
3 Fermions and bosons

exercises . and . by Dr. Peter Denteneer and Dmitry Pikulin

3.1 Second quantization

Consider a system of spinless bosons in a (large) volume V . We will investigate how the
difference between an external (one-body) potential and an interaction (two-body) potential
appears when the Hamiltonian is written in terms of creation and annihilation operators
(second quantization). Recall the definition of field and number operators,

ψ̂(~r ) = 1p
V

∑
~k

e i~k·~r â~k , n̂(~r ) = ψ̂†(~r )ψ̂(~r ).

(The integral over continuous~k = ~p/ħ in infinite space, with a delta-function normalization,
is replaced here by a sum over discrete ~k in a finite volume V .)

a) In the case of an external potential u(~r ), show that the operator for the total potential
energy,

Û =
∫

V
d~r n̂(~r )u(~r ) ,

can be expressed as follows in terms of creation and annihilation operators:

Û =∑
~q

u~qp
V

∑
~m

â†
~m+~q â

~m ,

where

u~q ≡ 1p
V

∫
V

d~r e−i~q·~r u(~r )

are the Fourier components of the potential u(~r ).

Let v(r12) be a short-range interaction potential, dependent only on the separation r12 =
|~r1 −~r2|.

b) Show that:

v(~k~̀, ~m~n) = 1

V 2

∫
d~r1d~r2 e−i (~k·~r1+~̀·~r2−~m·~r1−~n·~r2) v(r12)

= δ~k+~̀,~m+~n
1p
V

v~k−~m ,





where v~q are the Fourier components of v(r ).

c) Show that the operator for the total interaction energy,

Ĥ (int) = 1

2

∑
i 6= j

v
(
|~̂r (i ) −~̂r ( j )|

)
,

is given in terms of creation and annihilation operators by

Ĥ (int) =∑
~q

v~q

2
p

V

∑
~m,~n

â†
~m+~q â

~m â†
~n−~q â

~n .

3.2 Coherent states

Coherent states are eigenstates of the bosonic annihilation operator. They are called that
way, because a laser (a source of coherent radiation) produces a coherent state of photons
at a particular frequency.

a) Show that the state

|β〉 = e−|β|
2/2eβa† |0〉

is a coherent state, a|β〉 =β|β〉. Verify that this state is normalized to unity.

b) There is a very simple formula for expectation values of operators of the form A =
f (a†)g (a), where all creation operators are to the left of the annihilation operators. (This is
called the “normal order”):

〈β| f (a†)g (a)|β〉 = f (β∗)g (β).

Why is this true?

c) Prove that the probability P (n) that the coherent state contains n photons is a Poisson
distribution,

P (n) = e−|β|
2 |β|2n

n!
.

Because this is the distribution of classical independent particles, a coherent state is also
referred to as a “classical” state of the electromagnetic field.

d) Another way to see the (almost) classical nature of a coherent state, is to calculate the
uncertainty of the canonically conjugate operators

x = 2−1/2(a +a†), p = 2−1/2i (a† −a).

Show that the product of 〈(∆x)2〉 and 〈(∆p)2〉 takes the minimal value that is consistent with
the Heisenberg uncertainty principle.





3.3 Bogoliubov transformations

The Bogoliubov transformation is a linear transformation of the creation and annihilation
operators that preserves their commutation relation. We examine this for a pair of fermionic
creation and annihilation operators â†

α and âα, with α=± labeling spin and/or momentum.
The commutation relations are

âαâα′ + âα′ âα = 0 and âαâ†
α′ + â†

α′ âα = δαα′ 1̂.

Consider the linear transformation

b̂α = uαâα− vαâ†
−α,

with real coefficients uα and vα.

a) What is the corresponding expression for b̂†
α ?

b) Show that the fermionic commutation relations are preserved if uα and vα satisfy

u2
α+ v2

α = 1, uαv−α+u−αvα = 0.

The particle created by the operator b̂†
α is a fermion but it is not an electron. It is called a

Bogoliubov quasiparticle (or “Bogoliubon”).

We may choose u+ = u− ≡ u and v+ =−v− ≡ v , so that the Bogoliubov transformation takes
the form

b̂+ = uâ+− v â†
−, b̂− = uâ−+ v â†

+.

c) Derive the inverse transformation, expressing âα in terms of b̂α and b̂†
−α.

Bogoliubov and Valatin used this transformation to calculate the excitation spectrum of a
superconductor. The Hamiltonian is

Ĥ = ξ(â†
+â++ â†

−â−)+∆(â†
+â†

−+ â−â+),

with real coefficients ξ and ∆. This Hamiltonian represents the mean-field BCS theory
of superconductivity, after Bardeen, Cooper, and Schrieffer. The single-electron energy ξ

measures the deviation from the Fermi level, ξ= p2/2m −EF.

d) Notice that Ĥ does not conserve the number of particles, but it does conserve the parity
of the particle number. Which terms can change the number of particles by ±2 ? A pair of
fermions is called a Cooper pair and ∆ is called the pair potential.

e) Write Ĥ in terms of the Bogoliubov operators b̂α and observe what happens if you take
the special choice

v2 = 1−u2 = 1

2
− ξ

2
√
ξ2 +∆2

.





Explain that the energy E =
√
ξ2 +∆2 is the excitation energy of a Bogoliubov quasiparticle.

Plot it as a function of ξ and discuss the result.

3.4 Majorana fermions

Following Kitaev, consider spin-polarized fermions on a chain of N sites with Hamiltonian

Ĥ =
N−1∑
j=1

[
t (â†

j â j+1 + â†
j+1â j )+∆(â j â j+1 + â†

j+1â†
j )

]
−µ

N∑
j=1

â†
j â j ,

where t is the hopping amplitude between neighbouring sites, µ is the chemical potential,
and ∆ is the pair potential.

We make the transformation

γ2 j−1 = a j +a†
j and γ2 j =−i (a j −a†

j ).

indicated in the figure. The γ operators are called “Majorana operators” and the quasipar-
ticles they represent are called “Majorana fermions”.

a) Compute γ†
n and compare it to γn . Explain why it is said that a Majorana fermion “is its

own antiparticle”.

b) What are the commutation relations of the operators γ j ? Evaluate γ2
j .

c) Rewrite the Hamiltonian in terms of the Majorana operators.

d) Consider the special case ∆=−t > 0, µ= 0. Are there Majorana operators that are absent
from the Hamiltonian? Can you make a fermionic operator out of the absent ones? Where
does this fermion reside on the chain?

In this case the Hamiltonian has two degenerate states, distinguished by the occupation
number of the fermionic state. This degeneracy has been proposed by A. Yu. Kitaev as a
way to store information in a quantum computer. Because the information is distributed
over the two ends of the chain, it is believed to be less sensitive to external perturbations
than information that is stored locally.




