

2 Symmetries

2.1 Inversion symmetry

a) on the one hand $\mathcal{P}[\hat{q}, \hat{p}]\mathcal{P}^{-1} = \mathcal{P}i\hbar\mathcal{P}^{-1}$ on the other hand $\mathcal{P}[\hat{q}, \hat{p}]\mathcal{P}^{-1} = [\hat{q}, \hat{p}] = i\hbar$, so $\mathcal{P}i\mathcal{P}^{-1} = i$.

b) $\mathcal{P}^2 = e^{i\phi}\hat{1}$, redefining $\mathcal{P}' = e^{-i\phi/2}\mathcal{P}$ has no effect on the inversion operation. Eigenvalues of \mathcal{P}' are ± 1 .

c) $\hat{H}\mathcal{P}|\Psi\rangle = \mathcal{P}\hat{H}|\Psi\rangle = E\mathcal{P}|\Psi\rangle$ and because the eigenstate $|\Psi\rangle$ of \hat{H} with eigenvalue E is nondegenerate the two states $\mathcal{P}|\Psi\rangle$ and $|\Psi\rangle$ must be linearly related: $\mathcal{P}|\Psi\rangle = \lambda|\Psi\rangle$ and $\mathcal{P}^2|\Psi\rangle = |\Psi\rangle = \lambda^2|\Psi\rangle$, so $\lambda = \pm 1$.

$$\langle\Psi|\hat{q}_n|\Psi\rangle = \langle\mathcal{P}\Psi|\mathcal{P}\hat{q}_n\mathcal{P}^{-1}|\mathcal{P}\Psi\rangle = -\langle\Psi|\hat{q}_n|\Psi\rangle \Rightarrow \langle\Psi|\hat{q}_n|\Psi\rangle = 0$$

2.2 Time-reversal symmetry

a) on the one hand $\mathcal{T}[\hat{q}, \hat{p}]\mathcal{T}^{-1} = \mathcal{T}i\hbar\mathcal{T}^{-1}$ on the other hand $\mathcal{T}[\hat{q}, \hat{p}]\mathcal{T}^{-1} = -[\hat{q}, \hat{p}] = -i\hbar$, so $\mathcal{T}i\mathcal{T}^{-1} = -i$.

b) $\mathcal{T}^2 = e^{i\phi}\hat{1} = \hat{U}\hat{U}^*$. Multiply with U^{-1} from the left and with U from the right, and conclude that also $\hat{U}^*U = e^{i\phi}\hat{1} = (\hat{U}\hat{U}^*)^*$. Therefore $e^{i\phi} = e^{-i\phi} \Rightarrow e^{i\phi} = \pm 1$.

$$c) \mathcal{T}^2 = \sigma_2\sigma_2^* = -1$$

d) \hat{H} remains invariant if momentum and spin are inversed.

e) $\hat{H}\mathcal{T}|\psi\rangle = \mathcal{T}\hat{H}|\psi\rangle = E\mathcal{T}|\psi\rangle$ so if the eigenstate $|\psi\rangle$ of \hat{H} with eigenvalue E is nondegenerate then the two states $\mathcal{T}|\psi\rangle$ and $|\psi\rangle$ must be linearly related:

$$|\psi\rangle = \lambda\mathcal{T}|\psi\rangle = \lambda\mathcal{T}\lambda\mathcal{T}|\psi\rangle = -|\lambda|^2|\psi\rangle \text{ — contradiction}$$

2.3 Galilean invariance

$$a) [\hat{G}, \hat{x}] = i\mathbf{v}t, [e^{i\hat{G}}, \hat{x}] = -\mathbf{v}te^{i\hat{G}} \Rightarrow e^{i\hat{G}}\hat{x}e^{-i\hat{G}} = \hat{x} - \mathbf{v}t$$

$$\text{proof: } [G^n, x] = n\mathbf{v}tG^{n-1} \Rightarrow [e^{iG}, x] = \left[\sum_{n=0}^{\infty} \frac{(iG)^n}{n!}, x \right] = (-\mathbf{v}t) \sum_{n=1}^{\infty} \frac{(iG)^{n-1}}{(n-1)!} = -\mathbf{v}te^{iG}$$

$$\text{similarly, } [\hat{G}, \hat{p}] = i\mathbf{m}\mathbf{v}, [e^{i\hat{G}}, \hat{p}] = -\mathbf{m}\mathbf{v}e^{i\hat{G}} \Rightarrow e^{i\hat{G}}\hat{p}e^{-i\hat{G}} = \hat{p} - \mathbf{m}\mathbf{v}$$

b)

$$\frac{d}{dt}\hat{G} = \frac{\partial}{\partial t}\hat{G} - \frac{i}{\hbar}[\hat{G}, \hat{H}] = -\frac{\hat{p}\nu}{\hbar} - \frac{i\nu}{2\hbar^2}[\hat{x}, \hat{p}^2] = 0.$$