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1. Symmetric random measures. Let 2J be_ ihc er-algebra of all Borel subsets of 
the unit interval 1 = [O, 1]. A function M defined on P, whose values are real-valued 
random variables is called a random measure if 

00 00 

(i) for every sequence E 1, £ 2, ... of di~joint sets from Ql lrf (U Eii) =};,}[(En.), 
where the series converges with probability 1, 7•=1 

Ji 
1 

(ii) for every sequence E1 E2 ... E,, of di8joinl sets from IJJ the random variables 
M (£ 1), M (E2), ... , M (En) arc independent. 

For the theory of random measures see [9]-[11}. 

A random measure ,W is said to be symmetric ii' the random variable,; 
M (E) (E E 1:l) are symmetrically distributed. Further, a random measure Mis said 
to be atomless if .ivf({a}) = 0 for every one-point set· {a}. In this paper we 
idcntiry random variables which are equal with probability 1. lf M is an atomless 
random measure, then for every EE IJJ the random variable M (E) has an infmitcly 
divisible distribution ([11], p. 380). Thus tho characteristic function q;M(El of the 
rnndorn variable M (E) can be written in tho Levy-Khinchinc form 

00 

~I.I) ffM(F) (r) ,..., exp [1rM (E) t-';- J ( i 1
u - 1 - rt~2 ) 

1 
~~;:._ dHE (u)} 

-•00 

:whcrn the function HE is monotone non-decreasing, hounded, and l!E (--:xi)= 0. 
"Fhe set functions YM (E) and µ.M(E) = HE(oo) (EEIJJ) arc number-valued Bor~l 
measures ([! l), p. 381). Moreover, M (E) '-' 0 if and only if tM (E) = µM (E)-= 0. 
iisct l:.: from 13 is said to be an M-null set if Af (A)= 0 for all Borel sub~ets A of E. 

Relations valid except on an M-null set arc said to be valid 11-1-ahnost everywher~. 

~ vM = var YM+µM. Then the classes of 1'1-null sets and -vM-null sets a1e identical. 
fow we shall prove an analogue of the Nikodym Theorem. The limit in probability 

0 a sequence X,, of random variables will be deno1.c<l by p - lim Xn-
n➔oo 

[Hll] 
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T11nOREM 1.1. Let Mi, M 2, ... be a sequence uf atomless random measures. 

Suppose that for every EE lJ there exists the limit 

(1.2) p - lim M11 (E) = M(E). 
'U➔OC 

Then M is an atomless ra11dom measure. 

Proof. For every EE (fJ the convergence (1.2) implies the uniform convergence, 

Jim 'PMn (L") (t) = q;M(H) (t) in every finite intc,.·vat. Thus M (E) has an infinitely 

n-.00 
divisible distribution and its characteristic function is given by (1.1), where 

Jim y,.,,. (E) ~ y,., (E) and Jim l'M,. (E) = J'M (E) ([5), p. 300). By the Nikodym 

ft-+00 1'->00 

Theorem ((3), Chap. Ill, 7) both set functio11s YM and 1-'M arc atomJcss measures. 

Further, it is clear that the function M is atomJess, finitely additive and satisfies 
00 

condition (ii). Suppose that £ 1 ::::> E2 ::::> .•• and n E11 =- 0, (En E ()3, tz = 1, 2, ••• ). 
n-1 

Then Jim 'Yu (En)= Jim fl1,1 (E,i) = 0. Consequen.tly, by (1.1) lim CfM(t: 11) (t) ~ 1 

7'-+0:> II..+('() 
f!➔Oi> 

uniformly in every finite interval. Thus p - Jim M (£11) = 0 which, by Prekopa's 
11->00 

Theorem ([9], p. 227) shows that M is completely additive. Consequently M is an 

atomlcss random measure. 

2. A random integrnl. Let M be an atomless random measure. If f is a real 
u 

valued Borel simple function, f = J; c1 '1,1,p where E1, E2, ... , E,1 belong lo (B and 
f-1 

XA denotes the indicator of .A, then the integral on every Borel set£ off with respect 

to M is defiued by the formula 
n 

f f(s) M (d:.) ~ 2 CJ M (E1 n JE). 
E: , ... 

It is clear that this definitiou does not depend upon a particular representation off 

in tl1e form of a linear combinations of indicators. Further, the integral of every 

Borel simple function js a random measure. A Borel function/ defined on/ is said 

to be M-integrable if there citists a sequence of Borel simple functions {f;.} such that 

(,,) tl,c sequence {/n} converges to/ M-almost evexywhcre on I, 

( ,.!) ) for every EE 13 the sequence {f J,. (s) M (ds)} converges in probability. 
J.: 

Then we put J f (s) M (ds) = p -- Jim J fn (s) M (ds). 
E n~co E 

Now we shall prove that the integral of an M-integrab/e function is uniquely 

determined. Let {/n} and {gn} be two sequences of Borel simple functions satisfying 

conditions ( *) and ( ,ic!) ). We have to prove that the corresponding sequencos of 

integrals have the same limits. Put ltn = Jn. - gn. (11 = 1, 2, ••• ). The sequence {!,,.} 

tends to zero M-almost everywhere on I and consequently, vM-abnost everywhere, 
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where 11 Mis a non-negative measure associated with M. Thus, by the Egorov Theorem 

([4], sec. 2.1) every set E from (13 is a union 

(2.1) £= U E.t 
k-0 

of disjoint sets from fJJ such that vM (E0) = 0 and Jim Ji,.= 0 uniformly on every 
1'->00 

set Ei, E2, .... Let YN" and µN,. be number valued measures corresponding to the 

random measure N,. (A) = J h,1 (s) M (ds). Since IYN,. (A)I ~ Var YM(A) sup lhn (s)I 
A 

HA 

and /IN,. (A) ~ µM (A) sup !hn (s)I, wo have the formulae lim 'YN (E1.) = 
~• A 11-+oo " 

= Jim µNn (Et)= 0, (k =-= 0, 1, ... ). Thus 
ti➔OO 

(2.2) p - Jim N,i (E,,) = 0 (k '-" 0, I, ... ) . 
11--.00 

Put N (A) = p - lim Nn (A) (A E <JJ). By Theorem 1.1, N is a random measure. 

-00 
~ 

Hence and from (2.1) and (2.2) we get the formula N (E) = I; N (Ei.:) = 0 for every 
k-0 

Ee(/3. Thus for every set EerJJ tlie sequences {J j~,) (s M (dr)} and {J g11 (s) M (ds) 

ha,·e the same limit. 1:. E 

The above definition of the random integral is an adaptation of tho Dunfo:rd's 

definition of the integral with respect to a measure whoso values belong to a Banach 

space ([3], Chap. lV, 10). One can prove that om· definition of the integral is equivalent 

to the Pr~kopa's definition of the unconditional integral ((10], p. 340). It is evident 

tJ1at the raudom integral is a linear operation. Moreover, if the Borel sets E 1, E2, ... , En 

are disjoint, then the random variables J f (s) M (d.v), J f (s) M (ds), ... , J f (s) M (ds) 

are independent. t:, F.t En 

Let lvl be a symmetric nlomless random measure. Then the charncteristic function 

'l'M<E> of M (F,) (Ee 'll) is of the form 
ro 

(2.3) J 
1+u2 

'PM(£) (1) ~ exp (cos /11 - J) ~ dGe(u), 

0 

where the function GE is monotone non-decreasing, bounded, continuous on the 

left, and nom1alized by the condition GE (0) = 0. For the measure µ~1 corresponding 

to M the equation /-'·M(E) = GE(oo)(EE (1.3) holds. Consequently, Mand ,aM have 

the same class of null-sets. 

LEMMA 2.1. Let M be a symmetric atomless random measure. If {in} is a sequence 

of Borel simplefi ,· d 1- fr 
. unc tons c111 p - 1m J n (s) M (ds) = 0, the11 {/, 1} converges to O 

in measure µM. n➔c,o 1 ,,, 
Proof. P\1t fn = \' c , . ( = 1 2 ) 

_. -~ 1,117.1,,1,,, n , , ... , where E1,nE2,n,••·•E1.,,_.n. are 

d1sJoint Dor 1 t T ,. 
e se s. hen the characteristic function 'Pn of J fn (s) M (dl) is given 

I 
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k,, 

by the formula 1/ln (t) -= II rp,..,fC£i, n/c1, n t) (n c-c 1, 2, ... ). Moreover, Jim 1
/!11 (t) = 1 

1~1 n-► ::>O 

uniformly in every finite interval. Hence, by (2.3) for every e > 0 wo gei the formula 

k,. I "" 1+u2 
lim '1 J J (1- cos CJ, n tu)- -dG.a 1,,.r.An (u) dt =- 0, 

,L... 112 
11a .... 00 j ~ 1 0 0 

(2.4) 

where An = {s : !/n (s)I ~ e}. Since 

1 ICJ, ,,12 u2 ' u2 1·r J (l -cos Cj,11, tu) cit ;3' C· T+~;;.:. Ce2 ~+u 2 E;,n n A11 #- 0, 

u 

\vhcre C i~ a positive constant, we infer, in view of (2.4), that µ.,.,1 (An) = 

= ~ G 'oo) tends to O if n -➔ oo. In other words the sequence {/n} converges 
L., £1,,.nA.n \ 

1-1 
to O in measure µM. 

Lm,tMA 2.2. Let M be a symmetric atom less random measute. If {/,1} is a sequence 

of Borel simple .{unctions and the sequence of integrals {_f f,i (s) M (ds)} converges 
I 

in probability, then {/ 11} converges in measure µM to cm M-integrable function f and 

for every Ee CB p - lim f /n (s) 1l-f (ds) = ff (s) M (ds). 
11➔00E E 

Proof. For every pair {111,} and {mi,} of subsequences of the sequence of positive 

integers we have the formula 

(2.5) p - lim J Un,, (s) - hn 1, (s) M (ds)) =-= 0. 
/C->W I 

Thus, by Lemma 2.1, Lim u;,k ·- 1;11,) =-s 0 in measure µ,\1' Hence, il follow~ thal 
k➔oo 

{!,,} is a Cauchy sequence with respect to the convergence in measure µM_' 

Consequently, it convexges to a Borel function! in measure µM. Since for every Ee CfJ 

the random variables/ (!111, (s) ·- fmi: (s)) M (ds) and )_E Uni: (s) - 11111; (s)) M (ds) 

are independent and symmetrically distributed, we have by (2.5) the formula 

p - lim J Unt (s) - /.,1" (s)) .M (ds) = 0. 
,\'.-,.eo E 

Thus the sequence of random variables { f f;i (s) M (ds)} is a Cauchy sequence with 
f:: 

respect to the convergence in probability. Consequently, it converges to a random 

var.iable N (.I!,'). Taking a subsequence of {_f,1} convergent to f µM-alroost everywhere 

and, consequently, Af-almost everywhere we infer, by the definition of the random 

integral, tha.t the function f is .+I-integrable and ff (s) M (ds) = N (E) (E E (/3). 
It 

The Lemma is thus proved. . 

Let f!, (M) be the set of all .A-f-integrable functions, where M is a symm~~ric 

atomle.ss random measure. or course, 12. (M) is a linear space under usual addition 
• • • r 'd ·r f ct· J • h e equal M-abnoSt 

and scalar mult1pl1cat1011. ~ e , entt y un ions w 11c ar 1 
everywhere. From Lemma 2.1 it follows that/= 0 M-almost everywhe~e if aud 0

;~ 

if ff (s) M (ds) = 0. Thus we may define a non-homogeneous norm Ill 12. (M) 

i 
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means of the fonuula 11/11 "-" Iii ff (s) 1V (ds)llI, whcro Ill XIII is the Frechet nonn 

l !XI 
of the random variable X i.e. tho expectation E~-ixf. It should be noted that 

the convergence in Frcchet norm is equivalent to the convergence in probahility. 

The space P (M) is a linear mcfric space under the norm 1111, Moreover, from Lemma 

2.2 it follows that the spaco .il. (.M) is complete. The set of all Borel simple func1ions 

is dense in 12. (M). 

3. Orlicz spaces. Let F1 m1<l Fz be two 11011 negative functions defined on tho 

right half-line. We say that F1 is 11011-weaker than F2 and write F2-< F1 if F2 (x) ,:;;; 

,:;; aF1 (lex) for x ~ x 0 holds with some cons1ants a, k > 0 and .x0 ~ 0. We say 

that F1 and F2 arc equi·valent and write F1 ~ F2 if F 1 -< F2 and F2 -< T'1. Let K 

he 1hc class of ,ill non-decreasing continuous functions defined on the r.igltt half-line 

viinishing only at the origin. Given '1J E K for every .Borel function f on 1 we put 

R 0, (f) = J (JJ (If (s)') d1·. Let L ({J)) be the set of all re-al valued Borel function8 .f 
1 

011 l such tha.t R,1, (rf) is finite for a positive coustant c (in general dependent on f). 

The set. L (<JJ) is a linear space under usual adc.li(ion and scalar multiplication. 

Moreover, it becomes a complc!e linear metric ~pace under the non-homogeneous 

norm 
11.f,l,J> = inf {c: c > 0, R,1, (c-1.f) ~ c}. 

The space L (<I>) with this norm is called an Orlicz space, (6] • [8]. 

ln this paper the lirn~ar metric spaces (X, II iii) and (X, 111,2) will be treated as 

idcn1ical if the convergence in the 11orm !' 111 is equivalent to the convergence in 

the norm II '_Ii. for two £'unctions <P and Y:1 from K the equation L (<P) = L (P) 

holds if and only if <P ~ 1Jf ([6]). 

We say that a function ¢. satisfies the .d2-condition if <I> (2x) ,s; h (}> (x) for 

x ;,, xo holds with sornc constants b > 0 and x0 ~ 0. The Llrcondition for <I> is 

equivalent to the statement that the set of all Borel simple functions is dense in 

L (<P). <P (y) <[J (x) 
Let K0 be the class of all functions <P from K for which --? - ,::; c - -

2
, 

y~ X 

Y ;,: x ~ xo holds with some constants c > 0 and x0 ~ 0. It is dear that all functions 

. -<PW 
m Ko satisl'y tl10 Ll2-condition, and lim -

2 
• < =. Moreover, if <I> E K0 and 

X➔OO X 

<{) ~ !JI then 1f:I E K0. Tt was proved in [6] and [7] (p. l 09) that <I> e Ko if and only if 

<{) ~ '[J and the .function 1/1 (1-/x) is cvncm)e. As examples of functions belonging 

to Ko we quote the functions <1>1 with <1>1 (oo) < oo, W2 (x) = x11 (0 < p ,::; 2), 

([>3 (x) a-: :1.<1 (log xY, (Jog log x)" ..... (log log ... log x)"" for x st1fficie11tly large 
(0 ·< q ..... 2 ,. ,. · .__ 0) 

' , I., 2, •··, In ,:;:-;, . 

4• Homoge11eons random measures. Throughout this paragraph we assume that 
th~ measure M in question is not identie,c1lly equal to 0. A random measure M is 

sai~ to be homogeneous if for each pair £ 1, E2 of congruent Borel sets the random 

ianables M (E1) and M (E2) are identically distributed. Of course, homogeneous 
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random measures are atomless. M:oreover, for symmet1·ic homogeneous measures 

M the characteristic· function <pM lf.> of M (E) (Ee 1:3) is given by the formula (2.3) 

with 

(4.1) 

where IEI is the Lebesgue measure of E, and the Levy- Khinchinc function G is 

monotone non-decreasing, bounded, continuous on the left wilh G (0) = 0 aud 

G (co) > 0. Hence, it follows that Af (E) = 0 if and only if ;El ·-= 0. Moreover, the 

measuro µ,_...,_ corresponding to M is equal to tho Lebesgue measure up to a. positive 

factor. 
We note that for every monotone non-decreasing bounded function G continuous 

on the left with G (0) = 0 and G (oo) > 0 tl1ere exists a symmetric holllogeneous 

random measure for which (4.1) holds. Jn fact, for every such function G tl1cre 

exists ,l separable homogeneous stocha)1ic proccsi. X (t) (0 ~ t ~ l) with independent 

incrcmonls such that the characteristic function V'ca, b) of the increment X (h) - X (a) 

is given by the formula 
:° 1--\ u2 

"Pin /J) (t) = exp (b - a) / (cos t11 -- 1)--., -dG (11) 
• • l{-

0 

ti- ')I, 

([1]; [21, p. 6l, 605). Setting M (0 [a1, b1)) '-= ,L (X(bt) -· X(a1)) (0 ~ a1 <. h1 ~ 
1-1 j •I 

~a
2 

< b
2 
~ ... ~ a,. < b,. ~ 1) wo get a raudom. set fu11ction which by Prekopa's 

Theorems ([9], pp. 227, 243) can be ex1cndcd to a random measure. or course, 

this measure is symmetric, homogeneous and satisfies cond.itiotl (4.1). 

Now we assume that M is a symmetric homogeneous random measure with 

the Levy-Khinchine ruuction G. The characteristic function 1111 or the inlcgral 

.f f(s) M (ds) (f e I:!.. (M)) is then giveu by the formula 

I 

(4.2) 

whero 

(4.3) 

Put 

(4.4) 

(4.5) 

1p1 (t) '""exp (- f T,,1 (rf (s)) ds), 

00 l -l-1/!. 
TM (x) = J (l -- cos xu)- 112 dCJ (11). 

0 

00 

UM(x) = J min (x2, u-2)(1-', u1-)dG (u), 

0 

""' G tu) 
If' (x) = J - du. 

M 11> 
l/Z 

Both functions UM and 111M belong to the class K. 
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LnfMA 4. 1. For all x ~ 0 and a ~ 0 illequalities 

max 7'..,,,_ l v) ~ c1 (a) U,11 (x), 
o.::;,,;az 

I 

J TM(xt)dt ~ c2 U.w(x) 
0 

!,old with snme positive c 1 (a) and c1 . Moreover, Vu ....., 1:[f;,f· 
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Proof. The inequalities in q11estion are a consequence of the inequalities 

ma.X (1 -- cos vu) ~ c1 (a) min (x2 112, ·t), ( , >-O) _, > 1, ,... ' 

o,:~,:;:0% 

sin xu 
l - ~ ~ c2 min (x2 u2, 1), (x, u ~ O) 

and the defmirion~ (4.3) and (4.4). Moreover, integrating by parts (4.4) we get the 

inequalit1es 
2P:w (x) ~ U,.,1 (x) ~ G (oo)+2P M (x), (x ;;l!: O). 

Tb.us U,\f ~ P.u, which completes tho proof. 

LH~MA 4.2. Let {.t;,} be a sequence of Borel simple functions 011 I. The sequence 

{!,,} converges co O in I!, (M) if ancl only if it converges to O in L ({j/M.). 

Proof. Suppo=e lhat {/ .. } _converges to O in 12 (M). Then for every positive 

num.hcl' C, {C- 1 .J .Iii (s) M (ds)} tends to O in probability. Hence and from (4.2) it 

I 

followr. that lim J TM (rc- 1 !11. (s)) ds = 0 nnifonnly in every finite interval. Thus 

1 tt-><>0 1 

lim J .P\,(rC- 1 /,, (s)) dt ds =-: 0 and, consequently, by Lcmnm 4.1 lim f )[1 11 

n ..... eo I O 
• , ·• 

(C-J Ill (s)) ds =-0. Since ,1/lly,M ~ C if R~, cc-1 f) < C, the last eqttati~:,i:nplies 

- M 

1he relation lim ill,, llv, M ~ C. Thus Jim ·11;, :!'l' _, 0 because of the m·bitrarincss 

11-,-?0 1, .. ,.00 M 

~! C. Now suppose that {/;1_} converges to O in L ({j/M). Since, by Lenumt 2.1, 

M ~ U,,1, ,vc may assume without loi,~ of generality that 1,(,1 .'. uM < 1 (n = 1, 2, .•. ). 

Then the inequality R 0_,
1
(f,,) ~ Y~llu_,f (n:..: 1, 2, ... ) holds . .By lemma 4.1 for 

every a :> 0 we bave the inequality 

max J Tu (rfn (s)) ds ~ c1 (a) R,, (/,·,) (n - 1 2 ) 
O~t,t1 J "M ' - ' ' "' • 

Hence and from 4 2 f ll , 'ha I • • · o ows • t t 1e sequence {!¥1 } of characteristic function 

converges t 1 ·r 1 • " 
• O Ulll .orm Y lll evory finite interval. Thus { r [11·(s) M (ds) converges 

to O in probabilit d i 
is thu Y an • consequently, {fn} converges to O in R.. (M) The Lemma 

s proved. • 

Now we shall prove tho main theorem. 
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---------
THEOREM 4.1. Let Nf be a symmetric ho111oge11eous rnndom me<1sure. Then there 

exists a function <Pe Ko .v11ch that i! (A.f) = l, (<P). Moreover <l> ~ 'l',w, where 

1PM (x) = T _Gu~:)_ dll and G is the Li'vy- Khind1i11e function corresponding 10 M. 

1/X 
Conr;ersely. for every jimction <PE Ko /here e'l;ists a symmetric homoge11eo11s random 

measure M such that £ (M) ~ L (</J). 

Proof. Let Mbe a symmetric homogeneous random measure. Since !l'M ({x) =----

= -
2
l· / G(·}--:-) du, !he function 'f'M (11:Y) is concave and, consequently, P,~1 E K0• 

o l 11 
Hcucc, in particular, it follows that 'Jf"" satisfies the Ll2-condition. Thus the sot of 

all Borel simple fonctions is dense in both complete spaces 12 (1\-f) nn<l L (!fl,,1). Now 

the equation E (M) = L (:11 M) is a consequence of Lemma 4.2. 

Suppo~c that qi e 1(
0

. Of course we may assume without loss of generality that 

tho funclion cJ, (/x) is concave. Then it caJ1 bo wril1cn in tl:c fonn <P (vx) = 

$ = J q (11) du, whero the function q is monotone non-increasing, continuous on 

the rig_ht and 11011-ncgativo. Pnt G (0) == 0 and G (x) -- min (1, q ( • .-2)) (x > 0). 0 

The li.rnction G is monotone non-decreasing, bounded, and contimtous on the left. 

Moreover(} (oo) > 0 because the function <1' vanishes at the origin only. We already 

know that 1he function G is the Levy-Khinchine function ror a syuunetric homo

genccrns random measure ,V. ny a simple computation. we ob'.aiu tho ,·elaliou 

<J, ~ 'PM whero 'I'M is dcfmcd by (4.5). Thus £ (A-t) --= L (rJ>) which comple<cs the 

proof of the Theorem. -

For ,;omc random measures ;\.1 the space£ (M) is even a Banach space. For 

instum'.O, if M is a s:ablo symmetric measure with the character.istic function 

f{M(C) (t) = cx1> (-lE! lt'
1
P) (1 ~ p ~ 2), then £ (M) i~ an L

7
'-spnce. lt is known 

that an Orlicz space L (1'') is a Banach space if and only if the function cf> is 

equivalent to a coiwcx function from K. Moreover, <t> is equivalent to a convex 

function from Kif and only i!' for s0111e constants a, b > 0 and xo ;a: 0 the inequality 

<J> (y) 1> (bx) -· ·-~a---- (y ~ x;;,, x0) holds ([6], [71) . .Hence and from Theorem 4.1 we 

y .x 
get t Ile following 

CollOLl;ARY. Let M be a symmetric homogeneous random meas11re with tl1e 

Le<i•y-Khim:hine function G. The space 1!.. (M) is a Banach space 1f and only if for 

some posifi'<Je constants c and Yo the inequality 

"° G (11) 
00 G (11) 

x J - du ~ cy J - - d11 (0 < x ~ y ~ yo) holds. 
ul ul 

:; IJ 
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