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Quantum Entanglement

��� Nonseparability of EPR pairs

����� Hidden quantum information

The deep ways that quantum information di�ers from classical informa�
tion involve the properties
 implications
 and uses of quantum entangle�

ment� Recall from x����� that a bipartite pure state is entangled if its
Schmidt number is greater than one� Entangled states are interesting
because they exhibit correlations that have no classical analog� We will
study these correlations in this chapter�

Recall
 for example
 the maximally entangled state of two qubits �or
EPR pair� de�ned in x������

j��iAB �
�p
�

�j

iAB � j��iAB� � �����

�Maximally entangled� means that when we trace over qubit B to �nd
the density operator �A of qubit A
 we obtain a multiple of the identity
operator

�A � trB�j��ih��j� �
�

�
IA � �����

�and similarly �B � �
�IB�� This means that if we measure spin A along

any axis
 the result is completely random � we �nd spin up with proba�
bility ��� and spin down with probability ���� Therefore
 if we perform
any local measurement of A or B
 we acquire no information about the
preparation of the state
 instead we merely generate a random bit� This
situation contrasts sharply with case of a single qubit in a pure state�
there we can store a bit by preparing
 say
 either j ��ni or j ��ni
 and we
can recover that bit reliably by measuring along the �n�axis� With two

�
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qubits
 we ought to be able to store two bits
 but in the state j��iAB this
information is hidden� at least
 we can�t acquire it by measuring A or B�

In fact
 j��i is one member of a basis of four mutually orthogonal states
for the two qubits
 all of which are maximally entangled � the basis

j��i �
�p
�

�j

i � j��i� �

j��i �
�p
�

�j
�i � j�
i� � �����

introduced in x������ Imagine that Alice and Bob play a game with Char�
lie� Charlie prepares one of these four states
 thus encoding two bits in
the state of the two�qubit system� One bit is the parity bit �j�i or j�i��
are the two spins aligned or antialigned� The other is the phase bit �� or
��� what superposition was chosen of the two states of like parity� Then
Charlie sends qubit A to Alice and qubit B to Bob� To win the game

Alice �or Bob� has to identify which of the four states Charlie prepared�

Of course
 if Alice and Bob bring their qubits together
 they can iden�
tify the state by performing an orthogonal measurement that projects
onto the fj��i� j��i� j��i� j��ig basis� But suppose that Alice and Bob
are in di�erent cities
 and that they are unable to communicate at all�
Acting locally
 neither Alice nor Bob can collect any information about
the identity of the state�

What they can do locally is manipulate this information� Alice may
apply �� to qubit A
 �ipping the relative phase of j
iA and j�iA� This
action �ips the phase bit stored in the entangled state�

j��i � j��i �
j��i � j��i � �����

On the other hand
 she can apply ��
 which �ips her spin �j
iA � j�iA�

and also �ips the parity bit of the entangled state�

j��i � j��i �
j��i � �j��i � �����

Bob can manipulate the entangled state similarly� In fact
 as we discussed
in x���
 either Alice or Bob can perform a local unitary transformation
that changes one maximally entangled state to any other maximally en�
tangled state�� What their local unitary transformations cannot do is alter

� But of course� this does not su�ce to perform an arbitrary unitary transformation on
the four�dimensional space HA �HB� which contains states that are not maximally
entangled� The maximally entangled states are not a subspace � a superposition of
maximally entangled states typically is not maximally entangled�
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�A � �B � �
�I � the information they are manipulating is information

that neither one can read�

But now suppose that Alice and Bob are able to exchange �classical�
messages about their measurement outcomes� together
 then
 they can
learn about how their measurements are correlated� The entangled basis
states are conveniently characterized as the simultaneous eigenstates of
two commuting observables�

�
�A�
� � ��B�

� �

�
�A�
� � ��B�

� � �����

the eigenvalue of �
�A�
� � �

�B�
� is the parity bit
 and the eigenvalue of

�
�A�
� ���B�

� is the phase bit� Since these operators commute
 they can in
principle be measured simultaneously� But they cannot be measured si�
multaneously if Alice and Bob perform localized measurements� Alice and
Bob could both choose to measure their spins along the z�axis
 preparing

a simultaneous eigenstate of �
�A�
� and �

�B�
� � Since �

�A�
� and �

�B�
� both

commute with the parity operator �
�A�
� ���B�

� 
 their orthogonal measure�
ments do not disturb the parity bit
 and they can combine their results

to infer the parity bit� But �
�A�
� and �

�B�
� do not commute with phase

operator �
�A�
� � ��B�

� 
 so their measurement disturbs the phase bit� On
the other hand
 they could both choose to measure their spins along the
x�axis� then they would learn the phase bit at the cost of disturbing the
parity bit� But they can�t have it both ways� To have hope of acquiring
the parity bit without disturbing the phase bit
 they would need to learn

about the product �
�A�
� � ��B�

� without �nding out anything about �
�A�
�

and �
�B�
� separately� That cannot be done locally�

Now let us bring Alice and Bob together
 so that they can operate on
their qubits jointly� How might they acquire both the parity bit and the
phase bit of their pair� By applying an appropriate unitary transforma�
tion
 they can rotate the entangled basis fj��i� j��ig to the unentan�
gled basis fj

i� j
�i� j�
i� j��ig� Then they can measure qubits A and
B separately to acquire the bits they seek� How is this transformation
constructed�

This is a good time to introduce notation that will be used heavily
in later chapters
 the quantum circuit notation� Qubits are denoted by
horizontal lines
 and the single�qubit unitary transformationU is denoted�

U
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A particular single�qubit unitary we will �nd useful is the Hadamard

transform

H �
�p
�

�
� �
� ��

�
�

�p
�

��� � ��� � �����

which has the properties

H� � I � ���	�

and

H��H � �� �

H��H � �� � �����

�We can envision H �up to an overall phase� as a � � � rotation about
the axis �n � �p

�
��n� � �n�� that rotates �x to �z and vice�versa� we have

U ��n� �� � I cos
�

�
� i�n � �� sin

�

�
� i

�p
�

��� � ��� � iH ��
����
�

Also useful is the two�qubit transformation known as the reversible XOR
or controlled�NOT transformation� it acts as

CNOT � ja� bi � ja� a� bi � ������

on the basis states a� b � 
� �
 where a � b denotes addition modulo ��
The CNOT is denoted�

a

b

w

��
��

a� b

a

Thus this transformation �ips the second bit if the �rst is �
 and acts
trivially if the �rst bit is 
� it has the property

�CNOT�� � I � I � ������

We call a the control �or source� bit of the CNOT
 and b the target bit�
By composing these �primitive� transformations
 or quantum gates
 we

can build other unitary transformations� For example
 the �circuit�

H u

i
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�to be read from left to right� represents the product of H applied to
the �rst qubit followed by CNOT with the �rst bit as the source and
the second bit as the target� It is straightforward to see that this circuit
transforms the standard basis to the entangled basis


j

i � �p
�

�j
i� j�i�j
i � j��i�

j
�i � �p
�

�j
i� j�i�j�i � j��i�

j�
i � �p
�

�j
i � j�i�j
i � j��i�

j��i � �p
�

�j
i � j�i�j�i � j��i� ������

so that the �rst bit becomes the phase bit in the entangled basis
 and the
second bit becomes the parity bit�

Similarly
 we can invert the transformation by running the circuit back�
wards �since both CNOT and H square to the identity�� if we apply the
inverted circuit to an entangled state
 and then measure both bits
 we
can learn the value of both the phase bit and the parity bit�

Of course
 H acts on only one of the qubits� the �nonlocal� part of
our circuit is the controlled�NOT gate � this is the operation that estab�
lishes or removes entanglement� If we could only perform an �interstellar
CNOT
� we would be able to create entanglement among distantly sep�
arated pairs
 or extract the information encoded in entanglement� But
we can�t� To do its job
 the CNOT gate must act on its target without
revealing the value of its source� Local operations and classical commu�
nication will not su�ce�

����� Einstein locality and hidden variables

Einstein was disturbed by quantum entanglement� Eventually
 he along
with Podolsky and Rosen �EPR� sharpened their discomfort into what
they regarded as a paradox� As later reinterpreted by Bohm
 the situa�
tion they described is really the same as that discussed in x������ Given
a maximally entangled state of two qubits shared by Alice and Bob
 Al�
ice can choose one of several possible measurements to perform on her
spin that will realize di�erent possible ensemble interpretations of Bob�s
density matrix� for example
 she can prepare either �� or �� eigenstates�

We have seen that Alice and Bob are unable to exploit this phenomenon
for faster�than�light communication� Einstein knew this but he was still
dissatis�ed� He felt that in order to be considered a complete description
of physical reality a theory should meet a stronger criterion
 that might
be called Einstein locality �also sometimes known as local realism��
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Suppose that A and B are spacelike separated systems� Then in a

complete description of physical reality an action performed on system

A must not modify the description of system B�

But if A and B are entangled
 a measurement of A is performed and a
particular outcome is known to have been obtained
 then the density ma�
trix of B does change� Therefore
 by Einstein�s criterion
 the description
of a quantum system by a wavefunction or density operator cannot be
considered complete�

Einstein seemed to envision a more complete description that would
remove the indeterminacy of quantum mechanics� A class of theories with
this feature are called local hidden�variable theories� In a hidden�variable
theory
 measurement is actually fundamentally deterministic
 but appears
to be probabilistic because some degrees of freedom are not precisely
known� For example
 perhaps when a spin is prepared in what quantum
theory would describe as the pure state j ��zi
 there is actually a deeper
theory in which the state prepared is parametrized as ��z� �� where � �
 	
� 	 �� is the hidden variable� Suppose that with present�day experimental
technique
 we have no control over �
 so when we prepare the spin state

� might take any value � the probability distribution governing its value
is uniform on the unit interval�

Now suppose that when we measure the spin along an axis �n rotated
by � from the �z axis
 the outcome will be

j ��ni � for 
 	 � 	 cos�
�

�
�

j ��ni � for cos�
�

�
� � 	 � � ������

If we know �
 the outcome is deterministic
 but if � is completely un�
known
 then the probability distribution governing the measurement will
agree with the predictions of quantum theory� In a hidden�variable the�
ory
 the randomness of the measurement outcome is not intrinsic� rather

it results from ignorance � our description of the system is not the most
complete possible description�

Now
 what about entangled states� When we say that a hidden�variable
theory is local
 we mean that it satis�es the Einstein locality constraint�
A measurement of A does not modify the values of the variables that
govern the measurements of B� Rather
 when Alice measures her half of
an entangled state that she shares with Bob
 she gains information about
the values of the hidden variables
 sharpening her ability to predict what
Bob will �nd when he measures the other half� This seems to be what
Einstein had in mind when he envisioned a more complete description�
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��� The Bell inequality

����� Three quantum coins

Is a local hidden�variable theory merely a reformulation of quantum me�
chanics
 or is it a testable hypothesis� John Bell�s fruitful idea was to test
Einstein locality by considering the quantitative properties of the correla�
tions between measurement outcomes obtained by two parties
 Alice and
Bob
 who share an entangled state� Let us consider an example of the
sort of correlations that Alice and Bob would like to explain�

The system that Alice and Bob are studying might be described this
way� Alice
 in Pasadena
 has in her possession three coins laid out on a
table
 labeled �� �� �� Each coin has either its heads �H� or tails �T � side
facing up
 but it is hidden under an opaque cover
 so that Alice is not able
to tell whether it is an H or a T � Alice can uncover any one of the three
coins
 and so learn its value �H or T �� However
 as soon as that one coin
is uncovered
 the other two covered coins instantly disappear in a pu� of
smoke
 and Alice never gets an opportunity to uncover the other coins�
She has many copies of the three�coin set
 and eventually she learns that

no matter which coin she exposes
 she is just as likely to �nd an H as a
T � Bob
 in Chicago
 has a similar set of coins
 also labeled �� �� �� He too
�nds that each one of his coins
 when revealed
 is as likely to be an H as
a T �

In fact
 Alice and Bob have many identical copies of their shared set
of coins
 so they conduct an extensive series of experiments to investigate
how their coin sets are correlated with one another� They quickly make
a remarkable discovery� Whenever Alice and Bob uncover coins with the
same label �whether �
 �
 or ��
 they always �nd coins with the same value
� either both are H or both are T � They conduct a million trials
 just
to be sure
 and it works every single time� Their coin sets are perfectly
correlated�

Alice and Bob suspect that they have discovered something important

and they frequently talk on the phone to brainstorm about the implica�
tions of their results� One day
 Alice is in an especially re�ective mood�

Alice� You know
 Bob
 sometimes it�s hard for me to decide which of
the three coins to uncover� I know that if I uncover coin �
 say
 then
coins � and � will disappear
 and I�ll never have a chance to �nd
out the values of those coins� Once
 just once
 I�d love to be able to
uncover two of the three coins
 and �nd out whether each is an H
or a T � But I�ve tried and it just isn�t possible � there�s no way to
look at one coin and prevent the other from going poof�

Bob� �Long pause Hey � � � wait a minute Alice
 I�ve got an idea � � �
Look
 I think there is a way for you to �nd the value of two of your
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coins
 after all� Let�s say you would like to uncover coin � and coin
�� Well
 I�ll uncover my coin � here in Chicago
 and I�ll call you to
tell you what I found
 let�s say its an H � We know
 then
 that you
are certain to �nd an H if you uncover your coin � also� There�s
absolutely no doubt about that
 because we�ve checked it a million
times� Right�

Alice� Right � � �

Bob� But now there�s no reason for you to uncover your coin �� you
know what you�ll �nd anyway� You can uncover coin � instead�
And then you�ll know the value of both coins�

Alice� Hmmm � � � yeah
 maybe� But we won�t be sure
 will we� I mean

yes
 it always worked when we uncovered the same coin before

but this time you uncovered your coin �
 and your coins � and �
disappeared
 and I uncovered my coin �
 and my coins � and �
disappeared� There�s no way we�ll ever be able to check anymore
what would have happened if we had both uncovered coin ��

Bob� We don�t have to check that anymore
 Alice� we�ve already checked
it a million times� Look
 your coins are in Pasadena and mine are in
Chicago� Clearly
 there�s just no way that my decision to uncover
my coin � can have any in�uence on what you�ll �nd when you
uncover your coin �� That�s not what�s happening� It�s just that
when I uncover my coin � we�re collecting the information we need
to predict with certainty what will happen when you uncover your
coin �� Since we�re already certain about it
 why bother to do it�

Alice� Okay
 Bob
 I see what you mean� Why don�t we do an experiment
to see what really happens when you and I uncover di�erent coins�

Bob� I don�t know
 Alice� We�re not likely to get any funding to do
such a dopey experiment� I mean
 does anybody really care what
happens when I uncover coin � and you uncover coin ��

Alice� I�m not sure
 Bob� But I�ve heard about a theorist named Bell�
They say that he has some interesting ideas about the coins� He
might have a theory that makes a prediction about what we�ll �nd�
Maybe we should talk to him�

Bob� Good idea� And it doesn�t really matter whether his theory makes
any sense or not� We can still propose an experiment to test his
prediction
 and they�ll probably fund us�

So Alice and Bob travel to CERN to have a chat with Bell� They tell
Bell about the experiment they propose to do� Bell listens closely
 but for
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a long time he remains silent
 with a faraway look in his eyes� Alice and
Bob are not bothered by his silence
 as they rarely understand anything
that theorists say anyway� But �nally Bell speaks�

Bell� I think I have an idea � � � � When Bob uncovers his coin in Chicago

that can�t exert any in�uence on Alice�s coin in Pasadena� Instead

what Bob �nds out by uncovering his coin reveals some information

about what will happen when Alice uncovers her coin�

Bob� Well
 that�s what I�ve been saying � � �

Bell� Right� Sounds reasonable� So let�s assume that Bob is right about
that� Now Bob can uncover any one of his coins
 and know for sure
what Alice will �nd when she uncovers the corresponding coin� He
isn�t disturbing her coin in any way� he�s just �nding out about it�
We�re forced to conclude that there must be some hidden variables

that specify the condition of Alice�s coins� And if those variables
are completely known
 then the value of each of Alice�s coins can be
unambiguously predicted�

Bob� �Impatient with all this abstract stu� Yeah
 but so what�

Bell� When your correlated coin sets are prepared
 the values of the hid�
den variables are not completely speci�ed� that�s why any one coin
is as likely to be an H as a T � But there must be some probabil�
ity distribution P �x� y� z� �with x� y� z 
 fH� Tg� that characterizes
the preparation and governs Alice�s three coins� These probabilities
must be nonnegative
 and they sum to one�X

x�y�z�fH�Tg
P �x� y� z� � � � ������

Alice can�t uncover all three of her coins
 so she can�t measure
P �x� y� z� directly� But with Bob�s help
 she can in e�ect uncover
any two coins of her choice� Let�s denote with Psame�i� j�
 the prob�
ability that coins i and j �i� j � �� �� �� have the same value
 either
both H or both T � Then we see that

Psame��� �� � P �HHH� � P �HHT � � P �TTH� � P �TTT � �

Psame��� �� � P �HHH� � P �THH� � P �HTT � � P �TTT � �

Psame��� �� � P �HHH� � P �HTH� � P �THT � � P �TTT � �

������

and it immediately follows from eq� ������ that

Psame��� �� � Psame��� �� � Psame��� ��

� � � � P �HHH� � � P �TTT � � � � ������
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So that�s my prediction� Psame should obey the inequality

Psame��� �� � Psame��� �� � Psame��� ��� � � ����	�

You can test it my doing your experiment that �uncovers� two coins
at a time�

Bob� Well
 I guess the math looks right� But I don�t really get it� Why
does it work�

Alice� I think I see � � � � Bell is saying that if there are three coins on a
table
 and each one is either an H or a T 
 then at least two of the
three have to be the same
 either both H or both T � Isn�t that it

Bell�

Bell stares at Alice
 a surprised look on his face� His eyes glaze
 and
for a long time he is speechless� Finally
 he speaks�

Bell� Yes

So Alice and Bob are amazed and delighted to �nd that Bell is that
rarest of beasts � a theorist who makes sense� With Bell�s help
 their pro�
posal is approved and they do the experiment
 only to obtain a shocking
result� After many careful trials
 they conclude
 to very good statistical
accuracy that

Psame��� ��� Psame��� �� � Psame��� �� � �

�
� ������

and hence

Psame��� �� � Psame��� �� � Psame��� ��� � � �

�
�

�

�
� � �

����
�

The correlations found by Alice and Bob �agrantly violate Bell�s inequal�
ity�

Alice and Bob are good experimenters
 but dare not publish so dis�
turbing a result unless they can �nd a plausible theoretical interpreta�
tion� Finally
 they become so desperate that they visit the library to see
if quantum mechanics can o�er any solace � � �

����� Quantum entanglement vs� Einstein locality

What Alice and Bob read about is quantum entanglement� Eventually

they learn that their magical coins are governed by a maximally entangled
state of two qubits� What Alice and Bob really share are many copies of
the state j��i� When Alice uncovers a coin
 she is measuring her qubit



��� The Bell inequality ��

along one of three possible axes
 no two of which are orthogonal� Since
the measurements don�t commute
 Alice can uncover only one of her three
coins� Similarly
 when Bob uncovers his coin
 he measures his member
of the entangled pair along any one of three axes
 so he too is limited to
uncovering just one of his three coins� But since Alice�s measurements
commute with Bob�s
 they can uncover one coin each
 and study how
Alice�s coins are correlated with Bob�s coins�

To help Alice and Bob interpret their experiment
 let�s see what quan�
tum mechanics predicts about these correlations� The state j��i has the
convenient property that it remains invariant if Alice and Bob each apply
the same unitary transformation


U �U j�i � j�i � ������

For in�nitesimal unitaries
 this becomes the property

�
	��A� � 	��B�

�
j��i � 
 ������

�the state has vanishing total angular momentum
 as you can easily check
by an explicit computation�� Now consider the expectation value

h��j
�
	��A� � �a

� �
	��B� � �b

�
j��i � ������

where �a and �b are unit ��vectors� Acting on j��i
 we can replace 	��B� by

�	��A�� therefore
 the expectation value can be expressed as a property of
Alice�s system
 which has density operator �A � �

�I �

� h��j
�
	��A� � �a

� �
	��A� � �b

�
j��i

� �aibjtr
�
�A�

�A�
i �

�A�
j

�
� �aibj
ij � ��a � �b � � cos � �

������

where � is the angle between the axes �a and �b� Thus we �nd that the
measurement outcomes are always perfectly anticorrelated when we mea�
sure both spins along the same axis �a
 and we have also obtained a more
general result that applies when the two axes are di�erent�

The projection operator onto the spin up �spin down� states along �n is
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E��n��� � �
��I � �n � 	��� we therefore obtain

P ���� � h��jE�A���a���E�B���b���j��i �
�

�
��� cos �� �

P ���� � h��jE�A���a���E�B���b���j��i �
�

�
��� cos �� �

P ���� � h��jE�A���a���E�B���b���j��i �
�

�
�� � cos �� �

P ���� � h��jE�A���a���E�B���b���j��i �
�

�
�� � cos �� �

������

here P ���� is the probability that Alice and Bob both obtain the spin�

up outcome when Alice measures along �a and Bob measures along �b
 etc�
The probability that their outcomes are the same is

Psame � P ���� � P ���� �
�

�
��� cos �� � ������

and the probability that their outcomes are opposite is

Popposite � P ���� � P ���� �
�

�
�� � cos �� � ������

Now suppose that Alice measures her spin along one of the three sym�
metrically distributed axes in the x� z plane


�a� � �
� 
� �� �

�a� �

�p
�

�
� 
���

�

�
�

�a� �

�
�
p

�

�
� 
���

�

�
� ����	�

so that

�a� � �a� � �a� � �a� � �a� � �a� � ��

�
� ������

And suppose that Bob measures along one of three axes that are diamet�
rically opposed to Alice�s�

�b� � ��a� � �b� � ��a� � �b� � ��a� � ����
�

When Alice and Bob choose opposite axes
 then � � �	
� and Psame � ��
But otherwise � � ��
� so that cos � � ��� and Psame � ���� This is just
the behavior that Alice and Bob found in their experiment
 in violation
of Bell�s prediction�
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Bell�s logic seemed compelling but something went wrong
 so we are
forced to reconsider his tacit assumptions� First
 Bell assumed that there
is a joint probability distribution that governs the possible outcomes of
all measurements that Alice and Bob might perform� This is the hidden�
variable hypothesis� He imagines that if the values of the hidden variables
are exactly known
 then the outcome of any measurement can be predicted
with certainty � measurement outcomes are described probabilistically
because the values of the hidden variables are drawn from an ensemble
of possible values� Second
 Bell assumed that Bob�s decision about what
to measure in Chicago has no e�ect on the hidden variables that govern
Alice�s measurement in Pasadena� This is the assumption that the hid�
den variables are local� If we accept these two assumptions
 there is no
escaping Bell�s conclusion� We have found that the correlations predicted
by quantum theory are incompatible with theses assumptions�

What are the implications� Perhaps the moral of the story is that it
can be dangerous to reason about what might have happened
 but didn�t
actually happen � what are sometimes called counterfactuals� Of course

we do this all the time in our everyday lives
 and we usually get away with
it� reasoning about counterfactuals seems to be acceptable in the classical
world
 but sometimes it gets us into trouble in the quantum world� We
claimed that Alice knew what would happen when she measured along �a�

because Bob measured along ��a�
 and every time we have ever checked

their measurement outcomes are always perfectly correlated� But Alice
did not measure along �a�� she measured along �a� instead� We got into
trouble by trying to assign probabilities to the outcomes of measurements
along �a�� �a�
 and �a�
 even though Alice can perform just one of those
measurements� In quantum theory
 assuming that there is a probability
distribution that governs the outcomes of all three measurements that
Alice might have made
 even though she was able to carry out only one
of these measurements
 leads to mathematical inconsistencies
 so we had
better not do it� We have a�rmed Bohr�s principle of complementary �
we are forbidden to consider simultaneously the possible outcomes of two
mutually exclusive experiments�

One who rejects the complementarity principle may prefer to say that
violations of the Bell inequalities �con�rmed experimentally� have exposed
an essential nonlocality built into the quantum description of Nature� If

we do insist that it is legitimate to talk about outcomes of mutually ex�
clusive experiments then we are forced to conclude that Bob�s choice of
measurement actually exerted a subtle in�uence on the outcome of Al�
ice�s measurement� Thus advocates of this viewpoint speak of �quantum
nonlocality��

By ruling out local hidden variables
 Bell demolished Einstein�s dream
that the indeterminacy of quantum theory could be eradicated by adopt�
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ing a more complete
 yet still local
 description of Nature� If we accept
locality as an inviolable principle
 then we are forced to accept random�
ness as an unavoidable and intrinsic feature of quantum measurement

rather than a consequence of incomplete knowledge�

To some
 the peculiar correlations unmasked by Bell�s inequality call
out for a deeper explanation than quantum mechanics seems to provide�
They see the EPR phenomenon as a harbinger of new physics awaiting
discovery� But they may be wrong� We have been waiting over �� years
since EPR
 and so far no new physics�

The human mind seems to be poorly equipped to grasp the correlations
exhibited by entangled quantum states
 and so we speak of the weirdness
of quantum theory� But whatever your attitude
 experiment forces you
to accept the existence of the weird correlations among the measurement
outcomes� There is no big mystery about how the correlations were estab�
lished � we saw that it was necessary for Alice and Bob to get together
at some point to create entanglement among their qubits� The novelty is
that
 even when A and B are distantly separated
 we cannot accurately
regard A and B as two separate qubits
 and use classical information to
characterize how they are correlated� They are more than just correlated

they are a single inseparable entity� They are entangled�

��� More Bell inequalities

����� CHSH inequality

Experimental tests of Einstein locality typically are based on another
form of the Bell inequality
 which applies to a situation in which Alice can
measure either one of two observables a and a�
 while Bob can measure
either b or b�� Suppose that the observables a
 a�
 b
 b� take values in
f��g
 and are functions of hidden random variables�

If a�a� � ��
 it follows that either a�a� � 

 in which case a�a� � ��

or else a� a� � 

 in which case a� a� � ��� therefore

C 
 �a� a��b� �a� a��b� � �� � ������

�Here is where the local hidden�variable assumption sneaks in � we have
imagined that values in f��g can be assigned simultaneously to all four
observables
 even though it is impossible to measure both of a and a�
 or
both of b and b��� Evidently

jhCij 	 hjCji � �� ������

so that

jhabi� ha�bi� hab�i � ha�b�ij 	 �� ������
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This result is called the CHSH inequality �for Clauser�Horne�Shimony�
Holt�� It holds for any random variables a�a�� b� b� taking values in ��
that are governed by a joint probability distribution�

To see that quantum mechanics violates the CHSH inequality
 let a�a�
denote the Hermitian operators

a � 	��A� � �a � a� � 	��A� � �a� � ������

acting on a qubit in Alice�s possession
 where �a� �a� are unit ��vectors�
Similarly
 let b� b� denote

b � 	��B� � �b � b� � 	��B� � �b� � ������

acting on Bob�s qubit� Each observable has eigenvalues �� so that an
outcome of a measurement of the observable takes values in ���

Recall that if Alice and Bob share the maximally�entangled state j��i

then

h��j
�
	��A� � �a

��
	��B� � �b

�
j��i � ��a � �b � � cos � �

������

where � is the angle between �a and �b� Consider the case where �a���b� �a��b�
are coplanar and separated by successive ��� angles� so that the quantum�
mechanical predictions are

habi � ha�bi � hab�i � � cos
�

�
� � �p

�
�

ha�b�i � � cos
��

�
�

�p
�
� ������

The CHSH inequality then becomes

� � �p
�

� �
p

� 	 � � ����	�

which is clearly violated by the quantum�mechanical prediction�

����� Maximal violation

In fact the case just considered provides the largest possible quantum�
mechanical violation of the CHSH inequality
 as we can see by the fol�
lowing argument� Suppose that a�a�� b� b� are Hermitian operators with
eigenvalues ��
 so that

a� � a�� � b� � b�� � I � ������
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and suppose that �Alice�s observables� a�a� commute with �Bob�s ob�
servables� b� b��


 � �a� b � �a� b� � �a�� b � �a�� b� � ����
�

De�ning

C � ab� a�b� ab� � a�b� � ������

we evaluate

C� �

I �aa� �bb� �aa�bb�
�a�a �I �a�abb� �bb�
�b�b �aa�b�b �I �aa�

�a�ab�b �b�b �a�a �I

� ������

using eq� ������� All the quadratic terms cancel pairwise
 so that we are
left with

C� � �I � aa�bb� � a�abb� � aa�b�b� a�ab�b
� �I � �a�a� �b� b� � ������

Now recall that the sup norm k M ksup of a bounded operator M is
de�ned by

kM ksup�
sup

j�i
�kM j�i k

k j�i k
�

� ������

that is
 the sup norm of M is the maximum eigenvalue of
p
MyM � It is

easy to verify that the sup norm has the properties

kMN ksup 	kM ksup � kN ksup �
kM �N ksup 	kM ksup � k N ksup � ������

A Hermitian operator with eigenvalues �� has unit sup norm
 so that

k C� ksup	 � � � k a ksup � k a� ksup � k b ksup � k b� ksup� 	 �
������

Because C is Hermitian


k C� ksup�k C k�sup � ������

and therefore

k C ksup	 �
p

� � ����	�

which is known as Cirel�son�s inequality�
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The CHSH inequality is the statement jhCij 	 �� Quantum mechani�
cally
 the absolute value of the expectation value of the Hermitian operator
C can be no larger than its largest eigenvalue


jhCij 	k C ksup	 �
p

� � ������

We saw that this upper bound is saturated in the case where a�� b�a� b�
are separated by successive ��o angles� Thus the violation of the CHSH
inequality that we found is the largest violation allowed by quantum the�
ory�

����� Quantum strategies outperform classical strategies

The CHSH inequality is a limitation on the strength of the correlations
between the two parts of a bipartite classical system
 and the Cirel�son in�
equality is a limitation on the strength of the correlations between the two
parts of a bipartite quantum system� We can deepen our appreciation of
how quantum correlations di�er from classical correlations by considering
a game for which quantum strategies outperform classical strategies�

Alice and Bob are playing a game with Charlie� Charlie prepares two
bits x� y 
 f
� �g� then he sends x to Alice and y to Bob� After receiving
the input bit x
 Alice is to produce an output bit a 
 f
� �g
 and after
receiving y
 Bob is to produce output bit b 
 f
� �g� But Alice and Bob
are not permitted to communicate
 so that Alice does not know y and
Bob does not know x�

Alice and Bob win the game if their output bits are related to the input
bits according to

a� b � x � y � ����
�

where � denotes the sum modulo � �the XOR gate� and � denotes the
product �the AND gate�� Can Alice and Bob �nd a strategy that enables
them to win the game every time
 no matter how Charlie chooses the
input bits�

No
 it is easy to see that there is no such strategy� Let a�� a� denote the
value of Alice�s output if her input is x � 
� � and let b�� b� denote Bob�s
output if his input is y � 
� �� For Alice and Bob to win for all possible
inputs
 their output bits must satisfy

a� � b� � 
 �

a� � b� � 
 �

a� � b� � 
 �

a� � b� � � � ������
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But this is impossible
 since by summing the four equations we obtain

���

Suppose that Charlie generates the input bits at random� Then there is
a very simple strategy that enables Alice and Bob to win the game three
times our of four� they always choose the output a � b � 
 so that they
lose only if the input is x � y � �� The CHSH inequality can be regarded
as the statement that
 if Alice and Bob share no quantum entanglement

then there is no better strategy�

To connect this statement with our previous formulation of the CHSH
inequality
 de�ne random variables taking values �� as

a � ����a� � a� � ����a� �

b � ����b� � b� � ����b� � ������

Then the CHSH inequality says that for any joint probability distribution
governing a�a�� b� b� 
 f��g
 the expectation values satisfy

habi� hab�i� ha�bi � ha�b�i 	 � � ������

Furthermore
 if we denote by pxy the probability that eq� ������ is satis�ed
when the input bits are �x� y�
 then

habi � �p�� � � �

hab�i � �p�� � � �

ha�bi � �p�� � � �

ha�b�i � �� �p�� � ������

for example habi � p��� ��� p��� � �p��� �
 because the value of ab is
�� when Alice and Bob win and �� when they lose� The CHSH inequality
eq� ������ becomes

� �p�� � p�� � p�� � p���� � 	 � � ������

or

hpi 
 �

�
�p�� � p�� � p�� � p��� 	 �

�
� ������

where hpi denotes the probability of winning averaged over a uniform
ensemble for the input bits� Thus
 if the input bits are random
 Alice and
Bob cannot attain a probability of winning higher than ����

It is worthwhile to consider how the assumption that Alice and Bob
take actions governed by �local hidden variables� limits their success in
playing the game� Although Alice and Bob do not share any quantum
entanglement
 they are permitted to share a table of random numbers that
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they may consult to produce their output bits� Thus we may imagine that
hidden variables drawn from an ensemble of possible values guide Alice
and Bob to make correlated decisions� These correlations are limited
by locality � Alice does not know Bob�s input and Bob does not know
Alice�s� In fact
 we have learned that for playing this game their shared
randomness is of no value � their best strategy does not use the shared
randomness at all�

But if Alice and Bob share quantum entanglement
 they can devise
a better strategy� Based on the value of her input bit
 Alice decides to
measure one of two Hermitian observables with eigenvalues ��� a if x � 

and a� is x � �� Similarly
 Bob measures b if y � 
 and b� if y � �� Then
the quantum�mechanical expectation values of these observables satisfy
the Cirel�son inequality

habi� hab�i� ha�bi � ha�b�i 	 �
p

� � ������

and the probability that Alice and Bob win the game is constrained by

� �p�� � p�� � p�� � p���� � 	 �
p

� � ����	�

or

hpi 
 �

�
�p�� � p�� � p�� � p��� 	 �

�
�

�

�
p

�
� �	�� �

������

Furthermore
 we have seen that this inequality can be saturated if Al�
ice and Bob share a maximally entangled state of two qubits
 and the
observables a�a�� b� b� are chosen appropriately�

Thus we have found that Alice and Bob can play the game more suc�
cessfully with quantum entanglement than without it� At least for this
purpose
 shared quantum entanglement is a more powerful resource than
shared classical randomness� But even the power brought by entangle�
ment has limits
 limits embodied by the Cirel�son inequality�

����� All entangled pure states violate Bell inequalities

Separable states do not violate Bell inequalities� For example
 in the case
of a separable pure state
 if a is an observable acting on Alice�s qubit
 and
b is an observable acting on Bob�s
 then

habi � haihbi� ����
�

No Bell�inequality violation can occur
 because we have already seen that
a �local� hidden�variable theory does exist that correctly reproduces the
predictions of quantum theory for a pure state of a single qubit� A general
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separable state is just a probabilistic mixture of separable pure states
 so
that the correlations between the subsystems are entirely classical
 and
the Bell inequalities apply�

On the other hand
 we have seen that a maximally entangled state such
as j��i is Bell�inequality violating� But what about pure states that are
only partially entangled such as

j�i � �j

i� �j��i � ������

Any pure state of two qubits can be expressed this way in the Schmidt
basis� with suitable phase conventions
 � and � are real and nonnegative�

Suppose that Alice and Bob both measure along an axis in the x�z
plane
 so that their observables are

a � �
�A�
� cos �A � �

�A�
� sin �A �

b � �
�B�
� cos �B � �

�B�
� sin �B � ������

The state j�i has the properties

h�j�� � ��j�i � � � h�j�� � ��j�i � ��� �

h�j�� � ��j�i � 
 � h�j�� � ��j�i � ������

so that the quantum�mechanical expectation value of ab is

habi � h�jabj�i � cos �A cos �B � ��� sin �A sin �B
������

�and we recover cos��A � �B� in the maximally entangled case � � � �
��
p

��� Now let us consider
 for simplicity
 the �nonoptimal�� special case

�A � 
� ��A �
�

�
� ��B � ��B � ������

so that the quantum predictions are�

habi � cos �B � hab�i �
ha�bi � ��� sin �B � �ha�b�i � ������

Plugging into the CHSH inequality
 we obtain

j cos �B � ��� sin �B j 	 � � ������

and we easily see that violations occur for �B close to 
 or �� Expanding
to linear order in �B 
 the left�hand side is

� �� ����B � ����	�
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which surely exceeds � for �� 
 
 and �B negative and small�
We have shown that any entangled pure state of two qubits violates

some Bell inequality� It is not hard to generalize the argument to an
arbitrary bipartite pure state� For bipartite pure states
 then
 �entangled�
is equivalent to �Bell�inequality violating�� For bipartite mixed states

however
 we will see later that the situation is more subtle�

����� Photons

Experiments that test the Bell inequality usually are done with entangled
photons
 not with spin��� objects� What are the quantum�mechanical
predictions for photons�

Recall from x����� that for a photon traveling in the �z direction
 we use
the notation jxi
 jyi for the states that are linearly polarized along the x
and y axes respectively� In terms of these basis states
 the states that are
linearly polarized along �horizontal� and �vertical� axes that are rotated
by angle � relative to the x and y axes can be expressed as

jH���i �

�
cos �
sin �

�
� jV ���i �

� � sin �
cos �

�
� ������

We can construct a ��� matrix whose eigenstates are jH���i and jV ���i

with respective eigenvalues ��� it is

���� 
 jH���ihH���j � jV ���ihV ���j �

�
cos �� sin ��
sin �� � cos ��

�
�
����
�

The generator of rotations about the �z axis is J � ��
 and the eigen�
states of J with eigenvalues �� are the circularly polarized states

j�i �
�p
�

�
�
i

�
� j�i �

�p
�

�
i
�

�
� ������

Suppose that an excited atom emits two photons that come out back to
back
 with vanishing angular momentum and even parity� The two�photon
states

j�iAj�iB
j�iAj�iB ������

are invariant under rotations about �z� The photons have opposite val�
ues of Jz 
 but the same helicity �angular�momentum along the axis of
propagation�
 since they are propagating in opposite directions� Under a
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re�ection in the y�z plane
 the polarization states are modi�ed according
to

jxi � �jxi � jyi � jyi � ������

or

j�i � �ij�i � j�i � �ij�i � ������

therefore
 the parity eigenstates are entangled states

�p
�

�j�iAj�iB � j�iAj�iB� � ������

The state with Jz � 
 and even parity
 then
 expressed in terms of the
linear polarization states
 is

� ip
�

�j��iAB � j � �iAB�

�
�p
�

�jxxiAB � jyyiAB� 
 j��iAB � ������

Because of invariance under rotations about �z
 the state has this form
irrespective of how we orient the x and y axes�

Alice or Bob can use a polarization analyzer to project the polarization
state of a photon onto the basis fjH���i� jV ���ig
 and hence measure � ����
For two photons in the state j��i
 if Alice orients her polarizer with angle
�A and Bob with angle �B 
 then the correlations of their measurement
outcomes are encoded in the expectation value

h��j� �A���A�� �B���B�j��i� ������

Using rotational invariance�

� h��j� �A��
���B���B � �A�j��i
�

�

�
hxj� �B���B � �A�jxi � �

�
hyj� �B���B � �A�jyi

� cos ���B � �A� � ����	�

Recall that for the measurement of qubits on the Bloch sphere
 we found
the similar expression cos �
 where � is the angle between Alice�s polariza�
tion axis and Bob�s� Here we have cos �� instead
 because photons have
spin�� rather than spin��� �

If Alice measures one of the two observables a � � �A���A� or a� �
� �A����A� and Bob measures either b � � �B���B� or b� � � �B���B�
 then
under the local hidden�variable assumption the CHSH inequality applies�
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If we plug in the quantum predictions for the expectation values
 we
obtain

��cos ���B � �A� � cos ���B � ��A� � cos ����B � �A�� cos ����B � ��A�
�� 	 � �
������

The maximal violation that saturates Cirel�son�s inequality � left�hand
side equal to �

p
� � occurs when ��A
 �B 
 �A and ��B are separated by

successive ���
�
�

angles
 so that

�p
�

� cos ���B � �A� � cos ���B � ��A�

� � cos ����B � �A� � � cos ����B � ��A� � ���	
�

����� Experiments and loopholes

Locality loophole� Experiments with entangled pairs of photons have tested
the CHSH inequality in the form eq� ������� The experiments con�rm the
quantum predictions
 and demonstrate convincingly that the CHSH in�
equality is violated� These experiments
 then
 seem to show that Nature
cannot be accurately described by a local hidden�variable theory�

Or do they� A skeptic might raise objections� For example
 in the
derivation of the CHSH inequality
 we assumed that after Alice decides
to measure either a or a�
 no information about Alice�s decision reaches
Bob�s detector before Bob measures �and likewise
 we assumed that if Bob
measures �rst
 no information about Bob�s decision reaches Alice before
she measures�� Otherwise
 the marginal probability distribution for Bob�s
outcomes could be updated after Alice�s measurement and before Bob�s

so that the CHSH inequality need not apply� The assumption that no such
update can occur is justi�ed by relativistic causality if Alice�s decision
and measurement are events spacelike separated from Bob�s decision and
measurement� The skeptic would insist that the experiment ful�ll this
condition
 which is called the locality loophole�

In ��	�
 Aspect and collaborators conducted an experiment that ad�
dressed the locality loophole� Two entangled photons were produced in
the decay of an excited calcium atom
 and each photon was directed by a
switch to one of two polarization analyzers
 chosen pseudo�randomly� The
photons were detected about ��m apart
 corresponding to a light travel
time of about �
 ns� This time was considerably longer than either the
cycle time of the switch
 or the di�erence in the times of arrival of the
two photons� Therefore the �decision� about which observable to measure
was made after the photons were already in �ight
 and the events that
selected the axes for the measurement of photons A and B were spacelike
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separated� The results were consistent with the quantum predictions
 and
violated the CHSH inequality by �ve standard deviations� Since Aspect

many other experiments have con�rmed this �nding
 including ones in
which detectors A and B are kilometers apart�

Detection loophole� Another objection that the skeptic might raise is
called the detection loophole� In experiments with photons
 the detection
e�ciency is low� Most entangled photon pairs do not result in detections
at both A and B� Among the things that can go wrong� a photon might
be absorbed before reaching the detector
 a photon might miss the detec�
tor
 or a photon might arrive in the detector but fail to trigger it� Data
is accepted by the experiment only when two photons are detected in co�
incidence
 and in testing the CHSH inequality
 we must assume that the
data collected is a fair sample of all the entangled pairs�

But
 what if the local hidden variables govern not just what polarization
state is detected
 but also whether the detector �res at all� Then the data
collected might be a biased sample
 and the CHSH inequality need not
apply�

In Exercise ����
 we will show that the detection loophole can be closed
if the photons are detected with an e�ciency above 	��	�!� Current ex�
periments with photons don�t approach the necessary e�ciency� Experi�
ments that use ion traps have tested the CHSH inequality with detection
e�ciency close to �

!
 but these experiments do not address the local�
ity loophole� No experiment that simultaneously closes the locality and
detection loopholes has yet been done�

Free�will loophole� Suppose that an experiment is done in which the pho�
ton detection e�ciency is perfect
 and in which Alice and Bob appear to
make spacelike�separated decisions� A skeptic might still resist the con�
clusion that local hidden�variable theories are ruled out
 by invoking the
free�will loophole� Conceivably
 the decisions that Alice and Bob make
about what to measure are themselves governed by the local hidden vari�
ables� Then their decisions might be correlated with the values of the
hidden variables that determine the measurement outcomes
 so that they
are unable to obtain a fair sample of the distribution of the hidden vari�
ables
 and the CHSH inequality might be violated�

All of us have to decide for ourselves how seriously to take this objec�
tion�

��� Using entanglement

After Bell�s work
 quantum entanglement became a subject of intensive
study
 among those interested in the foundations of quantum theory�
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Gradually
 a new viewpoint evolved� entanglement is not just a unique
tool for exposing the weirdness of quantum mechanics
 but also a poten�
tially valuable resource� By exploiting entangled quantum states
 we can
perform tasks that are otherwise di�cult or impossible�

����� Dense coding

Our �rst example is an application of entanglement to communication�
Alice wants to send messages to Bob� She might send classical bits �like
dots and dashes in Morse code�
 but let�s suppose that Alice and Bob are
linked by a quantum channel� For example
 Alice can prepare qubits �like
photons� in any polarization state she pleases
 and send them to Bob

who measures the polarization along the axis of his choice� Is there any
advantage to sending qubits instead of classical bits�

In principle
 if their quantum channel has perfect �delity
 and Alice and
Bob perform the preparation and measurement with perfect e�ciency

then they are no worse o� using qubits instead of classical bits� Alice can
prepare
 say
 either j �zi or j �zi
 and Bob can measure along �z to infer
the choice she made� This way
 Alice can send one classical bit with each
qubit� But in fact
 that is the best she can do� Sending one qubit at a
time
 no matter how she prepares it and no matter how Bob measures it

no more than one classical bit can be carried by each qubit �even if the
qubits are entangled with one another�� This statement
 a special case
of the Holevo bound on the classical information capacity of a quantum
channel
 will be derived in Chapter ��

But now
 let�s change the rules a bit � let�s suppose that Alice and
Bob share an entangled pair of qubits in the state j��iAB � The pair was
prepared last year� one qubit was shipped to Alice and the other to Bob

in the hope that the shared entanglement would come in handy someday�
Now
 use of the quantum channel is very expensive
 so Alice can a�ord to
send only one qubit to Bob� Yet it is of the utmost importance for Alice
to send Bob two classical bits of information�

Fortunately
 Alice remembers about the entangled state j��iAB that
she shares with Bob
 and she carries out a protocol that she and Bob had
arranged for just such an emergency� On her member of the entangled
pair
 she can perform one of four possible unitary transformations�

�� I �she does nothing� 


�� �� ��	
o rotation about �x�axis� 


�� �� ��	
o rotation about �y�axis� 


�� �� ��	
o rotation about �z�axis� �
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As we have seen
 by doing so
 she transforms j��iAB to one of � mutually
orthogonal states�

�� j��iAB �

�� j��iAB �

�� j��iAB �up to a phase� 


�� j��iAB �

Now
 she sends her qubit to Bob
 who receives it and then performs
an orthogonal collective measurement on the pair that projects onto the
maximally entangled basis� The measurement outcome unambiguously
distinguishes the four possible actions that Alice could have performed�
Therefore the single qubit sent from Alice to Bob has successfully carried
� bits of classical information� Hence this procedure is called �dense
coding��

A nice feature of this protocol is that
 if the message is highly con�
�dential
 Alice need not worry that an eavesdropper will intercept the
transmitted qubit and decipher her message� The transmitted qubit has
density matrix �A � �

�IA
 and so carries no information at all� All the
information is in the correlations between qubits A and B
 and this infor�
mation is inaccessible unless the adversary is able to obtain both members
of the entangled pair� �Of course
 the adversary can �jam� the channel

preventing the information from reaching Bob��

From one point of view
 Alice and Bob really did need to use the channel
twice to exchange two bits of information� For example
 we can imagine
that Alice prepared the state j��i herself� Last year
 she sent half of the
state to Bob
 and now she sends him the other half� So in e�ect
 Alice
has sent two qubits to Bob in one of four mutually orthogonal states
 to
convey two classical bits of information as the Holevo bound allows�

Still
 dense coding is rather weird
 for several reasons� First
 Alice sent
the �rst qubit to Bob long before she knew what her message was going
to be� Second
 each qubit by itself carries no information at all� all the
information is encoded in the correlations between the qubits� Third
 it
would work just as well for Bob to prepare the entangled pair and send
half to Alice� then two classical bits are transmitted from Alice to Bob
by sending a single qubit from Bob to Alice and back again�

Anyway
 when an emergency arose and two bits had to be sent immedi�
ately while only one use of the channel was possible
 Alice and Bob could
exploit the pre�existing entanglement to communicate more e�ciently�
They used entanglement as a resource�
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����� Quantum teleportation

In dense coding
 quantum information could be exploited to enhance the
transmission of classical information� Speci�cally
 if Alice and Bob share
entanglement
 then sending one qubit is su�cient to convey two classi�
cal bits� Now one wonders about the converse� If Alice and Bob share
entanglement
 can sending two classical bits su�ce to convey a qubit�

Imagine that Charlie has prepared for Alice a qubit in the state j�i

but Alice doesn�t know anything about what state Charlie prepared� Bob
needs this qubit desperately
 and Alice wants to help him� But that darn
quantum channel is down again� Alice can send only classical information
to Bob�

She could try measuring 	� � �n
 projecting her qubit to either j ��ni or
j ��ni� She could send the one�bit measurement outcome to Bob who could
then proceed to prepare the state that Alice found� But you showed in
Exercise �� that Bob�s state j�i will not be a perfect copy of Alice�s� on
the average it will match Alice�s qubit with �delity

F � jh�j�ij� �
�

�
� ���	��

This �delity is better than could have been achieved if Bob had merely
chosen a state at random �F � �

��
 but it is not nearly as good as the
�delity that Bob requires� Furthermore
 as we will see in Chapter �

there is no protocol in which Alice measures the qubit and sends classical
information to Bob that achieves a �delity better than ����

Fortunately
 Alice and Bob recall that they share the maximally en�
tangled state j��iAB
 which they prepared last year� Why not use the
entanglement as a resource� If they are willing to consume the shared
entanglement and communicate classically
 can Alice send her qubit to
Bob with �delity better than ����

In fact they can achieve �delity F � �
 by carrying out the following
protocol� Alice unites the unknown qubit j�iC she wants to send to Bob
with her half of the j��iAB pair that she shares with Bob� She measures
the two commuting observables

�
�C�
� � ��A�

� � �
�C�
� � ��A�

� � ���	��

thus performing Bell measurement � a projection of the two qubits onto
one of the four maximally entangled states j��iCA� j��iCA� She sends
her measurement outcome �two bits of classical information� to Bob over
the classical channel� Upon receiving this information
 Bob performs one
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of four operations on his qubit

Alice measures j��iCA � Bob applies I�B� �

Alice measures j��iCA � Bob applies �
�B�
� �

Alice measures j��iCA � Bob applies �
�B�
� �

Alice measures j��iCA � Bob applies �
�B�
� �

���	��

This action transforms Bob�s qubit �his member of the entangled pair that
he initially shared with Alice� into a perfect copy of j�iC� This magic
trick is called quantum teleportation�

How does it work� We merely note that for j�i � aj
i� bj�i
 we may
write

j�iCj��iAB � �aj
iC � bj�iC�
�p
�

�j

iAB � j��iAB�

�
�p
�

�aj


iCAB � aj
��iCAB � bj�

iCAB � bj���iCAB�

�
�

�
a�j��iCA � j��iCA�j
iB �

�

�
a�j��iCA � j��iCA�j�iB

�
�

�
b�j��iCA � j��iCA�j
iB �

�

�
b�j��iCA � j��iCA�j�iB

�
�

�
j��iCA�aj
iB � bj�iB�

�
�

�
j��iCA�aj�iB � bj
iB�

�
�

�
j��iCA�aj�iB � bj
iB�

�
�

�
j��iCA�aj
iB � bj�iB�

�
�

�
j��iCAj�iB �

�

�
j��iCA��j�iB

�
�

�
j��iCA��i���j�iB �

�

�
j��iCA��j�iB� ���	��

Thus we see that when Alice performs the Bell measurement on qubits
C and A
 all four outcomes are equally likely� Once Bob learns Alice�s
measurement outcome
 he possesses the pure state �j�i
 where � is a
known Pauli operator
 one of fI���������g� The action prescribed in
eq� ���	�� restores Bob�s qubit to the initial state j�i�

Quantum teleportation is a curious procedure� Initially
 Bob�s qubit is
completely uncorrelated with the unknown qubit j�iC
 but Alice�s Bell
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measurement establishes a correlation between A and C� The measure�
ment outcome is in fact completely random
 so Alice �and Bob� actually
acquire no information at all about j�i by making this measurement�
And that is a good thing
 as we know that if they were to collect any
information about the state they would unavoidably disturb the state�

How then does the quantum state manage to travel from Alice to Bob�
It is a bit puzzling� On the one hand
 we can hardly say that the two
classical bits that were transmitted carried this information � the bits
were random� So we are tempted to say that the shared entangled pair
made the teleportation possible� But remember that the entangled pair
was actually prepared last year
 long before Alice ever dreamed that she
would be sending the qubit to Bob � � �

We should also note that the teleportation procedure is fully consistent
with the no�cloning principle� True
 a copy of the state j�iB appeared
in Bob�s hands� But the original j�iC had to be destroyed by Alice�s
measurement before the copy could be created�

Our �ndings about dense coding and quantum teleportation can be
summarized as statements about how one type of resource can simulate
another� Let us introduce the terminology ebit for an entangled pair of
qubits shared by two parties �e for entangled�
 and cbit for a classical bit
�c for classical�� We teleport one qubit from Alice to Bob by consuming
one ebit and sending two cbits
 and we send two cbits from Alice and
Bob via dense coding by consuming one ebit and transporting one qubit�
Thus we may say

� ebit � � cbits � � qubit �

� ebit � � qubit � � cbits � ���	��

meaning that the resources on the left su�ce to simulate the resources on
the right� Entanglement is essential in these protocols� Without ebits
 a
qubit is worth only one cbit
 and without ebits
 a �teleported� qubit has
�delity F 	 ����

����� Quantum teleportation and maximal entanglement

The teleportation concept has an air of mystery� One would like to un�
derstand more deeply why it works� A helpful clue is that to teleport
with �delity F � � the entangled state consumed in the protocol must
be maximally entangled� And the crucial feature of bipartite maximally
entangled states is that either Alice or Bob can transform one maximally
entangled state to another by applying a local unitary transformation�

To see more clearly how quantum teleportation works
 consider tele�
porting an N �dimensional system using an N �N maximally entangled
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state of the form

j"i �
�p
N

N��X
i��

jii � jii � ���	��

A useful property of this state is

CAh"j"iAB �
�

N

X
i�j

�Chij � Ahij� �jjiA � jjiB�

�
�

N

X
i

jiiB Chij 
 �

N
�T �BC ���	��

Here we have de�ned the transfer operator �T �BC which has the property

TBCj�iC � TBC

�X
i

aijiiC
�

�
X
i

aijiiB � j�iB �
���		�

it maps a state in C to the identical state in B� This property has no
invariant meaning independent of the choice of basis in B and C� rather
TBC just describes an arbitrary way to relate the orthonormal bases of
the two systems� Of course
 Alice and Bob would need to align their bases
in some way to verify that teleportation has really succeeded�

Now recall that any other N � N maximally entangled state has a
Schmidt decomposition of the form

�p
N

N��X
i��

ji�i � jii � ���	��

and so can be expressed as

j"�U�i 
 U � I j"i � ����
�

where

U jii � ji�i �
X
j

jjiUji � ������

Writing

j"�U�iAB �
�p
N

X
i�j

jjiA � jiiB Uji � ������

we can easily verify that

CAh"�U�j"�V T �iAB �
�

N

�
V U���

B
TBC � ������
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where V T denotes the transpose of V in the standard basis �V T
ij � Vji��

in particular
 then
 the transfer operator can be expressed as

�

N
TBC � CAh"�U�j"��UT �iAB � ������

for any unitary U �
Now suppose that Alice and Bob share j"iAB
 and that Charlie has pre�

pared the state j�iC and has deposited it in Alice�s laboratory� Alice per�
forms a measurement that projects CA onto a maximally entangled basis

obtaining the outcome j"�Ua�iCA for some unitary U a� Then we know
from eq� ������ that if Alice and Bob had shared the state j"��UT

a �iAB
instead of j"iAB
 then Alice�s measurement would have prepared in Bob�s
lab a perfect replica of the state j�i� Unfortunately
 they did not have
the foresight to share the right state to begin with� But it�s not too late�
Bob realizes that

j"�UT
a �i � IA � �U a�B j"iAB � ������

and of course �Ua�B commutes with Alice�s measurement� Hence
 when
Bob hears from Alice that her measurement outcome was j"��UT

a �iAB
 he
applies �U a�B to his half of the state he had shared with Alice� Then the
protocol is equivalent to one in which they had shared the right maximally
entangled state to begin with
 and Bob�s state has been transformed into
j�iB�

This approach to teleportation has some conceptual advantages� For
one
 we can easily see that Alice is not required to perform an orthogonal
measurement� To achieve teleportation with �delity F � � it su�ces that
she perform a POVM with operation elements Ma
 where each Ma has
the property

My
aMa � j"�Ua�ih"�Ua�j ������

for some unitary U a� Also
 we can easily see how the teleportation proto�
col should be modi�ed if the initial maximally entangled state that Alice
and Bob share is not j"iAB but rather

j"�V T �iAB � IA � V Bj"iAB � ������

If Alice�s measurement outcome is j"�Ua�iCA
 then eq� ������ tells us that
the state Bob receives is

V U��
a j�iB � ����	�

To recover j�iB
 Bob must apply U aV
���
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The operator ordering in eq� ����	� may seem counterintuitive at �rst �
it seems as though Alice�s measurement �Ua� precedes the preparation of
the shared entangled state �V �� But this �time reversal� has a straight�
forward interpretation� If Alice�s measurement outcome is j"�Ua�iCA

then Bob would have received a perfect copy of j�i if the initial entangled
state had been IA � �U a�B j"iAB� To simulate the situation in which
the entangled state had been chosen properly from the start
 Bob �rst
applies V �� to undo the �twist� in j"�V T �iAB
 recovering j"iAB
 and
then applies U a to transform the entangled state to the desired one�

There is a more fanciful interpretation of eq� ����	� which
 while not
necessary
 is nonetheless irresistable� We might �explain� how quantum
information is transferred from Alice and Bob by following the world
line of a qubit traveling in spacetime� The qubit moves forward in time
from Charlie�s preparation to Alice�s measurement
 then backward in time
from the measurement to the initial preparation of the entangled pair

and �nally forward in time again from the preparation of the pair to
Bob�s laboratory� Since this world line visits Alice�s measurement before
arriving at the preparation of the entanglement
 U��

a acts ��rst� and V
acts �later on��

����� Quantum software

Teleportation has some interesting applications� For example
 imagine
that Alice and Bob wish to apply the �quantum gate� V to the unknown
state j�iC� But applying V requires sophisitcated hardware that they
can�t a�ord�

A more economical alternative is to purchase quantum software from a
vendor� The software is a bipartite state that the vendor certi�es to be

j"�V T �iAB � IA � V Bj�iAB � ������

Alice�s hardware is powerful enough for her to perform a measurement
that projects onto the basis fj"�Ua�iCAg� once the outcome a is known

the state V U��

a j�iB has been prepared� Bob can then complete the
execution of V to j�i by applying V U aV

��

This procedure may seem silly � why assume that Bob is able to apply
V UaV

�� but unable to apply V � In fact it is not so silly
 and has im�
portant applications to fault�tolerant quantum computation that we will
explore further in Chapter 	� In some cases
 executing V U aV

�� really is
a lot easier than applying V � Furthermore
 Alice and Bob might be able
to prepare the quantum software themselves
 instead of buying it
 even
though they can�t apply V reliably� This is possible because it is easier
to verify that a known quantum state has been properly prepared than to
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verify that a known unitary transformation has been successfully applied
to an unknown state� If the hardware that applies V cannot be trusted

then we prefer to use it to prepare software o#ine
 and then subject the
software to quality assurance
 rather than risk causing irrevocable damage
to our unknown state through a faulty execution of V �

Each application of V consumes one copy of the quantum software�
Thus
 this protocol for executing V with the help of quantum software
uses entanglement as a resource�

��� Quantum cryptography

����� EPR quantum key distribution

Everyone has secrets
 including Alice and Bob� Alice needs to send a
highly private message to Bob
 but Alice and Bob have a very nosy friend

Eve
 who they know will try to listen in� Can they communicate with
assurance that Eve is unable to eavesdrop�

Obviously
 they should use some kind of code� Trouble is
 aside from
being very nosy
 Eve is also very smart� Alice and Bob are not con�dent
that they are clever enough to devise a code that Eve cannot break�

Except there is one coding scheme that is surely unbreakable� If Alice
and Bob share a private key
 a string of random bits known only to them

then Alice can convert her message to ASCII �a string of bits no longer
than the key� add each bit of her message �module �� to the corresponding
bit of the key
 and send the result to Bob� Receiving this string
 Bob can
add the key to it to extract Alice�s message�

This scheme is secure because even if Eve should intercept the trans�
mission
 she will not learn anything because the transmitted string itself
carries no information � the message is encoded in a correlation between
the transmitted string and the key �which Eve doesn�t know��

There is still a problem
 though
 because Alice and Bob need to estab�
lish a shared random key
 and they must ensure that Eve can�t know the
key� They could meet to exchange the key
 but that might be impractical�
They could entrust a third party to transport the key
 but what if the in�
termediary is secretly in cahoots with Eve� They could use �public key�
distribution protocols
 but the security of such protocols is founded on
assumptions about the computational resources available to a potential
adversary� Indeed
 we will see in Chapter � that public key protocols are
vulnerable to attack by an eavesdropper who is equipped with a quantum
computer�

Can Alice and Bob exploit quantum information �and speci�cally en�
tanglement� to solve the key exchange problem� They can� Quantum key

distribution protocols can be devised that are invulnerable to any attack
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allowed by the laws of physics�
Let�s suppose that Alice and Bob share a supply of entangled pairs


each prepared in the state j��i� To establish a shared private key
 they
may carry out this protocol�

For each qubit in her�his possession
 Alice and Bob decide to measure
either �� or ��� The decision is pseudo�random
 each choice occuring
with probability ���� Then
 after the measurements are performed
 both
Alice and Bob publicly announce what observables they measured
 but
do not reveal the outcomes they obtained� For those cases �about half�
in which they measured their qubits along di�erent axes
 their results are
discarded �as Alice and Bob obtained uncorrelated outcomes�� For those
cases in which they measured along the same axis
 their results
 though
random
 are perfectly correlated� Hence
 they have established a shared
random key�

But
 is this protocol really invulnerable to a sneaky attack by Eve� In
particular
 Eve might have clandestinely tampered with the pairs at some
time in the past� Then the pairs that Alice and Bob possess might be
�unbeknownst to Alice and Bob� not perfect j��i�s
 but rather pairs that
are entangled with qubits in Eve�s possession� Eve can then wait until
Alice and Bob make their public announcements
 and proceed to measure
her qubits in a manner designed to acquire maximal information about
the results that Alice and Bob obtained� Alice and Bob must protect
themselves against this type of attack�

If Eve has indeed tampered with Alice�s and Bob�s pairs
 then the most
general possible state for an AB pair and a set of E qubits has the form

j$iABE � j

iABje��iE � j
�iABje��iE
� j�
iABje��iE � j��iABje��iE � ����

�

where Eve�s states jeijiE are neither normalized nor mutually orthogonal�
Now recall that the de�ning property or j��i is that it is an eigenstate

with eigenvalue �� of both �
�A�
� �

�B�
� and �

�A�
� �

�B�
� � Suppose that A and

B are able to verify that the pairs in their possession have this property�

To satisfy �
�A�
� �

�B�
� � �
 we must have

j$iAB � j

iABje��iE � j��iABje��iE � ����
��

and to also satisfy �
�A�
� �

�B�
� � �
 we must have

j$iABE �
�p
�

�j

iAB � j��iAB�jeiE � j��iABjeiE �
����
��

We see that it is possible for the AB pairs to be eigenstates of �
�A�
� �

�B�
�

and �
�A�
� �

�B�
� only if they are completely unentangled with Eve�s qubits�
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Therefore
 Eve will not be able to learn anything about Alice�s and Bob�s
measurement results by measuring her qubits� The random key is secure�

To verify the properties �
�A�
� �

�B�
� � � � �

�A�
� �

�B�
� 
 Alice and Bob

can sacri�ce a portion of their shared key
 and publicly compare their
measurement outcomes� They should �nd that their results are indeed
perfectly correlated� If so they will have high statistical con�dence that
Eve is unable to intercept the key� If not
 they have detected Eve�s nefar�
ious activity� They may then discard the key
 and make a fresh attempt
to establish a secure key�

As I have just presented it
 the quantum key distribution protocol seems
to require entangled pairs shared by Alice and Bob
 but this is not really
so� We might imagine that Alice prepares the j��i pairs herself
 and then
measures one qubit in each pair before sending the other to Bob� This is
completely equivalent to a scheme in which Alice prepares one of the four
states

j �zi� j �zi� j �xi� j �xi� ����
��

�chosen at random
 each occuring with probability ���� and sends the
qubit to Bob� Bob�s measurement and the veri�cation are then carried
out as before� This scheme �known as the BB	� quantum key distribution
protocol� is just as secure as the entanglement�based scheme�y

Another intriguing variation is called the �time�reversed EPR� scheme�
Here both Alice and Bob prepare one of the four states in eq� ����
��

and they both send their qubits to Charlie� Then Charlie performs a Bell

measurement on the pair � that is
 he measures �
�A�
� �

�B�
� and �

�A�
� �

�B�
� 


orthogonally projecting out one of j��ij��i
 and he publicly announces
the result� Since all four of these states are simultaneous eigenstates of

�
�A�
� �

�B�
� and �

�A�
� �

�B�
� 
 when Alice and Bob both prepared their spins

along the same axis �as they do about half the time� they share a single
bit�z Of course
 Charlie could be allied with Eve
 but Alice and Bob
can verify that Charlie and Eve have acquired no information as before

by comparing a portion of their key� This scheme has the advantage
that Charlie could operate a central switching station by storing qubits
received from many parties
 and then perform his Bell measurement when
two of the parties request a secure communication link� �Here we assume
that Charlie has a stable quantum memory in which qubits can be stored

y Except that in the EPR scheme� Alice and Bob can wait until just before they need
to talk to generate the key� thus reducing the risk that Eve might at some point
burglarize Alice�s safe to learn what states Alice prepared �and so infer the key��

z Until Charlie makes his measurement� the states prepared by Bob and Alice are
totally uncorrelated� A de�nite correlation �or anti�correlation� is established after
Charlie performs his measurement�
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accurately for as long as necessary�� A secure key can be established even
if the quantum communication line is down temporarily
 as long as both
parties had the foresight to send their qubits to Charlie on an earlier
occasion �when the quantum channel was open��

So far
 we have made the unrealistic assumption that the quantum
communication channel is perfect
 but of course in the real world errors
will occur� Therefore even if Eve has been up to no mischief
 Alice and
Bob will sometimes �nd that their veri�cation test will fail� But how are
they to distinguish errors due to imperfections of the channel from errors
that occur because Eve has been eavesdropping�

To address this problem
 Alice and Bob can enhance their protocol in
two ways� First they implement �classical� error correction to reduce the
e�ective error rate� For example
 to establish each bit of their shared
key they could actually exchange a block of three random bits� If the
three bits are not all the same
 Alice can inform Bob which of the three
is di�erent than the other two� Bob can �ip that bit in his block
 and
then use majority voting to determine a bit value for the block� This way

Alice and Bob share the same key bit even if an error occured for one bit
in the block of three�

However
 error correction alone does not su�ce to ensure that Eve has
acquired negligible information about the key � error correction must
be supplemented by �classical� privacy ampli�cation� For example
 after
performing error correction so that they are con�dent that they share the
same key
 Alice and Bob might extract a bit of �superkey� as the parity

of n key bits� To know anything about the parity of n bits
 Eve would
need to know something about each of the bits� Therefore
 the parity bit
is considerably more secure
 on the average
 than each of the individual
key bits�

If the error rate of the channel is low enough
 one can show that quan�
tum key distribution
 supplemented by error correction and privacy am�
pli�cation
 is invulnerable to any attack that Eve might muster �in the
sense that the information acquired by Eve can be guaranteed to be ar�
bitrarily small�� We will return to the problem of proving the security of
quantum key distribution in Chapter ��

����� No cloning

The security of quantum key distribution is based on an essential di�er�
ence between quantum information and classical information� It is not
possible to acquire information that distinguishes between nonorthogonal
quantum states without disturbing the states�

For example
 in the BB	� protocol
 Alice sends to Bob any one of the
four states j �zij �zij �xij �xi
 and Alice and Bob are able to verify that
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none of their states are perturbed by Eve�s attempt at eavesdropping�
Suppose
 more generally
 that j�i and j�i are two nonorthogonal states
in H �h�j�i �� 
� and that a unitary transformationU is applied toH�HE

�where HE is a Hilbert space accessible to Eve� that leaves both j�i and
j�i undisturbed� Then

U � j�i � j
iE � j�i � jeiE �

j�i � j
iE � j�i � jfiE � ����
��

and unitarity implies that

h�j�i � �Eh
j � h�j��j�i� j
iE�

� �Ehej � h�j��j�i� jfiE�

� h�j�ihejfi � ����
��

Hence
 for h�j�i �� 

 we have hejfi � �
 and therefore since the states
are normalized
 jei � jfi� This means that no measurement in HE can
reveal any information that distinguishes j�i from j�i� In the BB	� case
this argument shows that
 if Eve does not disturb the states sent by Alice

then the state in HE is the same irrespective of which of the four states
j �zi� j �zi� j �xi� j �xi is sent by Alice
 and therefore Eve learns nothing
about the key shared by Alice and Bob� On the other hand
 if Alice is
sending to Bob one of the two orthogonal states j �zi or j �zi
 there is
nothing to prevent Eve from acquiring a copy of the information �as with
classical bits��

We have noted earlier that if we have many identical copies of a qubit

then it is possible to measure the mean value of noncommuting observ�
ables like �����
 and �� to completely determine the density matrix of
the qubit� Inherent in the conclusion that nonorthogonal state cannot
be distinguished without disturbing them
 then
 is the implicit provision
that it is not possible to make a perfect copy of a qubit� �If we could

we would make as many copies as we need to �nd h��i� h��i
 and h��i to
any speci�ed accuracy�� Let�s now make this point explicit� there is no
such thing as a perfect quantum Xerox machine�
Orthogonal quantum states �like classical information� can be reliably

copied� For example
 the unitary transformation that acts as

U � j
iAj
iE � j
iAj
iE �

j�iAj
iE � j�iAj�iE � ����
��

copies the �rst qubit onto the second if the �rst qubit is in one of the
states j
iA or j�iA� But if instead the �rst qubit is in the state j�i �
aj
iA � bj�iA
 then

U � �aj
iA � bj�iA�j
iE
� aj
iAj
iE � bj�iAj�iE � ����
��
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This is not the state j�i � j�i �a tensor product of the original and the
copy�� rather it is something very di�erent % an entangled state of the
two qubits�

To consider the most general possible quantum Xerox machine
 we allow
the full Hilbert space to be larger than the tensor product of the space of
the original and the space of the copy� Then the most general �copying�
unitary transformation acts as

U � j�iAj
iEj
iF � j�iAj�iEjeiF
j�iAj
iEj
iF � j�iAj�iEjfiF � ����
	�

Unitarity then implies that

h�j�i� h�j�ih�j�ihejfi � ����
��

therefore
 if h�j�i �� 

 then

� � h�j�ihejfi� �����
�

Since the states are normalized
 we conclude that

jh�j�ij� �� �������

so that j�i and j�i actually represent the same ray� No unitary ma�
chine can make a copy of both j�i and j�i if j�i and j�i are distinct

nonorthogonal states� This result is called the no�cloning theorem�

��� Multipartite entanglement

����� Three quantum boxes

In the wake of the wildly successful experiment with the three coins on
the table
 Alice and Bob are now world famous� They are both tenured
professors
 Alice at Caltech
 and Bob at Chicago� They are much too
important to spend much time in the lab
 but they have many graduate
students and remain scienti�cally active�

Their best student
 Charlie
 who did all the hard work on the coin
experiment
 has graduated and is now an assistant professor at Princeton�
Alice and Bob would like to nurture Charlie�s career
 and help him earn
tenure� One day
 Alice and Bob are chatting on the phone�

Alice� You know
 Bob
 we really ought to help Charlie� Can you think
of a neat experiment that the three of us can do together�

Bob� Well
 I dunno
 Alice� There are a lot of experiments I�d like to do
with our entangled pairs of qubits� But in each experiment
 there�s
one qubit for me and one for you� It looks like Charlie�s the odd
man out�
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Alice� �Long pause Bob � � � � Have you ever thought of doing an exper�
iment with three qubits�

Bob�s jaw drops and his pulse races� In a sudden epiphany
 his whole
future career seems mapped out before him� Truth be told
 Bob was
beginning to wonder if pairs of qubits were getting to be old hat� Now
he knows that for the next �ve years
 he will devote himself slavishly to
performing the de�nitive three�qubit experiment� By that time
 he
 Alice

and Charlie will have trained another brilliant student
 and will be ready
for a crack at four qubits� Then another student
 and another qubit� And
so on to retirement�

Here is the sort of three�qubit experiment that Alice and Bob decide
to try� Alice instructs her technician in her lab at Caltech to prepare
carefully a state of three quantum boxes� �But Alice doesn�t know exactly
how the technician does it�� She keeps one box for herself
 and she ships
the other two by quantum express
 one to Bob and one to Charlie� Each
box has a ball inside that can be either black or white
 but the box is
sealed tight shut� The only way to �nd out what is inside is to open the
box
 but there are two di�erent ways to open it � the box has two doors

clearly marked X and Y � When either door opens
 a ball pops out whose
color can be observed� It isn�t possible to open both doors at once�

Alice
 Bob
 and Charlie decide to study how the boxes are correlated�
They conduct many carefully controlled trials� Each time
 one of the
three
 chosen randomly
 opens door X
 while the other two open door
Y� Lucky as ever
 Alice
 Bob
 and Charlie make an astonishing discovery�
They �nd that every single time they open the boxes this way
 the number
of black balls they �nd is always odd�

That is
 Alice
 Bob and Charlie �nd that when they open door X on
one box and door Y on the other two
 the colors of the balls in the boxes
are guaranteed to be one of


A
B�C � 
A�B
C � �A
B
C � �A�B�C �
�������

�
 for white
 � for black�� They never see any of

�A�B
C � �A
B�C � 
A�B�C � 
A
B
C �
�������

It makes no di�erence which of the three boxes is opened through door
X �

After a while
 Alice
 Bob
 and Charlie catch on that after opening two
of the boxes
 they can always predict what will happen before they open
the third box� If the �rst two balls are the same color
 the last ball is sure
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to be black
 and if the �rst two are di�erent colors
 the last ball is sure
to be white� They�ve tried it a zillion times
 and it always works�

Even after all the acclaim showered upon the three�coin experiment

Alice
 Bob
 and Charlie have never quite shaken their attachment to Ein�
stein locality� One day they are having a three�way conference call�

Alice� You know
 guys
 sometimes I just can�t decide whether to open
door X or door Y of my box� I know I have to choose carefully � � �
If I open door X 
 that�s sure to disturb the box� so I�ll never know
what would have happened if I had opened door Y instead� And
if I open door Y 
 I�ll never know what I would have found if I had
opened door X � It�s frustrating�

Bob� Alice
 you�re so wrong� Our experiment shows that you can have
it both ways� Don�t you see� Let�s say that you want to know what
will happen when you open door X � Then just ask Charlie and me
to open door Y of our boxes and to tell you what we �nd� You�ll
know absolutely for sure
 without a doubt
 what�s going to happen
when you open door X � We�ve tested that over and over again
 and
it always works� So why bother to open door X� You can go ahead
and open door Y instead
 and see what you �nd� That way
 you
really do know the result of opening both doors�

Charlie� But how can you be sure� If Alice opens door Y 
 she passes
up the opportunity to open door X � She can�t really ever have it
both ways� After she opens door Y 
 we can never check whether
opening door X would have given the result we expected�

Bob� Oh come on
 how can it be otherwise� Look
 you don�t really
believe that what you do to your box in Princeton and I do to mine
in Chicago can exert any in�uence on what Alice �nds when she
opens her box in Pasadena
 do you� When we open our boxes
 we
can�t be changing anything in Alice�s box� we�re just �nding the
information we need to predict with certainty what Alice is going
to �nd�

Charlie� Well
 maybe we should do some more experiments to �nd out
if you�re right about that�

Indeed
 the discovery of the three�box correlation has made Alice and
Bob even more famous than before
 but Charlie hasn�t gotten the credit
he deserves � he still doesn�t have tenure� No wonder he wants to do
more experiments� He continues�

Charlie� Here�s something we can try� In all the experiments we�ve
done up to now
 we have always opened door Y on two boxes and
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door X on the other box� Maybe we should try something di�erent�
Like
 maybe we should see what happens if we open the same door
on all three boxes� We could try opening three X doors�

Bob� Oh
 come on� I�m tired of three boxes� We already know all about
three boxes� It�s time to move on
 and I think Diane is ready to
help out� Let�s do four boxes�

Alice� No
 I think Charlie�s right� We can�t really say that we know
everything there is to know about three boxes until we�ve experi�
mented with other ways of opening the doors�

Bob� Forget it� They�ll never fund us� After we�ve put all that e�ort
into opening two Y �s and an X 
 now we�re going to say we want to
open three X �s� They�ll say we�ve done whi�nium and now we�re
proposing wha�nium � � � We�ll sound ridiculous�

Alice� Bob has a point� I think that the only way we can get funding
to do this experiment is if we can make a prediction about what
will happen� Then we can say that we�re doing the experiment to
test the prediction� Now
 I�ve heard about some theorists named
Greenberger
 Horne
 Zeilinger
 and Mermin �GHZM�� They�ve been
thinking a lot about our three�box experiments� maybe they�ll be
able to suggest something�

Bob� Well
 these boxes are my life
 and they�re just a bunch of theorists�
I doubt that they�ll have anything interesting or useful to say� But
I suppose it doesn�t really matter whether their theory makes any
sense � � � If we can test it
 then even I will accept that we have a
reason for doing another three�box experiment�

And so it happens that Alice
 Bob
 and Charlie make the pilgrimage
to see GHZM� And despite Bob�s deep skepticism
 GHZM make a very
interesting suggestion indeed�

GHZM� Bob says that opening a box in Princeton and a box in Chicago
can�t possibly have any in�uence on what will happen when Alice
opens a box in Pasadena� Well
 let�s suppose that he�s right� Now
you guys are going to do an experiment in which you all open your
X doors� No one can say what�s going to happen
 but we can reason
this way� Let�s just assume that if you had opened three Y doors

you would have found three white balls� Then we can use Bob�s
argument to see that if you open three X doors instead
 you will
have to �nd three black balls� It goes like this� if Alice opens X 

Bob opens Y 
 and Charlie opens Y 
 then you know for certain that
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the number of black balls has to be odd� So
 if we know that Bob
and Charlie both would �nd white when they open door Y 
 then
Alice has to �nd black when she opens door X � Similarly
 if Alice
and Charlie both would �nd white when they open Y 
 then Bob has
to �nd black when he opens X 
 and if Alice and Bob both would
�nd white when they open Y 
 then Charlie must �nd black when
he opens X � So we see thatx

YAYBYC � 


 �� XAXBXC � ��� � �������

Don�t you agree�

Bob� Well
 maybe that�s logical enough
 but what good is it� We don�t
know what we�re going to �nd inside a box until we open it� You�ve
assumed that we know YAYBYC � 



 but we never know that
ahead of time�

GHZM� Sure
 but wait� Yes
 you�re right that we can�t know ahead of
time what we would �nd if we opened door Y on each box� But
there are only eight possibilities for three boxes
 and we can easily
list them all� And for each of those eight possibilities for YAYBYC we
can use the same reasoning as before to infer the value of XAXBXC �
We obtain a table
 like this�

YAYBYC � 


 �� XAXBXC � ���

YAYBYC � 

� �� XAXBXC � 

�

YAYBYC � 
�
 �� XAXBXC � 
�


YAYBYC � �

 �� XAXBXC � �



YAYBYC � 
�� �� XAXBXC � �



YAYBYC � �
� �� XAXBXC � 
�


YAYBYC � ��
 �� XAXBXC � 

�

YAYBYC � ��� �� XAXBXC � ��� �������

Bob� Okay
 but so what�

GHZM� There�s something interesting about the table
 Bob� Look at
the values for XAXBXC � � � Every single entry has an odd number
of ��s� That�s our prediction� when you all open door X on your
boxes
 you�ll always �nd an odd number of black balls� Could be
one
 or could be three
 but always odd�

x Here 	 stands for white and 
 stands for black� YA is what Alice �nds when she opens
door Y on her box� and so on�
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Naturally
 Alice
 Bob
 and Charlie are delighted by this insight from
GHZM� They proceed to propose the experiment
 which is approved and
generously funded� Finally the long awaited day arrives when they are to
carry out the experiment for the �rst time� And when Alice
 Bob
 and
Charlie each open door X on their boxes
 can you guess what they �nd�
Three white balls� Whaaaa����

Suspecting an error
 Alice and Bob and Charlie repeat the experiment

very carefully
 over and over and over again� And in every trial
 every
single time
 they �nd an even number of black balls when they open door
X on all three boxes� Sometimes none
 sometimes two
 but never one
and never three� What they �nd
 every single time
 is just the opposite
of what GHZM had predicted would follow from the principle of Einstein
locality�

Desperation once again drives Alice
 Bob
 and Charlie into the library

seeking enlightenment� After some study of a quantum mechanics text�
book
 and a thorough interrogation of Alice�s lab technician
 they realize
that their three boxes had been prepared in a GHZM quantum state

j�iABC �
�p
�

�j


iABC � j���iABC� � �������

a simultaneous eigenstate with eigenvalue one of the three observables

ZA � ZB � IC � IA � ZB � ZC � XA �XB �XC �
�������

And since ZX � iY 
 they realize that this state has the properties

Y A � Y B �XC � ��

XA � Y B � Y C � ��

Y A �XB � Y C � ��

XA �XB �XC � � � �����	�

In opening the box through door X or door Y 
 Alice
 Bob
 and Charlie
are measuring the observable X or Y 
 where the outcome � signi�es a
white ball
 and the outcome �� a black ball� Thus if the three qubit state
eq� ������� is prepared
 eq� �����	� says that an odd number of black balls
will be found if door Y is opened on two boxes and door X on the third

while an even number of black balls will be found if door X is opened
on all three boxes� This behavior
 unambiguously predicted by quantum
mechanics
 is just what had seemed so ba#ing to Alice
 Bob
 and Charlie

and to their fellow die�hard advocates of Einstein locality�

After much further study of the quantum mechanics textbook
 Alice

Bob
 and Charlie gradually come to recognize the �aw in their reasoning�



�� � Quantum Entanglement

They learn of Bohr�s principle of complementarity
 of the irreconcilable
incompatibility of noncommuting observables� And they recognized that
to arrive at their prediction
 they had postulated an outcome for the
measurement of Y Y Y 
 and then proceeded to infer the consequences for
a measurement of XXX � By failing to heed the insistent admonitions of
Niels Bohr
 they had fallen prey to the most pernicious of fallacies�

As they had hoped
 the experiment of the three boxes brings even
further acclaim to Alice and Bob
 and tenure to Charlie� Of course

the three�coin experiment had already convincingly struck down Einstein
locality� even so
 the three�box experiment had a di�erent character� In
the coin experiment
 Alice and Bob could uncover any two of the three
coins
 �nding any one of four possible con�gurations� HH 
 HT 
 TH 
 TT �
Only by carrying out many trials could they amass a convincing statistical
case for the violation of the Bell inequality� In contrast
 in the three�box
experiment
 Alice
 Bob
 and Charlie had found a result inconsistent with
Einstein locality in every single trial in which they opened door X on all
three boxes�

��� Summary

Summary ��
Summary ��
Summary ��

��	 Bibliographical notes

��
 Exercises

��� Hardy�s theorem

Bob �in Boston� and Claire �in Chicago� share many identically
prepared copies of the two�qubit state

j�i �
q

��� �x� j

i�
p
x j
�i�

p
x j�
i �

�������

where x is a real number between 
 and ���� They conduct many
trials in which each measures his�her qubit in the basis fj
i� j�ig

and they learn that if Bob�s outcome is � then Claire�s is always 


and if Claire�s outcome is � then Bob�s is always 
�

Bob and Claire conduct further experiments in which Bob measures
in the basis fj
i� j�ig and Claire measures in the orthonormal basis
fj�i� j��ig� They discover that if Bob�s outcome is 

 then Claire�s
outcome is always � and never ��� Similarly
 if Claire measures in
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the basis fj
i� j�ig and Bob measures in the basis fj�i� j��ig
 then
if Claire�s outcome is 

 Bob�s outcome is always � and never ���

a� Express the basis fj�i� j��ig in terms of the basis fj
i� j�ig�
Bob and Claire now wonder what will happen if they both measure
in the basis fj�i� j��ig� Their friend Albert
 a �rm believer in
local realism
 predicts that it is impossible for both to obtain the
outcome �� �a prediction known as Hardy
s theorem�� Albert argues
as follows�

When both Bob and Claire measure in the basis fj�i� j��ig� it
is reasonable to consider what might have happened if one or

the other had measured in the basis fj�i� j�ig instead�

So suppose that Bob and Claire both measure in the basis

fj�i� j��ig� and that they both obtain the outcome ��� Now if

Bob had measured in the basis fj�i� j�ig instead� we can be cer�

tain that his outcome would have been �� since experiment has

shown that if Bob had obtained � then Claire could not have

obtained ��� Similarly� if Claire had measured in the basis

fj�i� j�ig� then she certainly would have obtained the outcome

�� We conclude that if Bob and Claire both measured in the

basis fj�i� j�ig� both would have obtained the outcome �� But

this is a contradiction� for experiment has shown that it is not

possible for both Bob and Claire to obtain the outcome � if

they both measure in the basis fj�i� j�ig�

We are therefore forced to conclude that if Bob and Claire

both measure in the basis fj�i� j��ig� it is impossible for both

to obtain the outcome ���

Though impressed by Albert�s reasoning
 Bob and Claire decide to
investigate what predictions can be inferred from quantum mechan�
ics�

b� If Bob and Claire both measure in the basis fj�i� j��ig
 what
is the quantum�mechanical prediction for the probability P �x�
that both obtain the outcome ���

c� Find the �maximal violation� of Hardy�s theorem� show that the
maximal value of P �x� is P ����p���� � ��

p
������� � �
�
��

d� Bob and Claire conduct an experiment that con�rms the pre�
diction of quantum mechanics� What was wrong with Albert�s
reasoning�

��� Closing the detection loophole
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Recall that the CHSH inequality

jhabi� ha�bi� hab�i � ha�b�ij 	 � �����
�

holds if the random variables a� b� a�b� take values �� and are gov�
erned by a joint probability distribution� The maximal violation of
this inequality by the quantum�mechanical predictions occurs when
the left�hand�side is �

p
�
 which is achieved if Alice and Bob share

the maximally entangled state j��i
 a� a� are measurements of Al�
ice�s qubit along axes �x and �z
 and b� b� are measurements of Bob�s
qubit along axes ��x � �z��

p
� and ��x� �z��

p
��

Alice and Bob have done a beautiful experiment measuring the
polarizations of entangled photon pairs
 and have con�rmed the
CHSH inequality violation predicted by quantum mechanics� Al�
bert is skeptical� He points out that the detectors used by Alice
and Bob in their experiment are not very e�cient� Usually
 when
Alice detects a photon
 Bob does not
 and when Bob detects a pho�
ton
 Alice does not� Therefore
 they discard the data for most of
the photon pairs
 and retain the results only in the case when two
photons are detected in coincidence� In their analysis of the data

Alice and Bob assume that their results are based on a fair sample of
the probability distribution governing the measured variables� But
Albert argues that their conclusions could be evaded if whether a
photon is detected is correlated with the outcome of the polarization
measurement�

Alice and Bob wonder how much they will need to improve their
detector e�ciency to do an experiment that will impress Albert�

Alice can choose to orient her detector along any axis
 and if she
aligns the detector with the axis a
 then ideally the detector will
click when her qubit�s spin is pointing up along a
 but because of
detector ine�ciencies it sometimes fails to click even though the
qubit points up� For pair number i
 let xi 
 f
� �g be a variable
indicating whether Alice�s detector would click when aligned with
a � if there would be a click then xi � �
 and if there would be no
click then xi � 
� Since the detector is imperfect
 xi may be 
 even
though the qubit points up along a� Similarly
 x�i 
 f
� �g indicates
whether Alice�s detector would click if aligned with a�
 yi 
 f
� �g
indicates whether Bob�s detector would click if aligned with b and
y�i 
 f
� �g indicates whether Bob�s detector would click if aligned
with b�� Under the assumption of local realism
 each pair can be
assigned values of x� x�� y� y� that are determined by local hidden
variables�
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Alice and Bob are free to decide how to align their detectors in
each measurement� therefore they can fairly sample the values of
x� x�� y� y� and infer from their measurements the values of

P���ab� � N��
NX
i��

xiyi �

P���a�b� � N��
NX
i��

x�iyi �

P���ab�� � N��
NX
i��

xiy
�
i �

P���a�b�� � N��
NX
i��

x�iy
�
i � �������

where N is the total number of pairs tested� Here e�g P���ab�
is the probability that both detectors click when Alice and Bob
orient their detectors along a and b �including the e�ects of detector
ine�ciency��

a� If x� x�� y� y� 
 f
� �g
 show that

xy � xy� � x�y � x�y� 	 x � y � �������

b� Show that

P���ab� � P���a�b� � P���ab��� P���a�b�� 	 P���a� � P���b� �
�������

here P���a� denotes the probability that Alice�s detector clicks
if oriented along a
 and P���b� denotes the probability that
Bob�s detector clicks if oriented along b�

c� Now compare with the predictions of quantum mechanics
 where
Alice�s detector has e�ciency �A and Bob�s detector has e��
ciency �B� This means that Alice�s detector clicks with prob�
ability P � �APperf 
 where Pperf is the probability of a click if
her detector were perfect
 and similarly for Bob� Choosing the
a� a�� b� b� that maximally violate the CHSH inequality
 show
that the quantum�mechanical predictions violate eq� �������
only if

�A�B
�A � �B



�

� �
p

�
� �������

Thus
 if �A � �B
 Alice and Bob require detectors with e��
ciency above 	��	�! to overcome Albert�s objection�
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��� Teleportation with continuous variables

One complete orthonormal basis for the Hilbert space of two par�
ticles on the real line is the �separable� position eigenstate basis
fjq�i � jq�ig� Another is the entangled basis fjQ�P ig
 where

jQ�P i �
�p
��

Z
dq eiP qjqi � jq � Qi � �������

these are the simultaneous eigenstates of the relative position oper�
ator Q 
 q� � q� and the total momentum operator P 
 p� � p��

a� Verify that

hQ�� P �jQ�P i � 
�Q� � Q�
�P � � P � �
�������

b� Since the states fjQ�P ig are a basis
 we can expand a position
eigenstate as

jq�i � jq�i �

Z
dQdP jQ�P ihQ�P j �jq�i � jq�i� �

�������

Evaluate the coe�cients hQ�P j �jq�i � jq�i��
c� Alice and Bob have prepared the entangled state jQ�P iAB of

two particles A and B� Alice has kept particle A and Bob
has particle B� Now Alice has received an unknown single�
particle wavepacket j�iC �

R
dq jqiC Chqj�iC that she intends

to teleport to Bob� Design a protocol that they can execute to
achieve the teleportation� What should Alice measure� What
information should she send to Bob� What should Bob do
when he receives this information
 so that particle B will be
prepared in the state j�iB�

��� Teleportation with mixed states�

An operational way to de�ne entanglement is that an entangled
state can be used to teleport an unknown quantum state with better
�delity than could be achieved with local operations and classical
communication only� In this exercise
 you will show that there are
mixed states that are entangled in this sense
 yet do not violate any
Bell inequality� Hence
 for mixed states �in contrast to pure states�
�entangled� and �Bell�inequality�violating� are not equivalent�

Consider a �noisy� entangled pair with density matrix�

���� � ��� ��j��ih��j� �
�

�
�� �����	�
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a� Find the �delity F that can be attained if the state ���� is used
to teleport a qubit from Alice to Bob� �Hint� Recall that you
showed in an earlier exercise that a �random guess� has �delity
F � �

� � 

b� For what values of � is the �delity found in �a� better than what
can be achieved if Alice measures her qubit and sends a classical
message to Bob� �Hint� Earlier
 you showed that F � ��� can
be achieved if Alice measures her qubit� In fact this is the best
possible F attainable with classical communication� 

c� Compute

Prob���n� �m� 
 tr �EA��n�EB� �m������ �
�������

where EA��n� is the projection of Alice�s qubit onto j ��ni and
EB� �m� is the projection of Bob�s qubit onto j � �mi�

d� Consider the case � � ���� Show that in this case the state ����
violates no Bell inequalities� Hint� It su�ces to construct a
local hidden�variable model that correctly reproduces the spin
correlations found in �c�
 for � � ���� Suppose that the hidden
variable �� is uniformly distributed on the unit sphere
 and that
there are functions fA and fB such that

ProbA���n� � fA��� � �n�� ProbB�� �m� � fB��� � �m��
�����
�

The problem is to �nd fA and fB �where 
 	 fA�B 	 �� with
the propertiesZ

��
fA��� � �n� � ����

Z
��
fB��� � �m� � ����Z

��
fA��� � �n�fB��� � �m� � Prob���n� �m�� �������

��� Quantum key distribution

Alice and Bob want to execute a quantum key distribution protocol�
Alice is equipped to prepare either one of the two states jui or jvi�
These two states
 in a suitable basis
 can be expressed as

jui �

�
cos�
sin�

�
� jvi �

�
sin�
cos�

�
� �������

where 
 � � � ���� Alice decides at random to send either jui
or jvi to Bob
 and Bob is to make a measurement to determine
what she sent� Since the two states are not orthogonal
 Bob cannot
distinguish the states perfectly�
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a� Bob realizes that he can�t expect to be able to identify Alice�s
qubit every time
 so he settles for a procedure that is successful
only some of the time� He performs a POVM with three pos�
sible outcomes� �u
 �v
 or DON�T KNOW� If he obtains the
result �u
 he is certain that jvi was sent
 and if he obtains �v

he is certain that jui was sent� If the result is DON�T KNOW

then his measurement is inconclusive� This POVM is de�ned
by the operators

F �u � A�I � juihuj� � F�v � A�I � jvihvj� �
FDK � ��� �A�I � A �juihuj� jvihvj� � �������

where A is a positive real number� How should Bob choose
A to minimize the probability of the outcome DK
 and what
is this minimal DK probability �assuming that Alice chooses
from fjui� jvig equiprobably�� �Hint� If A is too large
 FDK

will have negative eigenvalues
 and eq�������� will not be a
POVM� 

b� Design a quantum key distribution protocol using Alice�s source
and Bob�s POVM�

c� Of course
 Eve also wants to know what Alice is sending to Bob�
Hoping that Alice and Bob won�t notice
 she intercepts each
qubit that Alice sends
 by performing an orthogonal measure�

ment that projects onto the basis
n�

�
�

�
�
�
�
�

�o
� If she obtains

the outcome
�
�
�

�

 she sends the state jui on to Bob
 and if she

obtains the outcome
�
�
�

�

 she sends jvi on to Bob� Therefore

each time Bob�s POVM has a conclusive outcome
 Eve knows
with certainty what that outcome is� But Eve�s tampering
causes detectable errors� sometimes Bob obtains a �conclusive�
outcome that actually di�ers from what Alice sent� What is
the probability of such an error�

��� Minimal disturbance

In Exercise ���
 we studied a game in which Alice decides at random
�equiprobably� whether to prepare one of two possible pure states
of a single qubit
 either

j�i �

�
cos�
sin �

�
� or j &�i �

�
sin �
cos�

�
�

�������

and sends the state to Bob� By performing an orthogonal measure�
ment in the basis fj
i� j�ig
 Bob can identify the state with minimal
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error probability

�perror�optimal � sin� � �
�

�
��� sin �� � �������

where we have de�ned � by

h�j &�i 
 cos � � sin���� � �������

But now let�s suppose that Eve wants to eavesdrop on the state as it
travels from Alice to Bob� Like Bob
 she wishes to extract optimal
information that distinguishes j�i from j &�i
 and she also wants to
minimize the disturbance introduced by her eavesdropping
 so that
Alice and Bob are not likely to notice that anything is amiss�

Eve realizes that the optimal POVM can be achieved by measure�
ment operators

M� � j��ih
j � M� � j��ih�j � �������

where the vectors j��i
 and j��i are arbitrary� If Eve performs this
measurement
 then Bob receives the state

�� � cos� �j��ih��j� sin� �j��ih��j � �����	�

if Alice sent j�i
 and the state

&�� � sin� �j��ih��j� cos� �j��ih��j � �������

if Alice sent j &�i�
Eve wants the average �delity of the state received by Bob to be as
large as possible� The quantity that she wants to minimize
 which
we will call the �disturbance� D
 measures how close this average
�delity is to one�

D � �� �

�
�F � &F � � �����
�

where

F � h�j��j�i � &F � h &�j&��j &�i � �������

The purpose of this exercise is to examine how e�ectively Eve can re�
duce the disturbance by choosing her measurement operators prop�
erly�
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a� Show that F � &F can be expressed as

F � &F � h��jAj��i� h��jBj��i � �������

where

A �

�
�� � cos� � sin� � cos� sin �

cos� sin� � cos� � sin� �

�
�

B �

�
� cos� � sin� � cos� sin �

cos� sin� �� � cos� � sin� �

�
� �������

b� Show that if j��i and j��i are chosen optimally
 the minimal
disturbance that can be attained is

Dmin�cos� �� �
�

�
���

p
�� cos� � � cos	 �� �

�������

�Hint� We can choose j��i and j��i to maximize the two terms
in eq� ������� independently� The maximal value is the maxi�
mal eigenvalue of A
 which since the eigenvalues sum to �
 can

be expressed as �max � �
�

�
� �

p
�� � � det A

�
� Of course


Eve could reduce the disturbance further were she willing to
settle for a less than optimal probability of guessing Alice�s
state correctly�

c� Sketch a plot of the function Dmin�cos� ��� Interpret its value for
cos � � � and cos � � 
� For what value of � is Dmin largest�
Find Dmin and �perror�optimal for this value of ��

��� Approximate cloning

The no�cloning theorem shows that we can�t build a unitary machine
that will make a perfect copy of an unknown quantum state� But
suppose we are willing to settle for an imperfect copy � what �delity
might we achieve�

Consider a machine that acts on three qubit states according to

j


iABC �
r

�

�
j

iABj
iC �

r
�

�
j��iABj�iC

j�

iABC �
r

�

�
j��iABj�iC �

r
�

�
j��iABj
iC � �������

a� Is such a device physically realizable
 in principle�

If the machine operates on the initial state j�iAj

iBC 
 it pro�
duces an pure entangled state j'iABC of the three qubits� But
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if we observe qubit A alone
 its �nal state is the density operator
��A � trBC �j'iABC ABCh'j�� Similarly
 the qubit B
 observed in
isolation
 has the �nal state ��B � It is easy to see that ��A � ��B �
these are the identical
 but imperfect
 copies of the input pure state
j�iA�

b� The mapping from the initial state j�iA Ah�j to the �nal state
��A of qubit A de�nes a superoperator (� Find an operator�sum
representation of (�

c� For j�iA � aj
iA � bj�iA
 �nd ��A
 and compute its �delity F 

Ah�j��Aj�iA�

��	 We�re so sorry
 Uncle Albert

Consider the n�qubit �cat� state

j�in �

r
�

�
�j


 � � �
i� j��� � � ��i� � �������

This state can be characterized as the simultaneous eigenstate �with
eigenvalue �� of the n operators

�� � �� � I � I � � � � � I � I � I

I � �� � �� � I � � � � � I � I � I

� � �

I � I � I � I � � � � � I � �� � ��

�� � �� � �� � � � � � �� � �� � �� �������

a� Show that j�in is an eigenstate of the operator

��� � i���
	n � ��� � i���

	n � �����	�

and compute its eigenvalue�

b� If we believe in local hidden variables
 then we believe that
 for
each of the n qubits
 both �� and �� have de�nite values once
the hidden variables are speci�ed� If so
 then what can we say
about the modulus of ��� � i���

	n or ��� � i���
	n
 assuming

de�nite values for the hidden variables�

c� From �b�
 derive an upper bound on

�

�

������ � i���
	n � ��� � i���

	n��� �������

that follows from the local hidden�variable hypothesis�

d� Compare with �a�� What would Einstein say�
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��
 Entanglement manipulation

a� Twenty��ve players on the New York Yankees
 and twenty��ve
players on the San Diego Padres
 want to share a �
�qubit cat
state� The Yankees prepare a ���qubit cat state
 and give one
of the qubits to Alice� so do the Padres� Now Alice is to sew the
states together and prepare the �
�qubit state� What should
she do� �Hint� Think about stabilizers� 

b� After joining the Yankees
 Alice assumed custody of one of the
qubits in their ���qubit cat state� But today she has been
traded� Alice is ordered to pull her qubit out of the cat state

leaving an undamaged ���qubit cat state for the other players�
What should she do� �Hint� Think about stabilizers� 

���� Peres�Horodecki criterion in d dimensions

Recall that a Werner state of a pair of qubits can be expressed as

���� � �j��ih��j� �

�
��� ��I � �����
�

and that the partial transpose �PTAB of a bipartite density operator
�AB is de�ned as

�PTAB 
 �IA � TB���AB� �������

where T is the transpose operation that acts in the computational
basis fjiig as

T �jiihjj� � jjihij � �������

We saw in class that the partial transpose of the Werner state ����
is negative for � 
 ���� therefore
 by the Peres�Horodecki criterion

the Werner state is inseparable for � 
 ����

a� One natural way to generalize the Werner state to a pair of d�
dimensional systems is to consider

�
��� � �j"ih"j� �

d�
��� ��I � �������

where j"i is the maximally entangled state

j"i �
�p
d

dX
i��

jii � jii � �������

Show that

�j"ih"j�PT �
�

d
�I � �Eantisym� � �������
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where Eantisym is the projector onto the space that is antisym�
metric under interchange of the two systems A and B�

b� For what values of � does the state �
��� have a negative partial
transpose�

c� If the Werner state for two qubits is chosen to be

���� � �j��ih��j� �

�
��� ��I � �������

then another natural way to generalize the Werner state to a
pair of d�dimensional systems is to consider

�anti��� � �

�
�

�
�d�d� ��

�
Eantisym �

�

d�
��� ��I � �������

For what values of � does �anti��� have a negative partial trans�
pose�


