1. Consider the Hamiltonian of a harmonic oscillator with a time dependent frequency $\omega(t)$,

$$H(t) = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + \frac{1}{2}m\omega^2(t)x^2.$$
 (1)

- *a*) Is the Hamiltonian still a Hermitian operator? Why or why not?
- *b*) Is the commutator $[H(t_1), H(t_2)]$ of the Hamiltonian at two different times t_1 and t_2 equal to zero or not? Explain your answer with a calculation.
- *c*) A state $\psi(t)$ evolves in time according to the Schrödinger equation:

$$i\hbar \frac{d}{dt}\psi(t) = H(t)\psi(t).$$
⁽²⁾

Calculate the time derivative dE/dt of the average energy $E(t) = \langle \psi(t) | H(t) | \psi(t) \rangle$ and relate it to $\langle \psi(t) | x^2 | \psi(t) \rangle$.

2. Consider the *bosonic* creation and annihilation operators $a, b, a^{\dagger}, b^{\dagger}$. All commutators are zero, except $[a, a^{\dagger}] = [b, b^{\dagger}] = 1$. The Hamiltonian is

$$H = a^{\dagger}a + bb^{\dagger} + \gamma a^{\dagger}b^{\dagger} + \gamma ab, \qquad (3)$$

for some real constant γ . The Boboliubov transformation expresses the annihilation operators a, b in terms of new operators c, d given by

$$c = a \cosh \lambda + b^{\dagger} \sinh \lambda, \quad d = a^{\dagger} \sinh \lambda + b \cosh \lambda, \tag{4}$$

for some real constant λ .

- *a*) Check that the operators *c*, *d* and *c*[†], *d*[†] still satisfy the bosonic commutation relations.^{*}
- *b*) Chose λ such that $\tanh 2\lambda = \gamma$. Show that

$$H = \frac{1}{\cosh 2\lambda} (c^{\dagger}c + dd^{\dagger}).$$
(5)

• *c)* Explain why the spectrum of *H* consists of equidistant levels. What is the level spacing?

continued on second page

^{*}Recall the properties of the hyperbolic sines and cosines: $\cosh^2 x - \sinh^2 x = 1$, $\cosh 2x = \cosh^2 x + \sinh^2 x$, $\sinh 2x = 2 \sinh x \cosh x$.

- 3. The Hamiltonian *H* has eigenvalues E_n , n = 0, 1, 2, ..., with corresponding eigenfunctions Φ_n . The ground state Φ_0 has the lowest eigenvalue E_0 . An arbitrary wave function ψ can be expanded in the basis of eigenfunctions, $\psi = \sum_n \alpha_n \Phi_n$, with complex coefficients α_n .
- *a*) Express the inner product ⟨ψ|ψ⟩ in terms of these expansion coefficients. The variational theorem says that

$$\frac{\langle \psi | H | \psi \rangle}{\langle \psi | \psi \rangle} \ge E_0.$$

• *b)* Prove this theorem. The one-dimensional harmonic oscillator has Hamiltonian

$$H=-\frac{\hbar^2}{2m}\frac{d^2}{dx}+\frac{1}{2}m\omega^2x^2.$$

For a given parameter a > 0 we approximate the ground state wave function by

$$\Phi_a(x) \approx C \exp\left(-\frac{x^2}{2a}\right),$$

with normalization constant $C = (2\pi a)^{-1/2}$.

- *c*) Explain how you would use the variational theorem to approximate the ground state energy E_0 . (You don't have to actually carry out the calculation, just explain which steps you would take.)
- 4. A particle (charge *q*, mass *m*) in a magnetic field $\vec{B}(\vec{r}) = \nabla \times \vec{A}(\vec{r})$ has Hamiltonian

$$H = \frac{1}{2m} (\vec{p} - q\vec{A})^2, \text{ with } \vec{p} = -i\hbar\nabla.$$

• *a*) Derive the Heisenberg equation of motion for the position operator \vec{r} , to obtain an expression for the velocity operator \vec{v} .

We now investigate the effect of a gauge transformation of the vector potential, $\vec{A'}(\vec{r}) = \vec{A}(\vec{r}) + \nabla \chi(\vec{r})$, for some arbitrary function $\chi(\vec{r})$. The Hamiltonian with \vec{A} replaced by $\vec{A'}$ is denoted by H'.

• *b*) Verify that *H* and *H*′ are related by

$$H' = \exp(iq\chi/\hbar)H\exp(-iq\chi/\hbar).$$

• *c)* Explain why this relation between *H* and *H'* expresses the fact that the vector potentials \vec{A} and $\vec{A'}$ describe the same physical system.