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1. INTRODUCTION

The science of vacuum electron opties has benefitted tremendously from the close anal-
ogv with light optics. This analogy exists on the level of classical motion (geometrical
optics), as well as on the level of quantum mechanical motion (wave aptics). The last two
decades have witnessed a surge of interest in transport phenomena in low-dimensional
semiconductor systems. Examples are the study of weak localization and conductance
fluctuations in two-dimensional (2D) electron gases, resonant tunneling through confined
states-in quantum wells, transport through mini-bands in superlattices, and quantum
ballistic transport through quantum point contacts. All of these phenomena have an
optical analogue, and may be classified as manifestations of solid state electron opties.

In section 2 of this paper, we present the similarities in the fundamentals of optics
and electron optics in vacuum, to prepare the ground for a discussion of the principles of
solid state electron optics in section 3. Examples are discussed in section 4 and 5, which
deal with ballistic transport through a quantum point contact, and with 2D refraction
and (resonant) tunneling, respectively. The optical analogues of these phenomena are
discussed as well. We chose these particular examples because of their relative simplicity,
and because we wished to demonstrate how the quantum unit of conductance, e*/h,
appears in seemingly quite different transport phenomena (quantum ballistic transport
and resonant tunneling). The commeon origin is the unit transmission probability of a
single open scattering channel., The analogue for light scattering differs because ¢?/h
has no counterpart in optics. More precisely, the optical analogue of the conductance
is the transmission cross section, which cannot be measured in units of fundamental
constants (the velocity of light being the only one available).

Since this article is intended as a tutorial introduction, we have chosen to give
a limited number of references to the original literature. A guide to the literature is
provided in section 6.
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Figure 1. Specular reflection of a ray of light obeys a principle of least path length. The

trajectory SAP, with equal angle of incidence and reflection, has the minimum length,
as may be seen from the geometrical construction in this figure.

2. FUNDAMENTALS OF OPTICS AND ELECTRON OPTICS

2.1 Principles of Least Time and Action

A ray of light, propagating in @ medium with a spatially varying index of refraction, or
reflected by mirrors, may often be treated to sufficient accuracy by the laws of geometni-
cal optics, which ignore the wave nature of light. This is analogous to the way in which
classical mechanics is often a sufficiently accurate description of the motion of material
particles in spatially varving potentials, or scattering elastically off a hard wall, even
though the wave nature of matter is not taken into consideration. The search for the
mathematical principles underlying the propagation of light and matter has intrigued
scientists since classical antiquity. In those times, when calculus had vet to be invented,
it may not have been as natural as it seems today to look for a principle governing
the local dvnamics of objects (as Newton succeeded in finding for material particles).
Especially for light, it must have been quite natural to look for a principle governing
the path traced as a whole. This i1s what was done by Hero of Alexandria, who wished
to find an explanation for the equality of the angles of incidence and reflection for light
incident on a mirror surface. In considering the possible paths that might be taken by a
ray of light coming from a source at S, reflected at a mirror, and arriving at a point P,
he hypothesized that the path actually taken is the shortest possible one. This principle
of least path length indeed implies that the angle of incidence #; equals that of reflection
., as may be proven by a simple geometrical construction (see Fig. 1).

Unfortunately, the minimum path length principle could not explain the refraction
of a ray of light at the interface between two media of different optical density (such as
air and water, see Fig. 2). This difficulty was removed in 1657, when Fermat introduced
his famous principle of least time, which dictates that the actual path traced out by a
ray of light is the one which takes the least time to complete. Since the velocity of light
at position r in a medium with refractive index n(r) is given by v(r) = ¢/n(r), Fermat's
principle of least time may also be formulated as a principle of least optical path length

P
f n(r)dr = minimum
5

Since there exist situations where the actual optical path has a maximum rather than
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Figure 2. Refraction of light can be understood in terms of Fermat’s principle of least
time.

a minimum length, it is more precise to express Fermat's principle as a variational one

P
-.'arf n(r)dr = 0. (1)
5

stating that the optical path length is an extremum. Following common usage, we will
still refer to Fermat's principle as the principle of least time. A derivation of Snell’s law
from Fermat's principle may be found in textbooks on optics [1].

In 1831, Hamilton formulated a principle of similar generality as Fermat's principle,
but now for the mechanical motion of material particles in spatially varving potentials
V(r). Hamilton's principle of least action is the basis for formal treatments of classical
mechanics. Each system is characterized by a function L(r,r,t) called the Lagrangian.
The general form of the Lagrangian can be constructed by considering the symmetries
of the system[2]. Imagine a motion starting at ; and ending at t;. One defines the

action of the motion as
3
g = f Ldt. (2)
I

According to Hamilton's principle, the path actually taken is the one which puts S at an
extremum, so that varS = 0. From this variational principle one may derive Newton's
equations of motion, describing the local dynamics of the system.

The analogy between Hamilton’s principle (involving an integral over time) and
Fermat's principle (involving an integral over space) may be made more explicit if one
considers a single material particle with momentum p and kinetic energy T = %p T in
a potential V(r), for which the total energy T + V/(r) is a constant of the motion. The
Lagrangian for this system is L = T — V/(r), so that

Is rs
varS = \rnrf 2Tdt = mrf p - dr,

iy m

where the integral is a line integral from r; = r(t;) to r; = r(t;). Hamilton's principle
may thus be expressed as

r:
vnrf p-dr =10. (3)

ry
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A comparison with Eq. (1) tells us that the path taken by a beam of classical particles
in a potential V(r) is analogous to that of a geometrical ray of light in a medium with
refractive index n(r), with the momentum playing the role of the refractive index. This
analogv inspired Busch in 1925 to provide the first description of the focusing effects of
electric and magnetic fields on a beam of electrons in optical terms{3]. Soon afterwards
the electron microscope was invented, followed by other electron-optical instruments.

2.2 Huygens’ Principle and Feynman Paths

The foundations of quantum mechanics were being completed just in time to support
electron optics in its development as a succesful branch of applied physics. In 1923,
De Broglie[4] introduced his particle wave length h/muv, and in 1925 Schrodinger([5]
presented his differential equation for the complex wave function, which describes the
state of a non-relativistic particle at each instant of time. Also in 1925, it was suggested
that the wave nature of particles might be demonstrated by studying the interaction of

Figure 3. If the classically allowed path from S to P is the straight (full) line, neighboring
paths have nearly the same classical action, so that they have little phase difference.
For non-classical neighboring paths (dash-dotted lines) the action (and thus the phase)
may differ strongly.

a beam of electrons with a single crystal[6]. Two years later Davisson and Germer[7]
discovered (quite accidentally!) electron diffraction, and showed that the data were in
agreement with the new theory.

In view of the analogy between geometrical optics and classical mechanics discussed
above, it is natural to inquire whether a mathematical basis exists as well for the analogy
between wave optics and guantum mechanics. In fact, such questions inspired the
founding fathers of quantum mechanics to an extent that is perhaps not sufficiently
appreciated today. The analogy was pushed furthest by Feynman, in his article on
a “space-time approach to non-relativistic quantum mechanics™[8]. This approach is
related to Schrodinger’s wave equation in a similar way as Hamilton's principle of least
action is related to Newton's equations. Feynman introduced a complex probability
amplitude ¢r(t)], associated with a completely specified motion as a function of time
r(t). This concept should be contrasted with Schrodinger's wave function W(t), which
describes the state of a particle at a given instant of time. In Schrodinger’s approach,
the probability P to find the particle in a given region of space V' at time ¢ is given by
P = [, | ¥(t) |* dr. Feynman's prescription treats space and time on equal footing:



to calculate the probability that a particle has a path lying in a given region of space-
time R one should sum the amplitudes ¢[r()] for all paths in that region, and take the
absolute square

P=| Y elr(t)iF. (4)

pathse R

As proposed earlier by Dirac[9], the amplitudes are of the form

olr{t)] = constant x exp (%Sd{rlif}]) : (5)
where S, 1s the classical action for the path r{t)

Salr(t)] = Ldt. (6)

path

Thus, the amplitudes carry equal weight, and differ in their phase only. Feynman's
principle forms a wave-mechanical analogue of Huygens' principle in optics. The role of
the phase (w/e¢) [ n{r)dr in optics is plaved by (1/h)Sa[r(t)] in mechanics.

The difference may be clarified as follows[10]. In optics, the frequency w is a
constant along any trajectory, so that the phase shift may be written as

k-dr=(w/c) | nir)dr (7)

path path

with & = wn/c the wave vector. In quantum mechanics, the energy E need not be a
constant along the (possibly non-classical) path, so that the phase shift is

1 1 1 .
7| pedr—c | Edt=-[ (p-i-E)dt. (8)

h path path path

For non-relativistic motion, and in Cartesian coordinates, one has p-r— E =27 - (T +
V') = L, so that the phase shift along the path equals (1/4) eruh Ldt = 5, /h.

One of the most appealing aspects of Fevnman’s path integral formulation is that
it gives insight in the connection between classical mechanics and quantum mechanics.
In the classical limit & — 0, so that the phase factors of neighboring trajectories differ
wildly — except for the classical paths, for which var 54 = 0. Thus, one may imagine
a classical path (obeying Hamilton's principle of least action) to be the result of the
constructive interference between neighboring trajectories of constant phase, whereas
non-classical paths are suppressed because of destructive interference (see Fig. 3). A
similar connection exists between Fermat’s principle of least time for geometrical optics
and Huygens' principle in wave optics.

Feynman's path integral formulation is completely equivalent to the Schrodinger
equation. The connection may be established by defining the wave function ¥{r,{) with
initial condition ¥(r,0) = &(r) as the sum or path integral of the complex amplitudes
¢[r{t)] over all paths with r(0) = 0 and r{t) = r,

ritj=r

W)= 3 exp (55alr0)]). (9)

rib)=0



2.3 Wave Equations

Let us finally examine the analogy between optics and electron optics from the wave-
equation point of view. The Schrédinger equation for an electron in a potential V(r}
reads

At g ., 0¥(r, 1)
_.E_m"? U(r, t)+ V(r)¥(r,t) = ih TR,

which reduces to a stationary wave equation on substituting a mono-energetic wave

W(r, t) = Wy(r)exp(—iEtfh)

(10)

b ]

VAWo(r) = == (E = V(r)) Vo(r). (11)
This implies a quadratic dispersion relation
N
E-V= e (12)

for a plane wave Wy  ¢®¥7 in the case of a slowly varying potential.

In contrast, the wave equation for the electric field £(r,t) of an optical wave in a
medium with refractive index n(r) is second order in time !

2
: ILEii—l[.F‘{rJ}l+i:u.£'|’_1',f:l,'h. (13)

7d —
T E[r.!} - f.uf.‘ja.ti

For a monochromatic wave £(r,t) = &l(r)exp{—iwt) in a linear medium with polariza-
tion P(r,t) = (n(r)* — 1)eE(r.t) this reduces to the Helmholtz equation

: i
ViE(r) = — ("T“’) Eolr). (14)

which implies a linear dispersion relation
W= —. (13)

Electron waves and light waves thus obev similar stationary wave equations, (11) and
(14). A comparison of these equations tells us again that electron wave optics is similar
to light wave optics if we treat the momentum (2m(E — V'))/? as the refractive index.

2.4 Limitations of the Analogy

The analogy between electron and wave optics is not a perfect one. In this sub-section
we briefly discuss some fundamental limitations of the analogy.

The different dispersion relations (12} and (15) imply that an electron has a wave-
length A = 2= /k that is inversely proportional to its velocity (v = dE/hdk = h/ml,
whereas a photon has a wavelength that is directly proportional to its velocity v = ¢/n =
Aw/2x. As a result, Snell’s law, expressed in terms of phase velocities, reads differently
for electrons and photons (see section 5).

Further differences were discussed by Ehrenfest[11]. He pointed out that the elec-
tron wave function ¥ is not an observable quantity, whereas the electric field £ or the
magnetic field B is. An implication is that ¥ is an intrinsically complex quantity, but

'In deriving Eq. (13) from Maxwell's equations, a term containing a spatial derivative of n(r) has
been neglected. This is justified if n varies more slowly than £, i.e. slow on the scale of the wave length.
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Figure 4. A set-up for the measurement of the two-terminal conductance of a wire of
length L and cross-sectional area A.

£ is real. (When one writes £ = £e'®T one really means £ = Re[£e'™®*].) For light
one could just as well have opted to work exclusively with real quantities, but this is
impossible for electrons. A second difference mentioned by Ehrenfest is that | ¥ [* is a
probability density, but | £2 + B? | an energy density. If there is only a single energy in
the problem, then the energyv density is also a probability density (apart from a prapor-
tionality factor). However, for non-monochromatic light, it is impossible to obtain from
| £2 4+ B* | the probability that one may find a photon in a given region of space-time.

Feynman has pointed out[8] that —whereas his formulation of quantum mechanics is
exact— Huygens’ principle is not. The reason 1s that the optical wave equation is second
order in time. In an exact theory of optical waves it is necessary to specify the derivative
of the wavefunction {in addition to its amplitude and phase) on a given wavefront, to
be able to predict its further evelution in space and time. This is known as Kirchoff's
modification of Huygens’ principle.

It is possible to construct an approximate wave equation for light which is more
closely analegous to Schrodinger’s equation because it is also first order in time. This
may be done using the slowly-varving-envelope approximation[12]. There are some in-
teresting analogies that may be fruitfully discussed in terms of this Schrodinger equation
for light, one example being the analogy between Andreev reflection of electrons at nor-
mal metal-superconductor interfaces and optical phase conjugation(13, 14].

Additional differences exist, such as the different statistics for electrons and pho-
tons, but these require a discussion beyond the level of the Maxwell equations.

3. PRINCIPLES OF SOLID STATE ELECTRON OPTICS

The main theme of this paper is the idea that transport of conduction electrons in the

solid state can in many different regimes be treated as a form of electron optics. In this
section, we discuss the basic principles which justify such a treatment.

3.1 Electrical Conduction in Linear Response

An elementary electrical circuit consists of a conductor connected via a pair of contacts
and leads to a voltage source (Fig. 4). A current [ flows through the conductor in
response to the application of a voltage difference V' between the two contacts, For
small applied voltages, | depends linearly on V. This is the regime of linear response.
The coefficient of proportionality between current and voltage is the conductance G =
limy_o J/V. The conductance of a macroscopic and homogeneous conducting wire in
zero magnetic field is proportional to its cross-section A and inversely proporticnal
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to its length L. The coefficient of proportionality is the conductivity o, defined by
G = (A/L)o. The conductivity relates the current density j = //A to the electric field
E=V/L by j =c€.

We emphasize the difference between conductance and conductivity. The conduc-
tivity is a property of the material, while the conductance is a property of a specific
sample (including contacts and leads). If the conductor is too small or not homoge-
neous, then its conductance does not scale with the dimensions of the sample and can
not be obtained from the conductivity of the material. Since conductance is a concept
of a more general experimental significance than conductivity, one needs a theoretical
framework which deals with the conductance explicitly.

The most important property of the linear response regime is the possibility to
relate the conductance and conductivity to Fermi level properties of the conductor.
The Einstein relation is one such relation, the Landauer formula another. The Einstein
relation expresses the conductivity tensor as the product of density of states and diffusion
coefficient, both evaluated at the Fermi level EFr. The Landauer formula relates the
conductance to the transmission probability at Ep. Since the Landauer formula involves
the conductance, rather than the conductivity, it is more generally applicable than the
Einstein relation. The Einstein relation is the more familiar of the two, so we discuss it
first. We restrict ourselves in this article to non-interacting electrons.

3.2 Einstein Relation

The Einstein relation follows from the thermodynamic rule that the current density is
zero if the electrochemical potential g is uniform throughout the sample. The elec-
trochemical potential u is the sum of the electrostatic potential energy —eV and the
chemical potential (or Fermi energy) Er. A difference in electrochemical potential be-
tween two regions in the sample means that energy is gained (or lost) on transporting an
electron from one region to the other. The system is thus not in equilibrium. Electrons
will drift from the high y region to the low p region, until the electrochemical potentials
are equalized.

The conduction electrons in a semiconductor or in a metal form an electron gas,
moving randomly through the crystal lattice. Through the interaction with the periodic
electrostatic potential due to the lattice, the quantum states accessible to these electrons
are Bloch states organized in bands, with dispersion relation E, (k) and density of states
pnl E). For our purposes it is sufficient to consider only a paraboelic conduction band, for
which E(k) = h*k*/2m, with m the effective mass (which is typically less than the free
electron mass). The electrons occupy the available states according to the Fermi-Dirac
distribution function

fIE = E¢) = [1 4 exp(E — E¢)/kT]™". (16)

The density of electrons in the partially filled conduction band is thus given by
n= / o(E)f(E — Er)dE. (17)
]

When Ef is more than a few kT below the bottom of the conduction band E (i.e. in
the band gap. where no states are available), the electron gas density is very low, and
the Fermi-Dirac distribution may be approximated by the classical Maxwell- Boltzmann
distribution. One then speaks of a non-degenerate electron gas. In this article, however,
we are concerned with the opposite limit of a degenerate electron gas, where Ep —
E. > kT. We will now derive the Einstein relation for such a degenerate electron gas,
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Figure 5. A gradient in the electrochemical potential 4 = —eV' + Ef can be caused by
an electric field £ = =VV, or by a density gradient Vn = p( Ef)V Er.

considering for simplicity the limit of zero temperature (the generalization to a finite
temperature is straightforward).

At T = 0, Ep is the energy of the highest occupied energy level, measured relative to
the conduction band bottom. As illustrated in Fig. 5, a gradient in the electrochemical
potential u = —eV + Er can be caused by an electric field £ = —VV, or by a density
gradient Vn = p{ Eg)VEF

Vi =ef + p(Eg)"'Vn. (18)

An electric field induces a current density jgin = ¢€. A density gradient induces a
current density Jaguwica = ¢DVn, with D the diffusion constant. f Vu = 0 we have
from Eq. (18) that Vn = —ep{ Er)E. Hence, the total current density is

7 = Jarin + Jdiffusion
= [o —e’p(Er)D]E, whenVy = 0. (19)

The requirement j = 0 when Vu = 0 (for arbitrary £) yields the Einstein relation for a
degenerate electron gas at T =0

7 = e2p(Ef)D. (20)
Because of the Einstein relation we can write

j = eDVn+cof
= a?EFfﬂ —-aVV
= oVpufe. (21)

This relation expresses the fact that the fundamental driving force for the current in a
system out of thermal equilibrium is V.2

For small Vn, and at low temperatures, only states near Er contribute to Jaimusion
The diffusion coefficient I is thus by definition a Fermi level property. The current 74nn
caused by an electric field in general contains contributions from all states below Ef.
The different distribution over energies of drift and diffusion currents arises because e£
is a force which enters in the equations of motion, and hence acts on all electrons, while
Vn is a “thermodynamic” force, which only affects the occupation of states near the
Fermi level. The importance of the Einstein relation (20) is that it shows that, although

*Thus, a “voltmeter” actually measures u, not V, and a “voltage source”™ maintains a constant
difference in electrochemical potential between its two terminals.
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Figure 6. a. An ideal electron waveguide connected through ideal leads (the gradually
widening regions} to reservoirs at different electro-chemical potentials. b. Plot of the
dispersion relation for the lowest three one-dimensional subbands in the waveguide. The
combination of a reservoir and an ideal lead ensures complete filling of all available states
up to the electro-chemical potential of the reservoirs (at zero temperature}.

o is not manifestly a Fermi level property of the sample, it can nevertheless be expressed
entirely in terms of Fermi level properties. This fact is at the heart of solid state electron
optics, because it allows us to treat electrical conduction as a transmission problem of
(nearly) monochromatic particles,

The Einstein relation for the conductivity may be generalized to a relation for the
conductance. Imagine two wide electron gas reservoirs having a shght difference én
in electron density, which are brought into contact by means of a narrow channel, as
in Fig. 6a. A current | will flow in the channel, carried by electrons with energies
between the Fermi energies Er and Ep + ép in the low- and high-density regions. At
zero temperature, and for small én, one has éu = én/p( Ef). The diffusance D is defined
by I = eDén, and is related to the conductance G hy

G = ¢*p( EF)D, (22)
which implies
I=Géufe. (23)

Eq. (22) is a generalization to the conductance G and diffusance D of the Einstein
relation (20), and 1s derived in a completely analogous way. The implication is that one
may express the conductance in terms of the properties of the quantum states at the
Fermi level.

3.3 Electron Waveguide

The prototypical conductor is an electron waveguide. An ideal waveguide has completely
smooth boundaries, a uniform electron density along the channel. and an absence of
defects that might scatter electrons. Some elementary properties of the propagating
modes in an electron waveguide, which we will need to determine its conductance, are
derived here. We consider a cyvlindrical conducting channel along the r—axis, defined by
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a lateral confining potential V(y, z). For such a potential, the motion in the z—direction
is separable. The Hamiltonian has the form (for a single spin component)

p
= — + V(y, 24
H 5 + Viy, z) (24)
with p* = pl + p} + p!. Because the momentum p, = —ihd/8z along the channel

commutes with M, the eigenfunctions of H can be chosen to be also eigenfunctions of
P=- The wavefunction

{l" | '.l'l,-i‘-'} = wmk{y+z}¢ih {E‘E'J

is an eigenfunction of p. with eigenvalue fik. It is also an eigenfunction of H with
eigenvalue E (k) if ¥ satisfies

'ﬁ.: 3: ﬁ: a? hikz y
“omay  dmda  2m T v [y.ﬂ} Voily, 2) = Ea(k) Wy, 2). (26)

Eq. (26) i1s the Schrodinger equation for motion in the y — z plane in the effective
potential

hik?

V-eﬂ'l:yr:'r k} o~ V[F1z] + Y

(27)

Because the motion is bounded, Eq. (26) has for each & a discrete set of eigenvalues
E.(k),n=1,2,... It should be emphasized that V.q, since it depends on k, is not a true
electrostatic potential {which should only depend on the coordinates). The eigenvalues
E. (k) depend quadratically on k,
1.2
E.(k) = E™® 4 s . (28)
2m
The conventional terminology in solid state physics refers to the collection of states
for a given value of n as a one-dimensional subband. In 2 waveguide terminology, the
index n labels the modes, and the dependence of the energy E,(k) on the wavenumber
k is called the dispersion relation of the n—th mode. The dispersion relation (28) is
illustrated in Fig. 6b for the lowest 3 subbands in an electron waveguide. The lowest
energy on the curve E (k} is the cutoff energy E;“i" of the n—th mode. The propagating
modes at energy E are those for which £/ < E so that the equation E,(k) = E has
a solution for a real value of k. The wavefunction (25) is then a non-decaying plane
wave along the channel. The modes with E™™ > E do not propagate at energy E. A
localized perturbation (such as the quantum point contact considered in section 4) can
excite such evanescent modes, but they then decay exponentially along the channel. For
a propagating mode, one can define the group velocily

1dE. (k)
W=
In view of Eq. (28), one has v.(k) = hk/m. Note, however, that the group velocity
differs from the velocity ik/m derived from the wavenumber (the phase velocity) if one
places the waveguide in an external magnetic field[22].

To calculate the conductance, we need to know the number of states in a given
energy interval, in addition to their velocity. The number of states for the n—th mode
in an energy interval [E.(k), E.(k) + dE.(k)] in a waveguide section of length L may
be written as p,(E)LdE,(k), where p,(F) is the density of states per unit length. This

(29)

9



number is equal to 4Ldk/27 (the factor of 4 contains a factor of 2 from the spin-
degeneracy, and another factor of 2 from the two velocity directions). We thus find for
the density of states of a single subband

2 (dE.(K)7"Y _ 2m h? )‘”
pH{EJ - ::: ( d-'l!'-' ) 5 ;'r.ﬁz (ETH{E— E:.t“in] : [3{}]

Comparison with Eq. (29) shows that the density of states of a waveguide mode is
inversely proportional to its group velocity,

palE) = (zhua(K)/2)7". (31)

It is useful to define also the density pt of positive velocity states, which is just one half
Pas Pl E)Y = (zhua(k))~". The density of states for a multi-mode electron waveguide
in a 2D electron gas with a hard-wall confining potential is shown in Fig. 7.

3.4 Conductance of an Ideal Electron Waveguide

To calculate the conductance of an electron waveguide, we adopt Landauer’s viewpoint,

=k W

PUE)

E1 EE Ea EF

Figure 7. Density of states of a multi-mode electron waveguide in a 2D electron gas,
with a hard-wall lateral confining potential.

which is to treat transport as a transmission problem. This point of view is justified by
the following considerations. The inelastic scattering length at low temperatures can be
quite long (on the order of 10 ym), exceeding the length of micron or sub-micron sized
conductors, typically used for the study of quantum transport. It is then reasonable to
ignore inelastic scattering in the conductor entirely, and to assume that it occurs in the
contacts exclusively. [deal contacts function as electron reserveirs. A source reservoir at
electrochemical potential Ep+ 6 feeds the conductor with an incoherent flux of incident
electrons, a second reservoir at electrochemical potential Ef is a drain for the electrons
that have traversed the conductor. The conductance can thus be expressed in terms of
the transmission probability from source to drain. Elastic scattering in the conductor
reduces the transmission probability, because some electrons are reflected back into the
source contact,

In this section we consider the case of an ideal electron waveguide between two
ideal contacts. An ideal contact can be formed by inserting a smoothly widening region



(an ideal lead) between the reservoirs and the waveguide proper (see section 4 for a
discussion of the role of a smooth region). Because of the assumed absence of scattering
processes in the waveguide, an electron occupying a certain quantum state | n, k) at one
point in the waveguide will occupy the same state further downstream. The assumption
of ideal contacts implies that within the waveguide the right-moving states are occupied
up to Er +6u (the electro-chemical potential of the left reservoir}, while the left-moving
states are occupied up to Er (cf. Fig. 6b). We write I = E:Ll I, with I, the current
in mode n and NV the number of propagating modes. The current I, is carried by the
occupied states in mode n with energy between Er and Ef 4 6p. States below Ef give no
net contribution to the current, because the contribution of each positive velocity state
cancels against that of the corresponding negative velocity state. The amount of current
dl,, carried by states of mode n in the infinitesimal interval [E,(k), E.(k) + dE.(k)] is
given by the product of the charge e, the number of positive velocity states in that
interval pf ( E)dE,(k), and the group velocity v, (k). This vields simply

2e
h
because the group velocity cancels against the density of states, ef. Eq. (31). Again, we
assume a two-fold spin degeneracy of the energy levels, hence the prefactor of 2. The
total current [, in mode n follows on integration from Eg to Ef + ép,

Ep+fp
L= E/ dE.(k) = %;Eﬁp. (33)

hEr

dl, = —dE,(k), (32)

Remarkably, for an ideal electron waveguide, the current [/, induced in mode n
by a difference éu in Fermi energies between the ideal contacts, equals {2e/A)ép inde-
pendent of mode index or Fermi energy. The current in the channel is shared equally
(“equipartitioned™ ) among the N propagating modes at the Fermi level, because of the
cancellation of group velocity and density of states (cf. Eqs. (29) and (30)). Since
G = I/(ép/e), this equipartition rule implies that the conductance of an ideal electron
waveguide is quantized in units of 2¢*/h:

2l
= -h—N.. (34)

with N the number of propagating modes in the waveguide.

It is instructive to consider the special case of a channel in a 2D electron gas,
defined by a square-well confining potential. In this case, the equipartitioning of the
current among the modes can be understood graphically, see Fig. 8. This diagram
shows the Fermi circle of an unbounded 2D electron gas in k—space. The right-moving
states in the energy interval (Ep, Er 4+ 6u) are shaded. The modes in the channel (of
width W) correspond to the pairs of horizontal lines at &y = 2nx/W,n = 1,2,.... The
number of propagating modes at the Fermi level is N = Int[kgW/x]. Each mode can be
characterized by an angle ¢, (indicated in Fig. 8), such that n = (kgW/x)sin¢,. The
group velocity v, = hk:/m is proportional to cos ¢, and thus decreases with increasing
n. However, the decrease in v, is compensated by an increase in the number of states in
the shaded region in Fig. 8. This number is proportional to the length of the horizontal
lines within the shaded region, and hence to 1/cos é,. The current I, in mode n is
proportional to the product of group velocity and number of states (per unit channel
length), and hence the dependence on the mode index n drops out. Each mode carries
the same amount of current.
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Figure 8. Semi-classical illustration of the equipartitioning of current among 1D sub-
bands in an ideal electron waveguide. The net current is carried by the shaded region in
k—space. In an ideal electron waveguide the allowed states lie on the horizontal lines.
These correspond to quantized values for k, = £n7/W, and continuous values for k..

3.5 Landauer Formula

We need to take just one more step to arrive at the Landauer formula, for a conductor
with scattering (for example due to impurities). Scattering causes partial reflection of
the injected current back into the source reservoir. If a fraction 7, of the current /,
injected by the source reservoir is transmitted to the drain reservoir, then the total
current. through the conductor becomes I = (2¢/h)spY.0_ | T,. Using G = I/(6p/e)
one obtains the Landauer formula

?Ej N
C=="N"T7 15
h E il
Eq. (35) may also be written in the form
O E—ET : . E—LET L 36
= t = y
; ME:I | tmn ['= 2= Trtt", (36)

where T, = Eiﬂ | tmn |* has been expressed in terms of the matrix t (with elements
tmn ) of transmission probability amplitudes from an incident mode n to a transmitted
mode m.

So far, we have treated the case of zero temperature, where only electrons at the
Fermi level have to be considered. This may be expressed in Landauer’s formula by
making the energy dependence of the transmission probability explicit

G==> E T.(Er) = _T{EF} (37)

At finite temperatures, energies within a few kT from Ef have to be taken into account.
The current ] may now be written as the difference I3 — I, of the current from source
to drain

ha= [ 1B = (Be +8u)T(E)IE



and the current from drain to source

1'11'—/.f{E Ee\T(E)dE.

For small éu one has f(E — (Ep + 6p)) = f(E — Ef) — (8f/0F)épu, so that

2e af
I= s ; ( 35) T(E)dEbu,
or, in view of Eq. (23)
2? [ [ 8f
== f ( : E) T(E)dE. (38)

This is the finite temperature generalization of the Landauer formula. The effect of a
finite temperature is to average T(E) near Er over a range of energies of a few £T in
width.

4. CONDUCTANCE QUANTIZATION AND TRANSMISSION STEPS

4.1 Quantum Point Contacts

In the previous section we have shown that the conductance of an ideal electron wave-
guide, attached to ideal contacts, is quantized in units of 2e*/h (for a two-fold spin-
degeneracy).

2e?

Tﬁr (39)
with N the number of propagating modes at the Fermi level. In 1988, it was discovered
[15, 16] that the conductance of a quantum point contact obeys Eq. (39) to a quite
reasonable accuracy (better than 1 %). A guantum point contact is a constriction
in a ZD electron gas, defined electrostatically by means of a split gate on top of the
heterostructure (a schematical view is given in Fig. 9). In the experiment[15], the width
is continuously variable from 0 to 250 nm, or from 0 to about 7 times the Fermi wave
length of the electrons in the 2D electron gas. The length is much less than the mean
free path, so that transport through the point contact is ballistic. The conductance
of a quantum point contact is shown in Fig. 10. Each step reflects an increase in the
number of propagating modes by one due to the increase of the point contact width,
This effect is a manifestation of the equipartition of current among an integer number
of propagating modes in the constriction, each mode carrving a current of 2¢?/h times
the applied voltage V, as in an ideal electron waveguide.

It remains to be explained, of course, why the quantum point contact behaves as an
ideal electron waveguide, since diffraction at the entrance and exit of the constriction
might be expected to induce large deviations from precise quantization. To analyze such
deviations it is necessary to solve the Schrodinger equation in the narrow point contact
and the adjacent wide regions, with plane wave boundary conditions at infinity. The
resulting transmission coefficients determine the conductance via the Landauer formula
(36). This scattering problem has been solved numerically for point contacts of a variety
of shapes and analytically in special geometries. When considering the mode coupling
at the entrance and exit of the constriction it is important to distinguish between the
case of a gradual (adiabatic) and of an aebrupt transition from wide to narrow regions.

If the constriction width W{z) changes sufficiently gradually, the transport through
the constriction is adiabatic, i.e. without intersubband scattering[18]. The transmission
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Figure 9. Schematic cross-sectional view of a quantum point contact, defined in a high
mobility 2D electron gas at the interface of a GaAs-AlGaAs heterostructure. The point
contact is formed when a negative voltage is applied to the gate electrodes on top of
AlGaAs laver.



CONDUCTANCE {2e2/h)

- -1.8 -1.6

GATE VOLTAGE (V)
Figure 10. Point contact conductance as a function of gate voltage at 0.3-4 K demon-
strating the conductance quantization in units of 2e?/h. The conductance is obtained
from a two-terminal measurement (after subtraction of a small background resistance).
The constriction width increases with increasing voltage on the gate. (From Van Wees
et al. [15]).



coefficients then vanish, | t,m [*= 0, unless n = m < Npip. With Npin the smallest
number of propagating modes in the constriction. The conductance quantization (39),
with N replaced by Npin. then follows immediately from Eq. (36). The criterion for
adiabatic transport is dW/dz S1/N(z), with N(z) ~ kgW(z)/7 the local number of
subbands. As the constriction widens, N(z) increases and adiabaticity is preserved only
if W(z) increases more and more slowly. In practice, adiabaticity breaks down at a
width Wi, which is at most a factor of two larger than the minimum width Wy;,..
This does not affect the conductance of the constriction, however, if the breakdown of
adiabaticity results in a mixing of the subbands without causing reflection back through
the constriction. If such is the case, the total transmission probability through the
constriction remains the same as in the hypothetical case of fully adiabatic transport.
As pointed out by Yacoby and Imry[17], a relatively small adiabatic increase in width
from Wiin to Wiy is sufficient to ensure a drastic suppression of reflections at W,,..
The reason is that the subbands with the largest reflection probability are close to cut-off,
i.e. they have subband index close to Npax, the number of subbands occupied at Wia..
Because the transport is adiabatic from Whin to Whae, only the Naia subbands with the
smallest n arrive at Wi, and these subbands have a small reflection probability. In the
language of waveguide transmission, one has impedance matched the constriction to the
wide regions. The filtering of subbands by a gradually widening constriction restricts
the emission cone of electrons injected through it into the wide regions. This hern
collimation effect[19] has been observed experimentally[20]. It allows one to perform
solid state electron optical experiments using a quantum point contact as injector of a
collimated electron beam (cf. section 3).

An adiabatic constriction improves the accuracy of the conductance quantization,
but is not required to observe the stepwise increase of the conductance. Calculations
have shown that well-defined conductance plateaux persist for abrup! constrictions, al-
though transmission resonances lead to periodic dips in the conductance below the
quantized plateau value[2]1]. Further details and references to the literature may be
found in ref. [22].

The results described above do not only explain the conductance quantization of a
quantum point contact, but they also show that equipartitioning of the current over the
waveguide modes inside the constriction is approximately valid regardless of the detailed
shape of the connection to the wide 2D electron gas. This provides some justification
for the use of the concept of a reservoir and an ideal lead, and thus for the use of the
Landauer formula in practical cases,

4.2 Steps in the Optical Transmission through a Slit

The unexpected discovery of the conductance quantization of a quantum point contact
has led to a search for its optical analogue. A considerable literature exists on the
coupling of light into fibers, or microwaves into waveguides, but the optical analogue
was not noticed previously. At the basis for the analogy are three facts.

Firstly, as we have seen, linear response implies transport at Er, which is analogous
to optical experiments with monochromatic light. The Helmholtz equation (14) for the
electric field of monochromatic light in vacuum (polanzed in the z—direction)

V2E, = —(w/c)’E, (40)

is similar to the Schrodinger equation. Secondly, the boundary condition at a metal
surface parallel to z is that £ vanishes, which corresponds to the vanishing of the
electron wavefunction ¥ at an infinitely steep potential wall. Thirdly, the expression for



Figure 11. An isotropic velocity distribution in a wide region of an electron gas in
thermal equilibrium causes a cos# distribution of the flux incident on a narrow slit, #
being the angle with respect to normal incidence. The magnitude of the flux is indicated
by the straight lines for various angles of incidence.

the energy current density in optics is given by the Poynting vector

o %f_ufn.e{s x B*) = %q%ﬂn{i&?ﬂ}l (41)

is identical, up to a numerical factor, to the quantum mechanical particle current density,

j= :—Iﬂeﬁwwm (42)

It follows that the ratio of transmitted to incident power in the optical problem is the
same as the ratio of the transmitted to incident current in its electronic counterpart.

Let us now look at the ingredients needed in optics to mimick the conditions of
the experiment on the conductance quantization of a quantum point contact. In optics
one usually studies the transmission of a single incident plane wave, as a function of
the angle of incidence. In contrast, electrons are incident at a point contact with an
isotropic velocity distribution, or equivalently with a cos@ distribution of the incident
flux (see Fig. 11). In optics such an angular distribution is known as a Lambertian
source, and is provided by any diffusely scattering medium. The analogue of a point
contact in a 2D electron gas is a slit in a metal screen illuminated diffusively in a plane
perpendicular to the slit, with £ polarized parallel to the slit (and monochromatic).

The analogue of the conductance G of the point contact is the transmission cross
section per unit length o of the slit, defined by & = P/j;,, where P is the transmitted
power per unit slit length, and jj, is the incident energy flux (so that ¢ has the dimension
of a length). If the shape of the slit is the same as the shape of the point contact, then
it follows from the equivalence discussed above that G and ¢ are related by

L3
2e?

with A the wavelength of the light. To see this, one should note that, because of the
Landauer formula, (h/2¢*)G = T equals the transmitted current divided by the incident
current per mode. In the optical case, j;,A/2 is the incident current per mode, so that
Pl(7iaA/2) = (2/A)e = T’ equals the transmitted power divided by the incident power

2
G= 1% (43)
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Figure 12. Experimental demonstration of equidistant steps in the transmission cross-
section of a slit of adjustable width. A 2D Lambertian monochromatic source is obtained
by illuminating a diffusor consisting of a random arrav of parallel fibers by a diode laser
beam. An integrating sphere is used to obtain a detector signal proportional to the
transmission crosssection. [From Montie et al. [23]]

per mode. But in the previous paragraph we have proved that the two ratios are the
same, hence T = T' and (h/2¢*)G = (2/))e. The dependence of transmission cross
section @ on the slit width W should thus be a stair case, with steps separated by A/2,
and with a constant step height given also by A/2. The role of the shape of the slit
should be identical to the role of the shape of a hard-wall confining potential in the case
of a quantum point contact. This is why one expects ¢ = NA/2 to a good aproximation.
This prediction[25] has been verified experimentally by Montie et al. [23]. Their
result is reproduced in Fig. 12. The generalization of the optical analogue to the case
where a dielectric fills the wide regions (but not the slit) is straightforward since (as
explained in the next section) a negative step in refractive index is analogous to a
positive step in the electrostatic potential (or in the local conduction band bottom) in
the solid state electron optics case. Such a step reduces the number of propagating
modes in the constriction - but has no effect on the conductance quantization.
Absorption at the slit boundaries gives rise to a rounding of the transmission
steps[23]. This effect has of course no counterpart in solid state electron optics, We
also note that, unlike in the electronic case, it is straightforward to generalize the opti-
cal experiment to transmission through an aperture (a hole in a screen). Although this
experiment has not vet been performed, the theory[23] predicts ¢ = NA?/2x for this

case (assuming that the two independent polarizations of the modes in the aperture can
be resolved).

5. REFRACTION AND TUNNELING

5.1 Snell's Law for Electrons and Photons

Consider a 2D electron gas, with Fermi energy FEf, containing a region of reduced
electron density. The local conduction band bottom is raised in such a region to a value



E.. An electron at the Fermi level, impinging on the region of reduced density, thus
feels a potential barrier of height E.. Classically, there are just two possibilities. The
electron will be reflected specularly if its kinetic energy along the direction of normal
incidence is less than E.. or

Er cos’ 0, < E, — reflection (44)
(trajectory {1} in Fig. 13a). The electron will be refracted when
Ef cos® #; > E. — refraction (45)

{trajectory (2) in Fig. 13a). One may derive Snell’s law for refraction of conduction
electrons by invoking conservation of tangential momentum

I:] Siﬂfi'] = ﬁ:gsinﬁ';, fdﬁ}

where ky = (2mEp/R*)V?, and k; = (2m(Er — E.)/A*)"3. This result is identical to

Snell’s law in optics. In terms of the velocity v; = khk;/m, Snell’s law for electrons reads
vy sinfly, = wv;sind,. (47)

One notices a difference with Snell’s law in optics, n, sin #; = nysin #;, which corresponds
to Eq. (46), but which may be rewritten as

vqsindy = vy sin b4, (48)

since the velocity of light is v; = ¢/n; = w/ki. 1.e. inversely proportional to the wavenum-
ber.

As illustrated in Fig. 14 (see also Fig. 13b), this has the amusing consequence
that a positive lens in solid state electron optics, constructed out of a region of reduced
electron density (i.e. with reduced velocity) has a concave shape, in contrast to optics,
where a positive lens made out of a material with reduced velocity (such as glass) is
convex. This difference is a consequence of the different dispersion laws for electrons
and photons (cf. Section 2).

Using a quantum point contact to inject an electron beam at the Fermi level in a2 2D
electron gas it has been possible to demonstrate total specular reflection of electrons at
an electrostatic boundary and magnetic focusing([25], and focusing of an electron beam
using an electrostatic lens[26, 27].

In this section, we have discussed Snell’s law for electrons and photons in terms
of trajectories (or rays). Alternatively, one may derive Snell’s law by matching the
solutions of the wave equations for electrons or for light at the interface between two
different regions. Such a derivation adds to our understanding, but the result is the
same, refraction being essentially a classical phenomenon. In the next section we discuss
tunneling, which may only be understood in terms of quantum mechanics, and which
has no analogue in geometrical optics.

5.2 Tunneling of Electrons and Photons

The transition from refraction to tunneling occurs when the potential barrier in the re-
gion of reduced electron density is increased above the Fermi energy. The optical coun-
terpart of this phenomenon is known as frustrated total internal reflection (FTIR). One
commonly encounters treatments of FTIR[28, 29] as a {somewhat imperfect) analogue
of one-dimensional electron tunneling. As we will show, a more satisfactory analogy
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Figure 13. a. Refraction (for small angle of incidence) and total reflection (for large angle
of incidence) of a conduction electron at a potential barrier defined electrostatically in
a 2D electron gas. Note that the electron is refracted away from the surface normal on
entering the barrier region. b. In optics, a ray is refracted fowards the surface normal,

at a positive step in refractive index.



Figure 14. Experimental device used to demonstrate focusing of a ballistic electron beam
by Sivan et al.[26] and by Spector et al.[27]. A concave lens is positive, even though it
is formed out of a region with reduced phase velocity.
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exists with two-dimensional electron tunneling. The relevant geometries are depicted in
Fig. 15. 3

Consider a monochromatic electro-magnetic wave, polarized linearly with £ in the
z—direction, propagating in the r — y plane in a medium of refractive index nr. The
scalar wave equation (13) becomes

ViE + (E) n(z)2€ = 0. (49)

Let us now see what happens at a step in refractive index, from n; to the lower value
nz. We look for a plane-wave solution in the y—direction,

£ = W(zx)exp [i(ky — wt)]. (50)
Substitution of this wave in Eq. (49) vields an equation for ¥(z),
a* wy? 5 4 -

For an incident plane wave at angle #;, with the z—axis, one has k = (wn;/c)sin #,.
Hence, in region 1 Eq. (30) reduces to

2 1% 2
g;’ + (=) nicostow =0, (52)
whereas in region 2 one has
2
‘;;f + (“‘") (n — n3sin®6,) ¥ = 0. (53)

Tunneling of light occurs when n — nisin*#, < 0, so that Eq. (53) does not have a
propagating solution. (Note that the frequency w does not enter in this condition.

The Schrédinger equation for tunneling at the Fermi level through a planar potential
barrier of height E. in a 2D electron gas reads

2
t;T.f E—mEpcus ¥ =0, (34)
in the 2D electron gas, and
2
"Zq’ 251 (Epcos®d, — E.) ¥ =0, (35)

in the barrier region. Tunneling thus occurs whenever Ef cos® #; — E. < 0, a condition
that depends explicitly on the energy of the electron, Ef. In contrast to the optical case,
tunneling at normal incidence (#; = 0) 1s possible in the electronic case if E. > Ef. (The
optical condition n3 — nisin®#; < 0 has no solution for #; < arcsinnaz/n;.) Apart from
these differences, a comparison with Eqs. (52) and (53) shows that 2D electron tunneling
through a planar barrier is analogous to 2D photon tunneling (FTIR) through a region
of reduced refractive index, with the following identifications

ﬁ, - Ercos’f, <= (%):nfcnslﬂj (56)
2 (Breostty ~E) = (2)’ (nicos?ty — (n? —nd). (57)

IFTIR is commonly studied by bringing two rectangular prisms in close proximity, in such a way
that they nearly form a cube. consisting of the two prisms separated by a narrow air gap. A plane wave
incident perpendicularly on one of the rectangular faces of a prism is deflected by 90 degrees, through
total internal reflection. On narrowing the air gap, some of the light may be transmitted towards the
second prism, because of tunneling. The total internal reflection is then frustrated.

292



x x

>~i >‘ ‘/‘
Figure 15. a. Tunneling of an electron incident on a region of increased electrostatic
potential (reduced momentum) at an angle such that classically it would be totally

reflected. b. Frustrated total refiection of light incident on a region of reduced refractive
index.

The first relation (56) expresses nothing but the correspondence of the wavenumber of
the incident electron wave at the Fermi level to that of the incident optical wave. The
second relation (57) may thus be rewritten as

2 ;
— B = G)E [n? = n], (58)

which expresses the fact that a change in electrostatic potential in the electronie problem
(i.e. a change in squared momentum) corresponds to a change in the square of the
refractive index. This specific example illustrates the assertion of Sec. 2 that electron
optics 15 analogous to optics when one 1dentifies the refractive index with the electron
maomentum.

5.3 Landauer Formula and Fermi's Golden Rule for Tunneling

The Landauer formula for the conductance in terms of the energy dependent transmis-
sion probability T'(E) (for one spin direction)

1 oo
G=%j; T(E) (—g—é) dE (59)

can be applied straightforwardly to elastic tunneling. This approach is equivalent to
the more traditional approach, based on Fermi's golden rule, as we now discuss for 1D
tunneling. The generalization to the 2D case is straightforward.

Consider a planar barrier across which a voltage V' is maintained (see Fig. 16). The
electron gas regions on each side are characterized by shifted Fermi-Dirac distribution
functions f1(E) = [1 + exp(E — E¢)/kT]|™" and fo( E) = [1 + exp(E + eV — Eg)/kT]".
The transverse momentum is conserved in the tunneling process, so that we can consider
each transverse momentum state separately. The following results are for just one such
state, or conduction channel. The tunnel rate for an electron approaching the barrier



from region 1 with energy E is

ru{E} = Er—;deEjﬂE{Ez}ll'Vu{EHIEfE— E:]

2r .
= S p(E)Wa(E)P . (60)

Here |Wi2( E)| is the tunnel matrix element, and p2( £) is the density of states in electron
gas region 2 at energy E for the specified transverse momentum state. Note that p,( E)
depends on the applied voltage, due to the shift in conduction band bottom in region
2 (see Fig. 16). To arrive at the current due to electrons moving from | to 2, we have
to sum the tunnel rate times the electron charge over all occupied states in region 1,
excluding the occupied states in region 2 (in view of the Pauli principle). The result is

W= f o1 (E)FEYTwa( E)1 = f2( E)|dE
=

h

] 4= \Waal o BV (E)pal EN1 — f2(E)E . (61)
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Figure 16: Planar potential barrier separating two degenerate electron gas regions of
equal chemical potential, but with shifted Fermi levels because of the voltage V' applied

across the barrier,

The term in the integrand containing the product of Fermi-functions cancels on adding
{31, so that the net current I = I3 — I3 is given by

1= 7 [45 Waslp (BN EVA(E) - F(E)E (62)

For small applied voltage f5(E) = f(E) + eVaf/QE (the subscript 1 is now dropped),
so that one finds a linear response conductance (for a single spin direction)

G

2 =]
—%L 4F=|W1.:|=P:(E}P2{E]§{Ed5 (63)
E':
= = / Fra(E)ar(E)(E)1 — f(E)ldE . (64)

To arrive at the final result we used the identity —df/8E = (kT)~'f(1 — f).

This equation explicitly contains the density of states of the electron gas regions on
either side of the tunnel barrier. This may seem puzzling, because of the cancellation
of group velocity and 1D density of states in the derivation of Landauer’s formula (59).



Ee

A —» I C
B &

P
0L

Figure 7. Rectangular planar barrier of height £, with incident wave of amphitude A,
reflected wave of amplitude B, and transmitted wave of amplitude C.

To establish the equivalence of both resuits, we note that the tunnel rate from region |
to region 2 may also be written as the product of an attempt frequency vy2( E) and the
transmission probability T(E)

[12(E) = ma( E)T(E} . (65

The attempt frequency equals the group velocity of the electron incident on the barrier,
divided by twice the length L of electron gas region 1 or, equivalently,

via(E) = U/hpy(E) . (66)

where we have used the relation v, = 2L/hp, between group velocity and density of
states for one spin direction (cf. Eq. (31), which is for two spin directions). Consequently,
one may write

T(E) = hlya(E)p(E) (67)

One may thus express the transmission probability T(F) in terms of the tunnel matrix
element, according to

T(E) = 47*|Wi2l o1 (E)pa( E) . (68)

This relation proves the equivalence of the standard result (63) for the conductance due
to tunneling through a single barrier and the Landauer formula (59). The analysis given
above closely follows the one given in 1970 in a textbook by Harrison[30]. However,
at that time it was not obvious that the result (39) applies for any value of T: the
etjuivalence to the Fermi golden rule formula holds only in the limit T < 1, since this
rule is based on perturbation theory.

5.4 Rectangular potential

To illustrate how T E') is calculated, we discuss the text-book example of one-dimensional
tunneling through a rectangular potential barrier of height E., separating two regions
of zero potential (see Fig. 17). The solutions u{z) of the Schrodinger equation in the re-
gions on either side of the barrier are plane waves with (positive or negative) wavevector
k= (2mE)Y?/h. By reference to Fig. 17 it is clear that

<0; u(z) = Ae™ 4 Be™'* (69)
r>L:ulz) = Ce*™ . (70]
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Figure 18, Transmission probability versus energy for a rectangular barrier of height E.
and thickness L, for the case that £*/2mL* = (0.01E.. The curve has been calculated
frorn Eqs. (72) and (75},

whereas in the barrier region the solutions are plane waves with wavevector k = [2m(E -

E )3k
0<r<L:ulz) = Fe™ 4+ Ge ™, (71)

For the tunneling problem E < E., so that x is imaginary, & = [2m(E.— E)]V%/h. The
transmission probability T(E) = |C|*/|A|* can be found by matching the propagating
wavefunctions in the regions adjacent to the barrier to the the decaying wavelunction

in the barrier. The matching conditions require that both u({z) and du(z)/dz are con-
tinuous at x = 0 and r = L. The result for £ < F, reads

E?sinh®(| & | L)

HE) =+ = FE -

L. (72)

This general result has a number of interesting limits. [f the barrier is high and thick,
| x| L 3 1 {or equivalently E. — E = A*/2mi?). then

E(E. - E)

T(E) =~ 16 £

exp(—2 | x| L) . (13)
The transmission probability due to tunneling is exponentially small for such a barrier.

Eq. {72) reduces to the transmission probability for tunneling through a potential
of the form Hér, if one takes the limit | x | L € 1 and defines H = E L.

T(E)
Z

N

1+ 2z
H/h(2E{m)'? . (74)

i

The reflection probability at such a one-dimensional delta-scattereris R =1-T =

(14 Z-31.



(B M
I Er ||

J

| |
|
0 L

Figure 19. Double planar barrier forming a well with quasi-bound state at energy £,

The above approach is applicable as well to the transmission of electrons over a
square barrier. Eqgs. (69)-(71) still hold, but in this case x is real. The result for £ > E.
15

E?sin®(xL)
1E(E — E.)

T(E)=[1+ =t (75)
A plot of T(E) is given in Fig. 18, for the case that #*/2mL* = 0.01E.. The transmis-
sion resonances seen for £ > E. correspond to virtual bound states above the barrier,
occurring at energies for which kL is an integer times =.

The resonances due to “over-the-barrier” reflection are less pronounced if the po-
tential barrier is rounded. as is often the case experimentally [31]. A similar suppression
of transmission resonances occurs in the case of the conductance quantization of a quan-
tum point contact, due to the rounding of the shape of the constriction near entrance
and exit.

5.5 Resonant Tunneling

When. two barriers are placed in series, the transmission probability T(E) may show
resonances due to tunneling through quasi-bound states in the well between the barriers
{see Fig. 19). The double barrier is the analogue of the Fabry-Pérot resonator in optics.
A theoretical study of resonant tunneling has been made by Breit and Wigner, in the
context of resonant enbancement of the neutron capture cross section observed in nu-
clear physies [32]. Resonant tunneling has since become relevant for solid state physics
as well, in particular because of the proposal by Tsu and Esaki [33] to build multiple bar-
rier “superlattice” devices using semiconductor heterostructures. Evidence for resonant
tunneling through a double barrier structure was first reparted by Chang, Esaki and
Tsu [34]. As in most of the subsequent experiments, they measured the current-voltage
characteristic to detect the resonance as a negative differential resistance at finite bias.
In this section we will discuss instead the transmission probability at zero or negligibly
small bias, which determines the linear response conductance. It will be assumed that
either the Fermi energy or the energy of the quasi-bound states in the well can be tuned
by means of an external parameter (such as gate voltage or magnetic field).

Resonant tunneling through a double barrier may be treated by summing the com-
plex amplitudes of all possible paths which finally lead to transmission. We denote the
complex transmission amplitudes of the individual barriers by {; and {5, and the complex
reflection amplitudes by r; and ry. These amplitudes are related to the transmission



and reflection probabilities T, and R; (i = 1,2) by

o Hq}.-"?ﬂjar:u {TE:I
T, = 1-R (77)

™

In addition to the phase shifts Ag; incurred on reflection off a barrier, there is a phase
shift ¢4 corresponding to traversal of the well in the positive or negative r—direction.
The total transmission amplitude through the double barrier then is

t = 1€ + e rpeitrei iy + ..
t i
- L (78)

—_— T Ei{ﬂ++d‘—l
173

The transmission probability follows from T = |¢|*

T,

T = , (79)
1+ R R; - ER} "FIR;'W COS Y
where y is the total phase shift for one round-trip in the well
X=0++ 0.+ 40 +A08;. (80)

The transmission probability T has a maximum whenever ¥ = n2r, as a con-
sequence of destructive interference of the backscattered partial waves. Since this is
precisely the condition for the existence of a quasi-bound state in the well, the reso-
nance occurs when the energy of the incident electron coincides with the energy E, of
a quasi-bound state. The maximum and minimum transmission probabilities are given
by

L T; __AhT
-2y () +13

r% . T
+RRE 4

Tlllh.t

(81)

Il

(82)
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where the approximate equalities hold only if T} € 1, and T3 < 1. Note that if the
double barrier is symmetric (T; = T3), the maximum transmission probability is unity,
regardless of the magnitude of the barrier transparencies. The conductance then equals
e?/h (for one spin direction). A plot of T as a function of y is given in Fig. 20, for
Th=T;=08and T; = T; = 0.2. The energy dependent transmission probability
T'(E) may be obtained from Eq. (79) provided the phase shift y and the transmission
probabilities of the individual barriers are known as a function of energy. For planar
rectangular barriers this may be done by the wavefunction matching method discussed
in the previous subsection [36].

If the barriers are sufficiently high and thick, both Ty € 1 and T3 <€ 1, and T(FE)
reduces to the Breit-Wigner form for energies close to a resonance, as we will now discuss
[35]. The phase shifts incurred on reflection off the barrier are A¢; = —=/2, independent
of energy. If the separation of the barriers is L, then the resonance condition y = n2r
reduces to the familiar Bohr-Sommerfeld quantization condition 2L/A = n + % (here
A = 2x/k, with k = (2mE)"?/h). Consider one such state, at energy E,. For energies
close to E; the round-trip phase shift y is linear in ¢, = E — E,,

dy - dy dk
dE ~— dkdE

= (2L)(=p/L) = 1 /hv (83)
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Figure 20. Transmission probability through a double barrier as a function of the round-
trip phase shift y, calculated from Egs. (79) and (80}, for T} = T3 = 0.8 (upper full
curve) and Ty = T3 = 0.2 (lower full curve). Also shown are the corresponding Breit-
Wigner lineshapes for a single quasi-bound state, calculated from Eq. (85) assuming a
linear dependence of y on E — E, as in Eq. (84) (dashed curves).

with ¥ = 1 /hp the attempt frequency and p = (L/7)dk/dE the density of states in the
well. Close to resonance we may thus write

x = 2zn + ¢, [hv {84)
By expanding cos y = 1 — %{c,fﬁu}’ and R:” 2] — —;—T,- we then find from Eq. (79)
T = T,
T (T + T2 /4 + (o /hv)?
_ Ny o2
= (0727 + (a2 o

where we haveused [, = T, and I' = I, +I';. Eq. (85), with its characteristic lorentzian
lineshape, is known as the Breit-Wigner formula [32]. The Breit-Wigner formula is a
good approximation of the lineshape close to a resonance, where ¢ € lir, provided
71, Tz < 1 (or, equivalently, h[' < AE = 1/p). The deviations from the exact result
(79) can be quite large if the barrier transparencies approach unity, as shown in Fig. 20.

The Breit-Wigner formula has a wider range of validity than to the one-dimensional
tunneling problem considered here, where only a single conduction channel or 1D-
subband in the electron gas regions adjacent to the potential well couples to the quasi-
bound state in the well. As discussed by Bittiker [35], in the multi-channel case one
simply has to replace the tunnel rates I'; and I'; by the sum of the tunnel rates of the
localized state to each of the available conduction channels. This has the consequence
that the maximum transmission probability due to resonant tunneling through a sin-
gle localized state is unity, regardless of the number of scattering channels in the leads
which couple to the localized state. This implies a maximum contribution of e* /& to the
conductance (for one spin direction) for each localized state in the well, the maximum




being realized if the tunneling rates through the two barriers are equal. This important
result has been found following a different route by Kalmeyer and Laughlin [37], and by
Xue and Lee [38].

This example and the one discussed in section 4 illustrate how e*/h may show up
in seemingly unrelated contexts (quantum ballistic transport through a point contact,
and resonant tunneling through a localized state). Further examples are the quantum
Hall effect, and universal conductance fluctuations[22]. Solid state electron optics is the
viewpoint that transport properties are in essence transmission properties of the modes
(or quantum channels) in the conductor. A single open channel universally contributes
e?/h to the conductance, which explains why this quantity is ubiquitous in quantum
transport.
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