
3 Fermions and bosons
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3.2 Coherent states

a)

[a,eβa†
] =βeβa† ⇒ aeβa† |0〉 =βeβa† |0〉.
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Normalization:

〈β|β〉 = e−|β|
2/2〈0|eβ∗a |β〉 = e |β|

2/2〈0|β〉 = 1.

b)

〈β|(a†)p aq |β〉 = (β∗)pβq〈β|β〉 = (β∗)pβq .

c)
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d)

〈β|x|β〉 = 2−1/2(β+β∗), 〈β|p|β〉 = 2−1/2i (β∗−β),

〈β|x2|β〉 = 1
2 (β2 +β∗2 +2ββ∗+1) ⇒〈(∆x)2〉 = 1/2,

〈β|p2|β〉 =− 1
2 (β2 +β∗2 −2ββ∗−1) ⇒〈(∆p)2〉 = 1/2.

3.3 Bogoliubov transformations

The Bogoliubov transformation is a linear transformation of the creation and annihilation
operators that preserves their commutation relation. We examine this for a pair of fermionic
creation and annihilation operators â†

α and âα, with α=± labeling spin and/or momentum.
The commutation relations are

âαâα′ + âα′ âα = 0 and âαâ†
α′ + â†

α′ âα = δαα′ 1̂.

Consider the linear transformation

b̂α = uαâα− vαâ†
−α,

with real coefficients uα and vα.

a)

b̂†
α = uαâ†

α− vαâ−α.

b)

{b̂αb̂α′} = {uαâ†
α− vαâ−α,uα′ â†

α′ − vα′ â−α′} =−uαv−α− vαu−α = 0,

{b̂αb̂†
α′} = {uαâ†

α− vαâ−α,uα′ âα′ − vα′ â†
−α′} = δαα′(u2

α+ v2
α) = δαα′ .
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c)

b̂+ = uâ+− v â†
−, b̂− = uâ−+ v â†

+,⇒ a+ = ub++ vb†
−, a− = ub−− vb†

+.

d) the terms ∝∆ create or annihilate a pair of electrons.

e)

Ĥ = ξ[(ub†
++ vb−)(ub++ vb†

−)+ (ub†
−− vb+)(ub−− vb†

+)]+
+∆[(ub†

++ vb−)(ub†
−− vb+)+ (ub−− vb†

+)(ub++ vb†
−)]

= [ξ(u2 − v2)−2∆uv](b†
+b++b†

−b−)

+ [2ξuv +∆(u2 − v2)](b†
+b†

−+b−b+).

for the special choice of u, v one has

4u2v2 = ∆2

ξ2 +∆2
, u2 − v2 = ξ√

ξ2 +∆2
.

Choose uv < 0, then 2ξuv +∆(u2 − v2) = 0 and

Ĥ = (ξ2 +∆2)1/2 (b†
+b++b†

−b−).

There is an excitation gap ∆.

3.4 Majorana fermions

Following Kitaev, consider spin-polarized fermions on a chain of N sites with Hamiltonian

Ĥ =
N−1∑
j=1

[
t (â†

j â j+1 + â†
j+1â j )+∆(â j â j+1 + â†

j+1â†
j )

]
−µ

N∑
j=1

â†
j â j ,

where t is the hopping amplitude between neighbouring sites, µ is the chemical potential,
and ∆ is the pair potential.

We make the transformation

γ2 j−1 = a j +a†
j and γ2 j =−i (a j −a†

j ).

indicated in the figure. The γ operators are called “Majorana operators” and the quasipar-
ticles they represent are called “Majorana fermions”.

a) γ†
n = γn ; creation = annihilation
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b) {γn ,γm} = 2δnm , γ2
n = 1.

c)

Ĥ = 2i
N−1∑
j=1

[
(∆+ t )γ2 j−1γ2 j+2 + (∆− t )γ2 jγ2 j+1

]−2iµ
N∑

j=1
γ2 j−1γ2 j −2Nµ.

d) When ∆=−t > 0, µ= 0 one has Ĥ = 4i∆
∑N−1

j=1 γ2 jγ2 j+1. The operators γ1 and γ2N do not
appear, corresponding to the fermion operator b = γ1 + iγ2N , split over the two end points
of the chain.
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