will not lead to the correct result. In that geometry we will

1
Eo-H

1
Eo-H

j=l(0|7

..: i'i — rj is in place here. The factors exp(/q • (17 — r;)) as appearing 
in the difference 17 — ry. Adding or subtracting a vector (nL, mW) 

it’ ariant. When taking the derivative it is therefore necessary to insert 
<hle argument for 17 — ry. So when 17 and ry are on opposite sides of 
. idary we have to replace them by r$; the connecting elementary latticeJr?-’ -perio 

vector.
The state Iq) is now given in first order perturbation theory by

l q=0 = v£(r'-r')(5*5'"“W)
07)

+ V - ri )(5ts,7 - 575+),
071

= v V(r; - r,)(r,- - r,)(5+5,- + 575±)
2 07)

+V I>7 - r-)<r7 - >-.)(<S/57 + 575+).
2 (<71

J2 I ; • W 
>q=0

The spin stiffness ps is a tensor and only when the system has quadratic symmetry it can 
be denoted by a scalar.

The ground state |0) is reflection symmetric whereas the current j is not. Therefore 
(0|y|0) = 0 and we can safely write the current-current correlation as

(0|j|o)(a|7|0)
Eg - Ea

- d
j = —H(q) dq

r<5 mod 2tt. To summarise, we seek the homogeneous state |q) given an integer twist over 
the lattice. Respecting this subtlety, |q) can be derived.

Define

(' + 'q' + '* ) l0)*

This state clearly satisfies the condition on the order parameter (3.3.5) as both the current­
current correlation j and the kinetic term t are translational invariant. The expression for 
the stiffness ps can now readily be obtained;
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3.4 Schwinger-Boson Mean Field Approximation

worth-
' a
ic

< <1-

The behaviour of the spin stiffness in a two-dimensional system can be obtained by finite- 
size scaling analysis of relatively small systems. It is then necessary to establish the size 
dependence of the properties and in the current and following sections we will derive these 
in the SBMF approximation.

The Schwinger-boson representation is in itself a mere reformulation of the problem. 
The only extra condition that has to be imposed is that the number of bosons per site has to 
be fixed to 1. Any operator correctly transformed into the language of Schwinger-bosons 
will conserve this property.

Standard mean field theory is based on the assumption that there are only small fluc­
tuations in the orientation of the spins. In our case that is a poor approximation; quantum 
fluctuations play a major role. In the unffustrated case, J2 = 0, Monte Carlo calculations 
[48, 43] have shown that the staggered magnetisation is about 60% of the classical value.

A possible improvement of the mean field is to incorporate correlations between neigh­
bouring spins. The Schwinger-boson mean field approximation is a first step in this dir­
ection. it was originally introduced by Arovas and Auerbach [2] Here we will apply this 
approximation and derive expressions for the energies and wave functions of all states of

find |q) = ZV(q) |0>. We can borrow a physical argument from the realm of superfluidity to 
put this in a broader context.

Periodic boundary conditions can easily be achieved for a bucket of helium by bending 
this bucket round a massive cylinder and connecting both ends together on the other side 
of the cylinder. The twist we apply corresponds to a steady rotation of this cylinder with 
the bucket around it. The superfluid will not respond to this twist whereas the normal 
component of the helium will start to rotate along. In the frame of the cylinder it is the 
superfluid that flows, whereas the normal helium remains inert. Consequently, the kinetic 
energy increases by the superfluid current.

Open boundaries correspond to helium in a closed bucket. The walls of a closed bucket 
prevent a current from running and a zero increase in energy will be the result. Il • 
while mentioning that Pollock and Ceperley [37] have implemented this idea din 
Green Function Monte Carlo calculation. They follow a particle winding around 
cell. If it winds faster round a periodic cell than expected by Brownian motion.
ity exists.

The formula (3.3.6) is applicable to systems exhibiting all kinds of long-re 
netic order. If another type of ordering was twisted with an order parameter \ 
also defined locally, the same route would have led to this general result. The as 
of antiferromagnetic order can therefore be dropped and we end up with a fair!.

is 
m 
al 

expression for ps at zero temperature. The only restriction is naturally that the or..- i.ust 
break the symmetry; otherwise Goldstone modes or spin waves will not appear and no tv ist 
is possible. Equation (3.3.6) is completely equivalent with the expression found in [ 12] and 
[16].
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(3.4.1)

(3.4.2)

(3.4.3)
(3.4.4)

• operators 5+, S~ and <SZ will connect this subspace to subspaces of 
spin since they all commute with a^a + b^b. Therefore the Hamiltonian 

>: sp stales in this subspace onto other states in the same subspace.

• <n representation is therefore just a reformulation of the problem. The 
■ 4.1) does not favour any specific orientation of the magnetic order and
!!ie m-. ficic approximation for these bosons will also preserve this symmetry.

Nov.' the mean field approximation can be developed. Many authors have done this 
before |2] and we follow the route taken by Mila et al. [31] for this particular problem. As 
staled before we will consider two types of ordering: N6el and collinear.

We begin with the Neel ordering. This is expected to be the preferred ordering when 
Jl J\.

A first step towards the mean field approximation is to rotate the spins over tt around 
the <S2-axis on one of the two sublattices;

5/ -> (-1)'\S+,
S,~ -> (-l)'S-,
5; -> Sf.

This transformations is inspired by the Marshall sign rule [29], which states that in this 
new basis the ground state of the unfrustrated antiferromagnet has only positive definite 
coefficients. It is of course not strictly necessary, but it avoids the need of complex numbers 
which otherwise would appear.

For the mean fields only those combinations of creation and annihilation operators can 
be taken that are invariant under rotation round the <Sz-axis. Define

= a,at+ £>,/>*,
Bjj = aibj + biaj.

The Hamiltonian becomes

Z 07) 1'71

the frustrated Heisenberg model. This will be done both for Neel and collinear ordered 
ground state.

The first step in this method is to represent every spin by two bosons;

5+ = afb,
S~ = ab\

Sz =

We restrict ourselves to the subspace in which ata + btb — 2S, where S is the total length 
of the spin. In this case S = |. Two observations can be made:

mtions of bosons in (3.4.1) satisfy all commutation relations of the ori-
ei’.iZt ■ ten's.
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u se

-H (3.4.5)

(3.4.8)

with

(3.4.9)
hp + A

(3.4.6)
(3.4.7)

e 
is 

no
if
:o

1

where we have inserted (3.4.3) for the ferromagnetic oriented pairs of spins and (3.4.4) 
for the antiferromagnetic ones. This expression is related to the fact that if two spins are 
aligned, B,j| tt) = 0- Likewise for singlet combinations, it holds that T>,;(| f J.) — | J.T 
)) = 0. Still, the equivalent of T>jj could in principle appear on the nearest neighbour 
bonds. Rotating the spins on one sublattice yields

-> (a/a, - hfo)(fl,aj - i,bt).
The optimal mean field solution —self consistent with lowest energy— turns out to satisfy 
((a,aj — fc,iit)) = 0 for nearest neighbours. The same holds for the equivalent of B: on 
next-nearest neighbour bonds. Therefore we will neglect these terms.

The final step is to replace the products of these two operators T>ij and by th< r an 
field approximations. Set y,for nearest-neighbour bonds and = |< 'or 
the next-nearest neighbour bonds. In the regime of Neel ordering, we only com 
translationally invariant solutions, so y,j —> y, k,j —> k. In figure 3-1 these me 
are represented. When the decoupling is made, the detailed constraint a1 a + b'b 
longer satisfied as the Hamiltonian will now also map out of this subspace. Parade 
the constraint were conserved in detail, the mean fields y and k would become id 
zero as both alter the number of particles on individual sites. The constraint a1 a + 
will be relaxed to only hold on average, (ata + b'b) — 1. Given the translation 
ance of the system, this can be replaced by a global version and enforced by a I 
multiplier, i.e.

?(mf + A } (a^aj + b^bi — 1).

EC = 2W [j, (l + 2y2)-J2g+2<2)-A].
A solution to this Hamiltonian can be found through the Bogoliubov transformation from 
(ap, bp) to (otp, /Ip);

Op = <rp cosh9p + Pp sinh 0p.
fclp = otp sinh 0p + cosh Op,

tanh 20p — ——

Introducing the quantities /ip and Ap

hp = 4J2* cos p, cos py,
Ap = 27iy(cospx + cospj,),

the Fourier-transformed Hamiltonian reads

ft = EC + + bpb^) - Ap(aJ/>lp + flpfc-p),
P
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If we define the excitation energies <up by

(3.4.10)

the Hamiltonian becomes

(3.4.11)

(3.4.12)

(3.4.13)

(3.4.14)

(3.4.15)"h

As in all mean fi -hi theories the energy has to be stationary with respect to k, y and X. This 
yields the equ.-tions

= Ec + Z2 ^p<apap + ^p^)- 
p

/?o 4- A.
Na>o

5$.y) “*■ (

^.y)
Sa.y) ** S^.y)'

(Op = y (/ip+x)2 -

A. :y cot.-. appears in these equations either as single terms or in the right combin­
ations. the p (0. 0) and the p = (zr, zr) terms are completely equivalent. For future 
applications it is also useful to define what will turn out to be the ’condensate’ ms

. hn + X——COS Px cospy,

An
(cospx 4-COS Py), 

■••zip

2(Z>p

This is the sum of the contributions of the p = 0 and the p = (zr, zr) terms in the sum­
mations (3.4.12) and (3.4.14). As these are identical, it is twice the ’p = O’-term. If the 
system size N becomes infinite, N -*■ oo, ms equals twice the ’p = O’-term in (3.4.13). 
It is no coincidence that ms also appears as the size of the order parameter in equation 
(3.3.2). By inserting a symmetry breaking term r) J2j(—l)y5y *n ^e Hamiltonian, it can 
be shown through a short but subtle calculation that the equation (3.3.2) —without the 
staggering (— 1);— will hold for the ground state of the SBMF Hamiltonian with infinitely 
small symmetry breaking field r? = The staggering (—l)y has disappeared from
the formulae by the transformation (3.4.2).

As long as there is Neel order the condensate ms will naturally be positive. It will 
obtain a limit value in the case of an infinite system size N\ lim/v->oo'”j = const > 0. 
This finishes the discussion of the Neel ordered ground state.

Next we consider the collinear order. The route to follow is quite similar to the one just 
finished. We can therefore be brief about it. Introduce the transformation
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t t
Figure 3-1. The mean fields for the Neel (a) and the collinear order (b).

: of

>e

This is equivalent to (3.4.11) where o> and Ec are now given by

(3.4.17)

(3.4.18)

(3.4.19)n

(3.4.20)n

(3.4.21)1

After a Fourier and a Bogoliubov transformation, similar to (3.4.8) and (3.4.9), we obtain 

p

= 2J\KCOSpx,
= 2J\ /i cos py + 4J2Y2 cos px cos py.

Again we perform a rotation over tt around the «S:-axis, however this time not c 
the sublattices but on every other row. Define the mean fields k = ovei
neighbour bonds in the x-direction, yi = over the nearest-neighbour bo ;
y-direction and yi = %{Bi,i±x±y) over the next-nearest-neighbour bonds. The ; 
/ip and Ap are now given by

*p
Ap

nip = ^(/ip +X)2 - A2,

Ec = 2N^1(y2-ir2-l) +J2(l + 2y22)-^.

lei
Y>’ y'\

t
(b)

K\

(a)

The consistency equations for these parameters are

1 V—' (ip + 7. 
K = —cosPx.N 2c«p

1 y-' Ap 
=

1 Ap

1 ’t—x Ap + A.
2^p '
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The ’condensate’ ms is defined in a similar manner as before in (3.4.15), that is

>>h = (3.4.22)

3.5 Spin stiffness in SBMF

■H -> W(q) -> 7ZMF(q) , ps = -

How can ps be defined properly in the mean field Hamiltonian? This question might seem 
trivial, but a closer investigation reveals that there are two approaches:

• Start with the original Heisenberg Hamiltonian H. Induce a twist with wavelength 
q (just like has been done in section 3.3) and afterwards apply the appropriate mean 
field approximation. ps is related to the ground state energy of this mean field Hamil­
tonians, i.e.

ho 4- A.

• be original, frustrated Heisenberg model can be made that involves 
and a transformation of the basis; first the ground state of the SBMF 

H .. .. restricted to the subspace where the condition a* a 4- b*b = 1 holds
in . ,. pairs of bosons (a^a etc.) have to be replaced by spin operators. The
restri. >;d ./av ; u action now lies in the correct space and can serve as an approximation 
to the true ground state of the frustrated Heisenberg model. Wei and Tao [50] make this 
connection for the unfrustrated case, J2 = 0. The properties that they extract from this 
approximate ground state agree surprisingly well with the numerical results for the true 
ground stale from various Monte Carlo calculations.

In this chapter we will not follow their route back to the spin problem, but remain in the 
larger, bosonic space. The properties we obtain should thus be appreciated as such; they 
are related to those of the ground state of the frustrated Heisenberg model and should be 
seen as indications of the behaviour of the frustrated Heisenberg model.

The mean field approximation has provided the energies and wave functions of all states 
of the Hamiltonian and we can proceed to the calculation of the spin stiffness ps.

The symmetry of the collinear order differs from that of the N6el order. This condensate 
contains the contribution of the p = 0 and p = (0, 7t) terms in the summations (3.4.18) and 
(3.4.21). These are identical and once again the condensate ms is twice the ’p = O’-term . 
If the system size TV —> 00 it also becomes twice the ’p = O’-term of (3.4.19) and (3.4.20).

The main weakness of the SBMF approach lies in the handling of the particle constraint
4- i■ b — ' : only conserved on average by use of a Lagrange multiplier, equation 

(3.4. • iatc will have non-zero weight in configurations that have either too
hi: : >.is on a specific site. This space is different from the original spin
sp 'Despondence to the ground state of the frustrated Heisenberg model
exj ■

1 6(2(HMF(q))
N dq2
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'Hmf(Q) ."WmfH

(3.5.1)
(3.5.2)

• Swapping the first two steps of the previous approach; first apply mean field and then 
twist, i.e.

tn 
ie 

.11 
■n

:d
d

,:rt
. he

j’neel 

j'coll

e. _ 1 d2WMF(q))
Ps~ N d<?

In the mean field approximation we use here, these two approaches give the same res­
ult. Still, the correct approach is the first one, as there the energy increase of the original 
Hamiltonian due to the twist is approximated. The second approach replaces the original 
Hamiltonian by a mean field one and starts to investigate the response of the mean field 
Hamiltonian to a twist.

The calculation of the energy (H(q)) is a simple repetition of the approach fo 0. 
This allows a fairly direct derivation of the spin stiffness avoiding second order peri 
theory. Still, the aim of this chapter is to obtain the finite-size scaling relation 
kinetic term T and the current-current correlation J independently. These rela* 
then be used to extrapolate the data of the DMRG calculations to infinitely lan 
sizes. We will therefore follow the -general- route of second order perturbation t!

We can use the formulae derived earlier in (3.3.6), but simply taking the . 
ground state to replace the true ground state in this expression will not suffice; ii 
term contains an inversion which we cannot handle in this form. It is necessary 
the mean field Hamiltonian ?Zmf- In doing so we extend our SBMF approximatio 
entire spectrum.

The SBMF approximation thus has to be performed on the twisted Hamiltonian. H(q), 
and the first and second derivative are needed to calculate the stiffness ps in second order 
perturbation theory. This in itself is very similar to the description above for the untwisted 
situation and left to appendix A. The expressions for the current and kinetic operators are

J = Z2 JiJKij&ij + ^7> “ Z2
F AF

t = | 52 JiJKii^Ti ~Ti>)<r' ~ rJ + J ~ 2k‘J
2 F

-“52 ~ + Bij - 2YijY
2 AF

From this point on, we set q = <?(cos0, sin</>). Of the two terms for p5 in (3.3.6), T is 
evaluated more easily:

r = “(0|r|0)

= T7 52 - rf)(ri - rf) - 77 E - rj)(r<- - rA
/V AF 1 F

For the two orderings considered in the last section, this expression boils down to
= Jty2-2J2K2,
= 2/2/2 + A (y2 s’°2 ~ cos2 0) ■
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rj sinh2#Pl sin(pi • r{),

,i«) = ,2rjcosh20pi sin(p, • rj).

J0”1 (3.5.3)

dp..,

dp

Th,, 
al!
Han

cos 0 sin px [di/cAp — 2J2Yi(hv + I) cos

jnccl 

y C°H

7con

These simple equations hold for all system sizes N.
The derivation of J requires somewhat more effort. First the matrix element (O|j|a) 

has to be calculated. As |«) is an excitation of Hmf, it has to fulfill the relation
|o) = at....-a,^.....^10).

Of these the only relevant ones are

l«) =aJ,^2|0),
as can be established by applying the Bogoliubov transformations (3.4.9) to C,j and F,). 
The m: iris ci. • ■>’ 'self is a combination of (0|^;j|a) and (0|C,;|a). By means of simple 
algch. . '

. Pi = p2 = p, thus Ea — Eo + ^pi +<Wp2 = £o + 2a>p. Inserting 
: Me equation for J, (3.3.7), will give the explicit formula for J. The 
.pression is ?/mf- For the two types of ordering J is:

p p

2<5pi,p2

.J13) — — 25pi,p2

— sin 0 sin py [Jiyi(hp + A.) 4-2J2X2(^p + X)cospx] ) .

In the introduction of the SBMF we already defined the p = 0 term of the summations 
separately. The condensate is defined in expression (3.4.15) for the Neel order and (3.4.22) 
for the collinear order. Here we also have to be careful with these terms. For the infinitely 
large lattice these equations can be simplified by replacing summations by integrals, i.e.:

(2^?/

2J1K Ap COS Px)2

p

but all divergent terms have to be taken separately, e.g.
. 1 ftp + A. , 1 /* /’p + A-

~ 2cop ~ "'s + (2yr)2 J dP 2<up

where ms is defined in equation (3.4.15). Partial integration over p yields:

= J\y(ms - y) - 2J2K(ms - <r),
= 272X2("ir - K>)

+Ji (yi(«ij - /l)sin2</> - x(ms - *)cos2</>) .
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0.4

0.2

0.2 0.8 1

oo

(3.5.4)

(3.5.5)= ms

These expressions for J only hold for infinite system size N, in contrast with the expres­
sions for T in (3.5.1) and (3.5.2).

The spin stiffness is given by ps = T + J, thus for N

Figure 3-2. The spin stiffness ps in units of J\ as function of the ratio J2/J\ (sol 
collinear ordering the spin stiffness in the direction of the ferromagnetic order (lo\ 
and in the’direction of the antiferromagnetic order (upper solid curve) are drawn. The line is 
the result found by Ivanov and Ivanov [26] for the collinear ordering.

In figure 3-2 the numerical results of these formula are presented. The phase transition 
is first order and no intermediate phase exists. This is in contrast with statements in the 
literature [16, 58], that suggest an intermediate phase of dimer or plaquette order. Einarsson 
and Schulz [16] studied the spin stiffness on small clusters and extrapolated those results 
to the two-dimensional geometry. In their results the spin stiffness vanishes in the region 
0.4 < J2/J\ < 0.6.

Ivanov and Ivanov [26] have applied a different method to obtain ps. They consider

'or the 
curve)

= - 2J2<),
= msy/(1J2Y2. - J\k)(2J2Y2 + 2iXl)-

ft"'" 
pco"

0 
0.

prccl 
-coll 
p,

0.4 0.6
J2/J,

= ms(J\y -2J2k),
/ 2J2yi -J\k 0 \
\ 0 222X2 + 21X1 )

the correlation function f = (<S,- • Sj). Comparison of this correlation function f with the 
non-linear sigma model where £ ~ exp(2jrpsI 7") (here T stands for the temperature), 
yields
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3.6 Isotropic Scaling

(3.6.1)

(3.6.2)aip

(3.6.3)

Often'? 
w). :

Our expression for the collinear ordering is different from theirs. This is not very surprising 
as they do not take anisotropy explicitly into account. Their result is the geometric mean 
of the two components in (3.5.5).

This section was started with a discussion on the route to be taken; whether first to twist 
or apply mean field. It was stated there that both would lead to the correct answer. This can 
now easily be seen. As (^iy) = (C,y) = 0 there is indeed no difference.

4J1KN + Xp

impossible to obtain the values of observables in a system of infinite size (N —> 
pproach to overcome this obstacle is to derive the values for various system 
I afterwards extrapolate to the infinite size. This is for instance done with data 
>rn -Monte Carlo calculations and exact diagonalisation methods. It is necessary 

size dependence of the observables to obtain a good approximate for their 
.ties.

some controversy has arisen about the size dependence of ps [17], It was 
i at the lack of proper scaling behaviour on small systems for intermediate range 
>n 0.4 S, Ji! J\ 5 0.6 is an indication of the absence of long-range magnetic 
herefore worthwhile to take a closer look at the scaling behaviour of the various 

• laaaa This is not a hard task as all formulas in the last section have an explicit size 
dependence. We will show that this lack of scaling behaviour does not only appear for 
intermediate range of frustration, but is a general feature of small systems.

We will focus on the N6el ordering as an example. We want to know the scaling beha­
viour of the condensate ms, and the two terms J and T that make up ps (ps = T + J). 
The latter two will turn out to have different scaling behaviour. The following discussion 
is entirely based on the fact that the dispersion relation oik is a periodic function that is 
smooth and positive everywhere except at 0 and (rr, n) where we see a linear behaviour; 
e.g. = c|k| for |k| <K 1 , the spin wave velocity.

First the condensate ms is considered. It is defined by ms(N) = (/to + X)/(/Vtwo) or 
ms(N) _  i 1 y-./ip+Xw

In the limit N —> oo the parameters tru, yp, Xp) will obtain their limiting value (*■, y, 
A.) and the summation can be replaced by an integration. Both changes will give rise to 
corrections. We carefully investigate the size of these corrections below.

It is known that lim;v->oo mj(IV) = m, > 0. This can also be expressed as lim;v_oo 
(/to + X)/(/Va>o) = or inverting this relation into one for «tp at |p| « 1

The two constants in this formula are given by

Ko = N1 [(4./2KW + A-tv)2 - (4Ji ytv)2] = (
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w
:) =

0 is given by

2,

The quoted lemma therefore leads to

2,mjf/V) - ms =

Jn-J =

We respect their notation by taking the argument Z.2/W2. The numerical 
0.6208 was computed in [32],

In our situation the limit |p|

This result is in excellent agreement with the numerical values we get when the equations 
(3.4.12-3.4.14) are solved and the obtained Ky, yy and Xy are inserted in (3.6.1). This is 
depicted in figure 3-3. For values of J2 > 0.62 we know from figure 3-2 that the phase 
becomes instable and it is no surprise that the data does not longer fit the scaling relation.

The derivation of the scaling behaviour of J proceeds in the same manner as above. 
The starting point is (3.5.3). The result is

quant- 
that 
and

X -I- 4J2x
X — 4J2*r

0.6208

A. — 4 Jik

A. + 4J2K

Jp—— = 
/(p)

J_y^_l_____ 1_
N £5 Z(p) (2a-)2

0.6208 7X2 - (4J2<c)2  0.6208 c
y/N y/~N 4'

Again we find excellent agreement with the numerical results in figure 3-4 upto J2 = 0.62, 
where the Neel phase becomes instable.

To obtain the scaling behaviour of T a more involved reasoning is required. As is seen 
in (3.5.1) it depends both on Ky and yy. They are part of the set (Ky, yy, Xy) of solutions 
to (3.4.12-3.4.14). As these are mutually dependent they have to be solved simultaneously.

,. 1 2a>p
hm---------- —
P->0 |p| hp + X

c2 = 5 [xj, - (4J2<eN)2] + O(^).

The suggestive notation c2 anticipates that this is the spin wave velocity since an antiferro- 
magnet has a linear dispersion relation o>p = c|p| for low energy. For finite system size N 
the smallest q-vector in the summation (3.6.1) has length |p| = (f-2 = N). This means
that the q-independenl term, Kq/N2, is small compared to the q-dependent term and gives 
rise to corrections of at least the order O(\/N2) in the summation. We replace Ky, yy 
and Xy by their limiting values k, y and X and thereby neglect these corrections of order 
0(1/IV2). As the term p = 0 is excluded the summation still is finite.

The other effect, replacement of the summation by the integration, can be 
itatively due to a lemma by Neuberger and Ziman [32], They consider a func 
is periodic on the Brillouin zone. If this function f (p) satisfies 2^2 —> 1 as 
f (p) is non zero and smooth in the rest of the Brillouin zone, then

a(L2/W2)
y/N
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z

Figure 3-4. The numerical scaling behaviour of J (solid lines) for sizes N = 102, 202,402, 1002 
(bottom-up) compared with the theoretical curve (dotted line).

he numerical scaling behaviour of mf (solid lines) for sizes N = 102, 202,..., 902 
. ■ compared with the theoretical curve (dotted line) At Jz/J\ = 0.62 the ground state 

cecomes instable and the discussion on the scaling behaviour is no longer applicable.
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(cos Px COS Py - 1) , (3.6.4)kn

(3.6.5)YN

3.6.6)

y, A).

a>p =

+ ...

(3.6.7)<W(P) = -

I

ialytic
As an

/3(7L2/ W2) 
W3/2

N^/(P) (2^)2/

The numerical value )3(1) = —0.7186 was computed in [32]. Application of this lemma 
again leads to corrections of the order 0(1 /N3/2). In a similar manner the other equations 
for k and y can be treated.

i + 7j

Ko
2N2gN(p)

The corrections in the total summation thus become

p p

This mean that replacing the set (kn, yn, Xn) by (*r, y, A) leads to errors of the order 
0(1/N3/2).

As in previous cases the summation has to be replaced by an integral. Neuberger and 
Ziman [32] provide a lemma well suited for this type of summation. It reads: consider the 
same f (p) as before,

= v/«n(p) + O(E75).

Ko
-j^+gN(P\

where gjv(p) c2|p|2 if 2s. < |p| j. On all lattice points except the origin g/v(p) » 
Kq/N2. We have a>o = O(l//V) or \/2Nwo = O(l//V2). For pjtOwe can expand <up in 
K0/N2-,

"p = x/sn(p) [

In the formulation of (3.4.12-3.4.14) the divergent p = O’-terms are still included. We 
will rearrange these equations to remove the poles. Give the equations (3.4.12-3.4.14) the 
numbers 1,11 and / / / respectively. For the derivation of the scaling behaviour we will use 
the combinations/ — ///,// — III and 4J2Kp 1 — 4J\yp 11 + XpIIl, or (using (3.4.6), 
(3.4.7) and (3.4.10))

] 1 Zip + Ay
A'V Zrup

E (~^(cosPx + COSPy) - (/ip + A„)) ,

Aw = 47, y 2 - 4J2*:£ + ^77 E"jP’ 
p

It is not possible to extract the scaling behaviour from the equations compk 
form: the exponent of N can be found, but the prefactor cannot be deriv. 
example we consider the equation (3.6.6).

First we want to replace the set {kn. Yn.^n) in the summation over
From (3.6.2) we know that o>p has the general form
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(3.6.8)Tn-T [X - 8J2*-] •

3.7 Scaling for a highly anisotropic geometry
The DMRG method that we will employ in the next chapter, allows us to study systems of 
fairly large length L while the width W has to remain small. This fact can be seen as an in­
vitation to apply a two-step scaling procedure; first the length dependence is removed from

We now have two sources of finite-size corrections. On one hand the dependence of k, 
y and X on the systems size. We know the exponent of this correction, O(/V3^2), but not the 
prefactor. On the other hand we have the correction arising from the summations. There we 
not only know the exponent, O(N3/2), but also the prefactor in equation (3.6.7). Since both 
size dependencies are O(N3^2) and can therefore not be separated, it is not easy to obtain 
the overall prefactor. However if the size dependence of the parameters (kn, yp, is 
neglected the following prefactor is found for T:

0.7186 I X + 4J2k

N3'2 - 4J2k

As can been seen in figure 3-5 this gives a reasonable description for not too large J2/Ji. 
The numerical calculations show that at J2/ J\ = 0.62 the scaling behaviour is of order 
O(\/N). In figure 3-5 one therefore observes crossing-over behaviour from O(\/N312)- 
scaling to C>(l//V)-scalmg around this point.

The size dependence of both T and J are now known. The scaling behaviour of the 
spin stiffness ps (= T + J) is dominated by the order O(l/s/W)-behaviour of J.

. numerical scaling behaviour of T for square systems of size N = 102. 202.........902.
T ■ A is derived from analytical arguments in the text. The dotted line gives the expected 
bet.:.viou> i rhe size dependence of k, y and X inside the summations (3.6.4-3.6.6) is neglected.

0

0

z 
E—

0.2 0.4 0.6
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caling

they lead to

(3.7.1)

(3.7.2)[X - SJjtc].Tn-T

As we have not spent any time so far on the energy density, we will stair 
behaviour observed in the literature. Neuberger and Ziman [32] derive

lim 
N

P as
Still.

lim 
L~*oo

Eo 
N

Eq 
N

Eq
N

P(L2/W2) 
(LW)^

1.2021
2rrW3 '

lim
N—► co

<(3) = £^ = 1-2021,

1.2021
rrW3 C'

1.2021 Ix+4J2k

2y/2n W2} X- 4J2k

The function p is the same as defined in (3.6.7). We thus seek the beh 
L —> oo. Neuberger and Ziman’s approach [32] can be extended to this 
the algebraic manipulations are quite tedious [36] and using

In figure 3-6 we have numerically checked the second of these predictions. Just like in the 
isotropic case, the power is correct and the prefactor is reasonable.

Unfortunately a similar limit L —> oo can not be taken in the scaling expression for the 
current-current correlation J. The reason can be found in the underlying assumptions; we 
supposed that the dispersion relation is linear and the correction due to the fact the o>k has a 
gap A, as presented in (3.6.2) has been neglected. For a highly anisotropic system, L -> oo, 
this assumptions is not allowed. We can illustrate this by an example: the summation over

As expected all length dependence drops out and only a finite width dependence remains. 
When we neglect the dependence of the parameters k, y and X on the system size as before 
in (3.6.8), the expressions for the energy density Eq/N and the kinetic term T are

= —27j(2y2 - 1) + J2(2k2 - |).
N 4 4

the observables by taking the limit L oo, and afterwards one takes the limit W -> oo. 
For both steps knowledge of the scaling behaviour is essential. The first step is fairly trivial 
and will be discussed in due time. For the second one, scaling the width W away, some 
guidance from the SBMF results is useful. Both the kinetic term T and the energy dens­
ity Eq/N can be treated in the same fashion. The energy density can be simply obtained 
by evaluating the Hamiltonian H in the SBMF ground state; the expectation values of the 
operators can be written in the mean fields k and y. The energy density is given by

Eq
oo
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oo,

scaling of a system of ’almost’ infinite length L = 4000 and finite width W
20 (top-down). The dotted line is the theoretical curve given in equation (3.7.2).

p. .. . .. .

6,>.

E—

(2zr)2 f
The analytical expression we therefore should derive, involves the gap A. Above we men­
tioned that it is not possible to obtain the prefactor of the scaling behaviour of y, k and A. 
The gap A is directly expressed in these three quantities and its explicit size dependence 
therefore becomes just as elusive. However, we can resort to numerical means. In figure 
3-7 we establish that the current-current correlation shows a 1/ W scaling behaviour.

To conclude, the width W has taken over the position of the square root of the system 
size , V77, in all scaling relations when the highly anisotropic limit of L -> oo is taken. 
(x/~N = V LW) This is naturally not surprising as the smallest dimension of the system is 
W which should set the length scale.

In the next chapter a brief discussion will be given of the behaviour of the energy gap A. 
This is the energy difference between the ground state singlet and the first excitation triplet. 
For an infinite large system with spin waves this gap obviously will be zero whereas for 
other types of order it might remain finite. For reasons to be outlined later, we will consider 
the member of this triplet with Sz = 1. In the SBMF approximation the gap A is given by

A = 2tuo-

red; ‘.»■ lattice in the long direction of the system can be replaced by an integral and the 
outcome diverges;

LW jk| = W

whereas the infinite size expression stays bounded;

dk— = finite.
|k|

0.2

0

0 0.2 0.4 0.6
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. i W =Figure 3-7. The scaling of a system of ’almost’ infinite length L = 4000 and b.- 
6, 8, 10. 12, 14, 20 (bottom-up).
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The factor 2 can easily be understood if we rewrite the operator <SZ in the excitation oper­
ators afk and /?k;

sz = 52 152 (a)a> -
= 5 52 (akak ~ b^bk) = 152 (“J“k _ 

k k

The ground state contains no excitations so 5Z10) = 0. The Sz = 1 -space can be reached 
by creating two excitations; <SzaQaQ|0) = 1 • aJaJlO). This is not surprising in the view of 
the fact that the number of bosons should be conserved on a site. Applying only one cre­
ation operator creates an excitation that does not satisfy this condition. When two creation 
operators are applied to the ground state, their combination contains terms that do satisfy 
this condition, for example, it contains terms of the form a*bj■.

From (3.6.2) and (3.6.3) we know that the gap A = 2<z>o = 2*J~Kq/N has a very 
subtle size dependence as k, A and y have an (9(1/TV3/2) dependence but Kq/N2 has 
an (9(1/TV2) dependence. Adding to this the high anisotropy, we can only establish the 
finite-size corrections numerically. The best fit with a simple function is a size dependence 
A ~ l/(W — Wo) as can be seen in figure 3-8. This is in line with the idea that the gap A 
can be considered proportional to the inverse of the correlation length. The smallest length 
scale in the system is W leading to a 1/W behaviour.

Unfortunately, the scaling of the gap does not follow the route that previous scaling 
relations have followed. The scaling behaviour of Eq/N, T and J in the highly anisotropic 
limit can be summarised as replacing the system size N in the formulae for the isotropic
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3.8 Conclusions

<!cnost infinite length, L = 1000, and various widths W we observe that the inverse 
cnear proportional to the offsetted width 1/A ~ W — Wo-

gee-
find •

20 
W

. Fig
of
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For the gap A that would lead to a 1 / W- dependence whereas we actually 
Wo) dependence.

In this chapter we have employed the SBMF approximation to get the approximate phase 
diagram of the frustrated Heisenberg model. We found two phases, Neel and collinear. The 
energies of both ground states suggest a first order phase transition at Ji/ J\ & 0.595. 
There is no evidence for an intermediate phase. SBMF approximations in line with either 
dimer-like order always yield higher ground state energies. As mentioned before there are 
several articles in the literature where an intermediate phase is suggested [16, 58].

The second half of the chapter was spent on finite-size scaling. The scaling behaviour of 
various quantities (ps, J, ...) was derived for both square, L = W, and a highly anisotropic 
geometry, L 5> W. These scaling relations will be used in the next chapter to extrapolate 
the numerical data to infinite system size.

3000 

s
2000
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4.1 Expressions for ps

(4.1.1)rym-

4 Density Matrix Renormalisation Group 
approach to the stiffness

Ps — T'sym

In [h<
res;.- ■ . 
on • ' 
ha s 
inv.;
has
breal •; : .

other
the c;; e . . ; Kan-field approximation.

The orientation of the order is thus homogeneously distributed over the sphere; every 
orientation in spin space is just as likely. The twist we apply has a plane associate with it. 
Previously we twisted in the x — y plane. The fraction of the ground state oriented along 
the z-axis will not be affected by this twist. Leaving out that fraction, we only twist 2/3 
of the order parameter. To compensate for that we follow Einarsson and Schulz [16] and 
introduce

In <. u. : tudied the spin stiffness in a Schwinger-boson mean-field approximation,
v order has a distinct orientation and it is clear how to twist it. If we do not 

mean-field approximation and consider the frustrated Heisenberg model 
.Lice, the orientation of the ground state is not as well defined. This model 

: symmetry; homogeneous rotations in spin space leave the Hamiltonian 
•’so know that in a finite system the ground state is unique. It therefore 
' tally invariant. Only in an infinitely large system spontaneous symmetry 

and we can associate a direction with the order of the ground state. The 
o break the symmetry is by enforcing an orientation. This is for instance

A further complication lies in the numerical nature of our approach. Unfortunately 
the ground state we calculate, will not be entirely rotational symmetric. The reason for 
this touches on the very nature of spontaneous symmetry breaking. As the Hamiltonian 
is rotational invariant, it only takes a small field to orient the ground state. Basis states 
in line with this field will prevail. In standard mean-field approximations we use this by 
introducing external fields to fix the orientation. Here we go a step further and directly 
meddle with the basis. By definition we start our DMRG calculation with an asymmetric 
and poor basis. At each step the ground state wave function will be symmetry broken in 
the same orientation as the basis. The following basis truncation will again be asymmetric. 
Even if we were to start off with a symmetric basis, numerical errors would break the 
symmetry eventually. It is very difficult to maintain a global symmetry by means of iterative 
local basis updates.

T'sym — , JSym — 2^'

with T and J given in (3.3.6). The spin stiffness is given by
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52|^o) =0

These conditions are rephrased to reflect that we work in the basis that cor; ■

<S+|iAo> = S-IV'o) .1.2)0

■s the

and define

then the stiffness ps is given by

(4.1.3)

Z2a=x,y,z

To repair this partial symmetry breaking, we would have to incorporate the rotational 
symmetry exactly in the procedure. The DMRG method allows for certain symmetries to 
be conserved as was extensively discussed in chapter 2. A good example is Sz, which we 
also conserve in the present calculations. This is possible because to every basis state we 
can assign a quantum number sz. The Sz for the entire system is then the sum of the sz 
of the basis states on the individual parts. It would be nice if also the total spin S could 
be conserved, but we will argue that this is not feasible. The ground state |V<o) lies *n the 
S = 0 space. The conditions for this restriction can be easily derived:

Tait = - — (<Mall\<M . Jall ~ -----77/v /v eq — rt

Ps — Tall + - Tall- 
Z a=x,y,z

:—z<s“2iv,o) = o
Wol (S0)2 lito) = l<s°wi2 = o 

= o.

A direct consequence of fulfilling (4.1.2) is a rotationally invariant group 
global rotations in spin space over an angle r are given by exp(zrS“).

Our approximation |</>o) already satisfies the first condition of (4.1.2), 0, in
a standard implementation of the DMRG. Conservation of the second and third condition 
would require for each basis state in an individual part A of the system |z)a the image 
S±|z)x- This would scale up the number of basis states tremendously and the calculation 
would become prohibitively large. We will therefore neglect this symmetry and evaluate 
ground state wave functions that are only approximately rotational invariant.

On the other hand, there is no reason why the symmetry should be completely broken; 
for narrow systems, the DMRG is accurate enough to compensate for this symmetry break­
ing tendency.

In general the final ground state will be somewhere in between a symmetry broken state 
and a rotational invariant state. The expressions for the kinetic term T and the current­
current correlation J can be symmetrised to overcome this orientational problem;

'ail = Ji V'.G? ■ (r. ~ Q))2<Si • Sj + Ji 770? ' (?■' - rj))2<S, ■ Sj,
<>7) [>7I

jail = iJt y~^(? ■ (6-rj))5, x Sj + i J2y^,(,q ■ (Pj - rj'f'fSj xSj,
VD ('71
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4.2 Calculating wave functions

(4.2.2)I*) = I0i)

(4.2.3)

resuits 
a sin: 
J n.

the
a si;, 
DM) 
is sei; 
have a

Three current-current correlation J°lt have to be calculated for (4.1.3) whereas only one 
Jsym for expression (4.1.1). In the next section we will see that this is substantial more 
involved and we prefer to use formula (4.1.1) whenever the accuracy permits us to. In 
practice this means that for narrow systems we use the symmetric form. For wider systems 
the general form is necessary.

The express?:.-- fcr the stiffness ps in (4.1.1) and (4.1.3), have to be implemented numer­
ical? gradient is the ground state. A standard implementation of the DMRG

limate |0o) of the ground state. The kinetic term T can be obtained by
■ .-nt on this wave function |0o). However the current-current correlation 
’□rate approach.

to be performed for J. We will prove that we can invert Ep — 'H within 
ed by the basis states for the various parts. To derive this we first take 

' pect the method to calculate the ground state. At each iteration of the 
in the subspace that has a minimal energy Ep = ,

icrgy Ep is always larger than the true ground state energy and we thus 
? principle. At every next iteration we can improve upon our estimate 

by sin.pl ■ minimising Ep further starting with the -truncated- outcome of the previous 
iteration. This variational principle is crucial for the method as it enables to distinguish the 
best approximation to the ground state from other configurations in the basis.

We can design a similar variational principle for the inversion. Define g(x),
g(x) = |(x|H-Eo|x) + W0j). (4.2.1)

where |<Z>j) = y|0o) and Ep is the best estimate of the ground state energy known at that 
point in the procedure 1. This function has a global minimum at

as the quadratic term, — Eol*)» is positive definite. In the realm of linear algebra |0j) 
is called the correction vector. This function provides us with a variational principle similar 
to the one we had before. Moreover the minimum of the function within a specific subspace 
is also given by (4.2.2) where |0j) and H are now restricted to that subspace. The 
inversion within the subspace is thus the best approximation we can make for the global 
minimum.

At every step the subspace changes and we can get closer to the real inverse |0j). If 
|0j) is known with high accuracy, 1 /{Eq — H)|0j) can be obtained with similar accuracy. 
A nice by-product is that

= |(0oU„ 1 — JI0o>;
________________Z______ £Lq — rt______

’Unfortunately this is not always the latest calculated energy; it tends to fluctuate. This was already 
discussed at the end of section 2.4.
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trix

2.4)

1.3)

4.3 Geometry
The shape of the systems we study is dictated by limitations of the DMRG. Their width is 
fairly restricted ( maximally 8 sites wide )' and periodicity along the length of the system 
is not feasible. Earlier we explained that the spin stiffness can only be measured with the 
expressions we derived if the axis along which we twist, denoted by q, is periodic. We used 
two different arguments for this, that are both valid in their own right; first, the perturbation 
theory for an open system will not give the desired state and energy. Secondly, a similarity 
with superfluidity exists; a superfluid cannot flow freely when there is an impenetrable wall 
in its way.

The system thus has to be periodic in the -narrow- width direction and open in the 
length direction; the shape of a cylinder.

The model itself puts some extra constrains on the wrapping of the lattice around the 
cylinder. In order to frustrate neither the Neel nor the collinear ordering, the periodicity of 
2 lattice sites has to be satisfied.

The two lattices depicted in figure 4-1 fulfill both requirements. The width W of the lat­
tice is the number of sites one passes going round the cylinder. The length on the other hand 
is the maximum number of sites one encounters while scanning along the long direction.

nost 
gest 
i on

Apart from the prefactor this is essentially the expression for J.
The basis has to be tuned to present these wave functions {|0o>. |0j). I0i>) optimally. 

The reason for including the first wave function, |0o), may be evident. The other two are 
necessary, since we need expression (4.2.3) accurately. If the basis does not properly rep­
resent |0j) or |0j), g(0i) = is incorrect. To adjust the basis to these wave functions
we have to incorporate them in the density matrix. Let us briefly outline the reasoning be­
hind that. Define the truncation error P by

P = ||0O> - I0o)| + |l^l) - I0i)| ■

The tilde denotes the projection of the wave function on the truncated basis. T lion
error P has to be minimal. A few linear algebra manipulations leads to the cl

Pip = Ptf + + p\i"

The density matrix is thus the sum of the individual density matrices. As 1 
important states correspond to the eigenvectors of this density matrix p w 
eigenvalues. The different density matrices could have different weights, bt> 
the accuracy of the spin stiffness is unknown. We set them therefore to be eq.

The remaining issue of the last section has now also been answered; exp c. 
for ps is more elaborate than (4.1.1) as three instead of one inversions have to c ned. 
Moreover all these extra wave functions (four in total; two extra currents and two extra 
inverses) have to be included in the density matrix along the lines of equation (4.2.4). 
Naturally the basis will then be less suited for each individual wave function and an overall 
loss of accuracy will follow.
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4.4 Scaling
The DMRG accuracy rapidly decreases with increasing system width W. It becomes there­
fore necessary to apply finite-size scaling theory to obtain quantities of the two-dimensional 
system. Here we implement a two step scaling where we can use the discussion on aniso­
tropic scaling in the previous chapter and the scaling analysis of the two-dimensional ITF 
in sections 1.5.1 and 1.5.2.

The first step exploits the strength of the DMRG; for a fixed width W it is numerically 
not difficult to vary the length L substantially. By doing so, we can extract the dependence 
of various quantities on this length L and remove it. The remaining fraction corresponds 
to a system of length L = oo. To obtain this one-dimensional scaling behaviour we can 
not employ the SBMF approximation of the previous chapter. That was based on periodic

uearest-neighbour coupling becomes dominant, these lattices both fall 
Uices. For the square lattice, these sublattices have an effective width

and the tilted square lattice of width W and length L. In the square lattice the 
vertical lattice-axis. In the tilted lattice the periodicity is along the (vertical) 
Periodic images of the nearest neighbour bounds are depicted by dashed

Figui 
period 
diago;
lines

vv;
apart i
of IV/l, v. K; .. s the tilted lattice breaks up in sublattices of width W. Knowing that the 
accuracy of the DMRG rapidly decreases with increasing width of the system, we expect 
results of a strongly decreasing accuracy for the tilted lattices with increasing frustration 
Ji-

The direction q in which the stiffness is measured is different for the square and for the 
tilted square lattice. The square lattice allows a measurement along the axis corresponding 
to the width direction of the cylinder. On the tilted lattice the direction to be taken is the 
diagonal of the lattice. In short:

1
Tilted square lattice : q = —j=
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boundary conditions whereas the systems considered here have open boundary conditions 
in the long direction. Still, the correct exponent can easily be derived.

While the correlation length | is finite, the influence of open boundaries on both ends 
only extends over this length $. The corrections to the bulk behaviour of all properties 
Eq, T, J and ps is then just a surface term;

Eq{L, W) 
N

Eq(oo, W)
N

Reliable finite-size scaling requires a substantial number of data points. We have con­
sidered various system sizes to make -at least- the first step in the scaling procedure, 
L oo, indisputable. For the square geometry (see figure 4-1 widths W = 4, 6, 8 were 
considered and for the tilted geometry widths = 2, 4 were studied. In all graphs we set 
A = 1.

We have used both DMRG variants, the original one proposed by White [51] and our 
implementation [15]. For this model we confirm the statements made in chapter 2; the vari­
ant of White is much more flexible. On the other hand, our variant needs 30% fewer states 
for a similar accuracy in the calculation. Furthermore the ground state is more symmetric 
as the translational symmetry is strictly conserved. A relative small extra gain can be made 
by reusing bases; whenever we start a new calculation that differs from the last one in the 
size of the frustration J2. the bases for the various parts for the preceding value of J2 can 
be used. This reduces the number of sweeps needed to about three.

For the second step, scaling in the width direction, we fall back on the expres de­
rived in the previous chapter. As the length has become infinite, L —> 00, it is n nger 
relevant whether the corresponding boundary is open or periodic. We can refer to the results 
for the periodic case derive before; expressions (3.7.1) and (3.7.2) contain the (9(1/ VV3) 
scaling behaviour for the energy density Eq/N and the kinetic term T respectively. With 
the help of (3.7.1) we can also extract the spin wave velocity c. Moreover figure 3-7 demon­
strates the (9(1/ W) scaling behaviour that SBMF yields for the current-current correlation

T(L, W) - T(oo, W) = O (-0 , 

j(L,w)~j(oo,w) = oQy 

ps(L, W) — Ps(oo, W) = ©(£).
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4.5.1 Scaling to L = oo

The width W of the system is fixed and for various lengths L the properties Eq/N,T,J and 
Ps are calculated. Usually we set L = 2W, 3W, 4W, 51V. In figures 4-2, 4-3 and 4-4 we 
have depicted this for square lattices with W = 4 and two values for Jj. Many more lengths 
L are considered here as it is computationally fairly easy to achieve enough accuracy for 
system sizes up to L = 160. The scaling behaviour of 0(1/L) is clearly confirmed by 
the graphs. In the figures is the extrapolated values for 1/L = 0 are also depicted. The 
resulting energy density Eq/N and stiffness ps of the infinitely long system are collected 
for various Ji in figures 4-5 and 4-6. Figures 4-7 and 4-8 contain the equivalent results for 
the tilted lattice.

4.5.2 Scaling to W = oo

In the final, two-dimensional system, the orientation of the lattice, square or tilted, does 
no longer matter. The values of all quantities are equal for both orientations at system size 
L x W = oo x oo. However, the prefactors for the finite-size corrections do not have to 
be the same. We fit the scaling for both orientations with the same offset, but with different 
gradients. In figures 4-9,4-10 and 4-11 this is done for Ji = 0. The resulting extrapolations 
are also plotted in the figures. In all these figure we have multiplied the width W of the tilted 
lattices by a factor of 2 so that both the tilted and the square lattices fall within the same 
range of 1/ W3 and 1/ W. All data can then easily be plotted in the same graph.

In figures 4-12 and 4-13 we plot the energy density Eo/N and spin stiffness ps for a

S ~069'
-0.70
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Figure 4-3. The kinetic term T as function of the inverse length for width W = 4 on . ire 
lattice.

Figure 4-4. The current-current correlation J as function of the inverse length for width W = 4 on 
the square lattice.
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Figure 4-6. The extrapolated spin stiffness ps for widths W = 4, 6, 8 on the square lattice.
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Figure 4-8. The extrapolated spin stiffness ps for widths W = 2, 4 on the tilted square lattice.
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omparison between our results for Jz/ J\ = 0 and those by Sandvik [43].

4.6 Other Indicators

i
I

I-.. 
to C 
SBM.

Ti - ..-tt 
past J-.

Eo/W
Ps
T
J

Sandvik [43] 
0.669437(5) 
0.175(2) 
0.3347185(3) 
0.160(2)

This work 
0.666(1) 
0.165(10) 
0.330(2) 
0.165(6)

In the process of calculating the spin stiffness ps, it is easy to generate the spin-spin cor­
relations (S, ■ Sj). Although no finite-size scaling was performed, the correlations already 
given a clear hint what to expect in the intermediate range of frustration. For these correl­
ation functions there are no restrictions on the boundary conditions as was the case for the 
spin stiffness ps. To achieve highest possible accuracy we set the boundary conditions in 
both directions to be open. In figure 4-14 the correlations are depicted for Jz/ J\ = 0.5. To 
be honest, the Hamiltonian has been modified to be more conclusive. Let us explain this.

In the literature [58, 41] there are many suggestions for the intermediate phase. Two 
of these would yields such a correlation picture, namely dimer and plaquette phases. They 
distinguish themselves in a very quantum mechanical manner: the dimer phase consists of 
nearest neighbour singlets nicely stacked next to each other on the lattice and all aligned in 
the same direction.The ground state in the plaquette phase basically is a direct product of 
two vertical singlets plus two horizontal singlets on each plaquette.

Figure 4-14 could correspond to a superposition of two discrete orientations of the 
ground state; one oriented in the vertical direction and one in the horizontal direction.

two-dimensional system. The error bars in these graphs are based on fitting the data-points 
for (oo, IV) to the assumed scaling relations; the errors in the data after the first scaling, 
L —> oo are neglected.

For Ji = 0 there is no sign problem and the literature contains excellent results with 
which we compare in table 4-1. The known values for Ep/N, ps, T and J do not contradict 
with our estimates, although the differences are up to 6%.

ggest a first order phase transition as the gradient of energy curve seems 
ily around J-ij J\ 0.6. This is the same behaviour as observed in the 

. uion, figure 3-2.
, of the stiffness ps, figure 4-13, increase dramatically while sweeping 

. The reason for this is that the kinetic term T and the current-current 
correlations J for the tilted lattices and the square lattices no longer seem to have the same 
limit in the two-dimensional case. We still enforce this and as a consequence the error bars 
increase dramatically. Einarsson and Schulz [16] suggest a region 0.4 5 Jzl J\ iS 0.6 
where the spin stiffness vanishes, ps = 0. This is not in contradiction with our results 
although we also can not confirm it.
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Figure 4-9. The extrapolated energy density Eq/N for square lattices W = 4, 6, 8 and i- . :es 
W = 2, 4. J2 = 0. The widths of the tilted lattices is multiplied by a factor of 2 to get bof- . , for 
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Figure 4-10. The kinetic term T extrapolated. J2 = 0. The cross x on the axis denotes the extrapol­
ated value.
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of extrapolations done as in 4-9. The error bars are based on fitting the data to the scaling relations.
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Inserting a small perturbation in the Hamiltonian,
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Figure 4-13. The spin stiffness p, of a two-dimensional system. Every point is the sum of ■' 
term T and the current-current correlation J obtained by extrapolation as in 4-10 and 4-.

will lift the degeneracy of the dimer orderings, after which only dimers in the length direc­
tion will remain visible, whereas the plaquette phase would not suffer severely from it. The 
system depicted in 4-14 has this perturbation (4.6.1) included. It provides clear evidence in 
favour of a plaquette phase.

As a further indicator, the spin gap A was also briefly studied. This is the energy dif­
ference between the singlet ground state and the first excitation in the Sz = 1 space. This 
excitation is a member of the triplet of lowest excitations. Both for the N6el and the col­
linear ordering the gap A should disappear as there exist spin waves. If there is a phase 
between these two, the gap A might open up. The phases suggested in the literature ac­
tually all imply a gap A. The advantage of taking a member outside the Sz = 0 space 
is that it can be considered the ground state in its own space and calculated in exactly the 
same fashion as the ground state itself with the quantum number Sz = 1. Unfortunately the 
energies of both the ground state and the excitation grow as N whereas the gap remains of 
order Ji; A ~ J\. Only for W = 4, 6 we could obtain enough accuracy to scale away the 
length (an O(\/L) correction). With only these two points a scaling analysis in the width 
direction is impossible for the simple reason that no optimal fitting can be done (which 
needs at least three points).
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Figure 4-14. For 10x8 system that has open boundary conditions in both directions, the correlations 
(St • Sj) where i and j are nearest neighbours, are depicted. This is for J2/ J\ = 0.5. A perturbation 
(4.6.1) is included to distinguish between plaquette and dimer order.
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The scaling analysis of the spin stiffness ps we performed, does not give accurate results. It 
neither supports nor contradicts the existence of an intermediate phase. The two successive 
steps of the scaling analysis have very different degree of success and we will discuss them 
separately;

The first step, scaling L —> oo, gives reliable values for the properties of an infinitely 
long cylinder. There are two sources of errors in the properties of this cylinder: corrections 
to scaling and systematic error in the DMRG due to a insufficient number of s: ■ ept.
For the square lattices of width W = 4, 6 and the tilted lattice of width W = 2. ng 
corrections are the dominant source of errors. The least square fits estimate 
error to be of the order 10-3. For the square lattice of width W = 8 and the b 
for width W = 4, the systematic errors of the DMRG should also contribute. Tr 
behaviour of the stiffness in the region round Jil J\ = 0.5 for the tilted lattice, 
indicates that this source is there even determinant for the overall accuracy.

The second part, scaling W —> oo, is by no means as successful as the nt ■ 
4-9, 4-10 and 4-11 do not justify the scaling behaviour we assume. Most likely t< 
behaviour we derived in the last chapter is not valid for these small system v. 
There we also found that for Schwinger bosons this scaling behaviour set in at ti e : ar 
dimension L = 10.

The literature provides accurate results for the unfrustrated Heisenberg model, Ji = 0. 
Sandvik [43] is the latest in a whole line of authors who have performed finite-size scaling 
on square, periodic systems. Their results fit the scaling behaviour nicely and the results 
are of high quality. While the results are not contradicting ours, our inaccurate fit is in sharp 
contrast with theirs. Naturally we consider an unusual geometry (infinitely long cylinders), 
but the origin of this discrepancy is essentially not understood.

Einarsson, Schulz et al. [ 16,44] performed a similar analysis to ours. Instead of scaling 
the length L -» oo first, they considered square lattices with periodicity in both directions. 
From sizes 4x4, 2^5 x 2%/5, 4^/2 x 4-/2 and 6x6 they inferred the properties of the 2D 
case. They observe reasonable scaling behaviour in line with the unfrustrated case. That 
their systems are much smaller than ours, makes the contrast with our findings even more 
striking.

The stiffness thus does not give a definite answer and we switch our attention to the 
correlation functions. If there exists an intermediate phase, the correlations in the ground 
state clearly hint at a plaquette phase. Zhitomirsky and Ueda [58] suggested before that in­
deed the plaquette phase is favourable to a dimer one. Still, careful study of the dependence 
of the correlation functions give rise to a few other suspicions: the plaquette correlations 
arise far sooner than the stiffness becomes negligible. Perhaps a super solid phase exists? 
Moreover similar behaviour is observed coming from the collinear order, although there 
dimer (and not plaquette) correlations are appearing. This even makes rooms for two inter­
mediate phases. The abrupt change of the energy in figure 4-12 suggested that between two 
of these phases a first order phase transition exists. If that is the case, it is most likely that 
it will occur between a plaquette phase and a dimer phase (possibly both with long range
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magnetic order).
In the next chapter 

intermediate phases.
we will study the correlations further to get insight in possible
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5.1 Introduction

IV'o) 0"I0) . ne » I , e <K 1. (5.1.1)

(5.1.2)
R

n

5 Combination of DMRG and Fixed-Node 
Monte Carlo

When e is small enough, not the largest but the smallest eigenvector will be projected out by 
this projection. The Hilbert space is very large 0(2^), making it impossible to apply these 
matrix operations in detail. We want to perform a representative sampling of these matrix 
multiplications. With configurations R, built from individual up and down spins a =f, 
, |/?) = |<7| ... ct/v), we can construct paths R = Rq, ..., Rn. Insertion of complete basis 
sets Z2/? between the individual projectors Q in the previous equation, can be read 
as a summation over paths;

ips, but the accuracy deteriorates once the strips get wider. Section 
.lion between this behaviour and perturbation theory. Although this 
upper bound on the number of states needed for a certain accuracy, 

uber of off-diagonal matrix elements in the Hamiltonian together with 
lie accuracy. If we still want to extract ground state information for 

es or amendments in the method have to be made.
combine it with the Green Function Monte Carlo (GFMC). GFMC 
of projecting out the ground state. Define the operator G = 1 — eH 

The ground state |V<o) can be found starting with a state |0) and letting

In chapter ?. anJ . became clear that the DMRG can achieve phenomenal accuracy for 
relatively ?.r .
2.6.1 pro*, 
relation o . 
it is clear 
their size: 
wider sys

In this . 
is based on ■. • 
with e « I : 
it relax,

A path R derives its name from the fact that it only contributes to the ground state l^o) if 
{Ri |P|i) / 0 for all successive configurations; only specific paths through phase space 
can be followed. The general assumption of a Monte Carlo simulation and the GFMC in 
particular is that accurate properties can still be obtained when only a few of these paths 
R are semi-randomly selected to represent equation (5.1.2). As the Hilbert space is very 
large, 0(2^), even the most extensive GFMC simulations can be considered to contain 
only relative few paths. In practice we always generate 6000 paths.

We will apply the GFMC to the frustrated Heisenberg Hamiltonian. Successive con­
figurations and Rt can differ at most in the orientation of two, nearby spins as the 
Hamiltonian only contains local spin-pair interactions. The transition strength
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is set by the Hamiltonian so that locally a good equilibrium is reached. As a consequence 
the local correlation functions are of good quality. The GFMC uses the off-diagonal matrix 
elements of the Hamiltonian in an essential way to systematically probe the Hilbert space. 
Both these aspect, high quality of local correlation functions and the intrinsic use of off- 
diagonal matrix elements, touch on weaknesses of the DMRG; first, as mentioned before 
the off-diagonal matrix elements severely limit the accuracy of the DMRG. Second, the 
correlation functions are biased through the sequence in which the sites of the lattice are 
incorporated in the basis. When the sites of a column are added successively to the basis, 
the correlations between the columns are underestimated.

The GFMC allows for a systematic bias towards specific paths R without i> .:: n mg 
the expectation values. This is done by means of a guiding wave function {R' 
comes a measure of importance for a configuration R and thereby of a path. T 
state |0g) embodies both the greatest strength of the method and its main we. 
large amount of information on the ground state |V<o) is incorporated in the g 
|0g), the results will improve drastically. On the other hand, without a proper gu 
function no reasonable results can be obtained.

Even more emphasis is put on a good guiding wave function when handl. 
with frustration or fermions. These are typical cases exhibiting the ’sign-problem 
guiding state \<pG) can maybe not solve this sign-problem, but is can suppress it.an 
extent that it does not influence the extracted ground state properties.

With the strengths and limitations of both methods in mind, it seems a logical solution 
to combine them; DMRG can make an initial guess |0o) to the ground state IV'o)- Although 
this is a systematic approximation, the local correlation functions bear a clear signature 
of the method. They depend on the mapping from the two-dimensional system to a one­
dimensional chain that is necessary to apply the DMRG (site version). The guess |</>o) 
can improve the GFMC in two ways. Most importantly, it can serve as a guiding state, 
\(pG) = |0O), to reduce the variance and suppress the sign-problem. This guiding state is 
also used to calculate so-called mixed estimators for observables. These mixed estimators 
also strongly improve with a better guiding state. The other aspect, where the DMRG 
state can help, is in the initial state, |0) = |0o), but no matter what the quality of this 
starting point is, eventually the ground state will be reached. Especially the quality of the 
local correlations will increase by this stochastic process. Without a DMRG state |0o), 
the GFMC would require another guiding state. In practice these are relatively simple and 
consequently poor approximations to the ground state, that are involved and complex to 
construct.

In this chapter we make the connection between DMRG and GFMC by using the 
DMRG ground state as a guiding state, |0g) = I0o)- First we explain the principles of 
GFMC. Afterwards the sign-problem is discussed and a possible cure is described: Fixed- 
Node Monte Carlo (FNMC) and the extension to stochastic reconfiguration. With all that 
in place we make the connection. In fact the only thing we need to extract from the DMRG 
state |</>o) is its value for specific configurations R, (R\(J)q). An algorithm will be introduced 
to obtain this value for an arbitrary configuration. Naturally no table with an entry for each 
possible configuration can be built as it would have a size of O(2N) just like the number



915.2 Green Function Monte Carlo 

5.2 Green Function Monte Carlo

s, S;+5-5/)+5?5J.

{<t>G\Gn/2*Gn/1W (5.2.1)= (V'olA’IV'o).(*^)mixcd =

of configurations. An extra section is spent on curing a common problem of the GFMC by 
switching from discrete imaginary time intervals, 1 —eH, to a continuum, exp(—rW). This 
makes the method also more elegant. Finally, after all these explanatory and introductory 
sections, the computations are presented and the results are discussed.

strongly rem;, .
The me1 

for the me: 
to resolvi;. 
spin-pair •.

GFMC has been widely used for at least two decades now [25, 11,48,40]. In mathematics 
it finds an ej.'r .. . m the Markov chain [25] and in a broader physical perspective it 

(fusion.
explained along the lines of the frustrated Heisenberg model, where 
aly ignore the sign-problem. Following sections will be dedicated 
ication. The frustrated Heisenberg Hamiltonian is a collection of

(0c 1^10) 
<0gIS"I0) (0gIS"W

It is essential that the observable X commutes with the Hamiltonian H as after the com­
mutations we use 10o) ~ G"/2\<t>c) ~ for N 3> 1.

The previous relation, (5.2.1), does not hold if the observable X is not conserved,
[X, H] / 0. We will show how the mixed estimate differs from the required one, and

The last ter: •' alter any of the spins cr, an in a state |/?) when applied to it, the
first two terms will rilow the exchange of an up- and a down-spin. This limits the number 
of states |/? ) that arc connected to |/?) strongly; either they are identical or in the case 
that a, aj, they have spins i and j exchanged, trf = aj and a'j — a,. Applying the
Hamiltonian to a configuration reminds of diffusion as it allows the up-spins to hop from 
one site to the other.

As mentioned in the introduction we want to project out the ground state |0o) starting 
from a —not yet identified— |0) by successive applications of Q = 1 — eH, equation 
(5.1.1). The wave function (/?|0o) cannot be obtained completely because of the size of 
the Hilbert space. For most physical systems it is even arguable whether that is desirable. 
The physical properties are most important and GFMC focuses on the determination of 
these.

There are two categories of observables X, conserved ones ([X, H] = 0) and non­
conserved ones ([A-, H] 0). The conserved observables X including the Hamiltonian 
itself, can be measured in a fairly simple manner. The guiding state |0g) will be used to 
construct a mixed estimate with exactly the same expectation value as the required meas­
urement.
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10g) = I0o) + i|0i) . (0ol0o) = (0il0i) = 1 , (0>|0o)=O.

{X)^c6 = (001*100) + «(0,|*|0O>.

.2.2)

(5.2.3)

for all X including X = 1. We use here the local expectation value

X(R) =

(*)mixcd —

by a simple extension reduce this difference. The guiding state can always be considered 
to contain a component along the ground state and a component orthogonal to it,

Relating this to the expectation value of the guiding state, (0gI*I0g>- can reduce the 
corrections to order O(82);

The mixed estimate can then be obtained by choosing a large number of paths (/?“) and 
calculating

Y,aX(Ra„)M(Ra)
T.aM(Ra)

In practice the configurations /?, in a path R are selected successively. The most important 
advantage of this is that a specific configuration /?,_| connects only to relatively few con­
figurations Ri. Above it is explained that /?; and /?,_] can differ at most in the orientation 
of two spins for 1 > 0.

(0gI*I*)
(0gI«>

A good guiding state should have a small perpendicular component, 8 « 1. When the 
commutations in (5.2.1) are not allowed, the mixed estimate reads

(0gI*5"I0) = (*(«„)«(/?)) = '£,X(R„)M(R)P(R'), 
R

To remove this O(82) term completely forward walking schemes [8] are nece out it 
is at present unclear whether this can be combined with stochastic reconfigurat- here 
the weights are frequently changed. For our purposes only mixed and impro- ed mixed 
estimates, (*) mixed and (*)improved. are required.

Next is the description of the stochastic nature of the method. In the introduction, paths 
R through phase space were defined, equation (5.1.2). A selection from all possible paths 
R has to be made stochastically. If the path R is selected with a probability P(R) and 
assigned a weight MfR), the following expectation value has to hold:

,y, _ J0Gl*gn|0) (0cl*l0G>
Improved (0c|e"|^) (0C|^C>

= (0ol*l0o) + «2 ((0ol*l0O> - (011*101)) +O(83)

= (0O|*I0O) + O(«2).
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n 

pw=n p(R, Ri-i)Po(Ro).

R')

P0(.R), P(R — /?') > 0./?') = 1

M (A

P(.Ri R,-i)= (5.2.4)

s(Ri, Ri-i)m(Rj-i)P(Rj <- R^) = (R,\S\Ri-}).

Il

|~[ j(R, , mo(Ro)-

In a simihu 
™o(/?o) an 
the weight

The starting configuration, Ro, is chosen according to probability distribution Po(Po)- 
Each configuration R, afterwards is chosen with probability P(Ri <— Ri-i) giving an 
overall probability of

weight is also successively constructed from a starting weight 
weight factors m(/?f) combined with ’signs’ s(Rj, Rj-i) [46] and 

•s finally rescaled with a factor znfin(7?n);

/>o(«o)=l(0l«o)l2,

Ek l(«IG|R;-i)r

A first app\ ; oi-id be to let the Green function Q decide; choosing starting positions 
according to their quantum mechanical probability, |(0|/?)|2 (<0|0> = 1), and expressing 
no favour for any specific path afterwards:

directly in line with the theory of Markov chains. The probabilities Po W and 
have to be normalised without any negative elements;

f^R'. 1 ", P(R
R

In the implementation it is only necessary to store the latest configuration P, and the 
weight up to that moment. Given the form of the Hamiltonian where up-spins make a 
random walk through the system, the name walker become suitable for this latest config­
uration. The walkers are thus combined with the weights to yield the expectation value 
(5.2.3).

In practice too many irrelevant paths are selected with these unbiased settings. Far bet­
ter statistics can be achieved using a guiding wave function </?|0g)- Indeed this is the 
same wave function as was used to complete the mixed estimates (5.2.1). This wave func­
tion helps us to distinguish important configurations from less important ones and thereby

mo(/?o)=^k)-
zn(/?,-l)=E«

. (S.ISI/?,-!)

mfin(^zi)—(0GI Rn )•

The equations above also explain why s(Ri, Rj-i~) can be named a sign. These combina­
tions satisfy the condition (5.2.3) as can easily be verified using
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(*'|.

"ifinW = 1 and m0(R) =

.ent

Pa =

In case the walker a is selected, the weight of the new walker is set to

(5.2.5)

1 
(0gI*'>

If one does not want to use correction factors [25], the weights can even be set to unity 
(Ma —» 1). Despite its elegance the variance of this method is relatively large; it can 
happen that N times the same walker is selected.

X= £l*) 
R.R'

•ni- 
■re 
;he

guides the walkers into the relevant parts of the Hilbert space. The easiest way to incorpor­
ate the guiding state |0g) >n our calculation is by defining an operator X associated to X 
by [46]

As this is a similarity transformation, the projector G basically remains the same as Q. The 
set of equations (5.2.4) can still be used for the stochastic process replacing Q by Q Only 
the final and initial weights have to be altered,

(0gI*)
(01*)

(0g I*) 
1

IM«I

If we choose the guiding wave function as starting position, |0) = |0g>. 
tial weight can be dropped, mo(*) = 1. The transition probabilities P(R< 
now biased towards the most relevant configurations. This only reduces the 
expectation values are unaltered.

The algorithm thus far prescribes that after n projections a —mixed— m 
is made, new walkers are created and the projections restarts. In practice it : ore
efficient to continue using the same walkers; the existing set is distributed act. ..<T ;g to 
(0gI*)(*I0o) while the initial set is distributed according to (R|0g). Relatively tew pro­
jections have to be performed to do further measurements that are both independent of the 
last ones and representative for the ground state.

In this process of successive projections the relative weights of the walkers will spread 
exponentially. It becomes unwise to continue the path of certain walkers with negligible 
weight whereas walkers with large weight deserve extra attention. Still one does not want 
to influence the expectation values.

The technique to perform this task is called branching. Just like the stochastic process 
that replaced the projecting, the two requirements here are that the expectation values are 
to remain unaltered and the variance is minimised.

The easiest approach to choose N new walkers out of a set of N old ones is to draw 
them from a probability distribution

Ma Eg,|Mg,|
|Mg| N
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Ma = N

Pa= .

5.3 Fixed-Node Monte Carlo

((2)151(1)) =-£((2)|W|(1)> =

Unfortunately, the last section does not tell the entire story. The GFMC is severely ham­
pered by the so-called ’sign-problem’ in models that contain frustration or fermions. The 
frustrated Heisenberg model belongs to this class and with it we will exemplify the notion 
of a sign-problem.

Figure 5-1 depicts the relevant situation. The Hamiltonian contains interactions between 
1(1)). 1(2)) and |(3)). We know that the matrix element connecting |(1)) with |(2)) is given 
by:

Ji
S 2 '

In this move the weight M will pick up a minus sign from 5(2),(!)■ The same holds for 
the move |(2)> -> |(3)>. The move from |(3)) back to |(1)> will also induce a minus

| [dA-i
The probabilities are put next to each other on the interval (0, 1]. In each consecutive 
interval of length 1/(N - No) ([0, 1/(N - No)], [1/(N - No), 2/(N - No)], ...) one 
walker is selected by choosing a random number $ in that interval and establishing to 
which probability interval Pa this number £ belongs. In this fashion the remaining N — No 
walkers are selected giving a total of N new walkers.

This stochastic part is similar to the method of selecting N times one walker out of a 
set of N old walkers which we described before. The essential difference lies in the fact 
that here one walker is selected per interval. The latter method may be less elegant than 
the original proposal, but it reduces the variance of the branching drastically.

It is possible to reduce the variance of this branching process substantially without 
changing the expectation value. Here we introduce a small extension of the method intro­
duced by Calandra and Sorella [8] to reduce the variance of the branching process. The 
essential difference with straight selection of N walkers, is that the scope of the stochastic 
process is limited as much as possible. It contains two distinct steps.

The first step is not stochastic in nature. Rescale the weights
Mg

;-w
This weight .v rated to an integer, int(M„). For every a there are |int(Ma)| 
walkers ere: ‘
(5.2.5). One .
integer num

For the
performed.

new 
Ah the configuration of walker a and with the weight defined in 
.'ie for all old walkers, a set of Nq new walkers is formed. The 
ays smaller than N. On simple grounds one expects Nq & 
the weight, Ma = Ma — int(A?a), the second, stochastic step is 
robability Pa to each old walker,
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I ° t
Figure 5-1. The possible exchanges that a up-spin can make with neighbouring down-spins. |(1)) 
|(2)) and |(2)> |(3)) result from nearest neighbour interactions and |(1)) |(3)) arises through
the next nearest neighbour interaction. This figure is minimalistic in that only a fraction of the lattice 
is drawn and only the exchanging spins are depicted.

■ t)Op 

ling

t I

•por- 
?es. 
•fits.

-now 
. of

K3>

I I
K2>

I t

sign as —c((l)|H|(3)) = — e^. When returned to the original configuratin'- ight 
of the walker has thus reversed sign. The sign that a walker picks up follov i 
|(1» —> |(2)) —► |(3)) —► |(1)) cannot be removed by basis transformatio;
wave functions.

The foundation of GFMC is that if more and more paths in phase space . 
ated, the overall weight increases and the average XaMa/ ]EQ 
Here this line of reasoning does not hold; an extra path can suppress the previ 
Given the fact that the underlying stochastic process is a Markov chain it is e: 
that the average sign, Ma/ |Ma|, will decrease exponentially in the n 
projections made. Likewise the signal XaMa/ will become very J: with
respect to the noise. One can only hope that before the noises overshadows the measure­
ments, the ground state value has already been reached. Under normal conditions, this is 
rare, but as will be explained in the next sections, one can steer the calculation towards 
such a situation.

To complete the argument on the sign-problem, two further assessments have to be 
made. First, in the unfrustrated case, J2 = 0, such a loop as described above, does not 
exist. A basis rotation, <S = exp(z2w 52x>y(x + y)S* y) removes the signs all together from 
the projector as

SQS' = 1 - = 1 - £ Ji
(«\j)

= 1 + Ej' E + S^sj"> - sf•
From this equation, it is clear that the prefactors of the non-diagonal terms are no longer 
negative. Once e is small enough this also holds for the diagonal terms. It is an example 
of the fairly general approach of a basis transformation to remove the signs from the pro­
jector Q. GFMC has indeed helped to establish high quality results for the unfrustrated 
Heisenberg model [40].

Marshall [29] has proven that after this rotation the exact ground state | i/tq) = -SIV-o) 
of the system is free of signs, > 0. Coming up to our second assessment, this
proof can be extended to the region of small Ji [39]: for Ji > 0 we just argued that a 
sign-problem existed, thus there can even be a sign-problem when the exact ground state 
is sign-less!

xi>

t I
o | o
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(K'lGW 0 or 0 for|R') / |«>.

The diagonal element is offset by a sign flip potential,

<7?|Vsr|2?> =

</?|?Yrn|2?)

(0|Hf"|0) - (0|W|0) = (1 + y)A(0, 4>g) > 0 for all |0),

? wave function (R\Qn |0) is fixed and the weights Ma are positive 
‘ version this is all there is to it, but in the lattice version the 
1 d so strongly that no clear connection to the original system 
••I has to be introduced to compensate for the restriction of the 

’.he fixed-node method we follow Sorella [46] who made a small 
fie proposal by van Bemmel et al. [4].
.miltonian Hfn according to the following rules: if |7?') /= |7?),

(«'|W)>0
(K|H|fl> + (1 + y)</?|Vsf|/?).

The sign of the 
definite. In th* 
projector Q w- 
remains. An 
hops. In the d 
extension wit

Define a ! 
then

One of the first successful attempts to overcome this problem originated in the realm of 
quantum models with continuous degrees of freedom [II]. Later it was extended by van An 
and van Leeuwen [1], van Bemmel et al. [4] and ten Haaf et al. [21] to lattice models. These 
methods are called Fixed-Node Monte Carlo (FNMC) as both in the continuous version and 
in the lattice version the Hamiltonian is altered by removing the negative projector matrix 
elements,

For y = — 1 the original Hamiltonian is completely recovered including the sign-problem 
but once y > 0 the projector <7fn = 1 — e?7fn contains no signs any longer. Van Bemmel 
et al. [4] considered the case y = 0. Note that the bar over the sign-flip term, Vsf. is only 
cosmetic, as it only appears in the diagonal terms. On the contrary we cannot remove the 
bar over 71 in the definition of Vsf as here the non-diagonal matrix elements are considered.

It can be proven that this method is variational [21, 46], i. e.

with A(0,0C) a well-defined, positive function independent of y. The most important 
property for this difference A(0,0g) is that it vanishes at |0) = |^g)- A direct con­
sequence is that if the ideal guiding wave would be used, |0g) = IM»the sign-less FNMC 
would yield the ground state properties exactly (even without the improved mixed estim­
ator).

Within the framework of FNMC we might state that we start with the best possible 
approximation |0g) that can be made prior to the simulation, and let the (fixed-node) 
Hamiltonian improve on that.

</?'|H|K) if <K'|H|/?) < 0, 
= -y(K'|H|/?> if (/?'|ft|/?) > 0.
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EC =

5.4 Stochastic Reconfiguration

m(R) = m,n(R) but s(R'. R) = 4>

(5.4.1)

Sorella [46] introduced a method that potentially resolves the limitations of th 
named it Green Function Monte Carlo with Stochastic Reconfiguration (GF 
new

The weights Ma correspond to the projection with Q and will suffer from the sign-problem. 
After n projections, when the average sign Ma/ |Ma | is not too small, measure­
ments are made and a new, sign-less starting point is taken by assigning

>und 
o get

/"(«', /?) = !.

This approach can be tested on small systems as there we know both the ground state 
wave function |tAo) and its energy FolV'o) = W|^o>. Experimentally we have found for the 
frustrated Heisenberg model at Ja/Ji = 0.5 that a reasonable guiding wave with an energy

(0gI0g)

= A/f".A/“w

He 
The 

ingredient is the reconfiguration. The stochastic part refers to branchin, .. c fined 
before. It can be interpreted as a sophisticated method to find repeatedly a suitable starting 
point for a straight GFMC with sign-problem.

It was mentioned before that the sign-problem does not need to be a great obstacle 
if only a good starting wave function \<f>) could be chosen. The ground state would then 
be reached before the noise component in the weights becomes dominant. In this section, 
three possible extensions are described, starting with a simple combination of FNMC and 
GFMC and finishing with the GFMCSR.

The simplest solution would be to target the ground state of the fixed-node Hamiltonian 
Wfn first through a FNMC and once that has converged, switch to the projector Q. Ten Haaf 
and van Leeuwen [22] have performed this routine, with y = 0 for <?fn, naming it the power 
method. A large drawback is that after each measurement the routine has to be restarted; 
new starting configurations have to be generated, distributed according to the |(d>G Wl2

It is actually fairly straightforward to avoid the restart. A FNMC can be set up with 
y > 0. To each walker two weights are assigned, M1" and Ma. The fixed-node weight M1" 
is updated as prescribed before using the projector Stn- The other, normal weight Ma is 
updated as to reflect the normal projector Q'.

(fl'igw 
(i?'igfn|R)

will give rise to an outcome of the FNMC simulation with an error AE in the energy that 
is approximately half of the original error, AE |(Eg — Eq). More often than not this 
will not do. Only when a gap in the energy spectrum exist and the FNMC yie' - an energy 
below that of the first excitations, it is clear that the state has to resemble th 
state of the system. In the next section an extension to the FNMC is intrt 
substantially closer to the ground state.



1

995.5 A guiding wave function from the DMRG

X‘ =

reel these,

(5.4.2)

1 + :(X‘\R°)- X^).

Eq
E.

the new weights

with the average

Eq Xi(.R°')MtJ' 
Eq ’

completely in line with previous definitions. The prefactors pi
(5.4.2) [46],

properties as observed in the last

are tuned to satisfy equation

Eq
Eq Af.;

Moreover the av 
The solution to l.. 
node weights M"'. . , . ire expression

= A<"

Still is remains unclear whether the weights Ma have converged enough at the time of 
measurement and more sophistication is necessary.

There is information in the walkers that both schemes above do not use. In resetting 
the weights, equation (5.4.1), a lot of information on the ground state is lost. All kinds of 
correlation functions just obtained in the measurements are not used to improve the starting 
point. GFMCSR. introduced by Sorella [46], provides a systematic method to incorporate 
this information in the new starting weights.

If we have a set of observables X' with expectation values

vi  Afn —

This will yield a starting point with exactly the same properties as observed tn the last 
measurements. In a longer calculation one can even consider adjusting the weight to 
reflect the expectation values X1 averaged over several measurements.

With two weights per walker, branching has to be somewhat different than before. The 
branching is performed on basis of the normal weights Ma and afterwards the fixed-node 
weight M1" is adjusted, = |Ma|. Usually the branching is performed just after the 
reconfiguration.

X\R°)M™
Eq

Mqew/Eq |Afiewl. should have increased substantially, 
rot unique, but a good handle can be found in the fixed-

5.5 A guiding wave function from the DMRG
In the previous sections we have seen that a good guiding wave function is of tremendous 
importance for all variants of the GFMC (straight GFMC, FNMC and GFMCSR). His­
torically this has been the bottleneck of the GFMC [20]; before a calculations could be
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for the right part are known,

l“}t

-age and 
f interest 

connected 
. .if at most 
,,-c the value

: \<M as a 
ler of this

performed, a large amount of research time had to be dedicated to the design of a guid­
ing wave function that would be both similar to the ground state l^o) and easy to handle 
in the GFMC. This latter property means that the inner product between a configuration 
(cti* ...» on) and the guiding wave function |0g), (ai • • can rapidly be calcu­
lated.

A natural candidate for this guiding wave function is the wave function result­
ing from a DMRG calculation. This will also overcome the bottleneck, as the DMRG is 
based on a systematic approximation scheme applicable to many different systems. Still, 
we have seen in the previous chapter, that especially for larger width W > 8 the state |0o) 
is quite distinct from the true ground state. The DMRG state 10o) in general systematically 
underestimates the correlations along the length of the system for relatively wicl* systems.

It is the distance between the DMRG state |0o) and the true ground 1A0) l^al 
the GFMC has to bridge. The obstacles we face implementing the DM- 
guiding wave function </?|0g) = (^I0o) are of a technical nature. The 
section will therefore be conceptual straightforward but full of details.

We want to know the value of the wave function {R|</>o), but both m 
computational effort are an issue. For a single walker the configurations : 
are the configuration R of the walker itself and those nearby configuration 
by the Hamiltonian, (R,\'H\R) 0 0. As these can only differ in the orie. 
two spins, an efficient algorithm can find these values (R' |0o> relatively fa 
</?l0O> is known. We will first show how to obtain </?|0o) and afterwards indicate how to 
use the intermediate results of this last calculation to obtain (7?'|0o) rapidly.

A DMRG calculation provides a state |0o) on bases of both the left and the right part of 
the system. It moreover gives the necessary transformations to construct these sets. Once 
we have the DMRG state |</>o), the representation can be tailored to suit our purposes. 
In appendix B the technical details are described. The most important modification is to 
switch to the density matrix basis |a)/ for the left / sites and \a)t for the right N - I sites. 
The properties of our representation can be summarised as follows:

• For every partition 1 < I < N we can represent exactly the same state |</>o) as

i0o> = y?
a

This provides us with N tables of each m values for a/XJ. It can be seen as an 
extension of equation (2.2.5). There we have only stated that given a partition / such 
a representation can be made. Here we add that for all partitions the identical state 
can be representated in this form.

• All basis transformations Alaaa, for the left and B^aa,

aa'

aa’
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(oi . .. |0O>

(5.5.1)

(R\<M = 0 => “(R\<Po)" = 0.

To ■
(«i •.. o, - -

The state |cr) contains the spin on site I or I + 1 respectively. This will yield N 
matrices A and B of size 2m2 each. The estimate of the size is clearly too large as 
we neglect the fact the both A and B is very sparse.

The wave function (7?|</>o) can now be evaluate at the configuration (cri .. .an\<M by 
induction. A reduction to inner products (cri ... azl“)z and (az+1 • • • 0n\<*}i is made via

52 • • • a‘!“>'<CT'+1 ■ ■ ■
a

Each of these r inner products can be derived inductively; e.g.

(Cj.. = 22 A^/O,(oi ...az-ila'h-i.
a'

algorithm for the inner products (/?'|</>o), the intermediate results, 
n ... otv for all a and I, are stored in tables. We can use these 

to readih Jie inner product of a nearby state Icrg.-.a^) = (•Szt^z? +
ki .. .o - ■ ;tate |</>o) (/2 > ft). This new configuration is almost identical to the
old one a: ;■ me exchange of the spins on sites I2 and Zf,

l°0 • • o,v- |CT| ... cri2 ... a/, ... aN}.
To calculate the inner product, the system can be split up;

• ■ onI0o> = 52 •• . 07,... <7Z| l«)z2(oj2+i ■ ■ • O'A' l<s>z2-
a

The second part of this expression, (cr/2+\ ... a^\a)i2, can be found in the tables. The first 
part can rapidly be built starting from the known, listed inner product (cri ... 07,-1 
and iteratively extending this inner product to location I2 using (5.5.1).

Further substantial reductions can be made. The most important one is to reuse most of 
the intermediate results for both (/?|0o) and {(7?'|</>o)} when a walker moves from config­
uration R to a neighbour R'. Once a walker has propagated far enough for the next meas­
urement or reconfiguration and the next walker will be addressed, all tables are removed. 
This is unavoidable as the memory usage has to be limited.

A typical system is of size LxL = N with open boundary conditions in both directions. 
The calculation of the inner products costs about 2m2N operations for the partial inner 
products of the configuration R itself andNty/Nm1 4-4?m2)/2 for all others. Here we have 
again neglected that A and B are very sparse. Still the calculation duration will scale as 
N^/^m2. If the tables are reused, an extra reduction factor of 4 is achieved.

There is one strong restriction in the wave function of the DMRG; when considering a 
part of size / the density matrix will select states that lies in specific <SZ classes. All other 
classes, ranging from Sz = +1/2 to Sz = —1/2 will not appear in the wave function. For 
the Monte Carlo simulation to relax properly to the ground state, configurations |7?), that 
are not contained in the guiding wave function, have to be assigned a fixed and small value
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5.6 Continuum imaginary time limit

/0 and |(0C|/?')| » |(0cl«>l.

E(R) = , |E(R)I » 1.

= 1 — eE(R').

,-eriH (5.6.1)

An

1 — E — exp(—eE(RY).

Thus the probability is given by

P(R <- /?)*" = exp(-Ane((J?|H|7?) - £(/?)))-

would like to send e
many projections n.

Trivedi and Ceperley [48] developed an elegant route out of this trouble. Remember 
that for e 4C 1

= / (JtlglK)

.?gI
1 as

the local estimate of the energy E(R) gets an excessively large value,

(0gIH|7?)
(4>g\R)

Only for a perfect guiding wave function we could make the replacement (<pc |7* 
and this problem would disappear. It will have consequences for the weight fact, 
the projector Q contains the Hamiltonian H;

(»cigiJ?)
<0gI«>

Both the numerator and the denominator of the expression can be simplified using (5.6.1);

{R\g\R) = exp(-e(E|-H|E»,

(<Pg\R)

P(R «- R)a"

(1 — e'H')" =e

A continuous time variant can be formulated where only the imaginary time r = en is 
a relevant parameter. Let us describe it for a sign free Hamiltonian, like the fixed-node 
Hamiltonian Wf".

If we start in a configuration |7?), the probability to remain in it for An steps is given 
by

Naturally the walker will almost certainly leave this configuration |7?) for |A text 
projection, but the harm has then already been done. To compensate for this sit . one 

0. Without modifications this limit leads to the necessity o> infinity

The guiding wave function is not perfect and this can lead to unnecessary large fluctuations 
in weights of the paths. If a walker visits a configurations |R) with a low ’probability’ 
l(^c|E)| <K 1, which neighbours a fairly likely configuration |/?'),
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Ar = Ans =

/?) =

s(R, R)m(R')

5.7 Implementation issues
In the previous chapter, the spin stiffness ps was studied. It is possible to obtain the same 
stiffness in a GFMC simulation by a trivial extension of the method by Pollock and Ceper- 
ley [37], but it is as yet not clear whether the same approach can be combined with the 
GFMCSR. Instead we will focus on the correlation functions for various frustrations Jz 
ranging from J2 = 0 to J2 = 1.0 in steps of 0.1.

The geometry of the systems are set to 10 x 10 with open boundary conditions in both 
directions since the correlation functions do not require periodic boundary conditions as 
the spin stiffness did. There are three clear advantages of these open boundary conditions: 
first, if a dimer or plaquette phase were to appear, the location of the dimers or plaquette 
will be locked by the boundary conditions; the four comers will always contains such a 
object and the rest of the system can then easily be filled in. The second advantage is that 
DMRG obtains the highest accuracy in open systems. Finally, the set of inner products

A random number $ is chosen to set this time,

ln(g) 
e(R)-wh\rY

During this time Ar the weight is multiplied by a factor

= exp(-ArE(R)).

A: ; : ■'< Ar a jump to another configuration |R') /= \R) has to be made according
to zi '. probabilities

(R'leiR)

5.7 Implementation issues

In . figurations the walker remains for another time interval. Once the total
in;:. i. has passed, a measurement, reconfiguration or branch can be made.

i does not differ much from the above prescription. The fixed-node weight 
foli . . u ... : iy. The normal weight picks up an extra factor during the stay of the walker 
at a specific configuration,

1A" = _____ exp(-Ar(R|H|R» exp(-Ar£(R))
exp(-Ar(R|7f + (1 + y)Vsf|R))

= exp(Ar(-£(R)+ (1+y)(R|Vsf|R»).

In the hops the factor s(R. R) = (R'|7Z|R)/(R'|7ifn|R) = 1 or — 1/y is picked up in the 
weights.

This approach replaces the discrete imaginary time with a continuum and resolves the 
complication of extreme weight factors m(R).
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, (Sf ■ S, +x-y)mixed-

. the
' ?an-

irst
.ner

are
.1 ap-

(<S/ • mixed , (Si ' &i+y)mixed » (St • <Sj-|.x+y) mixed

Figure 5-2. The sequence in which the DMRG includes the sites in the left part of system, 
(a) represents the ordinary order, (straight) (b) represents a sequence that is more in I. , 
appearance of plaquettes and all members of a plaquette are added to the basis success! 
dering).

(R'|0o) can be calculated much faster as no neighbouring states exist with one 
spins exchanged with one of the last spins. For all other neighbours the table: 
products (a\ ... 07|a) can extensively be used.

The DMRG states are built in two distinct sequences as depicted in figure 5-- 
based on adding one site at the time to the basis with m = 75 basis states. The 
proach, figure 5-2(a), is to add column after column, which we name the straight . uuence. 
For a plaquette order the meandering sequence of figure 5-2(b) is preferable. The indi­
vidual sites of a plaquette are then added sequentially allowing strong correlations between 
them. The energy £dmrg is systematically lower for the meandering sequence than for the 
straight sequence, see table 5-1 (Ful explanation of this table will follow in the next sec­
tion). Therefore we use the meandering sequence to build the guiding wave function. With 
increasing frustration, dimer correlations appear in the straight sequence and plaquette cor­
relations appear in the meandering sequence.

The mixed estimates incorporated in the reconfiguration are the nearest- and next- 
nearest-neighbour correlation functions,

The guiding states effectively share two symmetries with the system geometry: reflections 
in the lines y = 5| and x = 5|. These symmetries are included in the mixed estimates re­
ducing their number by approximately a factor of four. No further geometrical symmetries 
are included. The reflection through the diagonal of the system is excluded as the guiding 
states do not share this symmetry. Moreover a dimerised state distinguishes itself from a 
plaquette state by the lack of this symmetry.

After each reconfiguration a branch is performed. We use 6000 walkers en set y = 
0.5. Table 5-1 lists the imaginary time intervals r between reconfigurations. The times 
t are set to let the average sign Ma/ |Ma | decrease from 1 to about 0.8. At the 
starting of a calculation the average sign tends to drop to a very small value. At the start 
of the computation the configurations are fairly arbitrary in during the first time intervals 
r they will change frequently. As a consequence the average sign at the end of one of the

(a) (b)
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« ■ts

i 5-4 together with table 5-1 contain the results. Let us first describe the
tab;

x-dim =

y-dim =

bi ■ 
gui-.itng

2 
(W -2)L

initial intervals will be almost zero and it will only gradually increase to 0.8 over about 50 
measurements. During this ’thermalisation period’ none of the calculated mixed estimators 
can be used for the final expectation values. These are thus removed when the final averages 
are calculated.

At Ji = 0 there exists a transformation that will remove the sign-problem altogether. 
Although we do not perform this transformation, still the problem becomes almost signless. 
The length of the interval r is set such that successive measurements are independent.

Correction factors introduced by Hetherington [25, 46] are not implemented. A typical 
sim: i::ticn v, th a guiding wave function built with m = 75 states, takes about 300 hours 
on turn 300 MHz machine.

.t-s of J; that we compared, the GFMCSR with a guiding state that was 
■ o; through the system, resulted in a lower final ground state energy Eo- The 
l :elf also has a lower energy that the one obtained from a straight sequence. 

(Foi J ------ b.7, 0.8 this statement does not hold, but there the values are close.) This is a 
clear indication that these GFMCSR calculations are biased by the guiding state. Future 
research must determine whether this dependence can be removed.

The dimerisations (x-dim and y-dim) indicate whether the translational symmetry is 
broken in one of the two directions;

2 Z./2-1 w  - L/2 tv 
W(L _2i zL ~ Z- ZL^-'O’ ’

' ' x=l >=1 x=l y=l
L W/2-\  2 L

Z? E ’ "Sx.2y+1) — Try E E^.2y-1 ’ <^x,2x). 
x=l y=l x=I y=l

The expectation values (<S ■ S) are approximated by the improved mixed estimator.
The abrupt change of these dimerisation indicators from J2 = 0.6 to J2 = 0.7 already 

suggest a first order phase transition at that point. This is in agreement with the results of 
the SBMF theory and the numerical results in the last chapter, figure 4-12.

The figures 5-3 and 5-4 give a more qualitative insight in this behaviour. The aver­
age correlation strength between nearest neighbours is negative for each of these systems, 
(Z~-i)(iv-i) 52(H) • Sj) < 0. Depicted are the individual correlation strengths relative to
the average. The solid lines indicate correlations that are more negative and thus stronger 
than the average. The dotted lines show which correlations are less negative than the aver­
age. They can even be positive. In all cases the correlations indicated with the solid lines 
are also the largest in absolute terms. To approximate these correlation functions the im­
proved estimator is used. Especially in figure 5-3 the ladder structure of the guiding state 
still persists in the final result. Forward walking schemes can reduce this tendency of the
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-59.71(9) 0.010 -0.006

5.9 Discussion and Conclusion

Table 5-1. For each degree of frustration the imaginary time interval r. the energy 
state Edmrg and the properties of the GFMCSR state are listed. In the text the quant 
y-dim are explained.

■ling
:n and

guiding state further. Given that this influence weakens in figure 5-4, there is .1 for 
this extension to get a qualitative picture of the behaviour.

In figure 5-4 an abrupt change from plaquettes to dimers appears between J, - 0.6 and 
Ji — 0.7. The same alteration is also observed in the DMRG guiding state (not depicted).

0.3
0.06
0.04
0.02
0.02
0.014
0.015
0.015
0.02
0.02
0.02

-56.08(11)
-53.17(4)
-50.51(8)
-47.76(6)

0.003
0.005
0.009
0.009

0.004
0.007
0.015
0.058

In this chapter we have combined the DMRG method with the GFMCSR to analyse the 
properties of the frustrated Heisenberg model. Part of the chapter is methodical in nature 
and in the remainder the physical aspects are investigated.

On the methodical side, we find that the combination of the DMRG and GFMC tech­
niques is successful. A guiding state is generated in a systematic manner. Previously it was 
necessary to dedicate a substantial amount of time to construct an approximation to the 
ground state that is both easy to handle and contains the relevant physics. Here, we present 
a relatively easy alternative.

The present implementation is not yet state of the art computationally. Neither have we 
used the strongest machines currently available nor is the software fully optimal. A GFMC 
simulation can easily be distributed over many processors without communication between 
them. This allows for the cheapest way of upscaling by having many computers simulate 
independently.

The Monte Carlo methods themselves could also do with further improvements. The 
mixed estimator will not suffice for accurate expectation values. A forward walking scheme 
[8] has to be developed for higher precision, but it is unclear how to combine it with the 
stochastic reconfiguration that alters the weights frequently. We mention that FNMC does 
not yield high enough accuracy and an extension is necessary; the GFMCSR is such an ex-

y-dim.
0.001

Edmrg
-61.84
-58.53
-55.48
-52.50
-49.92
-47.78
-46.03
-45.60
-49.13
-53.70
-58.64

Eqmrg

-61.30
-57.96
-54.75
-51.75
-49.00
-46.68
-45.41
-45.67
-49.16
-53.61
-58.46

£o_____
-62.33(8)

A 
0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0

Eq_______
-62.54(4)
-59.25(2)
-56.22(4)
-53.38(3)
-50.60(5)
-48.34(4)
-46.40(3)
-46.00(2)
-49.60(9)
-54.52(2)
-59.80(8)

Straight 
x-dim. 
0.002

Meander 
x-dim. 
0.012 
0.017 
0.022 
0.034 
0.035 
0.063 
0.073 
0.011 
0.009 
0.007 
0.007

y-dim.
0.002“
0.003
0.004
0.006
0.004
0.021
0.022
0.020
0.001

I -0.006
' -0.005
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tension but many complications still remain: it is evident that the final result is biased by the 
guiding state. This is even the case for conserved observables like the energy, which should 
be accurately sampled by the mixed estimator. Furthermore it remains unclear which and 
how many observables should be used for the stochastic reconfiguration. More investiga­
tions are necessary in order to answer all of these questions.

We select the meandering sequence for the guiding wave function as that sequence 
yields the lowest energies Edmrg for the guiding wave function and Eq for the GFMCSR 
calculation. The correlation functions of the GFMCSR are qualitatively the same as those 
of the DMRG, d though the numerical values lie closer together. DMRG calculations of the 
same ■.vMei" th upto m = 512 support the same qualitative behaviour although they do 
not r . c e nergy of the GFMCSR. Therefore there is little doubt that the qualitative
beha J. is correct for the 10 x 10 system.

ns shed some light on the physical properties of the frustrated Heisenberg 
moe. ange of the spin correlations presents itself at J2 0.6. This suggests a
first nsition at that location, in line with both the SBMF picture and the extra­
pok-1 ...alts for the ground state energy Eq. With regard to the spin stiffness (see
figui unlikely that a dimer phase exists for stronger coupling then J2 0.6.
The Jer must already set in, maybe with dimer-like tendencies but still con-
sen. > ior.g order. On the weak coupling side, J2 1, plaquette correlations seems 
to sei in quite soon. The overall picture that appears is that with increasing next-nearest 
neighbour coupling plaquette correlations build up gradually while preserving long-range 
antiferromagnetic order. At about J2 0.4 the Neel order disappears in a second order 
phase transition and only the local, plaquette order remains. In a first order phase trans­
ition at about J2 & 0.6 the system changes into collinear order with dimer-like correlations 
which will gradually fade out with increasing J2.

Singh et al. [45] recently suggested that the intermediate phase consists of columnar di­
mer order where the correlations between dimers inside a column are stronger than between 
columns. We do not expect that to be correct, although figures 5-3 and 5-4 show similar 
behaviour. This behaviour is triggered by ladder-like correlations in the DMRG guiding 
states. We expect that a more accurate estimator for these correlations will suppress this 
feature, as the improved mixed estimator still contains errors of order C?(62), eq. (5.2.2).
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Appendices

(A.l)

(A.2)

(A.3)

Thr.
there:

This t. 
plicit),

■ r, are given by

A SBMF Approximation for Z/t(q)7YZY(q).

In this appendix the derivation of the Schwinger boson mean-field Hamiltonian for the 
’twisted’ case, q 56 0 is performed. In itself this is mostly a repetition of the untwisted case 
combined with amber of small details. In the process the first and second derivative with 
respeci - . o obtained. These are used in section 3.5 to calculate ps.

boson notation is completely equivalent with the spin representation, 
. ied in (3.3.4)- can be expressed as

At (q)P,7(q) - |) - 5 g Jij (B5(q)B;;(q) - J) ■

> distinguish between ferro F and anti ferromagnetic bonds AF ex­
tol in general simple nearest and next-nearest-neighbours. where the

piy(q) = Z7(q)p,7zyt(q) = a/aJeiq(rf-ry) +
^y(q) = W(q)^/7ZV^(q) = aibje^q'^Ti~r^ + biaje~^q^Tl~rj\

The unitary operator f/(q) has been defined in (3.3.3). In section 3.3 a paragraph was dedic­
ated to the correct treatment of the orientation of the ordering. These conditions correspond 
to the mean-fields here, which have to be taken translationally invariant. Without loss of 
generality we can take them real;

*<y(q) =

X<y(q) = |(B>7(q)).

The mean-field Hamiltonian Hmf now becomes

■WMF(q) = F y,/*r,,(q) fp^.-lq) + D,j(q) - 2k,7 (q))

- E W<1) + Bo<q) - 2y.j(q))
AF

□ _ ]
+x e +*,■ b> - d - E Ji> 2+ E j‘j"a 

i F AF

This Hamiltonian is applicable both to the N6el and the collinear ordering. The spin stiff­
ness has to be derived from the ground state energy of 'Hmf(q) This is very similar to the
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J

(A.4)

q=0 q=0

q=0 q=0

= = «■

= = 0.

. will 
•e, X, 
0, so 

.0 not

= z(r, - Tj^aibj - b,aj). 
lq=0 z

situation we had in section 3.3; The expression (3.3.6) for ps is recaptured with

' = -^HMF(q)|q=0’

and 3~L replaced by Hmf; The states |a) appearing in (3.3.7) no longer correspond to the 
excitations of the full Hamiltonian but to the excitations of the mean-field Hamiltonian 
Hmf- In order to get explicit expressions for j and r, we will perform some algebra. We 
define and Cjj and use (A.l):

Fij = 4-Ay(q) = ^(r.-- rj)(a,a! -/>,!>!),
fl<l lq=0 Z

= 5qB'7(q)

The derivatives of neither the mean fields K7, (q), y,j(q) nor the Lagrange rn 
appear in either J or T. It is easy to understand that the dependence on tr 
can be neglected. This Lagrange multiplier is tuned to make a]at + b]b. 
the entire terms drops from the expectation value. The first two, Kjj (q) and 
appear in J, as symmetry considerations yield

=
= j(^B.j(q))

^^7(q)

Move over in the second derivative these mean field cancel out, e.g.

~j2 [Mq) (^(Q) + ~ 2«-,j(q))] =

[jq2*'7(q)] (V0'(q) + -4^(«d) +
«o(q) [®,j(q) + ®o(q)] - 2<r,7(q)^ .

The expectation value of the first part is zero by equation (A.2).
Inserting these quantities in (A.4) gives

j = JijKij(^ij + ^ij) ~ Ci])’

F AF

t = — 4" T^ij
1 F

XL + B>7 - 2y>7)-
Z AF

These expressions for the current j and kinetic term 7 can be used to calculate ps as is done 
in section 3.5.
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I0O> (B.l)

ij',1

B Transforming the DMRG state to the density matrix 
basis

In this appendix it will be shown how the same DMRG state |0o) can be representated in a 
density matrix basis for all possible partitions of the system in a left and a right part. The 
left part contains the first I sites and the right part the remaining N — I sites.

We define a basis {|z >/} on the left part of the system containing the first I spins and let 
be a basis on the remaining N — I spins. The state |</>o) can be represented by

■'r1

for a 
con 
exac 
elab;

will construct the split-up for Iq 4- 1. All other 
same procedure. Insert the transformation of |j)/0

With the help of these transformations we 
split-ups are then trivial iterations of the 
in equation (B.l);

I0o) = = E
‘J i.j.a.j1

= y?!^/')to+llj')/o+l-

we consider the final outcome of a DMRG calculation, the left part will 
site, <o = N — 1. It is possible to represent the same wave function 

erent partitions 1 < I < N. The technique is instructive and we will
■, inc the transformations and B-a., by

where the definition y. a is used- Orthonormalisation of
will yield a new basis (|Z)/o+j} and a new transformation A1?^!. Moreover the prefactors of 
the wave function 1 can also readily be deduced. It has to be stressed that both the basis 
(lO/o+l) and the transformation A1"*' follow from this procedure. If we were to have an 
expression for the transformation already, it is replaced by this new one. The split-up 
is changed from Zo to Zq + 1 and indeed this approach can trivially be extended to yield for 
all partitions 1 < I < N the bases {|i);}, {|J)/| and the prefactors 4>'j.

The next ingredient of our recipe is to switch to the density matrix basis. The end of 
section (2.2) and specifically equation (2.2.5) explain that this can be done by simple basis 
rotations on the left and on the right basis yielding a representation {|a)/J for the left and 
(|<i)/) for the right part. These basis rotations give us furthermore:

• A simple representation of the wave function |0o) = v^J 1“)/!“)/•
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and B'• Basis transformations , and Blaaa,.

This is the notation we will use when deriving the value of the wavefunction
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Samenvatting

Dit proefschrift is gebouwd op drie zuilen:

• Numerieke berekeningen,

• Qr-mmn fase overgangen,

• Q >i systemen.

de eerste, numerieke berekeningen, waarschijnlijk het meest eenvou- 
Vaak spreekt men ook van numerieke simulatie om aan te geven dal 
d wil nabootsen. De dagelijkse weervoorspelling is waarschijnlijk het 
?celd van een numerieke simulatie. Het laat ook goed zien, dat deze 
unst op zich zijn. Sinds de vorige eeuw weten we aan welke regels 
n. Deze regels, ook wel Navier-Stokes vergelijkingen genaamd, zijn

Van 
dig te <5- 
men de 
meest ! : 
bereke;. 
luchtdec 
elegant jg, maar de enorme diversiteit aan weersomstandigheden geeft al aan
dat het gedrag ... . de deeltjes hiermee niet doorzichtig is. Pas recentelijk kunnen we re- 
delijke voorspehingen maken. Natuurlijk hebben de steeds snellere computers daaraan bij- 
gedragen, maar computerkracht alleen is niet opgewassen tegen de complexiteit van dit 
probleem. We zuilen de computer flink moeten helpen met ons fysisch inzicht. Zo kunnen 
we sneeuwval in het weer rond de evenaar uitsluiten. Indien dit soort vereenvoudigingen 
niet worden doorgevoerd, zal de computer veel te veel tijd kwijt zijn om tot bekende con- 
clusies te komen.

Het is ook verstandig om het doel van numerieke berekeningen te analyseren. Het weer- 
bericht heeft een voorspellend karakter. Er zijn evenwel meer redenen om simulaties uit te 
voeren. In de natuurkunde wordt vaak gepoogd de werkelijkheid te bevatten in een klein 
aantal regels en elementen. Aan de hand hiervan stelt men een model op. Nu is er vaak 
onduidelijkheid over de gelijkenis van zo’n model met de realiteit en een numerieke simu­
latie van het model kan daar uitkomst brengen. Men kan zich bijvoorbeeld afvragen of de 
kleur van het aardoppervlak van invloed is op het weer. In de praktijk blijkt dat zo te zijn, 
aangezien een donker oppervlak veel meer zonlicht absorbeert dan een licht oppervlak. De 
verwachting is dus al dat een donker oppervlak overdag sneller opwarmt. Is het noodza- 
kelijk om nog meer kleuren te introduceren, of kunnen we rood en groen afdoen als half 
donker, half licht? Met een numerieke simulatie kan de invloed van die kleuren worden 
bepaald om vervolgens de nuancering wel of niet op te nemen in het model.

Verder staan numerieke simulaties ons toe allerlei metingen te doen die in de echte we- 
reld niet mogelijk zijn. We kunnen bijvoorbeeld de tijd even vooruitspoelen om naar het 
weer van morgen te kijken, maar we kunnen ook de tijd eenvoudigweg stilzetten. In dit 
proefschrift koelen we ons model af naar het absolute nulpunt, -273,15 ° Celcius. Dit is ex­
perimented niet mogelijk. Toch kan dit extreme afkoelen enorm helpen om eigenschappen 
van de natuur te begrijpen.
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Samenvattend zijn numerieke berekeningen nuttig vanwege twee redenen: Ten eerste, 
laten ze allerlei metingen toe die experimenteel niet mogelijk zijn en ten tweede kunnen ze 
een grote steun zijn bij het vinden van relevante natuurkundige regels. Ze hoeven evenwel 
niet eenvoudig te zijn. Om een goede berekening te doen, dient men inzicht te hebben in 
de fysische verschijnselen die men wil analyseren en verder moet men in staat zijn om de 
vertaalslag naar een computerprogramma te maken.

Ook de tweede zuil, quantum fase overgangen, kent een alledaagse analogic. De fase 
overgang van water naar ijs door een temperatuursverandering laat zien dat eigenschappen 
drastisch kunnen veranderen bij maar een kleine temperatuursvariatie. Deze overgang is 
niet de enige fase overgang in de natuur. Er zijn vele andere fase overgangen bekend. Op- 
vallend is dat ze vaak niets met een temperatuursverandering te maken hebben; er zijn vele 
voorbeelden van overgangen onder invloed van bijvoorbeeld druk, dk ntheid of elektrisch 
veld. Indien ijs wordt samengeperst, verandert het weer in water. D? .pciatuur is hierbij 
niet veranderd. Als tweede voorbeeld bekijken we de schermen v: 
en horloges. Deze bevatten polymeren die normaliter ongeordeno 
gauw een elektrisch veld wordt aangezet, richten zij zich en word- 
soort overgangen blijken vaak op vergelijkbare wijze te kunnen 
temperatuurafhankelijke overgangen. Hoe verschillend ze op het 
gen zijn; een duidelijk universeel gedrag wordt waargenomen. I 
veel omvattender dan alleen de gelijke naam ’fase overgang’ doet' 
schrift worden twee specifieke gevallen behandeld, die ieder als voc 
voor gehele klassen van quantum fase overgangen.

In de eerste twee hoofdstukken bestuderen we een model waar een extern magneetveld 
de fase overgang bewerkstelligt. Het is zelf mogelijk te laten zien dat het magneetveld hier 
precies dezelfde funktie heeft als de temperatuur in een gerelateerd model!

De andere fase overgang die in dit proefschrift besproken wordt is in de praktijk moei- 
zaam te bewerkstelligen. Men moet hierbij denken aan de variabele samenstelling van een 
materiaal. Hier kan niet eenvoudig een vlammetje onder gehouden worden zoals bij ijs om 
een overgang te veroorzaken. Men moet vele preparaten, ieder met een net even andere 
samenstelling, de revue laten passeren om de fase overgang te kunnen bestuderen. Slechts 
ten preparaat heeft precies de juiste samenstelling die hoort bij het punt van de fase over­
gang. Toch blijft de fase overgang ook duidelijk invloed uitoefenen op het gedrag van alle 
andere preparaten.

De derde zuil, quantum spin systemen, geeft aan dat we fysische modellen bekijken 
die uit spins zijn samengesteld. De individuele spins doen denken aan magneetjes met 
een noord- en een zuidpool. Daamaast voldoen ze aan nog een aantal andere regels die 
diep in de wereld van de quantummechanica thuis horen. Bijvoorbeeld een spin kan in een 
toestand verkeren die niet duidelijk georienteerd is. Pas als men gaat meten zal de spin een 
unieke orientatie uitkiezen. Deze spins zijn in ons geval keurig naast elkaar geplaatst op 
een vierkant rooster dat lijkt op een barbeque rooster; elk hokje herbergt ten spin.

In het proces om fysische systemen zo eenvoudig mogelijk te beschrijven, worden vaak 
—pseudo— spins geintroduceerd. De feitelijke deeltjes kunnen bijvoorbeeld elektronen 
zijn, maar alleen de regels die sterke gelijkenis hebben met de regels voor spins zijn re-
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1. / icht in de DMRG is verkregen en gerapporteerd.

2.

3. ■ .zicht gekregen in de fase overgangen van het gefrustreerde Heisenberg

.inatie van DMRG en GFMC kunnen we GFMC makkelijker hanteren 
klasse van problemen.

•? hoofdstukken zijn dus methodisch van opzet. De DMRG was al zeer 
succesvcl v.a- • )in ketens en wij willen haar toepassen op spin roosters. Daarvoor hebben 
we een zeer bekend model uitgekozen wat frequent wordt gebruikt als voorbeeld van een 
quantum fase overgang. Er is dan ook recentelijk veel numeriek werk aan verricht waar- 
aan wij houvast hebben bij onze studie. Alleen kleine systeempjes met maximaal 32 rijen 
van 8 spins elk kunnen numeriek worden behandeld. Om toch inzicht te krijgen in grotere 
systemen wijden we de tweede helft van hoofdstuk £en eraan, de specifieke effecten van 
de kleine afmetingen te bepalen. Die kunnen vervolgens worden verwijderd om de eigen- 
schappen van een oneindig groot rooster te verkrijgen. Dit heet eindige-grootte schaling en 
wordt al geruime tijd toegepast op dit soort problemen. De resultaten die we op deze wijze 
verkrijgen, komen overeen met de literatuur.

Hoofdstuk twee bespreekt de DMRG methode en bekijkt wat de mogelijkheden en 
beperkingen zijn. Het ziet emaar uit dat de DMRG alleen goede numerieke kwaliteit kan 
verkrijgen voor smalle roosters (strips). Eindige-grootte schaling blijft dus noodzakelijk 
om de eigenschappen van grotere roosters te kunnen bepalen. In hoofdstuk vijf zal evenwel 
een mogelijke uitweg worden gepresenteerd.

Hoofdstuk drie, vier en vijf richten zich op het gefrustreerde Heisenberg model. Ook 
dit model heeft een voorbeeld funktie. Tevens is recentelijk gesuggereerd dat de chemische 
verbinding Ca V4O9 er goed door beschreven zou worden. Indien het model geformuleerd 
wordt zonder de quantummechanische aspecten van spins, is het gedrag volkomen duide- 
lijk. Deze extra quantummechanische regels geven aanleiding tot nieuwe verschijnselen 
die maar ten dele begrepen zijn. De funktie van de temperatuur rond het vriespunt van wa­
ter wordt hier bekleed door een frustratie maat J2. Het systeem is maximaal geffustreerd 
rond J2 = 0.5. Voor grotere waarde van J2 neemt de frustratie weer af omdat de spins zich 
dan echt anders gaan organiseren. Bij weinig frustratie (J2 ~ 0 en J2 ~ 1) begrijpen we 
goed wat er gebeurt. In beide gebieden gedraagt het systeem zich eender als de klassieke

levant. Quantum spin systemen hebben dus vaak een voorbeeldfunktie zoals we al eerder 
tegenkwamen in de paragrafen over fase overgangen.

Nu de zuilen zijn geplaatst, kunnen we ons richten op het fronton. De eerste twee- en 
de laatste drie hoofdstukken vormen ieder een duidelijk geheel. Het doel van de eerste twee 
hoofdstukken is om een nieuwe numerieke methode te doorgronden. Deze methode heet 
Dichtheids Matrix Renormalisatie Groep (DMRG). In hoofdstuk drie en vier wordt deze 
methode vervolgens toegepast op het gefrustreerde Heisenberg model. Dit blijkt maar een 
matig succes op te leveren en in hoofdstuk vijf wordt de DMRG met Green Functie Monte 
Carlo smula?; (GFMC) gecombineerd om toch de eigenschappen van dit gefrustreerde 
model analyseren. De belangrijkste resultaten van dit proefschrift zijn:
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variant. Daartussen zit een onduidelijke gebied (J2 % 0.5). Waarschijnlijk is daar zelfs 
een fase die geen klassieke evenknie heeft. Dit geeft aanleiding tot het veronderstellen van 
twee quantum fase overgangen. Tussen de onbekende fase en de beide zwak gefrustreerde 
fasen.

Om hier zicht op te verkrijgen gebruiken we in hoofdstuk vier de spin-stijfheid. Dit is 
een maat voor het gemak waarmee twee spins, ieder op een ander uiteinde van het systeem, 
in verschillende richtingen georienteerd kunnen worden. Alle andere spins van het systeem 
zullen zich aanpassen aan deze beide spins. Indien spins weinig rekening met elkaar houden 
is het relatief makkelijk deze twee spins anders te orienteren: de rest reageert toch nict. Het 
tegenovergestelde is het geval indien de spins wel degelijk rekening houden met elkaar. 
Deze indicator zou duidelijk andere waarden moeten aannemen voor de drie verschillende 
fasen. Aangezien wederom alleen kleine systeem numeriek behandeld kunnen 
eindige-grootte schaling noodzakelijk om de eigenschappen van veel grotere : 
bepalen. De resultaten zijn redelijk te noemen ofschoon hieruit niet met zekt 
worden geconcludeerd dat deze tussen-fase echt bestaat.

We kunnen 00k bekijken hoe sterk de individuele spins met elkaar rekenin 
Dit is gedaan in hoofdstuk vijf voor een systeem met 10 rijen van elk 10 spins 
4-14 op pagina 85 is mooi te zien dal de spins zich per viertal organiseren. (d.-‘. 
geven een sterk verband aan). Dit resultaat is niet alleen een duidelijke onderstcc 
het bestaan van de derde fase maar geeft tevens inzicht in de onderliggende order.!*

Hoofdstuk vijf heeft evenwel nog meer te bieden. In dat hoofdstuk introduce-.m we 
nog een andere numerieke methode, de Green Funktie Monte Carlo simulatie (GFMC). 
GFMC omvat systematisch gokwerk om de eigenschappen van een systeem te bepalen. 
Dit verklaart tevens het tweede gedeelte van de naam. Globaal komt het erop neer dat alle 
spins een orientatie krijgen opgelegd. De onderlinge relaties worden vervolgens vastgelegd 
en de relevantie van deze situatie wordt bepaald. Nadat vele situaties zijn bekeken, kunnen 
door combinatie van de relaties met de relevantie de eigenschappen van het systeem worden 
bepaald. DMRG kan hierbij enorm helpen op twee manieren.

Ten eerste kan DMRG bij voorbaat al inzicht geven in welke situaties het meest relevant 
zijn. De GFMC bekijkt vervolgens alleen deze. Dit bespaart buitengewoon veel werk en 
computertijd.

Het tweede aanknopingspunt is zeer quantummechanisch van aard. Het blijkt dat in 
modellen met concurerende wisselwerking (frustratie) of met elektronen moeilijk een ge- 
middelde waarde is te bepalen door het zo geheten teken-probleem. Dit probleem kan ver- 
minderd worden door zo veel mogelijk informatie over het systeem in de berekening te 
verwerken. DMRG heeft erg veel informatie te bieden die in de GFMC methode kan wordt 
betrokken.

Deze combinatie van DMRG met GFMC kan succesvol worden genoemd. Het laatste 
woord is er nog niet over gesproken maar er zijn een heel aantal fysische problemen bekend 
waar zij uitkomst zou kunnen bieden. Deze problemen varieren van supergeleiding tot 
quantum hall effect.
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Dit proefschrift, hoofdstuk 2.

2.

Dit proefschrift, hoofdstuk 2.
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4.

Dit proefschrift, hoofdstuk 5.

5.

6.

De concurrentie tussen de n-orbitale stijfheid en sterische interacties verklaart een- 
voudig het strekken van retinal. De stijfheid dwingt 11-cis retinal zijn vorm te behou- 
den. Bij het invangen van een foton verzwakt deze stijfheid en krijgen de sterische 
interacties het overwicht, waardoor het molecuul razend snel strekt.

De Dichtheidsmatrix Renormalisatie Groep golffunctie kan een Green Functie Monte 
Carlo simulatie begeleiden. Dit lost een oud probleem op.

De conclusies die Einarsson en Schulz trekken over het fasediagram van het gefrus- 
treerde Heisenberg model zijn gebaseerd op te kleine systemen en daarmee voorba- 
rig-

Het grootste obstakel voor een quantumcomputer is de berekening uit te voeren voor- 
dat decoherentie intreedt. Deze belemmering is zo groot dat het twijfelachtig is of 
ooit een bruikbare quantumcomputer zal bestaan.

De naam Dichtheidsmatrix Renormalisatie Groep is misleidend omdat deze methode 
sterk verschilt van de Reele Ruimte Renormalisatie Groep.

De Dichtheidsmatrix Renormalisatie Groep kan in de huidige vorm alleen nauwkeu- 
rige resultaten leveren voor smalle strips.

D. P. Aalberts, M. S. L. du Croo de Jongh, B. F. Gerke, W van Saarloos, 
Phys. Rev. Lett, ingestuurd.

S. Haroche, J.-M. Raimond, 
Physics Today, augustus 1996

Stellingen
behorende bij het proefschrift 

’Density Matrix Renormalisation Group Variants for Spin Systems’

Dit proefschrift, hoofdstuk 3, 4, 
T. Einarsson, H. J. Schulz, 

Phys. Rev. B 51, 6151(1995).



7.

College van COMOP onderzoekschool

8.

Bij handel is technische kennis van het product vaak een nadeel.9.

10.

11. Door een beter wervingsbeleid voor studenten kan de Leidse faculteit der wiskunde 
en natuurwetenschappen haar marktaandeel in Nederland en daarbuiten aanzienlijk 
vergroten.

De belangrijkste uitdaging voor de hedendaagse natuurkundigen is de grote hoeveel- 
heid bestaande kennis toegankelijk te maken.

De overeenkomst tussen licht en elektronen gaat niet veel verder dan dat beide te 
beschrijven zijn in een golf vergelijking.

Lucas du Croo de Jongh
1 September 1999

De prijs van een optie op aandelen wordt bepaald in twee stappen. Eerst wordt met 
behulp van een mathematisch model een prijs nauwkeurig berekend. Vervolgens 
wordt deze prijs aangepast aan de stemming in de markt.


	/Users/carlo/Desktop/scan44.jpg

