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ON THE CONTINUOUS DEPENDENCE
OF THE POLES OF THE SCATTERING MATRIX

ON THE COEFFICIENTS OF AN ELLIPTIC OPERATOR
UDC 513.88; 517.94

S. V. PETRAS

ABSTRACT. The behavior of the poles of the analytic continuation to the nonphysical
sheet of the resolvent of the operator /, = -v * A,(x)V is considered as ¢ — 0,
where 4,(x) = Ag(x) + ea(x) is a smooth, positive-definite, matrix-valued func-
tion, It is proved that as e — O the poles of the kerne! of the resolvent (/, — z%)~'
within an arbitrary compact set W lic only in the union of disks {z: |z — z,| =
O(e/%)}, n = 1,...,N(W), where g, is the order of the pole z} of the kernel of the
resolvent (/, — z%)7%.
Bibliography: 4 ftitles.

" 1. We consider the equation
u,(x,t)=v A, (x)vu(x,1), xe€R
u(n0) = (), 1 (x0) = Alx), .
ribing the process of scattering of acoustic waves by inhomogeneities of the
um. Here the matrix-valued function 4,(x) = Ay(x) + ea(x) is assumed to be
live definite, & - A,(x)& > ¢,|§% ¢; > 0, and smooth (for example, 4,(x) € C')
JFany value of the numerical parameter ¢ € [0,1]. Moreover, 4,(x) = 4y(x) = I,
p, where [ is the identity matrix.
iis known [1] that the scattering matrix S,(z) of problem (1) is holomorphic in
lower half-plane Im z < 0 and meromorphic in the upper half-plane Im z > 0.
oles of the scattering matrix S,(z) coincide with the poles of the analytic
.zati?n to the nonphysical sheet (Im z > 0) of the kernel of the resolvent
)™ of the corresponding steady-state problem.

Paper we show (Theorem 3) that as e — 0 the poles of the scattering matrix

g Within an arbitrary compact set W lie only in the union of disks

{ellz = z,| = O(7™)}, n=1,.. NW),

18 the order of the pole z2 of the kernel of the resolvent (I, — z2)~%. The
S assertion is based on an operator interpretation of the nonphysical
oilyc;ffrt%m the viewpoint of the geometry of Hilbert space, to the analytic
B . ?) kernel of the resol}'ent (L= 2%, 0 £ < 1, into the upper
) llps ) télere corresponds its replacement, acgord}ng to the scheme of
b > | Y‘the r.esolvent (B, — z)™! of a certain dissipative operator B,

§ coincide with the poles of the scattering matrix S,(z).
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2. Let He, 0 <e<1, be the closure of the set of infinitely differentiable,
compactly supported functions C2(R?) in the norm

Iollhe = [, 79 - 4.(x) Vo dx

and let L2 = L*(R?) be the space of square-summable functions. We denote by s#¢
the energy space H® ® L with norm
ull e = (1l + Nuall?)-

In the space X%, 0<e<1, we consider the Cauchy problem for the wave

A I PR T R A U S

setting u(x, 1) = u;(x, 1) and u,(x, 1) = uy(x, ).
We denote by iL, the matrix operator

equation (1)

A= (v -A(Z(x)v é)

on the domain Z(L,) = {u € #* Au € #°}, 0 < & < 1. Ins#® the skew-symmet-

ric operator iL, generates [1] the unitary group U(t) = exp{iL.t} of solution
operators of problem (2).

We denote by @, and &_ the outgoing and incoming subspaces of #°° [1], i.e., the
set of all Cauchy data to which there correspond solutions of (2) equal to zero in

forward {|x| < p + ¢, t > 0} and backward {|x| < p — ¢, ¢t < 0} frustums of cones'

respectively. We note that &, and 9_ are orthogonal in 4,0 < e < L. 4
Let Py be orthogonal projection onto the subspace i

Ke=o#*0{2,09.}, 0O<e<l i
Then for any fixed ¢ € [0, 1] the family of operators
Z,(t) = PxU(t)Pge, 120,

is a strongly continuous semigroup of contractions in K¢ [1].

Let iB, be the generator of the semigroup Z(#), 0 < & < 1. Then the resONES
(B, — z)7! of the dissipative operator B, is the projection onto K* of the reSONGS
(L, — z)7! of the selfadjoint operator L, i.¢.,

(B,=2)" =Pl z) Py, Imz<0.
By explicitly inverting the matrix operator L, — z,itis easy to obtain
2G(z?) —iG,(z?)

i G(z%) + 1l zG.(2%) ’
where G,(z?) is an integral operator with kernel which i

G.(x, »; z?%) of the differential operator -V - A(X)V — 2%
We wish to show that in an appropriate sense

(L —z)_1= Imz # 0,

£

s the Greend

lim(B, —z)" = (B, — )
e—0
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Since, according to (3), the resolvent (B, — z)™! of the dissipative operator B, is
equal to the projection onto the subspace K*® of the resolvent (L, — z)™' of the
selfadjoint operator L,, 0 < & < 1, we first prove the following assertion.

THEOREM 1. There exists a constant C such that
ML, + )" = (Lo + 1) Lo < Ce.
PrOOF. We observe that because of (4) the theorem follows from the assertions
I1G.(=1) = Go(=1)ll 212 = Ofe), (5)
[1G.(=1) = Go(= Dl 2o = O(e), (6)
I1G(~1) = Go(=Dligo- 12 = O(e), (7)
1G(—1) — Go( =Dl gos o = O(e). (8)
We first prove (5) and (6). Let u, = G(-Do, ¢ € CG(R*), ¢ €[0,1], ie., the
function u,(x) satisfies the differential equation
v - Ayvu, +u =9, xeR’.

Using the formula for integration by parts, we obtain

fRB(VﬁE cA(x)vu, + |u,?) dx = qunﬂsdx,

* from which it follows that

ullFre + lli® < llgll®, e € [0,1]. &)
'Suppose further that v, = u, — uy. The function v(x) is a solution of the
differential equation
v - Ay(x)vy, + v, =ev - a(x)Vu,, xER’.
Multiplying this equation by 7,(x) and then integrating by paris, we obtain

j;ag(v_ve'Ao(x)Vvs—l— |v,|?) dx = —sf v, - a(x)vu,dx. (10)

[x|<p

A\

- Ylx|<p
"

Vo, - a(x)Vu,dx| < CZ(f

Jx|<p

1/2
quE|2dx) , (11)

, 1/2
|vo,|* dx f

|x|<p

SEC, = sup_ [la(x)], and
allvull <llullg; el voll <ol (12)
5 with (9) taken into account, we obtain
hobvioys| (o + 11edi?)” < i caelol
. Y proves (5) and (6).
-' €(7) and (8) it suffices to show that for some constant ¢

f

[x|<p

12
|Vul? dx) < ¢l pell,
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where p(x) is an infinitely differentiable function satisfying the conditions: 1)
p()=1LlxI<p; D(p+ 7 <p)<sLp<ixj<p+ 1 3) px)=Ixl", |x|
zp+ L

Indeed, from (10) and (11)—(13) we obtain

(hudtdo + 110d1)"* < eTescsell ol
On the other hand (sec {2], Chapter VI, §4.3),
el < cilivell.

We thus see that

N2 g
{lodido + 2i2)" s o] epeseqeloll o

from which (7) and {(8) obviously follow.
It thus remains for us to prove (13). For this we note that the Green function
G,(x, y; 1), ¢ € [0, 1], satisfies the conditions [3]

vaGe(x>y; _1)l=0(|x _"yi-z}a ix|<P,|y}<P,
V.G, y; =11 = O(yITexp{-pl}),  Ixl<p,iy>0+1,
from which it follows that the integral operator generated by the function

v, G.(x, y; =)oy}~

is bounded from LA(R?) to L*{{|x] < p}), i.e., (13} holds.

THEOREM 2. The family of resolvents (B, — z)™* of the dissipative operators B,
converges uniformly as e — 0 at the regular poini z = ~i {0 the resolvent (B, — z)™ of
the dissiparive operaior By, and, moveover,

N1 -1
(B, + i)™ = (By + i) |lp0 < Ce.
Indeed, since the restriction of any element u € 9, @ D_ to the set { x: |x| < p} I8

equal to zero, all the subspaces K¢, 0 < & < 1, coincide topologically. Therefore, the
resolvent (B, + i)™* considered in the subspace K ° has the form f

(B, +i)'u=Poo(L,+i)"'uy, ueKkO
Hence,
1B+ )7 = (By + i) oo < (L, + 1) = (Lo + 1) o,
from which Theorem 2 follows by Theorem 1.

3. We now formulate our main assertion. Let W be a gompact set in the co
z-plane containing in its interior part of the spectrum of the operator By F}", _
g, be the order of a pole z,, n=1,...,N, of the resolvent (B, — Z)dl N8 A
compact set W, and let C(r,) = {z: [z — z,] < r,}. Then the following K&
hoids. .

M

THEOREM 3. There exist positive conmianis & = L(W), My = Mi(W) "M
M,(W ) such that jor any € < L the following assertions are true: :
1) The intersection of the syecirurs of the operator B, with the compact set ]
the union of the disks C{(r,),n = 1,...,N, where r, = Mlel/q”_
2) For the speciral spaces PS™ and P{™ corresponding to the part of the 5P
the operators B, and By lying in the disk C(r,) there is the estimate

1B = P 0 < M.
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”El)le proof (see [4]) is based on Theorem 2, the inequality (see [2], Chapter IV,
§3.:
(B = 2)" = (By = 2)7")
<« A+ D)(By = 2) (B, + i) —(By + )Y
L=z + il +(z + 0)(Bo = 2) (B, + i)™ ~ (B, + 1))
which holds under the condition that the denominator on the right side is positive,
and on the well-known integral representation of spectral projections
1

) _ pm) = . _~_ —zyt = - 7!
P P 27Ti'/i;C(r,,(A))[(Be z) (By — 2) ]dz.
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