

6 Time-dependent quantum systems

6.1 Adiabatic and sudden approximations

a) initially, $E_i = (\hbar\pi/L)^2/2m$, $\psi_i = (2/L)^{1/2} \sin(\pi x/L)$;
 finally, $E_f = (\hbar\pi/2L)^2/2m$, $\psi_f = (1/L)^{1/2} \sin(\pi x/2L)$; amount of work done is $E_f - E_i = -\frac{3}{4}(\hbar\pi/L)^2/2m$.

b) energy separation between ground state and first excited state is $\delta E(t) = (3/2m)[\hbar\pi/L(t)]^2$ and we need $\hbar|d\delta E/dt| \ll (\delta E)^2$, so $dL/dt \ll \hbar/mL$; so the barrier will have to slow down as L becomes larger

$$c) |\langle \psi_i | \psi_f \rangle|^2 = \frac{32}{9\pi^2} = 0.36$$

d) when the barrier is moved inwards ψ_i is no longer contained within the allowed region.

6.2 Berry phase in graphene

a) $H^2 = v^2(p_x^2 + p_y^2)$ times the unit matrix, so the eigenvalues $E = \pm v\sqrt{p_x^2 + p_y^2}$; this is the same energy-momentum relation as (massless) photons, with $v \mapsto c = 3 \cdot 10^8$ m/s.

b) note that $e^{i\phi} = (p_x + i p_y)(p_x^2 + p_y^2)^{-1/2}$,

$$H\psi = \frac{v}{\sqrt{2}} e^{i\mathbf{p} \cdot \mathbf{r}/\hbar} \frac{p_x + i p_y}{\sqrt{p_x^2 + p_y^2}} \left(\frac{\pm(p_x - i p_y)}{(p_x^2 + p_y^2)^{1/2}} \right)$$

take $E = \pm v\sqrt{p_x^2 + p_y^2}$, then $H\psi = E\psi$; so + sign for $E > 0$ (conduction band) and - sign for $E < 0$ (valence band).

c)

$$\gamma_B = \frac{i}{2} \oint dt \left(1 \pm e^{-i\phi} \right) e^{-i\mathbf{p} \cdot \mathbf{r}} \frac{d}{dt} \left(\frac{1}{\pm e^{i\phi}} \right) e^{i\mathbf{p} \cdot \mathbf{r}} = \frac{i}{2} \oint dt \left(i \frac{d}{dt} \phi + 2i \frac{d}{dt} \mathbf{p} \cdot \mathbf{r} \right) = -\pi = \pi \bmod 2\pi.$$

d) The two turning points contribute a phase shift $\gamma = -\pi$, the Berry phase from the rotating pseudospin contributes π , so the total phase shift vanishes.

e)

$$\pi l_c^2 B = \frac{\pi p_{\text{mech}}^2}{Be^2} = \frac{\pi E^2}{Be^2 v^2} = nh/e \Rightarrow E_n = \pm v\sqrt{2nB\hbar e}$$

*) the equation of motion for the Lorentz force $\mathbf{F} = e\mathbf{v} \times \mathbf{B}$ *perpendicular* to the mechanical momentum \mathbf{P} is

$$\frac{d}{dt}\mathbf{v} = \frac{e\mathbf{v}}{P}\mathbf{v} \times \mathbf{B}, \quad \frac{d}{dt}\mathbf{P} = e\mathbf{v} \times \mathbf{B}$$

both $v = |\mathbf{v}|$ and $P = |\mathbf{P}|$ are constant; these are the same equations of motion as those of a normal electron, so the same cyclotron motion. If the force would be *parallel* to the momentum then we would have had $d\mathbf{v}/dt = 0$, which gives rise to an entirely different motion in an electric field (see next exercise).

6.3 Klein tunneling

a) An energy boost $E \mapsto E + E_0$ is equivalent to a shift in coordinate $x \mapsto x + E_0/F$, so it has no effect on the transmission probability from $x = -\infty$ to $x = +\infty$.

b) $x \mapsto i\hbar\partial/\partial p_x$

c) eigenvalues of H are $E_{\pm} = \pm(v/F)\sqrt{t^2 + p_y^2}$; gap of $\delta E = 2|p_y|v/F$ at $t = 0$; the electron starts at $x = -\infty$ where $V(x) \rightarrow \infty$, so it starts in E_+ ; transmission means that it ends up at $x = \infty$ where $V(x) \rightarrow -\infty$, so it ends up in E_- ; the transition from E_+ to E_- is a nonadiabatic Zener transition.

d)

$$T = e^{-2\pi\Gamma}, \quad \Gamma = \frac{(\delta E/2)^2}{\left| \hbar \frac{\partial}{\partial t} (E_+ - E_-) \right|_{t=\pm\infty}} = (p_y v/F)^2 (2\hbar v/F)^{-1} = \frac{1}{2} p_y^2 v / \hbar F$$