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DUALS

by

Yvette Amice

Notations.

3 . ing of
by Qp the field of p-adic numbers, Zp its ring

We denote
a
integers, F_ = 2/pZ its residue field. The absolute value |x| an
’
P
= = 1. Then €
valuation vp(x) are normalised by lpl = 1/p and vp(p) o

rovided with the
is the completion of the algebraic closure of Qp, P

only absolute value and valuation inducing those given on Qp, Dp

In

0 My

i i ideal of €_.
and1r$ denote the valuation ring and valuation ide o

i cKcc
general, K will denote a p-adic field, that is Qp SKc €

. . : : d
and k (or 0,77 and k) are the valuation ring, valuation ideal an

residue field of K.

pen disk (resp. closed disk) of radius r containing a,

The o )
a byD(a,r ) (resp.

{x € X | |x-a| < r} (resp. {x €K | |x-a] < r}) is denote

D(a If D is a dis A (o) on D.
( x)) X, (D) is the ring of analytlc functions
’ .

Introduction.

i " in p-adic
Among the meanings which could be given to "duals" in p-adl

analysis, we will choose two:
= lim G where
(i) dual group: let G be a profinite group, say G lim s

’ = .cont, (G,C ) as the group
o ) (
the G are finite and define G( Hom

P! £ (o] i i iv (o) € . Then
orphisms from G to the multlpllcatl e group

we call it the

of continuous m

G* . is the p-adic dual group of G. when p is fixed,
(p)

. *
dual of G, and denote it by G .




(ii) dual space: Let E be a topological vector space on a p-adic
field K, the space E' of continuous K-linear maps from E to K is
the dual space of E. If y € E' and x € E, we denote the value of u
at x by u(x) or (p[x). In the case when E is a normed space, E'

is provided with its natural norm ||u]| = TTp ]u(x)|.
x| 1«1

Examples.

*

(a) Let G = Zp, then the map 6 + 6(1) from Z_ to C; is an isomor-
e * *

phism of Zp onto 1 +ﬁwp. If ZP is provided with the metric it

receives from C(Zb,K) (with uniform convergence norm), then

6 > 8(1) is isometric.

(b) Take G = 2 = lim #/NZ, with the obvious morphisms when MIN. Then,

=
for a given p, 2~ 2_ x 1 2_,. Here, the map 8 -+ 0(1) from @
- P 14 (p)
* P 7P
to Cp is an isometric isomorphism onto Tp = {x € Cp | Ix] = 1}.
(c) Let cO(K) = {a = (an)neN | a, € K, [anl > 0 when n > «}, with
the norm ||a|| = Max |an]. The dual space is the space b(K) =
{b = ) en | b € K, and Max |bn] < +»} of bounded sequences, with

the maximum norm.
: d
(d) Every time when G ~ Zp x H, where H has a finite p-component (H

is supposed to be profinite and, if H = lim H

o the p-component of
b

H is the limit of the p-components of the H ), then G ~ (1 +Dlp)d x H
where H® is discrete. As (1 +n?p)d is a polydisk Izi—ll <1, i=1,...,d
of Cg, it will make sense to speak of analytic functions on G

As G* is contained in the space C(G,Cp) of continuous functions
on G (with the uniform convergence norm), the dual space of C(G,Cp)
is also a space of functions on the dual group G*. More generally,
if F is a subspace of C(G,Cp), its dual space F' is a space of

‘ * ; ;
functions on G° N F. Our purpose here is to give characterizations

L " viewed
of such F' (dual spaces of "natural" subspaces of(ﬂ@,cp),

*
as spaces of functions on (part of) G . For a general study of

dual groups, see for instance [9]; another useful viewpoint for

the description of dual spaces is developped in [3].

Most of the techniques explained here have been used without

proof in [4], and were built by the authors of [4] at that time.

It seems that untill now, there still do not exist exposition of

this kind of techniques. In 3.2 we show a new application.

1. Measures, distributions.

To avoid the heavy notations which would be necessary to

i a
express the following notions and results in the general case of

profinite group (as in example (d) of introduction) we will give

i = . It is very easy to gene-
most statements in the case when G Zp Yy

i d d « H, using tensor
ralize the results first to ZP and then to zp ¥ g

products to get several variables (as in [1], chap.3, for instance).

1.1 Basic example. [2].

Let E = C(2_,K) be the space of continuous functions on Zp with
K p

values in the field K, provided with the maximum norm, its dual space

E' is called the space of measures on zp. As the space generated by
K ==S2oc e

i i in C(z_,K), one
the characteristic functions of clopen sets is dense in C( ek

sees that to give a measure is to give an additive and bounded func-

@
tion on the set of characteristic functions of clopen sets. If p 1s

% is bounded
a measure, let W, = (u\(n)), then the sequence (un)n€N i

and the map u ~> (W) e is an isometric isomorphism of Ek onto b(K).
n’ nl

*
If K = €_, then we write EK = E, in this case, Zp C E. Let 3]
P

* ‘ ;
be any p-adic character of zp (i.e. 6 € zp) then, uniformly with




respect to x € Zb one has: 6(x) = I (9(1)—1)n(:). Hence, if y € E',
n>0

(ule) = z pn(e(l)-l)n. This shows that the space of restrictieons

n>0

to z2_ of aéasures on zp

is the space of bounded analytic functions

To define a measure uEE, 1t 48 enough to give its values on

the locally constant functions: in terms of functions on the dual
rou Z*
group b

that means that a bounded analytic function is known when

you know its values on the torsion subgroup of Z*.

A study of properties of these analytic functions in relation

with local properties of the corresponding measures is given in [6]

by D. BARSKY.

1.2 Distributions.
SR SOUtIons

Let G be profinite, G = 1im (Ga)' with Ga finite, and let
<
Loc.cst. (G,K) denote the space of locally constant functions on G
with values in K. Any K-linear map on Loc.cst. (G,K) is called a

distribution on G. As Loc.cst. (G,K) is dense in C(G,K), a distri-

bution which is a bounded linear map can be uniquely continued to

C(G,K) as a measure. Let Dist(G,0) denote the 7 -module of distri-

butions on G with values in the ring @, then one can (easily) prove

(see for instance [12]):

PROPOSITION 1.2.Dist(G,0) = 0[G] = 1im Ole 1.
Pl o

n
In this case when G = zp, as @ [3/p"2] = 0[x1/%® -1, one gets

a[zp] =000x-1)]1]. If 9 is the valuation ring of cp, then

Dist(Zp,Q) is exactly the unit ball of E' and the distributions with

values in @ are nothing but measures with norm smaller than 1. On

the contrary, distributions with values in an unbounded ring, like

ictly bigger space.
14, are not measures put a strictly
ic field, ) ' | 5
Sl i z (which is n
j1-known "Haar measure on o
For instance the we g p-n .
d here), defined by u( b
i he sense developpe
a measure 1n the o p-n)' T
haracteristic function of the dis i
1 is the cha
D

tribution on Zp.

1.3 Tempered distributions.

Let F be any S ubspace of Ec.i containing the locally constant
et b Y 3% 1
unctions. Then the e ements of the dual space of ¥ define distri-
fun 1
butions on 2z . In other words, a d (20 tion 1 the restriction to
h ' is ibu s tr
n

P

* of i on 7.
jon subgroup of Zp of any function o
the tors S y
i C(z ,X), the space
We will now look at a special subspace of el
) .
i call that a function
) of locally analytic functions. We recal
K Q@ ____.-——-.—____—.———_______————- '
LA(ZP’ i every a € Z_ there exists
% is said locally analytic if, for 5
f on Z ' N
’ jcti D is equal to
k D 3 a such that the restriction of f to D
a dis
a

K)
. h>O,LA(%'r
. ; n (x-a). For = h'p
t entire series 1

sum of a convergen

-h, .
icti disk D(a,p ) is
the space of f whose restriction to each
denotes e

strictly analytic on this disk. As a direct sum of spaces of restric-

h p
T
d series A,

£h = — LA inuous
i i L are contin
t LA U LA] The natural imbeddings A 1
1at . )
h

imi . The space LA
is provided with its (direct) limit topology
and LA is

*
ins the dual group Z_. .
i ? - 1 a (¥, then £ € LA if
= G
n>0

(a_)/n) > 0. Moreover, if
n

one knows [1] that, if f € E, £(x)

and only if lim (v

hy, th (f) = p
w8y = Igf (via) - v([n/p71t)), then By

=w, {£)
defines a

i atural one.
(o} whi i i with the n
norm on LA , hich coincides

of the polynomials,

Hence i:f i rm on the space
i U is a linear fo P
’

t to the topology

i c
X i tinuous with respe
= then p is con
let u_ = (| (),




induced on the polynomials by LA if and only if, for all sequences
(an) satisfying lim (v(an)/n) > 0, the series I M a converges. That
means that the dual space LA' of LA is the space of the p such that
the series I unTn converges for |T| < 1. In particular applying such

U to elements of the dual group Z;, which generate a dense subspace

of LA, one gets the:

THEOREM 1.3, Let us call tempered distributions the elements of

LA'(ZP,K). The space of restrictions Eg_zg of tempered

distributions gg'zp is the space of analytic functions

on 2*.
P

In the following we will make use of these notations: if

MEILA' and € 2" one has u(8) = ([6) = I u (6(1)-1)". we
P n
- n>0
denote by u(X) = I un(X—l) the Taylor series associated to u as

n>0

well, if useful, as the function analytic on D(1,17) which it defines.

This amounts to an identification of LA' with a ring of formal series

converging in a disk of radius 1 and with the ring A(D(1,17)).

In the next section we show the correspondence between some
spaces of continuous functions (lying between C(Zb,cp) and LA(Zb,Gp))

and their duals which appear as spaces of analytic functions on #

’

with growth condition "on the boundary".

2. Growth conditions.

2.1 Lipschitz conditions of order k, space Lipk (see D. BARSKY [5])

If £ € E, and m € zp - {0}, 1let
f(x+m1)-f(x)

A (£)(x) = ———— | ang,

o !

e
) (£) (x)-
e N e 18 L
z -{oh , A TGS T
if (ml,mz,...,mk) e ( o m m, n
is taken on
= Inf (v(4 (£) (x)) where the Inf is
penote by wk(f) = In ml,.‘.'mk
k
z x (z -{0D)".
the set of (x,ml,...,mk) € : s

. } ( g 1
DEF INITION We call Lip. 2 _,K) the set of if belongin to E for wh ch

NG ) provided with the norm
k Y s e [

-w, (f)

i is a Banach space.
Nk(f) = ' LlPk is & BPa o A —

We say that the functions f belonging to Lip satisfy a LlPSCh.LtZ
k

condition of order k.

A . ly
i i es continuous
ON (bis). The function f is said to be k tim
DEFINITI s ..thas
i i iy if 1
and uniformly differentiable if and only
differentiable - —— —=% — — ——
anc W 1

(k)
i i and
a continuous k-th derivative f
a ol 2=

(E)(x) = f(k)(x), uniformly with respect
A

o 5 =
i . ,...,mk) + 0. The space Cu

B G B e,

£ Eip.s
£ those functions is a closed subspace O Py
° ._____.___._,____.———-———_——

i . £
i n in terms O
of E_, have a nice characterizatio
These subspaces K

i ky [5].
interpolating series, due to D. BARS

= a = (v( )-L(n, ))
z ) € E_, then w (.£) Inf N a n

THEOREM 2.1 Lot £(x) . , v s Y

n>0 0<xr<k,n>r

1}
4...4n_ < n, n; . >
where L(n,r) = Max{(v(n1)+...

+vn)) | my LR RO

i i L(n,xr):
One can prove the following properties of

) i i)-L(n,j-1)) = *+°.
(i) for any fixed J. llmn++m(L(n,j)

j for all n,
(ii) for any fixed j, there exists H(j) such that,

|L(n,3)-L, 1| < HG) -

~L(n,1) ol

st obvious that 1 < np <

Moreover, it is almo




=gt
THEOREM 2.1 bis. Let f(x) = I an(i) € E ., then f € Cék) if and only
n>0
if v(an) - L(n,k) > +® when n » +w,

Together with the above properties of the function L(n,r), these
two theorems give the following characterizations.
COROLLARY 2.1.1 Let f(x) = ¥ an(i) € By, then £ € Lip, if and only
n>0
; - = k
EEAMk(t) = Max(gaol, Mix (n fan|)) -+ 4, and Mk(f)
defines gg_Lipk a norm equivalent to Nk'
& x () -
COROLLARY 2.1.2 Let f(x) = [ an(n) € E s then f € Cu if and only

k n>0
i_fn Ianl "OEn»w»_

Remarks. It is clear that, for k >0, E

k)

Moreover, if Loc.pol.( denotes the space of those functions which

: (k) :
x 2Lip2 C 7 2 LiP 14y, 2 LA

are locally polynomials of degree at most k, then Loc.pol(k) < Cik)

() X)

and Loc.pol. is dense in Cé :

2.2 Growth conditions on the boundary of an open disk.

The inclusions noticed in the above remarks show that the dual
P k ;
spaces of Llpk and Cé ) lie between the space of all analytic functions
*
on the dual Zp and the space of bounded analytic functions. We will now

show that those spaces are defined by growth conditions in the following

sense.

We recall that, if F € A(D(l,l—), for 0 < r <1, one defines
M(F,r) = Max(]F(x)| | fx—l' < E; XE Cp). One knows that M(F,r) is a
continuous non-decreasing function of r. If F(X) =1 an(x—l)n is the
Taylor series of F at X = 1y ' M(Fgx) = MaxniO |an|rn.

Notation. Let F and G € A(D(1,17), we write F = 0(G) (resp. F = 0(G))
whenever M(F,r) = O(M(G,r)) (resp. M(F,r) = 0(M(G,r))) as

.= 1.

1£ F = 0(G) and G = O(F) we say that F and G have the same growth
on the boundary of the disk D(l,lu). For instance, two bounded nén—
zero functions (analytic, of course) have the same growth. If P 1s a :
olynomial, Log (X) and Log(P(x)) have the same growth. One must remar
ihat these conditions do not have the same meaning as in, say, real
0(G), F need not be zero at the zeroes of G

analysis: here, if B =

o
"rending to the boundary of the disk.

n

= a (X-1) , then,
Examples. Let F(X) nzp 3
F = 0(Log) «=* n'lwanl bounded;

-1 i
- F =0(Log) < n ‘an‘ - 0;
F = O(Logk) = n#k\an‘ bounded;

-k
- F = O(Logk) < n lanl + 0. )
" in the disk D(1,1 ).

inate
One can easily see that a "change of coordin

= 1 and |b—1t < 1, can change the

that is a transformation X - aX+b with |a|

functions M(F,r for r b-1 pbut not for r -1|.This shows that the notions O and
( ) i | \ ’ 2 lb l
?

0 as def d al * o )
efined above make sense for analytic functions on Z (for instance
ot

(for

*
inate on 2
and do not depend on the choice we have made of a coordina o

*
- . A
instance, if at Z and la‘ = 1, 0> 6(a) is another coordinate on % , as
r
b p

4 1
v i i Wi and the group D1l but the
it gives another 1somorphlsm between 2 d ’

i tions on 2+ which one
notions of growth conditions for analytic func b

can derive from this choice do not depend on a).

2.1.2 and the

Now, if one put together the corollaries 2.1.1,
’

examples given above, one gets the:

THEOREM 2.2 Let p € LA', then, for k > 1:
k
0 (Log )

TS (Lipk)' if and only if u
k
0(Log ) -

]

u € (C(k))' if and only if u
i ir anc on-y
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This result was a fundamental tool in the constructions of [4]s

2.3 Operators.

In this section we show the transposed operators on the dual

spaces of some natural operators on the considered spaces.

2.3.1 Derivative in A(Z;)

Let D = Xgi-be the natural invariant derivation in A(ZE), and
let D* be the transposed operator on LA. By definition D* is such
that, if f € LA, D¥f is the function such that, for all y € La',

* *
(Du]£) = (u|D*F). Then D*£(t) = tf(t).

The proof is a plain calculation: if B = (u'(i)h (Du!(g)) =

t

& t
nu_ o+ (n+1)u(n+1). So, (Dul(n)) = (u]n(n}+(n+1)( b

t
) = e,

Hence, if f£(t) = & an(ﬁ), D¥E(t) = tf(t).

n>0
One can as well view D as an operator on the subspaces O(Logk),

k
0(Log") or O(1), so that D is then an operator on Lipk, Cék) or EK

2.3.2 Derivative in LA.

Let 4 = g? be the derivative with respect to t € Zp, this is a
continuous linear operator on LA(ZP,K). The transposed operator a*
on A(Z;) = 1A' is a*((X)) = Log X.u(x).

The proof of this last relation is easy: let 6 € 2*, then

P
d(0) (t) = Log d(8) = Log(6(1))8, so for 0 € Z;, d*u(e) o BT

2.3.3 Multiplying by a function on Zp.

Let g € LA, Mg be the operator on LA "multiplication by g", and
*
Mg the transposed operators on LA'. One can give an abstract charac-
terization of this class of operators on LA'. At least, we know yet

that the derivative D isone of them, as D = Mt' Another important

=] 4=

(W) (X) = u(ax).
a

T - *
i ) then M
- is when g t a with a € D(

case i (t) 1 v 1

4 convolution of tEmPGIEd distributions.
3
2

tion has a natural structure

istribu
The space LA' of tempered dis

53 ebra, as a rin of functions on z_ . Another natural way to
5 :
of alg b ’ g
5 & ] v i
ulti ply elements of LA' 1s the convolution: let ¢ and € LA
m
t u inear on LA = ( ’ ’
e e | as C inu map on
i L] a con ous a
defin v ® LA LA(Z) then

Y I i ’
/ finition u * V is the element of LA such that, or
py de t t f € LA

* .
i = € 2_ this
(n &V l f(x+y)) . When applied to f ] 5

(u %V | £) = -
the convolutio
gives (u * Vv l 8) = (u ‘ 8) (v \ 6) so that
process
‘ i he
1 product in t
i i rresponds to the usua
of distributions on Z, corresp

*
algebra A(Z)).
- : i ith u" has a
"convolution with u
i i &LA', the operator "cO
Given a fixed u 3

Log X the transposed

i if p(X) =
transposed operator on LA. For instance 11 U
E

al example is
tor is d as we have seen in 2.3.2. Another usus
coperat e
na€2) the transposed operator of th
P

when = § (Dirac measure 1
wh u

i lation £(t) - £(t+a).
convolution by Ga is the trans

2.3.5 Restriction.

E defined
R _ the operator on
Let U be a clopen subset of zp and g

by R f(e) = £ i T . : g
U (t) (t) iIfFE €U and 0 if t Q U. This is a specxal case of
e u ip S i i ion of U.
2.3.3 where one m ltiplies by the characterlstlc functi As

i mbinations of
i i i of @ are linear cO
characteristic functions of disks b
i le n, the
i i t of 1 for a suitab
3 where a is a p -th roo
functions 9k

a osed ope i ion of operators (X) (aX) .
ol rator is a linear combination P
transp M > U

i then one shows
is the set of untis of Zp,

For instance, if U = Zp—pzp

easily that

Ioou(Ex).
gP=1

RU(u)(x) = u(x) - (1/p)




wl B
2.4 Moments.
Let F € LA' and write cn(F) = (F[tn). As F is entirely defined
by the sequence bn(F) = (Ff(;)L it is clear that F is also defined
by the sequence cn(F). We call the sequence (cn(F)): the sequence

of the moments of F.
A natural "problem of the moments" is then, given a sequence

(cn), to know whether it is the sequence of the moments of some F

in LA'. The following lemma gives an answer.

LEMMA 2.4 Let F € LA' and G B (F!tn) be the sequence of its moments.
Then if G(T) = £ ¢ (T"/n!), G(T) = F(exp T - 1).
n>0

The proof is almost formal. From the formal identity

exp(XT) = % (XnTn/nl) = I (X)(exp T—l)k, one can derive that,
k
n>0 k>0
for any t € Cp such that v(t) > 1/p-1, and uniformly with respect to
x. € Zp, expi(xt) = I (xntn)/nl = I (X)(exp t4)k
n>0 k>0
to both sides, for a fixed t, one gets

Then applying F

z cn tn/n! = I b, (exp t—l)k

" , which proves the lemma.

n>0 k>0
Of course, one can get as corollaries of this lemma necessary
and sufficient conditions for a sequence € to be the sequence of
the moments of an F in (Lipk)’, or in (Cék))', or of a measure.

In the case of a measure, that gives a slightly different description

equivalent to the one given in [15] §4.2.

3. Bpplications.

In most applications, which are arithmetical, the arithmetical
background is quite heavy and would make another paper necessary.
That is the reason why we give here only an abstract of two

applications for which references exist.

%

z and H is finite. Then G
: »> 1+

6 : G q L

p#2,a=41ifp=

-13-

cke series. Yu.I. MANIN [13]

1 The p-adic L-series associated to He

and [14],Y. BAMICE and J. veLu [4].

is the group of units of

X
X
= where #
In this example, G Zp x H 5

= is finite. Let
=D(1,1 ) % Hl' where H1 is

i = p if
# be the natural projection, (where, as usual, q

f a
2) and let X be a character of G, of order

i " § ;
of Then one wants to build a L-function as a function on
power jo s |
the dual group G, taking pre—assigned values b k' on the pOlIltS
Xr
| | = . w; here oes thro 11 characters of order a p-
ek, k O e g Wi X g hr ugh a
X
2
i ite easy to see that the uniqueness of su
power. It is q\llt £ ch a |
function w e ion to be 0(LOg ’
ti ill be insur if one asks the function
d [e} (L '
o ong to 1p exr e exi ence roblem 1s
t (Li )% a xistence p
that is t belon 1 Aft that tt
solved by inter (o] 0. t i i stranger to
i i hich are complete
i lation echnigues W Y g

this paper.

3.2 Bernoulli distribution.

k
o s Eranaiff
11y define F(t,X) = = = " 7}
One can formally T i
i i defines
is a function on %, periodic with period N, one de .
e (N)
N-1 (a+x) t 1 X*a ey = 1 B x) L
D Sl ofa 52 Ly rawERir@ = DB 0 g
S & a=0 >
a=

Now £ Q, w = + <x> with Lx € 2 and <x € [O ’ 1[ , then
€ rite xX X <x> ] <x>
, 1L X ’

i i e [12]):
one can prove the following relation (see for instanc

for x € 9/%.

= 25) = B, (<Nx>),
Nk z Bk(<x+N>) "

a mod N
k=15 (%5) defines
PROPOSITION 3.1. B MAZUR. For each fixed k,x > N Bk( N

P ¥ i ily of
on the projective system Z/NZ a compatible family

on the

i i tion E
distributions, hence also E_dlstrlbu X
distributions, 1= == “———

1imit Z (see introduction, example (b)) .




S

Let f be a functi
on of period N on 2, 4
h » denote also by f the

correspondi
3ol ing locally constant function on %, and b
’ y fN the function

£ (N)
[ E) (Ek | £

on Z/N2, then B
K £

1
(E, | =

N

If f takes its

: values in a p-adic field (for instance, if it

akes algebraic values which can be imbedded in a p-adic fi

a Dirichlet character does) .
n_,

Bk,f = lim -

i K
I{a .
Fode Ja'), where the limit is plaaiie

PROPOSITION 3.2
.2 Le 31
et Ek be the distribution on z defined by the f
Let B be the dis on 2, defined by the famil

(o™
i )
= . Then Zfor k > L <
X _— _1, Lk_D(EO) _a_IE
By (8l = (Log 2)/:-1
For k > 0, E, belongs to ’C(k))'
k ol (&, .

Proof: According to lemma 2.4

(fotr =
+ 1T there exists an F € La' and such

(F) = ( = L0 n > Cr Nl =L = .
) 7.
i ’ = O (X) (F) / (
that c_(F = E 1 = B r n then G(X c (F)X"/n! F exp X-1
Hence here uecessarlly, G(X}) =IB X' /n! = X/e -1 and F(X) = Log X X‘l.)
This expression shows that F € C( ‘/) and the relation E, = D' (E ils
( ’ p 0
S )
an easy con €quence of 2.3.1 together

with the classical
ex i f
the polynomial Bk(X) by R

means of the numbers B
n

From her ne can g e a n Y
’ n
iv ter f a a t
e, o V n .1 erpretation of m, n lassic resu
atio na. c e s
COIlCEIIIng L-function in terms of v ues
S, ter £ alues of temper 34
ered dist ibutions

As an
example, one can get the following

PROPOSITION S&3 let c € ¢ be sucr that (c 1 and def ne
P)
Gy 1 ’

x € z/Nz Vi [y *
NZ, =7 (x) by £ = g™
ke ™) BY B ) =B (x)-ckE(N)(c-lx)
Let M, be tn i ‘
M € the (tempered) distribution on 2 defi
ined
by the family of the £V : 5
@ ramily of the E for N = %
e : 1,c fox = p , then
R B

)8, ,,/k+1 and My (X) = (1/X-1)=(e/xC-1)

so that
22 Zat My 1s 3 peasuze.

~]5%

if x is a Dirichlet character with conductor
£-1 ac

In an analogous way,
£-1

I x(a)
a=0

a

B
£

xF-1

is the

X (ac) , then FX

let F_(X) . ;
£, le X) = = T
X £ a=0 £

distribution "corresponding" to the L function of the character X

is the usual "correc-

L1

L (1-n ,where L
] Mgt E P

in the sense that (EX]

ted" L-function, described in [11],[10] for instance. other functions,

as described in [7] and [8] for instance, can be interpreted in terms of

tempered distributions.
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