
7 Path integrals

7.1 Lagrangian

a) L = 1
2 mq̇2 −V , ⇒ p = ∂L/∂q̇ = mq̇ , ⇒ q̇p −L = p2/2m +V = H .

b) Hamilton: ṗ =−∂V /∂q , q̇ = p/m; Euler-Lagrange:

d

d t
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∂q̇
− ∂L

∂q
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d

d t
q̇ + ∂V

∂q
= ṗ + ∂V

∂q
= 0.

c) expansion to first order in δq , partial integration, then substitute the equations of mo-
tion.

7.2 Quantum propagator

a)

iħ ∂

∂t
|ψ(t )〉 = H |ψ(0)〉⇒ |ψ(t )〉 = e−i H t/ħ|ψ(0)〉

⇒ 〈q |ψ(t )〉 = 〈q|e−i H t/ħ|ψ(0)〉 =
∫

d q ′ 〈q|e−i H t/ħ|q ′〉〈q ′|ψ(0)〉. ()

b)

G(q, q ′, t ) = 〈q |e−i H t/ħ|q ′〉 =∑
n
〈q|e−i H t/ħ|ψn〉〈ψn ||q ′〉 =∑

n
e−i En t/ħ〈q|ψn〉〈q ′|ψn〉∗.

c)

G(q, q ′, t ) = 1

2πħ
∫ ∞

−∞
d p e−i p2t/2mħe i p(q−q ′)/ħ =

√
m

2πiħt
exp

(
i m(q −q ′)2

2ħt

)
.

7.3 Feynman’s formula

a) factorize the exponent (making errors of higher than first order in δt ), insert the resolu-
tion of the identity for p, p ′, q ′, finally use the integral formula from exercise c

b) to prove the propagator identity, use
∫

d q|q〉〈q | = 1̂; substituting the infinitesimal-time
propagator, and retaining only the exponential factor, gives

∫
d q1

∫
d q2 · · ·

∫
d qN e i S[q(t )],

with q(t ) the path that goes from q to qN to qN−1,. . . , to q2 to q1 to q ′, in time steps of
del t at . The multiple integral in the limit N →∞ becomes a path integral.





7.4 Stationary phase approximation

a) ∫ 1

0
e i nπt−i x sinπt d t ≈

∫ 1

0
e i nπ/2−i x+i x(π2/2)(t−1/2)2

d t ≈
∫ ∞

−∞
e i nπ/2−i x+i x(π2/2)y2

d y

=
√

2i

πx
e i nπ/2−i x =

√
2

πx
e i nπ/2+iπ/4−i x . ()

The plot compares J2(x) and the large-x approximation.
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b)
∫ q

q0
p(q ′)d q ′−ET = ∫ T

0 pq̇ ′d t −ET = ∫ T
0 (pq̇ ′−H)d t = ∫ T

0 L(q ′, q̇ ′)d t = S[qclas(t )]

c) The action is extremal along the classical path, so the stationary phase approximation
expands around that path.


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