EXAM QUANTUM THEORY, 20 JANUARY 2016, 12-15 HOURS.

- 1. The wave function of a particle in position representation is $\psi(x)$, normalized to unity: $\int_{-\infty}^{\infty} |\psi(x)|^2 dx = 1$. (The particle is spinless and confined to the *x*-axis.)
- *a)* What is the corresponding wave function $\psi(p)$ in momentum representation? Verify that it is also normalized to unity.
- b) The time-reversal operation \mathcal{T} in position representation is $\mathcal{T}\psi(x)=\psi^*(x)$. What is the corresponding time-reversal operation in momentum representation?
- *c)* The Kramers theorem says that, under certain conditions, the eigenstates in the presence of time reversal symmetry are twofold degenerate. Does Kramers theorem apply in this case? Motivate your answer.
- 2. Consider the creation and annihilation operators c_{α}^{\dagger} , c_{β}^{\dagger} and c_{α} , c_{β} of a particle for two *different* states labeled α and β . The particle may be either a boson or a fermion.
- *a)* If we exchange two bosons the wave function remains the same, if we exchange two fermions the wave function acquires a minus sign. Explain how this difference manifests itself in the creation and annihilation operators.
- *b*) Calculate the expectation value $\langle 0|c_{\alpha}c_{\beta}c_{\alpha}^{\dagger}c_{\beta}^{\dagger}|0\rangle$ in the vacuum state $|0\rangle$, both for the bosonic and for the fermionic case.

Now assume that the particle is a fermion and that it can occupy one of N states, labeled i = 1, 2, ... N. Let U be an $N \times N$ unitary matrix.

• *c*) Show that the transformation from c_i to a_i given by

$$a_i = \sum_{j=1}^{N} U_{ij}c_j, \quad i = 1, 2, ...N,$$

has no effect on the commutation relation of the creation and annihilation operators.

- 3. The Hamiltonian H has eigenvalues E_n , n=0,1,2,..., with corresponding eigenfunctions Φ_n . The ground state Φ_0 has the lowest eigenvalue E_0 . An arbitrary wave function ψ can be expanded in the basis of eigenfunctions, $\psi = \sum_n \alpha_n \Phi_n$, with complex coefficients α_n .
- *a)* Express the inner product $\langle \psi | \psi \rangle$ in terms of these expansion coefficients. The variational theorem says that

$$\frac{\langle \psi | H | \psi \rangle}{\langle \psi | \psi \rangle} \geq E_0.$$

• *b)* Prove this theorem.

continued on second page

The one-dimensional harmonic oscillator has Hamiltonian

$$H = -\frac{\hbar^2}{2m}\frac{d^2}{dx} + \frac{1}{2}m\omega^2x^2.$$

For a given parameter a > 0 we approximate the ground state wave function by

$$\Phi_a(x) \approx C \exp\left(-\frac{x^2}{2a}\right),$$

with normalization constant $C = (2\pi a)^{-1/2}$.

- c) Explain how you would use the variational theorem to approximate the ground state energy E_0 . (You don't have to actually carry out the calculation, just explain which steps you would take.)
- 4. We consider the Hamiltonian H of a particle of mass m moving along the x-axis in a confining potential V(x). The eigenvalues of H form the discrete spectrum E_0, E_1, E_2, \ldots We define the density of states $\rho(E) = \sum_{n=0}^{\infty} \delta(E E_n)$ and its Fourier transform

$$F(t) = \int_{-\infty}^{\infty} \rho(E) e^{-iEt/\hbar} dE = \sum_{n=0}^{\infty} e^{-iE_n t/\hbar}.$$

The dynamics from position x_0 to x_1 in a time t is described by the propagator

$$G(x_1, x_0; t) = \langle x_1 | e^{-iHt/\hbar} | x_0 \rangle.$$

• *a)* Derive the following relation between F(t) and the integral of the propagator for equal initial and final position:

$$\int_{-\infty}^{\infty} G(x, x; t) dx = F(t).$$

Feynman showed that the propagator $G(x_1, x_0; t)$ can be written as an integral over all paths x(t') with $x(0) = x_0$ and $x(t) = x_1$,

$$G(x_1,x_0;t) = \sqrt{\frac{m}{2\pi i\hbar t}} \int_{x(0)=x_0}^{x(t)=x_1} \mathcal{D}[x(t')] e^{iS[x(t')]/\hbar}.$$

- *b*) Explain how the path-dependent quantity S[x(t')] is related to the Hamiltonian H.
- c) Which paths contribute predominantly to the density of states ρ(E) in the limit ħ → 0?