7 Path integrals

7.1 Lagrangian

a)L=3mg*-V, = p=0LIdG=mq, = qp—L=p?/2m+V = H.

b) Hamilton: p =-0V/dq, g = p/ m; Euler-Lagrange:
doL oL d ., ov  dV

= —= —=0.
dtog oq ai?Tag P ag

¢) expansion to first order in g, partial integration, then substitute the equations of mo-
tion.

7.2 Quantum propagator
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7.3 Feynman'’s formula

a) factorize the exponent (making errors of higher than first order in 61¢), insert the resolu-
tion of the identity for p, p’, ¢/, finally use the integral formula from exercise 2¢

b) to prove the propagator identity, use [ dql|g){q| = 1; substituting the infinitesimal-time
propagator, and retaining only the exponential factor, gives [dq; [dq.--- [ dqy e’V
with ¢(f) the path that goes from ¢g to gy to gn-1,..., to g2 to ¢; to ¢, in time steps of
deltat. The multiple integral in the limit N — oo becomes a path integral.



7.4 Stationary phase approximation
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The plot compares J»(x) and the large-x approximation.
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b) [} p@hdq —ET = [y pg'dt—ET = [} (pg' = H)dt = [ L(q',¢")dt = Slqeias(D)]

¢) The action is extremal along the classical path, so the stationary phase approximation
expands around that path.
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