

ANSWERS TO THE EXAM QUANTUM THEORY, 12 JANUARY 2026

each item gives 2 points for a fully correct answer, grade = total $\times 9/24 + 1$

1. (a) $dE_n/d\lambda = \langle \psi_n | dH/d\lambda | \psi_n \rangle + \langle \psi_n | H | d\psi_n/d\lambda \rangle + \langle | \psi_n / d\lambda | H | \psi_n \rangle = \langle \psi_n | dH/d\lambda | \psi_n \rangle + E_n(d/d\lambda) \langle \psi_n | \psi_n \rangle = \langle \psi_n | dH/d\lambda | \psi_n \rangle$.
 (b) The velocity operator is $v = dH/dp$, so $\langle v \rangle = \langle dH/dp \rangle = dE/dp$.
 (c) $dE_n/dm = (-1/m) \langle \psi_n | T | \psi_n \rangle + (1/m) \langle \psi_n | V | \psi_n \rangle$; since $dE_n/dm = 0$ it follows that $\langle \psi_n | T | \psi_n \rangle = \langle \psi_n | V | \psi_n \rangle$.
2. (a) $-i\hbar d/dx = p$ is the momentum operator, which is Hermitian, so $H = H^\dagger$ is also Hermitian.
 (b) The Hamiltonian can be written in terms of Pauli matrices, $H = v p \sigma_x$. Time reversal inverts p and σ_x , leaving H unchanged.
 (c) In terms of the wave number k , we have $H = \hbar v k \sigma_x$, with eigenvalues $E(k) = \pm \hbar v k$.
3. (a) Since a contour integral that encircles the solenoid has $\oint \vec{A} \cdot d\vec{l} = \Phi$, it is not possible to find a gauge where $\vec{A} = 0$ outside the solenoid if $\Phi \neq 0$.
 (b) $\Psi(\vec{r}_{\text{screen}}) \propto \sum_{n=1,2} \exp\left(\frac{i}{\hbar} \int_n (m\vec{v} + e\vec{A}) \cdot d\vec{l}\right)$, summed over the two paths $n = 1, 2$ that reach the screen through one slit or the other.
 (c) $|\Psi(\vec{r}_{\text{screen}})|^2 = \text{constant} + 2 \cos\left(\hbar^{-1} \int_1 (m\vec{v} + e\vec{A}) \cdot d\vec{l} - \hbar^{-1} \int_2 (m\vec{v} + e\vec{A}) \cdot d\vec{l}\right)$
 The argument of the cosine is a Φ -independent constant plus $(e/\hbar) \oint \vec{A} \cdot d\vec{l} = e\Phi/\hbar$. So $\Delta\Phi = 2\pi\hbar/e = \hbar/e$.
4. a) $a e^{\beta a^\dagger} |0\rangle = \sum_{n=0}^{\infty} \frac{1}{n!} \beta^n a(a^\dagger)^n |0\rangle = \sum_{n=0}^{\infty} \frac{1}{n!} \beta^n n(a^\dagger)^{n-1} |0\rangle = \beta e^{\beta a^\dagger} |0\rangle$
 b) $\langle \alpha | \beta \rangle = e^{-|\alpha|^2/2} \langle 0 | e^{\alpha^* a} | \beta \rangle = e^{-|\alpha|^2/2} e^{\alpha^* \beta} \langle 0 | \beta \rangle = e^{-|\alpha|^2/2 - |\beta|^2/2} e^{\alpha^* \beta}$, hence $|\langle \alpha | \beta \rangle|^2 = e^{-|\alpha|^2 - |\beta|^2} e^{\alpha^* \beta + \alpha \beta^*} = e^{-|\alpha - \beta|^2}$.
 c) $\bar{n} = \langle \beta | a^\dagger a | \beta \rangle = \beta^* \beta$, $\overline{n^2} = \langle \beta | (a^\dagger a)^2 | \beta \rangle = \langle \beta | (a^\dagger)^2 a^2 | \beta \rangle + \langle \beta | a^\dagger a | \beta \rangle = (\beta^* \beta)^2 + \beta^* \beta$, so $\text{var } n = \beta^* \beta = \bar{n}$.