-134-

KRASNER'S ANALYTIC FUNCTIONS AND RIGID ANALYTIC SPACES

by

Yasuo Morita

At present, we have two general theories of analytic functions
over a non-trivial non-archimedean field. One is Krasner's theory
of analytic functions and the other is Tate's theory of rigid
analytic spaces. The main purpose of this paper is to study the
relation between them.

§1 is a preparation from Krasner's theory. The main results
will be given in §2.

We shall show that (1) if k is algebraically closed and
maximally complete and D is a completely regular quasi-connected
set in Pl(k), then the both theories give the same results, but

(2) if k or D does not satisfy these conditions, then they give

different results.

§1. Krasner's analytic functions

Let k be an algebraically closed field, I l a non-trivial non-
archimedean valuation on k. We assume that k is complete with
respect to | |. Let Pl(k) = k U {=} be the one dimensional projec-
tive space over k. Then Pl(k) has a natural structure of a metric
space. We extend ! | to Pl(k) by |m| = +o,

Let D be an open subset of Pi(k). We say that D is guasi-

connected if for any two points x, y of D such that x # =, the set
<
{|x-z| | z € Pi(k), z € D, |x-z| = |x-y|}

is a finite set. Let D be a family of quasi-connected sets. Then

=135~

we say that D is a chain if for any two elements D and D' of D,
there exists a finite number of elements Dl""’Dn of D such that
D, =D, D, n D,y #6 (i=1,...,n-1), Dn = D'. It is known that
(1) any linear fractional transformation of Pl(k) maps a quasi-
connected set to a quasi-connected set,
(2) the intersection of any finite number of quasi-connected sets
is either empty or quasi-connected, and
(3) the union of a chain of quasi-connected sets is quasi-connected.
Let D be a quasi-connected set. Then we denote by OO(D) the
set consisting of all functions f : D + k such that there exists
a sequence {fn}:=1 of rational functions with coefficients in k
such that the fn have no pole in D and fn =+ f uniformly on D.
Let D = {Di}iEI be a chain of quasi-connected sets. Then 0
gives an open covering of D = .gI Di' We see that the family of
all such coverings determines : Grothendieck topology Jq and the
functor D -+ OO(D) is a presheaf with respect to this Grothendieck
topology. Let 0 be the sheafsication of OO' For any quasi-connected

set D, an element of (0(D) (resp. an element of OO(D)) is called an

analytic function on D (resp. an analytic element of support D).

In a series of his paper M. Krasner defined and studied the
properties of analytic functions on quasi-connected sets (cf e.q.
Krasner [4]). For example, he proved the theorem of identity for
such functions. Later P. Robba generalized the theory to include a
wider class of open subsets of Pl(k) (cf. Robba [7]). Owing to them,
we know the structure of an analytic element very well. On the
other hand, the author restricted the attention to a narrower
class of open subsets of Pl(k) and studies the properties of analytic

functions more closely (cf. Morita [5]).
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EXAMPLE 1. Let D = {z € plao | |z—aii £x, (= 1,...,n)}, where

a, € kand r, € ]kxl. Then D is a quasi-connected set and any
1 i
element f of OO(D) can be expressed in the form

n - 3
f(z) =c_+ I i c(l)(z—a.)m.
© m i
i=1 m=-1

It is known that if k is maximally complete (i.e. any decreasing

o
5S¢ D ... of balls in k satisfies N cC_ # 8).
2C, =

m=1

sequence C, 2¢cy2 .-
then OO(D) = 0(D) (cf. Krasner [4]). But if k is not maximally

complete, then we can prove that OO(D) g 0(D). Hereafter we say

that an open subset D' of Pl(k) is a connected (open) affine subset

of Pl(k) if there exists a linear fractional transformation g of

Pl(k) such that g(D') has the above form.

Let D be a quasi-connected set, C a closed ball of the form

{(z €k | |z-a| Sx} (a€k, r€ Ikxl) satisfying r £ sup |x-y|
x,YyED

and C N D # 4. Then C can be decoﬁposed into a disjoint union of

open balls C of the form {z € k I lz—bl < r}. We say that D is

completely regular if for any such closed ball C, all but a finite

number of such open balls Cb are contained in D. It is easy to
see that (1) this property is preserved under the action of the
linear fractional group, (2) it is also preserved by a finite non-
empty intersection and by a union of a chain, and (3) a connected

open affine subset of Pl(k) is completely regular. Furthermore we

obtained in [5]

THEOREM 1. Let k be maximally complete, D a completely regular quasi-

connected set & Pl(k). Then there exists a sequence

of connected open affine subsets gg_Pl(k) such that

{1

n n=1

©

D €...and D= UD_.

n = — n
n=1

Furthermore any two such sequences are cofinal.

nmn

o
nn
n
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§2. Relation between completely regular quasi-connected sets and

rigid analytic spaces

As in §1, Krasner used Runge's theorem to construct his theory
of analytic functions. On the other hand, Tate constructed his
theory by adding one structure on analytic spaces:

Let k be as in §1. Let k {tl""'tn} be the ring consisting of

m m m
all power series . c t t 2...t n such that
n

By ey il 20 ml...mn 1 2

cml.”Inn #* 0 for my LR m > o, We say that a k-algebra A is tft
over k if A is isomorphic to a quotient of k{tl""'tn}’
Let A be the category of all such k-algebras. For any A € A, let
Max(A) be the set of maximal ideals of A. Then Max(A) has a natural
structure of an analytic space over k, and any analytic space over
k is locally isomorphic to some Max(A) (A € A).

Let X be an analytic space over k. Then an h-structure on X is
a selection, for each A € A, of a certain subset of k-ringed space
morphisms Max(A) - X satisfying two conditions (hl) and (h2). An
h-space over k is an analytic space over k with an h-structure, and

a rigid analytic space over k is an h-space over k which has a

"good" affine covering. (For more details, see Tate [8].)
Now we are going to study the relation between these two

theories. We quote the following result from [6].

.THEOREM 2. Let k be as in §1, A tft over k. We assume that A is

an integral domain. Then for any element f of A, the

image of

Max(B) 3 p > £(p) € k

is a point or a connected open affine subset of Pl(k).
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Let D be a connected open affine subset of Pl(k). Then OO(D)
is tft over k and the space Max(Oo(D)) is canonically isomorphic to
D. Hence D has a natural structure of a rigid analytic space, and
OO(D) can be identified with the set of all h-morphisms of D to k
(cf. Tate [8]).

Let A be tft over k. We say that a map f of Max(A) to Pl(k)
is structural if there exists a connected open affine subset D of
Pl(k) such that f is a composite of an h-morphism of Max(A) to D and
the inclusion map D ¢« Pl(k). Then this defines a structure of a
rigid analytic space on Pl(k) (cf. Tate [8], Proposition 10.15).

Now we assume that k is maximally complete. Let D be a

completely regular quasi-connected set ? Pl(k), {Dn}:=1 as in
Theorem 1. Since D is an open subset of the h-space Pl(k), D has

an h-structure (cf. Tate [8], p.282), Let A be tft over k, and let

f be an h-morphism of Max(A) to D. Then it follows Theorem 2 and the
definition of the h-structure of D that the image of f is a finite
union of points and connected open affine subsets contained in D.

It follows from Proposition 2.5 of [5] that the image of f is con-
tained in Dn for any sufficiently large n. This shows that {Dn}:=1
is an admissible covering of D and the h-structure of D can be
obtained by gluing up the natural h-structures of the Dn's (L.

Tate [8], Proposition 10.15). Hence D is a quasi-Stein space of
Kiehl [3]. Furthermore a map f of D to k is an h-morphism iff the
restriction of f to Dn is always an h—morphism-(cf. Tate [8],
Proposition 10.14). Hence f is an h-morphism iff the restriction

of . fito Dy is always an analytic function of Krasner (cf. Example 1).
Therefore a map of D to k is an h-morphism iff f is an analytic

function in the sense of Krasner.
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Let D = [D(m)}:_1 be a chain of a countable number of

©

completely regular’quasi—connected sets satisfying U D(m) = D,
Bty ; = L e
By renumbering, we may assume D n u b # @6 for any M 2 1.
m=1

Let {D;m)}w 1 be as in Theorem 1. Here we may assume that
n=

M-1 M
(M) (m) v (m)
D, N U D, #¢foranyM> 1. Let D, = UD,"'. Then {Dn}n=1
m=1 m=1
satisfies the condition of Theorem 1. Let f : Max(A) - D be an h-
morphism. Then the image of f is contained in DA for any
sufficiently large n. Since U {Dém)};=1 is a refinement of {D(m)}:=1,

n=1
this shows that D is an admissible covering of D. Hence, by the

result of Kiehl [4], HP(D,O) = 0 for any positive integer p.

Therefore we have proved

THEOREM 3. Let k be maximally complete, D a completely regular quasi-

connected set ? Pl(k), {Dn}:_1 as in Theorem 1. Then

(1) The natural h-structure of Pl(k) induces on D a struc-

ture of a quasi-Stein space. More closely, this structure

can be obtained by gluing up the natural h-structure of

the D_'s.
—— "n

of D to k.

(3) Let D = {D(m)}:=1 be a chain of a countable number of

completely regular quasi-connected sets satisfying

[

U D(m) = D. Then D is an admissible covering of D. In
m=1
. particular HP(D,O) = 0 for any positive integer p.

Now we assume that k is not maximally complete. Then there exists

a decreasing sequence C, 2 C, 2 ... DC_ D ... of open balls in k

©

1 2 n

such that the diameter of each Cn belongs to Ikx| and N c, # B.
n=1
Then Dn = Pl(k)\Dn is a connected open affine subset of pl(x). Hence.
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by gluing up the natural h-structures of the Dn's, we can construct
on Pl(k) a structure of a quasi-Stein space. Of course, this h-
structure is different from the natural h-structure of Pl(k).
It is easy to see that any h-morphism of this quasi-Stein space
Pl(k) to k is an analytic function in the sense of Krasner.

Le£ k be as above. Let D be a completely regular quasi-connected
set, D (a,b € D) as in [5], 1-4. Then Da,b is a connected open

a,b
1 ;
i = i . Furthermore,
affine subset of P (k) and D {Da,b}a,bED is a chain rthe
it follows from Theorem 2 that D is an admissible covering of D.
Hence a mapping of D to k is an h-morphism iff the restriction of it

to each Da is an h-morphism. Therefore, in view of the definition

b

of the h-structure of Da such a mapping is an analytic function

Ib,

in the sense of Krasner.
Let k be as in §1 and let D be any open subset of Pl(k). For

any x,y € D, we write x ~ y if there exists a completely regular

sub. ¢f D

quasi-connected Getvcontaining x and y. Then this ~ is an equi-

valence relation. Let D = lIL Di be the corresponding decomposition

of D.

Then it follows from Theorem 2 that (1) each Di is a maximal com-

pletely regular quasi-connected subset of D, (2) D = {Di} is an

admissible covering of the h-space D, and (3) a mapping f of D to

k is an h-morphism iff the restriction of f to each Di is an

h-morphism.

EXAMPLE 2. Let k be maximally complete, D = {z€k | 1/2 < |z| < 2,
[z| # 1}. Then D is a quasi-connected set. Hence 0(D) is an integral
domain.

On the other hand, the set of all h-morphisms of D to k is the

direct sum of 0({z € k | 1/2 < |z| < 1}) and 0({z € k | 1 < |z| < 2}.
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The following example seems to suggest that the class of
completely regular quasi-connected sets is more natural than the

class of quasi-connected sets.

EXAMPLE 3. Let D= {z € € | 1/2 < |z| < 2, |z| # 1}. et U(D) be

the set consisting of all functions f of D to € such that there

exists a sequence {fn}:=1 of rational functions without any poles

in D and satisfying f = lim f uniformly on D. Then each element
e O

f of U(D) is a sum of a rational function and an analytic function

on {z € ¢ | 1/2 < |z| < 2}. Hence the theorem of identity holds for

functions of E(D).

REMARK. The main difference of Krasner's analytic functions and
Tate's rigid analytic spaces seems to be in the following point:
Let D be a completely regular quasi-connected set. Let f be a

function of D to k. Then (1) f is an analytic function iff there

exists a chain D of quasi-connected sets such that the restriction

of £ to each D' € D is an analytic element. On the other hand, ?;

(2) f is an h-morphism of D to k iff the restriction of f to each

Da b (a,b € D) is an analytic element. It is obvious that (2) implies
’

(1). If k is maximally complete, then (1) implies (2). But (2) is

stronger than (1) in general.

REMARK. The author proved Theorem 2 and Theorem 3 in March, 1978.

£
He stated it at the symposium as an open problem. 7
1
:g
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FINITEDIMENSIONAL NORMED K-VECTORSPACES

by

M. van der Put

§0. Introduction

The field K is supposed to be complete with respect to a non-
Archimedean valuation. A norm !I ], on a finitedimensional vector-

space V over k is called split if V has a base el,...,en such that

|1z Xiei[[ = mix 'Ai! ]lei], for all Xi,...,kn € ks
The normed vectorspace (V,II ||) is also called split and
{el,...,en} is called an orthogonal base of V. It is well known

(For Banachspaces over k the reader can consult [2], [4] and [5])
that for a maximally complete field k every norm on a finitedimen-
sional vectorspace is split. So our main interest lies in the case
where the base field k is not maximally complete. The work in this
paper is centered around the following questions:
QO' What are the norms on a finitedimensional vectorspace?
Q1. What group of isometries does a finitedimensional normed vector-
space have?
This setup is of course related to K-theory where KOR describes
the projective modules over R and KIR describes the automorphism
‘groups of projective modules. We will use very little K-theory (the
reader may consult [1] or [3]). In §1 some K,'s are discussed and
finally in §1.4 finitedimensional normed spaces over k are classified
by (non-trivial) linear algebra over k = the residue field of k. In

§2 the group of isometries of a normed finitedimensional vectorspace



