
Exam Quantum Theory, 9 January 2017, 10–13 hours.

1. The harmonic oscillator (frequency !) has Hamiltonian

Ĥ � 1
2�!�x̂2 � p̂2�;

in terms of the (dimensionless) position and momentum operators x̂ and p̂,
with commutator �x̂; p̂� � i. In the Heisenberg representation each operator
Ô becomes time dependent according to

Ô�t� � eiĤt=�Ôe�iĤt=�; with Ô � Ô�0�:
� a) Consider an eigenstate jni of Ĥ with energy En and another eigenstate
jn0i with energy En0 . Show that

hn0jx̂�t�jni � exp
�
it�En0 � En�

�

�
hn0jx̂jni: (1)

� b) Derive the Heisenberg equations of motion

d
dt
x̂�t� �!p̂�t�; d

dt
p̂�t� � �!x̂�t�;

and derive the solution x̂�t� � x̂ cos!t � p̂ sin!t.
� c) From this solution it follows that

hn0jx̂�t�jni � 1
2e
i!tQ� � 1

2e
�i!tQ�; with Q� � hn0jx̂ � ip̂jni: (2)

Equate the two representations (1) and (2) of the matrix element to deduce
that if En0 > En, then either hn0jx̂jni � 0 or En0 � En � �!.

2. The dimensionless position and momentum operators can be written in
terms of the bosonic creation and annihilation operators ây and â (with
commutator �â; ây� � 1), as follows:

x̂ �
q

1
2�â

y � â�; p̂ �
q

1
2i�â

y � â�:
The vacuum state j0i is defined by âj0i � 0. Note that the expectation
values of x̂ and p̂ vanish in the vacuum state.

� a) Derive the minimal uncertainty relation in the vacuum state,

h0jx̂2j0ih0jp̂2j0i � 1
4 :

The N-particle Fock state jNi, normalized to hNjNi � 1, is defined by
âyâjNi � NjNi, with N � 1;2;3; : : :.

� b) Derive, starting from this definition, the recursion relation

âyjNi � �N � 1�1=2jN � 1i:
� c) Explain why the recursion relation implies that the expectation values of
x̂ and p̂ are zero in a Fock state. Then show that a Fock state is not a state
of minimal uncertainty, by deriving that

hNjx̂2jNihNjp̂2jNi � 1
4�2N � 1�2:
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3. We consider the ring-shaped conductor shown in the figure.
Electrons can enter into the ring, with wave amplitude
	in, at beam splitter 1 and they can exit the ring, with
amplitude 	out, at beam splitter 2. The beam splitters
have equal probability 1=2 for transmission and reflec-
tion. The electrons go around the ring in a clockwise
direction, at wave number k and energy E. Each arm of
the square-shaped ring has length L, so the ring has cir-
cumference 4L and area L2. A magnetic field B points
perpendicular to the ring. We study the transmission
probability T � j	outj2=j	inj2.

� a) Consider first the case of zero magnetic field. Assume that an electron go-
ing around the ring once accumulates a phase shift �. Explain how to arrive
at this semiclassical formula for the transmission probability:

T � 1
5� 4 cos�

:

� b) For � � 0 the transmission probability through the two beam splitters
equals 1, even though each beam splitter separately only transmits with
probability 1=2. How can one understand this? Explain also why for � � �
the transmission probability is much smaller than 1=2� 1=2 � 1=4.

� c) Sketch how the transmission probability depends on the magnetic field.
Try to be specific: For example, if the dependence is a monotonic decay,
indicate the values of the low-field and high-field asymptotes. Or if the
dependence is oscillatory, give the amplitude and period of the oscillation.

4. A particle of mass m moves freely along the x-axis, with Hamiltonian
H�x;p� � 1

2p
2=m and Lagrangian L�x; ẋ� � 1

2mẋ
2.

� a) Calculate the classical action Sclass �
R t2
t1 Ldt for the classical path from

point x1 at time t1 to point x2 at time t2.

� b) Calculate the quantum mechanical propagator1

G�x2; t2;x1; t1� � hx2je��i=���t2�t1�Ĥjx1i:

� c) Discuss the relation between G and Sclass in the context of Feynman’s path
integral formula.

1You may use the integral
R1
�1 eias�ibs

2ds �
q
�
ib exp

�
ia2

4b

�
.


