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CHAPTER I

INTRODUCTION

1. Preface

Transport properties of suspensions of macroscopic particles in a

viscous fluid are concentration dependent due to direct interactions

between the particles, äs well äs due to a coupling of their motion

via the fluid' . This coupling is called hydrodynam-ie wter>aetion . TO

understand the influence of hydrodynamic interactions on properties of

suspensions has been the Motivation of the work described in this

thesis.

Both from a theoretical and experimental point of view, the in-

fluence of hydrodynamic interactions is best studied in the absence of

any long-ranged (e.g. electromagnetic) direct interactions between the

particles. For this reason we shall restrict our attentlon to Systems

where the suspended particles have of themselves only the short-ranged

interaction of hard spheres. Such suspensions can be realized in the

laboratory: van Helden and Vrij2, notably, have developed a System of

silica particles which in a nonpolar solvent interact äs hard spheres

over a broad concentration ränge, äs is borne out by measurements of

the osmotic compressibility. Studies of these, and other, "hard-

sphere" suspensions have yielded much Information on the effect of

hydrodynamic interactions äs the Suspension becomes more and more

concentrated. Theoretical investigations, on the contrary, have been

restricted mainly to the low—density regime, where it is sufficient to

consider only the hydrodynamic interactions of pairs of particles.

Difficulties in accounting for non-pairwise additive contributions to

these interactions hampered an extension to suspensions which are not

dilute. Significantly, the section on hydrodynamic interactions in a

1980 reviewlc concludes with the discouraging observation that "the

intractability of the three-body hydrodynamic interaction problem



forces us to hope that [the assumption of pairwise additivity of the

hydrodynamic couplings] holds in more concentrated suspensions äs well

[äs in dilute suspensions]". In the past few years, however, important

advances have been made towards a solution of the many—sphere inter-

action problem, which have improved considerably the outlook for an

understanding of the properties of concentrated suspensions and which

have formed the basis of the work described in this thesis. As a back-

ground for the following chapters we shall now consider the hydrodyna-

mic problem in more detail.

2. Many-sphere hydrodynamic interactions

For our purposes, the motion of the fluid is described to a

sufficient accuracy by the static, linearized Navier-Stokes equation

for an incompressible fluid

-ηΔν + Vp = 0, V«v = 0, (1)

where v(r,t) and p(r,t) are the velocity and pressure fields and η is

the (kinematic) viscosity of the fluid. Eq. (1), valid within the

fluid, is supplemented by a stick boundary condition on the surface of

each sphere i = l,2,...N,

v = u + UK A(r - 5 ) for |r - t | = a. (2)

Here u.(t) and ü).(t) are the velocity and angular velocity of sphere

i, with radius a and cen,tre at R. (t).

The solution of these socalled "creeping flow" equations has been

the subject of many investigations3. Important quantities to be deter-

mined are the mobility tensors y,. ., which relate the velocity of

sphere i to the force K. exerted by the fluid on each sphere j,

The static approximation, in particular, limits the validity of the
analysis to time scales large compared to the viscous relaxationtime
a2/v (v: dynamic viscosity of the fluid; a: radius of the suspended
spheres). For e.g. spheres of 0.5μ radius in water at room tempera-
ture, this relaxation time is 2.5-10~

7
s and may be neglected in many

(experimental) situations.

10



N

u - - Σ \ß±Ë,· (3)
j=l

 1
J J

(We have assumed here that the fluid exerts no torque on the spheres,

i.e. each sphere can rotate freely; furthermore, the unperturbed fluid

is assumed to be at rest.) The dependence of \i. . on the positlons of

the N spheres reflects their hydrodynamic interactions; in particular,

a term which depends on the positions of s spheres is said to result

from an s-sphere hydrodynamic interaction.

For the case of two spheres, expressions for the mobility tensors

have been obtained both from an exact solution of eqs. (l)-(2) , äs in

the form of a series expansion in inverse powers of the Separation R

of the spheres, carried out to order R by Kynch and Felderhof ·

These latter two calculations made use of the socalled method of

reflections , introduced by Smoluchowski · In principle, this method

is not limited to the case of two spheres and indeed it was applied

succesfully by Kynch to obtain the dominant three- and four-sphere

contributions to the mobilities. However, because of the complexity of

the reflection method no general expression could be given, with which

one could compute the mobilities for an arbitary number of spheres to

the accuracy desired. Such expressions wäre finally obtained by Mazur

and van Saarloos8, by the socalled method of induced forces ' . With

this alternative method it is possible to reduce the problem to that

of solving a hierarchy of linear algebraic equations, which proves to

be very efficient in studying more than two spheres. (A similar

approach to many-sphere hydrodynamic interactions has been taken by

Yoshizaki and Yamakawa ·) In this way, Mazur and van Saarloos

obtained the mobility tensors in the form of a power series in R ,

where R is a typical distance between spheres. It was found, in

particular, that the dominant contributions from clusters of s spheres

(s>2) are of order R5~3s. (To order R~7, the two-, three- and four-

sphere contributions found by Kynch5 were recovered.)

For a statistical theory of concentrated suspensions the formulae

for hydrodynamic interactions obtained by Mazur and van Saarloos

will, in this thesis, prove to be most powerful because of their not

being limited to a small number of spheres. Indeed, using these

1 1



formulae we shall be able to "resum" (in a statistical sense) the

many-body hydrodynamic interactions between an arbitrary number of

spheres. This technique will be applied to study both diffusion (or

Brownian motion) of the spheres and the effective viscosity of the

Suspension. We shall now briefly discuss these two subjects of our

investigation.

3. Diffusion and light-scattering

Brownian motion of suspended particles, first studied by Einstein
12

in the beginning of this Century, has become a subject of renewed

interest with the emergence of spectroscopic techniques to observe

this motion through correlations in the intensity of light scattered

by the Suspension '. By measuring the average temporal auto-

correlation of the scattered intensity - for scattering wavevector

k and correlation delay time τ - one can obtain the dynamic structure

factor G(k,i),

N ii.fi (τ)-1(0)]

G(k,T) Ξ N"
1
 Σ «e

 3
 ». (4)

i,j=l

This function (which depends on the magnitude k of the wavevector

only) is the spatial Fourier transform of the particle number density

auto-correlation function. (The brackets «...» in eq. (4) denote an

average over an equilibrium ensemble of suspensions.)

For the time derivative of eq. (4) we can write (using stationarity

of the ensemble)

τ ilc« [£.(t)-t.(0)J

f- G(k,T) = -N Σ /dt «l<.u".(0)u.(t)-ic e
 J 1

 ». (5)
9τ
 i,j o

 x J

As argued by Pusey and Tough (on the basis of Langevin equations for

the dynamics of the particles) the decay of the structure factor

determined by this equation is described by a different diffusion

coefficient for "short" and "long" times - relative to the structural

relaxation time t in which the configuration of the particles changes
\j

appreciably due to Brownian motion. On the short time scale τ«τ,,, eq.
L-

(5) simpllfies to
14

12



-k
2
D(k)G(k,0), (6)

with the diffusion coefficient D(k) given by

·> -i
 N
 * * ik*.(R*-t )

D(k) = kT[Nk"G(k,0)] Σ <k.u -k e
 J x

>. (7)

i,3=1
 J

Here <...> denotes an equilibrium average over the positions of the

spheres and kg and T denote Boltzmann's constant and the temperature

respectively. We remark that in the derivation of eq. (6) from eq. (5)

it has also been assumed that τ is much larger than the correlation

time τ_ = ιη(6πηβ) of the fluctuating velocities of the particles

(with mass m). Use has in fact been made of the relation

«/dt
 Ui
(0)u\(t)» = k

B
T M, (8)

0 R

which holds for τ
τ)
«τ«τ_. Here the brackets denote an average over

B 0

the velocities of -the spheres only, for given positionvectors R .

For the Systems studied in this thesis the time t„ >, 10 s is

-8
indeed very much larger than τ

η
, which is of the order of 10 s. There
B

is therefore a large "plateau" time scale τ_«τ«τ_ οη which the

regression law (6)-(7) should hold. In our analysis we shall restrict

ourselves to this time scale, which forms the most simple regime. To

determine the decay of the structure factor for long times T»T„, on\>
the other hand, turns out to be a much more difficult problem - even

without considering any hydrodynamic interactions
15
. We remark that in

a light-scattering experiment both the short and long time scales in

the diffusion regime are accesible.

To conclude our discussion of diffusion we mention that the short-

time decay of the eeZ/-dynamic structure factor

N i£.[S (τ)-ί.(Ο)]

G (k,τ) = N
 x
 Σ «e

 x
 » (9)

s
 1=1

is described (äs in eq. (6)) by the k-independent self-diffusion

coefficient D,,.
S
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-l
 N
 l

D = k TN Σ < jTr u >. (10)
s B

 i=1
 J ü

(Tr denotes the trace of a tensor.) From a comparison with eq. (7) it

follows that

D = lim D(k), (11)
8 k+»

and D can therefore be measured in a light-scattering experiment at

large scattering vectors . (For an alternative technique using

"tracer" particles with a different refractive index, see ref. 17.)

4. Effective viscosity

On a length scale much larger than the dimensions of the suspended

particles a Suspension behaves on average äs a fluid with an

"effective" viscosity η which differs from the viscosity η of the

solvent due to perturbations of the flow by the presence of the

spheres. The first to study the effective viscosity was again
1 R

Einstein in 1906 and this quantity has played a central role in the

rheology of suspensions ever since ' · One can determine the effec-

tive viscosity by calculating the average perturbations to a suffi-

ciently slowly varying shearing field of flow imposed by an external

force. In this thesis we shall neglect pertubations arislng from

Brownian motion of the spheres, which may give a non-vanishing contri-

bution after averaging because of deviations of the distribution

function of the positions of the spheres from its equilibrium form
19
.

For this reason the validity of our analysis is again (äs in the case

of diffusion discussed above) limited to a time scale short compared

to the structural relaxation time t,,, since on this time scale pertur-
Vj

bations of the distribution function may be neglected. Concerning the

long-time (τ»τ
ρ
) regime, results have äs yet only been obtained forLi

dilute Systems'9, where it has been shown that contributions from

Brownian motion give an increase of the effective viscosity.

Unfortunately, little is known experimentally about time-dependent

effects in the rheology of suspensions. For an understanding of the

influence of Brownian motion, dynamic measurements of the effective

14



viscosity would be of great value.

5. Outline of the contents of chapters II to IV

In chapters III and IV we present a theory for the concentration

dependence of respectively diff-usion coefficient and effective visco-

sity of a Suspension of spherical particles. The method by which these

quantities are calculated is introduced in its most simple form in

chapter II, for the case of self-diffusion. The main contents of these

three chapters are the following.

As a preliminary, we demonstrate in eh. II that the assumption of

pairwise additivity of hydrodynamic interactions is unjustified if the

Suspension is not dilute, by extending the density expansion of the

self-diffusion coefficient D to second order. A theory which is not

restricted to the dilute regime will therefore have to account for

many-body hydrodynamic interactions between an arbitrary number of

spheres. The expansion of Dg in density-fluctuation correlation

functions of increasing order described in eh. II satisfies this

requirement. The zeroth order term in this socalled fluctuation

expansion contains the resummed contributions from interactions of

2,3,4,5,... spheres - in the absence of correlations. Higher order

terms contain corrections to this result from correlations between

fluctuations in the concentration of the spheres. As we shall see in

eh. II, these corrections are important, especially at the highest

concentrations considered.

For this reason we examine, in eh. III, also an alternative expan-

sion in correlation functions, which is obtained from the previous one

by a partial resummation of higher order correlations. In this second

fluctuation expansion contributions from an important class of self-

correlations (these are correlations which would also be present in

the hypothetical case of penetrable spheres) are included already in

the zeroth order term. Both the comparison with experiments and the

calculation of the lowest order correction indicate that this zeroth

order term gives reliable results for the diffusion coefficient over

the whole concentration ränge. We conclude the third chapter with an

Interpretation of the lowest order term in the fluctuation expansion

15



of D(k) (defined in eq. (7)) in terms of an effeati-Ve pair-mobility,

which reflects the fact that in an averaged sense a pair of spheres

interacts hydrodynamically via the Suspension - rather than through

the pure fluid.

In eh. IV the same expansion technique used in the previous chapter

for the case of diffusion, is applied to study the effective

viscosity. As we shall see, outside the dilute regime it is essential

to take the finite particle size into account and the point-particle

approximation in particular breaks down completely for a sufficiently

concentrated Suspension. This thesis concludes in eh. IV with a compa-

rison of the results obtained for diffusion and viscosity. It is shown

that the effective pair-mobility introduced in the previous chapter in

the context of diffusion contains the effective viscosity of the sus-

pension. This serves to support the experimental observation (first

made by Cebula et al.20) that the product of self-diffusion coeffi-

cient and effective viscosity is approximately independent of the

concentration.
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CHAPTER II

SELFDIFFÜSION:

VIRIAL EXPANSION AND RESUMMATION OF HYDRODYNAMIC INTERACTIONS

1. Introduction

In this chapter we commence the study of transport properties of

suspensions by analyzing the concentration dependence of the "short-

time" self-diffusion coefficient of (uncharged) suspended spheres.

This quantity (which we denote by Dg) describes diffusion of a single

"tracer" particle on a time scale over which the spatial configuration

of the particles is essentially constant' '2. If the mobilities of the

spheres are known - äs a function of their positions - it is possible

to calculate D by means of a generalized Einstein relation 3, which

relates D„ to an average of these mobilities over all the configura-
S

tions of the spheres. Experimentally, the short-time self-diffusion

coefficient can be determined from dynamic light-scattering studies:

the initial decay of the temporal auto-correlation function of the

scattered field at large values of the scattering vector yields values

for D/.

If the Suspension is sufficiently dilute we can assume the hydrody-

namic couplings to be pairwise additive, i.e. we need to consider only

two-body hydrodynamic interactions. Most theoretical treatments of

properties of suspensions are restricted to this low-density regime :

the linear density corrections to the values at infinite dilution of

An exception is formed by Muthukumar and coworkers who included many-
body hydrodynamic interactions in their analysis of flow through
porous media (cf. ref. 5 and the references therein).
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D and of the bulk-diffusion coefficient were calculated by Batchelor3
a

and by Felderhof6 and Jones7. Batchelor used generalized Einstein

relations for these coefficients, while Felderhof and Jones based

their analysis on a Fokker-Planck equation in the many-particle coor-

dinate space. Their results were equivalent. For the case of bulk-

diffusion the value of this first order correction has been confirmed

by experiments s.

Using expressions for the mobilities in clusters of three

spheres9'10, we shall in this chapter extend (for the case of self-

diffusion) the analysis of Batchelor3 to include second order density

corrections (for a related calculation see also ref. 11). As we shall

see, it follows from our results that three-body hydrodynamic inter-

actions may not be neglected if the Suspension is not dilute. At still

higher densities one will have to take fully into account the many-

body hydrodynamic interactions. Moreover, an expansion in the density

(a "virial expansion") is not appropriate in this high-density regime.

For this reason we consider also an alternative expansion of the self-

diffusion coefficient, in correlation functions of density fluctua-

tions of Increasing order (a "fluctuation expansion"). Each term in

this expansion contains the resummed contributions from many-body

hydrodynamic interactions between an afbitr'ar'y number of spheres.

Formally, such an expansion is related to a theory of the dielectric

constant of nonpolar fluids developed by Bedeaux and Mazur . In that

context the zeroth order term in the fluctuation expansion represents

the Clausius-Mossotti formula for the dielectric constant.

In section 2 we summarize the general expressions for many-sphere

mobilities obtained by Mazur and van Saarloos and derive a few for-

mulae for later use. The short-time self-diffusion coefficient Dg is

expressed in terms of these mobilities in section 3. In this section

we also explain a compact operator notation, which shall prove its use

in this and the following chapters. In section 4 \-e evaluate the

virial expansion of D to second order in the density. The alternative

fluctuation expansion is carried out in sections 5,6 and 7. We shall

evaluate the zeroth order term (no correlations) äs well äs the lowest

order correction thereto, which is due to two-point correlations. The

19



results obtained are discussed and compared with experiments in

section 8.

2. Mobilities

Consider N equal-sized spherical particles with radius a and

Position vectors R. (i = l, 2,... N), moving in an incompressible fluid

with viscosity η, which is otherwise at rest. We describe the motion

of the fluid by the linear quasi-static Stokes equation, supplemented

by stick boundary conditions at the surfaces of the spheres. The

velocity u. of sphere i can be expressed äs a linear combination of

the forces K., exerted by the fluid on each of the spheres j

N
u. = - Σ ü,,·̂  , i = l, 2,. ..N. (2.1).

The mobil! ty tensors y. . depend on the configuration of the N spheres;

a term in u_ . which depends on the positions of s spheres is said to

reflect s-body hydrodynamic interactions. In eq. (2.1) we have assumed

that the fluid exerts no torque on the spheres, i.e. each sphere can

rotate freely.

The general expression for the mobilities, äs derived in ref. 10,

has the structure of an infinite series of reflections or scatterings

from the spheres,

(1,1) » ·» °° » N N N
6πη3μ =16 +A + Σ Σ Σ... Σ Σ Σ ... Σ

-ij - ij -ij s=l m
x
=2 m

2
=2 m

s
=2 ̂ =1 J

2
=l j

s
=l

) (mĵ .m]̂ )" (m
1
,m

2
) (mg.mg)" (m

s
,l)

Θ Β ΘΑ Θ...Β ΘΑ , (2.2)

and is given äs a sum of products of tensors called connectors. The

connector A ' (î j) is a tensor of rank n + m, which char'acterizes

a hydrodynamic interaction between a force multipole of order n on

20



sphere i and a multipole of order m on sphere j. This connector is a

function of R. . = R .- R of order (a/|R. . |) and hence, for large

Separation of the spheres, low values of n and m dominate. By defini-

tion these connectors are zero for i = j. The tensor B
(m
'

m)
 is a ge-

neralized inverse of a tensor B
 m
'
m
 of rank 2m which does not depend

on the positions of the spheres. The notation A
(n
'

m)
 © B

(m
'

m)

prescribes an m-fold contraction, with the convention that the last

index of the first tensor is contracted with the first index of the

second tensor, etc.

The general expressions for the connectors are (cf. ref. 10)

(n,m)

A
u
 = 0, (2.3)

A ' = /dr/dr' δ(ί
±
 - Γ)δ(ί - r') A ' (?'- r), l*j, (2.4)

with the connector field A ' (r) given by

(
n
>

m
) o _o ·£ *

A (?) = 6TCaJ (2n-l)!!(2m-l)ü im~~n(2n) /die e~llc*r (ak)~2

(2>5)
S i a )

The tensor Β ( 2 · 2 > is given by

Β^Γ1.. 10^(2,2) m (2>6)

The tensor B/ '
m
' for m>3 is defined, in terms of the connector field

(2.5), by

(m,m)
 =
 _ ̂K,*\+ . o), m > 3. (2.7)

The inverse of this tensor is evaluated explicitly below.

In the above equations (2n-l)ü = 1·3·5·.. .(2η-3)·(2η-1), k = |£ |,

*The tensor E_(2>2) defined here corresponds to Bl_
<2s
'

2s)
 in ref.

10.
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k Ξ k/k. The notation b
p
 denotes an irreducible tensor of rank p,

i.e. a tensor traceless and Symmetrie in any pair of its indices,

constructed from a p-fold ordered product of the vector b (in the

present context b Stands for ö/ö(ak) ). For p = 1,2,3 one has (see

e.g. ref. 14)

bct = ba ' babß = babß ~ J 6aßb2 '

l 2

(22)
The tensor Δ ' used in eq. (2.6) belongs to a class of tensors

Δ of rank 2n which project out the irreducible part of a tensor

of rank n:

(n,n) n n (n,n) ' n
1

Δ Θ b" = £ ® Δ =6. (2.9)

For n = 1,2 we have
 1

(1,1)

V
 =
 ?

 δ
*δ

δ
βγ
 + \ δ
αγ

δ
βδ ' T

 δ
αβ

δ
γδ '

 (2
'
10)

The general expression for the mobilities äs a function of the

positions of the spheres (2.2) constitutes an expansion in the inverse

interparticle distance l/R. An explicit evaluation up to and including

terms of order (l /R) can be found in ref. 10.

Equations (2.3)-(2.10) define in principle all the quantities

appearing in expression (2.2) for the toobilities. For later use it is

convenient to rewrite the connector field (2.5) (from which connectors

are formed according to eqs. (2.4) and (2.7)) in a somewhat different

form, using the identity

9 sink Λ / i \P("t 15 τ / I N _ η ι τ < · Ο 1 1 \
—-—j^-= k (-IrljkJ

 J
p+^

k
> ' P 0,1,2,... , (2.11)

where J
p
+l·

 is
 the Besselfunction of order p+%. Eq. (2.11) follows from
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the definition15

j (k) = (-l)p (—-) kp (k d/dk)P s ·̂ (2.12)

and the relationL 16

P . l p l _.
-—f(k) = k (k d/dk)P f(k) . (2.13)
ökp

If we now define a Fourier-transformed connector field

(n,m) .£ ·* (n,m)
A (̂ ) = Jdr e A (r) , (2.14)

we have, in view of eqs. (2.5) and (2.11),

(n,m) ,, o
A (ß) = 6na (2n-l) ! ! (2m-l) Π i

11
"™ | (ak)

"

The above relation may be used to evaluate the tensor B ' expli-

citly for m > 3, since (cf. eq. (2.7))

B
(m
'
m)
 = -(2π)~

3
 Jk

2
dk/dk A

(m
'
m)
(ir) , m>3 . (2.16)

0

The scalar part of the above Integration may be evaluated with help of

the formula (ref. 15, pg. 679)

CD

Jdk k-̂ j.Ck) = (2m-l)~
1
 . (2.17)

0

Using, for the angular Integration in eq. (2.16), the results given in

appendix A (see eq. (A. 9)), we find the explicit expression

B
(m,m)

=
 _ 3 _

 m
_

 (A
(m-l,id,m-l)

— ^—

m-1 .(m-l,m-l) m-2 (m-l.m-l)-,
2m
-i 4 Θ Δ J , m>3, (2.18)
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n

where the symbol Θ
Λ
 denotes an i-fold contraction. The tensor

Δ ' ' is a tensor of rank 2m with elements

(m-1,id,m-1) (m-1,m-1)

This tensor acts äs a unit tensor when contracted with a tensor T

of rank m which is irreducible (traceless and Symmetrie) in its first

m-1 indices

The tensor B t m' m > appearing in eq. (2.2) is the generalized

inverse of B m'm in the space of tensors of rank m which are irredu-

cible in their first m-1 indices. It is therefore determined by the

equation

, .-l . . (m-1.id,m-1)
(m,m) 0 B(m,m)= Δ ^

 m>3
_
 (2>n)

The result

, ,-l , , (m-1,id,m-1) _ (m,m)

Δ̂ "
1
'
111
"
1
^ , m>3, (2.22)

may - with help of formulae (A.3)-(A.5) in appendix A - be checked by

Substitution into eq. (2.21). We recall that Β
(2
·

2>
 is defined in

eq. (2.6).

3. Self-diffusion

The short-tlme self-diffusion coefficient D is related to the
-s

mobilities discussed in section 2 by a generalized Einstein relation
3

N
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where <...> denotes an average over all conf igurations of the N

spheres inside a volume V. We denote the temperature and Boltzmann's

constant by T and kg, respectlvely. The short-time self-dif fusion

coefficient D describes the diffusion of a single "tracer" particle,

over distances small compared to the interparticle Separation (see in

this connection the discussion in ref. 2). Combining eqs. (2.2) and

(3.1) we obtain (see also eq. (2.3))

, oo o» oo N N N (l, m·,) (m-i -m-i )
D /D = l + NX Σ Σ ... Σ Σ Σ ... Σ Α

 1
 Θ Β

 1 1

-s o - s=l m
1
=2 m

s
=2 i=l j

x
=l j

s
=l -î

(mi.mo) (m ,m )~ (m
s
»l) . „ „

© A L *· Θ... B s s Θ A
 s
 > , (3.2)

-J1J2 - ^e
1

where we have defined

D
Q
 = k

B
T (ô a)'

1
 . (3.3)

Thus for isolated spherical particles D = D l , the familiär Stokes-

Einstein result.

Equation (3.2) will be the starting point for the virial expansion

of D , evaluated up to second order in section 4. In order to study
S

also the behaviour of D at higher densities, we shall cast this
~"*S

equation in a different form, which permits a formal resummation. We

first redefine the connector field in the following way

(n, m) (n, m) (n, m)
A (r) = A (?) if r Ö 0 , A (r = 0) = 0. (3.4)

If we now use definition (2.4), eq. (3.2) becomes

S./V I + N"' Σ Σ .. Σ Jdrjdr^./dr^ Σ 6(4,-?,,)" β<^Α>
s=l m, =2 m =2 i=l j =1 Jl

J- S J.

M ( 1 ,m ) , v-1 ( m , 1 )
N ± * ~ > ' * (m,, m,) „, s

.. Σ 6(5 -rs) A (Γχ- ΓΟ) β Β β . . Α (rQ- ?g) >. (3.5)
jg=l s
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_ ^
Note that the introduction of the modified connector field A (r)

enabled us to perform the summations over the particle indices without

restriction. Due to homogeneity of the Suspension, the integrand in

eq. (3.5) is invariant under a translation of the particle position

vectors over r„. After a change of Integration variables eq. (3.5)

takes the form

D s/Do= l + n'1 Σ Σ .. Σ /dr 1/dr 2../dr s<n(r = 0) A 1 (r^n^)
s=l m. =2 m =2

l s

(mm)'
1 (
VV (m ,m Γ

1 (
V

1}

Θ B s A (r
2
- ?

]
_) n(r

2
) s .. B

 S S
 Θ A ( -?

g
) >, (3.6)

where the microscopic density field, with average n = N/V, is given

by

N
n(?) = Σ δ(£.- ?) . (3.7)

1=1 *

Kquation (3.6) may alternatively be »ritten in operator notation

_, » » (l,m.) (m,,m,) (m-.m,,)
D / D = l + n E Σ ... Σ <{η Α n Θ Β Θ Α η-s o - o „ L -

s=l m, =2 m =2
l s

m )~l (m 1)
... © B s' s Θ Α s> }(0 |0) >, (3.8)

(n ,m)
where n and A (written without argument) are linear integral

operators with kernels

n(r|r') = n(r) 6(r'- r) , (3.9)

(n,m) (n,m)
A (r )?') = A (?' - r). (3.10)

(n ,m)
We see that in r-representation n is a diagonal operator and A a

convolution operator. The notation (...}(0|0) prescribes an evaluation

of the kernel of the operator between curly brackets at r = r' =0.
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Next we define matrices A and 8 with elements

(n, m)

A} = A . (3.11)

and projection operators P and Q. = ) - P

{P} = δ .6 , , { i} =6 - δ .6 , . (3.13)1 J
n,m nl ml

 l J
n,m nm nl ml

With these notations we may write e.g.

<= (Ijin) /
 N

-l (m,l) ,
Σ Α Θ B

(m
'
m)
 o A = PAQB-UP

 (3
.u)

m=2

and eq. (3.8) takes the form

l °° i
D
g
/D

o
 = l + n

Q
 Σ P <{nA (n Q. B A )

S
}(0|0)>P . (3.15)

s=l

This equation can formally be resummed to yield

D
g
/D

o
= l + n'

1
 P <{nA ( J - n Qß^A )~1}(0|0)>P , (3.16)

where we have used the fact that, in view of definition (3.4),

(1,1)
P <{nA }(0|0)>P = no A (r = 0) = 0. (3.17)

We remark that it is possible to derive eq. (3.16) algebraically

from eqs. (5.2)-(5.5) of ref. 10, in a way which does not require a

resummation. Eq. (3.16) - which contains the füll hydrodynamic inter-

action of the N spheres - will be the starting point for the expansion

of D in correlations of density fluctuations, performed in section 5.
S

To be more precise: the right hand side of eq. (3.14) is a matrix
with the left hand side äs the only non-zero element.
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4. The virial expansion

For a dilute Suspension it is appropriate to express the short-time

self-diffusion coefficient D äs a power series in the density nQ (a

socalled virial expansion). We shall evaluate this series up to and

including terms of second order in the density. Up to this order we

need consider only contributions from two- and from three-body hydro-

dynamic interactions; these contributions are discussed separately

below.

4.1 Two-sphere contributions

A restriction of \i. . to terms which depend on the positions of at

most two spheres has the following expansion in powers of l/R9·10'17

6iuia y.il (two-spheres) = l + Σ (- — )(a/Rik) rik
r
ik

+ Σ ~ (a/R
ik
)
6
 (105 r\

k
r
ik
 - 17 1) + 0(

a
/R)

8
. (4.1)

Here the vector S = 5. - S has magnitude R., = |R\. | and direction

r = S ,/R . Substitution

two-sphere contributions to D

r = S ,/R . Substitution of eq. (4.1) in eq. (3.2) yields for the

D /D (two-spheree) = l + nQ/dt g(R) ( ^ (a/R) rr

+ yi- (a/R)6 (105 rr - 17 1)), (4.2)

where g(R) denotes the pair distribution function for two spheres

separated by R. Up to order n
o
 we have (see e.g. ref. 18)

g(R)

0 If R < 2a ,

4. ^ l o
J

. ^ o .
l + - icajn0(8 - 3 R/a + — (R/a) J ) if 2a < R < 4a, (4.3)

3 16

if R > 4a .
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An elementary Integration gives the required first and second order

density corrections to D
Q
 due to two-body hydrodynamic interactions

D (two-spheres) = D
Q
 l [ l - 1.73φ - 0.93φ

2
 + 0(φ

3
) ], (4.4)

where φ is the partial volume or volume fraction of the spheres

4 o
φ = -ita

j
 n

0
 . (4.5)

4.2 Three-sphere contributions

Of the three-sphere terms in the expansion of y. in powers of l/R

we have retained the dominant one (which is of order R ), evaluated

in refs. 9 and 10,

75 2 3 2
μ. , (three-spheres) = Σ Σ11 k#i JWi.k 16

0 if R
12
 <

 2a or R
13 < 2a or R23

 < 2a
 '

where ξ
±
 =
 lk
'
u
, 5

k
 =
 kl
'
u
 and ̂ =

 A1
·̂  are direction co-

sines. The three-sphere contribution to D
S
 is obtained by averaging

eq. (4.6) with the three-sphere distribution function

given in lowest order by

g(R12,R13,R23)

After three trivial angular integrations, we are left with a three-

dimensional integral over a complicated domain, determined by eq.

(4.7). This integral was evaluated numerically using Monte-Carlo

techniques . The resulting three-sphere contribution to D is
S

D (thr-ee-spheres) = D
Q
 l [ 1.80φ

2
 + 0(φ

3
) ]. (4.8)

Use was made of the adaptive Monte-Carlo integration program

RIWIAD
20
.
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If we add eqs. (4.4) and (4.8) we obtain the virial expansion of

D up to second order in the density

2 3
D (two- and three-spheres) = D 1[1 - 1·73φ + 0.88φ + 0(Φ )]· (4.9)

The term of order φ is well known
3
·
7
. Batchelor

3
 used exaat expres-

sions for the two-sphere mobility tensors and found -1.83φ for the

correction of order φ. Comparison with eq. (4.9) shows that the terms
_Q

of order R and higher neglected in eq. (4.1) are not very important.

Concerning the three-sphere contributions neglected in eq. (4.6) (of

~9
order R and higher) we can say the following: a calculation of the

contribution to D due to a typical three-sphere mobility term of

order R was found to give about 1% of the value in eq. (4.8) , which
_y

results from the only term of order R

We defer a discussion of our result (4.9) to section 8.

5. The fluctuation expansion

The fluctuations in the microscopic density field are defined by

n(?) = n
o
 + δη(?). (5.1)

The average <ön(r)> equals zero by definition, while

<δη(?)δη(?')> = n 6(r'- ί) + n
 2
[g(|?'- r|) - 1], (5.2)

with g(r) the pair distribution function.

Our aim is to expand the expression between curly brackets in eq.

(3.16) in powers of δη. This can be done most conveniently by using

first the identity (A is an arbitrary operator)

üsing the notation of ref. 10: we found that the sequence of
connectors _> , _> , _»

G C 1 . 2 s > ( R i ) . B < 2 s , 2 s > 'sH.CZs^s)^).^

contributes -0.016φ2 to D /D .
o O
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[l - (n
0
 + δη)Α]~

1
 = (l - î A)"

1
 [l - δηΑ(1 - î A)'

1
 Γ

1
. (5.3)

Substitution of (5.1) in eq. (3.16) gives, with the aid of (5.3), the

alternative expression for D

D
S
/D

Q
= l + n'

1
 P<{nA

n
 [ 7- δη Qß~l An ]"

1}(0|0)>P, (5.4)
o o

where the renormalized matrix of connectors A is defined äs
no

An Ξ A [? - no
 QB^A]"

1
· (5.5)

o

This renormalization accounts for the fact that fluctuations in the

concentration of the spheres interact hydrodynamically via the

Suspension rather than through the pure fluid.

If we expand the expression between curly brackets in eq. (5.4) in

powers of δη, we obtain an expansion of D in correlations of density
S

fluctuations of higher and higher order (a "fluctuation expansion")

D =D<°>
 +
D<

2
> +... , (5.6)

-s -s -s '

where D contains terms of order <(δη) >.

The zeroth order term D is given by
S

D^X-lH-A^rf-O), (5.7)
o

(n,m) ->·
where the renormalized connector field A (r) is the kernel of the

o
convolution operator A<

n
'

m)
, which in turn is an element of the matrix

n
o

A
n
o
(n,m)

A = { A } . (5.8)
-n

0

 l
 n

o

j
n,m

The renormalized connector field will be evaluated in the next

section; an explicit expression for D is given in section 7.

We shall include in our calculation of D the lowest order

correction to D due to fluctuations in the concentration of the
-s
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suspended particles. This correction D results from terms of order
r\

<(δη) > in eq. (5.4) and is given by

D ( 2 ) / D = n'1 Ρ < { δ η Α δη OB"1 Α
—s o o l n no o

+ no A δη Qß"1 ΑΠ δη Qß~l ΑΠ }(0|0)>Ρ , (5.9)
o o o

or, written out explicitly,

(2) c» ( l ,m) -l (m,l)
D /D = Σ A (r=0) Θ B

(-m'm; Θ Α (r=0)
- s o -n - -n

m=2 o o

(l,τη) , ,-l (m,l)
+ Σ n Jdr A (?) « E(m'm) Θ A (-?) [g(r) - 1]

m=2 o o

OO 00 (l, m) , v-1 (m, k) ,, , .-l (k,l)

+ Σ Σ n /di A (?) a B
(m
'
m)
 0 A (?-0) β B

(k
'
k)
 s A (-?)

m=2 k=2 °
 n

o ""o
 n

o

t» «> „ (l, m) , .-l (m, k) .. .
 N
-l

+ Σ Σ n
2
/d?/d?' A (?) o B

(m
'
m) e A (?'- ?) o B

(k
'
k)

m=2 k=2 °
 n

o
 n

o

Θ An (-?')[8(|?'-?|)-1]· (5-10)
o

Use has also been made of eq. (5.2). The contributions to D
< 2 >

 result
S

from pair-correlations (the terms containing g(r)-l ) and from self-

correlations which would also be present in the hypothetical case of

penetrable spheres.

6. Evaluation of the renormalized connectors

According to eqs. (5.5) and (5.8) the renormalized connector field

A
tn
'
m)
(r) is formally given by
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(n, m) (n, m) °° » » (n,m )
A (r ) = A (r) + Σ Σ . . . Σ n /dr . . . /dr A (r, )
""o s=l m =2 m =2 °

 1 s
 ~

 i

l s

(m,, m.) (m ,,m ) (
m
o'

m

s
> J

m

s
>

m)
 + +

Θ B Θ A (r- Γ) Θ ..B
 s s

 β A
 s
 (r - ?), (6.1)

cf. also definltions (3.10)-(3. 13). We observe that we may replace

A "'
m
 (r) under the integral in eq. (6.1) by A

(n>m)
(r), since these

two connector fields differ by a finite amount in a single point only,

cf. eq. (3.4). Hence, in terms of the Fourier- transformed connector

field defined in eq. (2.14), eq. (6.1) takes the form

(
n
»

m
> .> J

n
>

m
) » » _

3
 ,£.·> (n,m )

A (r) = A (r) + Σ Σ ... Σ η (2π) Jdk e
 r

 A (k)
""o ~ s=l m, =2 m =2 °

l s

. .-l (m-,ιη«) . .-l (m ,m)
(m ,m ) l* 2' (

m
„»

m
„)

 s
 '

Θ Β © A (k) s .. B o A (k). (6.2)

To proceed we make use of the formula (proven in appendix B)

(n,p) , -.-l (p,m) (n,m)
 g

n A (k) <s B^p>p;
 Θ A (k) = - A (k) f πφ ε (2ρ-1)o — — — n. p

x (ak)~
3
J
2
 ,(ak), p > 2, (6.3)
P ΐ

with the definition

ε
2
= 5/9 , ε

ρ
= l (p>3). (6.4)

The volume fraction φ is defined in eq. (4.5). Using well known

formulae for Bessel functions (cf. appendix C) we can analytically

perform a summation over p in eq. (6.3)

00
 (n,p) , ,-l (p,m) (n,m)
Σ n A (k) Θ Β

(
·
ρ
'
ρ;
 © A (S) = -φ S(ak) A (£), (6.5)

p=2 ° - - -

where the function S(x) is given by

33



9 _i _9 _·}
S(x) = - [x iSi(2x) + %x. /cos(2x) + fcx Jsin(2x)

- x~4sin2x - 4x 6(sinx - xcosx)2]. (6.6)

Here the sine-integral Si(2x) is defined by

2x

0

For small values of x, S(x) behaves äs

Si(2x) = / t 1slnt dt. (6.7)

S(x) = 5/2 + 0(x2). (6.8)

With the aid of formula (6.5) we can resum the formal expansion

(6.2) to yield the required expression for the renormallzed connector

field

(n,m) (n,m) - * -> (n,m)
An (?)=? '(?) - (2lt)-

3/dg e'ik-r A (S)
o

x φS(ak)[l + <|>S(ak)]. (6.9)

We remark that äs a consequence of the expansion (6.8), we have for r

large

(n,m) (n,m) s -l
An (r) . A (r) (l + f φ) . (6.10)

o

We thus see that the ränge of a renormalized connector is the same äs

the ränge of an unrenormalized one, or, in other words, the hydro-

dynamic interaction is not sereened in the effective medium.

For the fluctuation expansion we need in particular the value

A^n>m)(r=0) (cf. eqs. (5.7) and (5.10)). Using, for the angular Inte-

gration in eq. (6.9), the results (A.9)-(A.ll) from appendix A we find

(1,1) ^ " - 1 2 -l
A (r=0) = - l fdk k J, (k) φS(k)[l + φS(k)] , (6.11)
~
n
o ~ 0 *
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, ,-l (m,m) , .-l

B
(m>m)

 Θ Α (? - 0) β B
(m
'
m)
 =

-
n
o -

-l o» 2

= B^
m
'
m
' (2m-l)/dk k" J _,(k) φS(k)[l + φ3̂ )] , m>2, (6.12)

0
 m

 '

(m,m+2) (m+2,m) o

A (r=0) = A (?=0) = -4 (m+l)!(2m-l)ü Avm'"'
~n ~n l. ~o o

00

χ /dk k
-1
J , (k) J (k) φS(k)[l + φS(k)]~ , ' (6.13)

n
 m ̂  nn~3 / 2

(n,m)

A (r = 0) = 0 if n t m and n # m ± 2, (6.14)
~n
o

where B
(m
'

m>
 (m>2) is given by eqs. (2.6) and (2.22). The remaining

one-dimensional integrations in the above equations may be performed

numerically.

7. Numerical results for the fluctuation expansion

In section 5 we have written the fluctuation expansion of the

short-time self-dif fusion coefficient D in the form
-s

D -D<°> +D<
2
> + ... , (7.1)

-s -s -s '

p
 contains terms of

density fluctuations of order p.

where D
 p
 contains terms of order <(δη) >, i.e. correlations of

From eqs. (5.7) and (6.11) we obtain for D the expression

D
(0)
 = D l (l - - φ/dk (sink/k)

2
 S(k)[l +

s ο π

= D
Q
 l - /dk (sink/k)

2
 [l +φS(k)]

 1
, (7.2)

where the function S(k) is defined in eq. (6.6). A numerical
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Table l

The fluctuation expansion of D
g
 to second order.

φ

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

D<S°>/D0

0.896
0.812
0.743
0.685
0.636
0.593
0.556
0.524
0.495

+ D<"/D 0

+ 0.005
0.007
0.024
0.041
0.057
0.071
0.083
0.093
0.102

" VDo

0.90
0.80
0.72
0.64
0.58
0.52
0.47
0.43
0.39

Integration yields the values listed in table 1.

With the aid of eqs. (6.13) and (6.14) the expression (5.10) for

D reduces to
-s

(2) (1,3) -l (3,1)

D /D = A (r = 0) o B*· ' ' Θ A (r = 0)
-s o -n

 v ' - -n
 v '

o o

00
 (l, n) / N~! (m,oi) / \~1 (m.l)

+ Σ n /d? A (?) β B
(m
'
m)
 0 A (r=0) 0 B

(m
>

m)

 β
 Α (-?)

m=2 -
n
o - -

n
o - '"o

(l, m) , .-l (m.nri-2) , ,„ „.-l (m+2,1)

+2 Σ njdi / (?). B
(m
'
m)

 θ
 A/ (?=0)s B

(m+2
'
m+2
) o / (-?)

m— 2 o o o

(l, m) .-l (m,l)

+ Σ n
o
 Jd? A (?) Θ B

Cm
'
m;
 Θ A (-?) [g(r) - 1]

m=2 o o

(
m
,k) ,, . .-l

m=2 k=2
 n

o

o > / \~ , ,, . .
+ Σ Σ n

2
 /d?/d?' A (?) 0 B

(m
'
m)
 o A (?'- ?) 0 B

(k
>

k)

n
o ~

n
o

(k
·̂  > * *

0 A
n
 (-r

1
) [g(|r'- r|)-l]. (7.3)

We used an adaptive routine based on Gauss quadrature rules
21
. This

routine, together with an algorithm for the evaluation of the sine-

integral appearing in definition (6.6), is part of the NAG-library

(Oxford).
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We have numerically evaluated all the terms in eq. (7.3) not con-

taining connectors A n'm (r) with n or m larger than 2, i.e. restric-

ting ourselves to corrections to D due to monopolar and dipolar

hydrodynamic interactions between density fluctuations. The results

can also be found in table 1. We approximated g(r) by the solution of

the Percus-Yevick equation for hard spheres, äs found by Wertheim and

Thiele22. Details of the calculations are given in appendix D.

8. Discussion

We have calculated the concentration dependence of the short-time

self-diffusion coefficient Dg for spherical particles in Suspension.

For low values of the volume fraction φ a virial expansion is appro-

priate. We found

D = D
Q
 l [ l - 1.73φ + 0.88φ

2
 +0(φ

3
) ]. (8.1)

Only two-body hydrodynamic interactions contribute to the - well

known
3
·
7
 - term of order φ, which dominates if the Suspension is very

dilute. However, many-body hydrodynamic interactions may not be

neglected at higher densities: a neglect of three-sphere contributions
n 9

would give a value of - 0.93φ instead of + 0.88φ for the term of
2

order φ in eq. (8.1). In a concentrated Suspension it is therefore

essential to fully take into account the many-body hydrodynamic inter-

actions between an arbi-frOpy number of spheres .

The expansion of D
g
 in correlations of fluctuations in the concen-

tration of the suspended particles satisfies the above requirement. In

fig. l we have plotted the results from this fluctuation expansion,

carried out to second order. At low values of φ we can compare these

Van Megen, Snook and Pusey
2
-
5
, in contrast, calculated the diffusion

coefficient by averaging the two- and three-sphere mobilities given in

eqs. (4.1) and (4.6) with "exact" distribution functions (äs known
from Computer simulations). The neglect of hydrodynamic interactions
between four and more particles in a concentrated Suspension can
however not be justified.
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Fig. l Volume fraction dependence of D
S
/D
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·
 Tne

 theoretical curve is

from table l, the data points are from ref. 13.

results with the virial expansion of D
g
 (eq. (8.1)). We found from the

fluctuation expansion a value of -1.96 for the linear coefficient, in

reasonable agreement with the value of -1.73 given in eq. (8.1), or

with the exaet value of -1.83, calculated by Batchelor
3
. In order to

obtain also an estimate for the accuracy of the fluctuation expansion

at higher densities, we examine the relative magnitude of its first

two terms: one sees from table l that up to volume fractions of 0.3

(2)
the lowest order correction D is of the order of 10% (or less) of

the zeroth order result D
(0)

One might expect, therefore, that in

this regime the concentration dependence of D is described reasonably

well by our results from the fluctuation expansion. At higher volume

fractions, however, the correction D becomes more and more impor-

tant and, consequently, one should expect our results to be increa-

singly less reliable.

Pusey and van Megen'
3
 have measured D for a concentrated suspen-

sion of colloidal latex particles, using dynamic light-scattering

techniques. Their data points are also plotted in fig. 1. Unfortu-



nately, a comparison with the virial expansion (8.1) is not possible,

since no measurements could be performed at sufficiently low concen-

trations. As we can see, the fluctuation expansion is in agreement

with the experimental data in the regime φ ̂  0.30, where we expect

our results to be reasonably accurate. However, for φ !£ι 0.35 the

calculated values for D
0
 are considerably larger than the measured
o

ones, indicating the importance of higher order terms in the fluctua—

tion expansion. We shall deal with an important class of these terms

in the next chapter.

Appendix A. Formulae for irreducible tensors

We shall use the following formulae (cf. ref. 14)

r r = r + r Δ ®" " r , (A.l)

r Θ
η
 r = n!/(2n-l)ü , (A.2)

(n,n) (m,m) (n,n)
Δ ο Δ = Δ if m < n , (A.3)

(n,n) (m,m)

Δ Θ Δ =0 if m > n , (A.4)

(n,n) (n,n) (n-1,n-1)

Δ ® 4 ÖTT- Δ , (Α.5)

. '̂In'Cm
1
 (n,n)

^-/drr r = δ̂  n! [(2n+l)! ! ] Δ . (Α.6)

Integrals of the form

(n,m) ^
 Λ

'
Λ
η-ΐ'

 ΛΑ
 '

A
m-l'

J = ç— Jdr r (l - rr) r , n,m > 2 , (A.7)
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can now be evaluated using first eq. (A.l), and then eq. (A. 6) and its

corollary (cf. definition (2.19))

, ,
-^ /dr r l r = 6

nm
(n-l)! [(2n-l) l! ] Δ . (A. 8)

The result is

(n, n) (n-l,id,n-l) (n, n)

Δ

_ . (Α.9)

(n+2,n)

j(n,m)
= Q if n ö m and n # m ± 2; (A. 11)

where we have made use of eq. (A. 3) to simplify the expressions.

Appendix B. Proof of equation (6.3)

Every tensor of rank 2, constructed from the tensor l and the

vector r, is necessarily of the form α l + β rr, with scalars α

and β . Hence we can write

(l - rr) r 0
n
 B

(n>n)
 e

n
 r (l - rr) = α l + β rr, n > 3, (B.l)

with B
( n < n )

 (n > 3) given by eq. (2.22).

If we contract both sides of eq. (B.l) with r, we find

0 = (a + ß) r , (B. 2)

hence β = -a. To determine a we take the trace of eq. (B.l)

Π Π (η,η)"
Ó Σ . δ., „ r.. ...r,. B,,

μι
...μ

η
 ν

1
...ν

η

„ Ln-l' , .-1 '
Λ
η-1'

- r r 0
η
 Β

(η
'
η)
 ο

η
 r r = 2α. (Β.3)
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The l.h.s. of eq. (B.3) can be evaluated with help of the formulae

Γ. Π ( n - l , i d , n - l ) U Π (n-l)!

(n-l)!

(η,η)
(Β.5)

= r Θ
η i r = (n-l)![(2n - 3)!!] L , (Β.6)

.r r e Δ
Α Λ « .

η n-l
e r r = r 0 r

.,
s (η— 1)!
>- (2n-3)!! '

A '^n-l" (n,n) ' „n-ll„
n , n

r r Θ Λ ® r r = r β r = (2n-l)ü '
(B.8)

(n,n) .n-11.
r r s T = r « r © r «r =

' n-2'_ Θ
„ n -

η-2 = n-l (n-l)!
r 2n-3 (2n-3)ü '

(B.9)

cf. eqs. (A.l)-(A.S)). We have used the abbreviation

(n,n) (n-l,n-l) , (n-l,n-l)
T Ξ Δ Θ

η
~
2
 Δ (Β.10)

Substitution in eq. (B.l) of the values for α and β which follow

from eqs. (B.2)-(B.10) yields

(l-rr)i Θ
η
 Β

(η
'
η)
 Θ

η ô (1-ίί) = -[ (2n-3) ! ! ] ), η>3. (Β. 11)

Since B
<2
'

2>
 equals - -̂  Δ^

2
'
2
^ (definition (2.6)), a simple calcu-
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lation gives

(l - rr)r : B
(2>2)
 : r(l - «) = - | (l - ίί). (Β.12)

Eqs. (B.11) and (B.12) give, together with eq. (2.15) the required

formula (6.3).

Appendix C. Derivation of equation (6.5)

We wish to calculate the sum

" ? 2 2 °° 2*· T*· f \ _ ^-- π r T^- / — 1 _L T

- x
2
[J

2
(x) + J

2
 (x) + 2J (x)J (x)], (C.l)

? 3/2 3 3/2

where we have used the recursion relation'
5

In ref. 24 ( § 116) we find the useful formula

n=0 "
1V
 "Ή Ο "

for v and p real numbers. If we take v = p = \ we find

oo 2χ

Σ
 J

+̂!
L(X) = π"

1
 / t~

1
sint dt Ξ π"

1
 Si(2x), (C.4)

n=0 0

while the choice v=3/2, p
 =
 ~ \ gives

°° —2 — 1
X
 ~2 —l

Σ J (x)J ,(x)= χ π /tsin2t dt = χ π (ksin2x-^xcos2x). (C.5)

n
=0

 η
"*"

3
/
2 η

"
%
 0

Substitution of eqs. (C.4) and (C.5) into (C.l) yields the result

Σ (2n+l) J ,,(x) = -[x
2
Si(2x) + ^sin2x + ^xcos2x - x~

1

s
in x]. (C.6)

n=l
 n+

*
 π

This is the formula we need in deriving eq. (6.5).
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Appendix D. Calculation of D
s

<2)

We can write the Integrals in eq. (7.3) in terms of Fourier trans-

formed renormalized connector fields A ' (k), which, according to

eqs. (2.14) and (6.9), are given by

A
(n
'
m)
(k") = Α

(η>ιη)
(£) [l +

 $
S(ak)]"

1
. (D.l)

n
o

Restricting ourselves to terms in eq. (7.3) containing only connectors

with upper indices n,m < 2, the expression for D takes the form
s

(2) _
3
 (1,2) -l (2,2) ,

r
l (2,1)

D /D = n (2π) fdk A (k):B̂  ' ' :A (r=0):B*· ' ' :A (k)
-s o o* J —n - —n ~n

o o o

+ n (2π) 6/dk7d£' A (£) : B ( 2 > 2 ) : A '
~
n
o

2 -6, *, + · (2 2)" ' ^ (2 2)' ' ^
+ n^ (2n) Ö/dS/dS' An (^):BC / ' /- ) :A (£ ') :Β(·2>":·) :Αη (ί)

o no o

χ ν( |£-£' | ) , (D.2)

where v (k) is the pair correlation function in wave vector represen-

tation

•ί *
v(k) = Jdr e r [g(r) - 1]. (D.3)

The f irst integral in eq. (D.2) (due to self-correlations, cf.

section 5) can be evaluated with the aid of eqs. (2.6), (2.15) and

(6.12)

eo 2 2
p/2^ (self-correlation') = - ^- πφ210 fdx x~4J, (x)J, ,.(x) [1+φ3(χ)]~2

S 4 ~ O - ^ J/ 2

-l 2 -lx /dy y J . / 9 < y ) s(y)[i+$s(y)] A. (D.4)o 3/2

A numerical Integration
21
 of these one-dimensional integrale yields

the values listed in table 2, column I. The two remaining Integrals in
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eq. (D.2) contain the pair correlation function v(k). We have approxi-

mated v(k) by the solution of the Percus-Yevick equation for hard

spheres22. (An explicit analytic expression for v(k) can be found in

ref. 25.) Using eqs. (2.6) and (2.15) we can write the two terms in

eq. (D.2) containing pair-correlations äs two three-dimensional Inte-

grals. These Integrals were evaluated by Monte-Carlo Integration19·

The results can also be found in table 2, columns II and III.

Table 2

Specification of the terms contributing to D '/D = I + II + III.
The values under I, II and III correspond to the first,second and

third term, respectively, on the r.h.s. of eq. (D.2).

II III

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

- 0.007
- 0.019
- 0.033
- 0.046
- 0.057
- 0.066
- 0.073
- 0.079
- 0.084

+ 0.014
+ 0.021
+ 0.024
+ 0.024
+ 0.024
+ 0.022
+ 0.020
+ 0.018
+ 0.016

- 0.003
- 0.009
- 0.014
- 0.019
- 0.024
- 0.027
- 0.030
- 0.032
- 0.034
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CHAPTER III

DIFFUSION:

PARTIAL RESUMMATION OF CORRELATIONS

1. Introduction

In the previous chapter we calculated the concentration dependence

of the (short-time) self-diffusion coefficient for spherical particles

suspended in a fluid. This quantity, denoted by D
S
, is the large-k

limit of the wavevector dependent diffusion coefficient D(k), which

describes the initial decay of the dynamic structure factor measured

by inelastic light- or neutron-scattering ' . In chapter II we

resummed the contributions due to hydrodynamic interactions between an

arbitrary number of spheres. By including at most two-point correla-

tions between the spheres, we obtained in that chapter a reasonable

agreement with experimental results for D
g
 for volume fractions

φ ̂  0.3 . At higher concentrations the calculated values were too

large, indicating the importance of higher order correlations.

The purpose of this chapter is twofold: i) we extend the formalism

to diffusion at arbitrary values of the wavevector; ii) we resum to

all Orders the contributions from a special class of correlations.

The (short-time) wavevector dependent diffusion coefficient D(k)

may be expressed in terms of the mobilities of the spheres · To linear

order in the density only two-sphere hydrodynamic interactions need to

be considered and results for D(k) to this order have been obtained by
4 5

Rüssel and Glendinning and by Fijnaut . In a Suspension which is not

dilute, however, it is essential to fully take into account the many-

body hydrodynamic interactions between an arbitrary number of spheres,
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äs we have seen in the previous chapter. Using general expressions for

many-sphere mobilities obtained by Mazur and van Saarloos , we shall

give in section 2 a formula for the diffusion coefficient which is a

convenient starting point for the calculation of D(k) in a concentra-

ted Suspension, through an expansion in density-fluctuation correla-

tion functions of increasing order. Such a "fluctuation expansion", in

which the many-sphere hydrodynamic interactions are resummed algebrai-

cally, was employed in eh. II also (for the case of self-diffusion).

In this chapter we shall - in addition - resum to all ordere the con-

tributions from a class of self-correlations, cf. sections 3, 4 and 5.

Results for the concentration and wavevector dependence of D(k) are

given in section 6, and are compared with experimental data ' ' . We

conclude this chapter in section 7 with an Interpretation of our

results in terms of an effeetive pair-mobility.

2. An operator expression for D(k)

As in eh. II we study a System of N spherical particles with radius

a and position vectors R. (i = l, 2,... N), suspended in a liquid with

viscosity η. While in our previous analysis we restricted ourselves

to the self-dif fusion coefficient D_ of the suspended particles, we
S

shall consider here the wavevector dependent diffusion coefficient

D(k), given by (see e.g. ref. l and eh. I)

N
 Λ

 ik".R". .

D(k) =· k T[NG(k)] Σ <k-u.. .«k e
 1J

>. (2.1)

i,j-i
 1J

Here k is the wavevector with magnitude k and direction k = k/k, G(k)

is the static structurefactor, u_ is a mobility tensor, R. .= R.- R,,

and kg and T denote Boltzmann's constant and the temperature respec-

tively. The angular brackets denote an average over the conf igurations

of the spheres in a volume V.

The quantity defined in eq. (2.1) describes diffusion of the

spheres on a time scale over which their positions are essentially
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constant . It can be measured by light-scattering, and is called in

this context the "effective" diffusion coefficient . The (short-time)

self-diffusion coefficient D
S
, studied in eh. II, is given by

-l
 N

D l = k„TN Σ <μ.,>. (2.2)
s - B

 1=1
 *ii

It is the large wavevector limit of D(k)

D = lim D(k), (2.3)
s
 k-)·»

äs can be understood by noting that

lim G(k) = l (2.4)

and that in the limit k-x» only the terms with i=j contribute to the

average in equation (2.1). Note furthermore that, in an Isotropie

Suspension, the average in eq. (2.2) is proportional to the unit

tensor 1.

General expressions for the many-sphere mobility tensors y.. . were

derived by Mazur and van Saarloos . It is convenient to write these

results in the compact operator notation used in eh. II. To this end

we express the mobilities in terms of an operator kernel |i(r|r'), by

6πη3|ΐ = 16. .+ /dr/dr' 6(r - R.)6(r'- R.)y.(r r'). (2.5)

We further define the microscopic number density n(r) of the spheres

N

n(r) = Σ ö(r - R* ). (2.6)
1=1 1

Eq. (2.1) then takes the form

-̂  ->· ->· -V

G(k)D(k)/DQ=.l + N
-1/dr e~ik'r/d?'elk<r ̂k-ni?)̂ ?!?')n(?')-k>, (2·7)

or, defining the operators y. with kernel y.(r|r') and n with kernel

n(r)o(r'- r),



G(k)D(k)/D
o
= l + N <k«{n

ii
n}(S|).k>. (2.8)

In this last equation we have defined the Fourier transform of an

operator kernel C(r|r') Ξ {ημη}(ι:|ι:') äs

C(S|i') = /d? e-̂ /d?· ê f'?'c(?|?·). (2.9)

The Stokes-Einstein diffusion coefficient is denoted by

"". (2.10)

Adopting the notatlon of eh. II (cf. eqs. (II-3.4), (II-3.10)-

(II-3.13)), expression (II-2.2) for the mobility tensors takes for the

operator [i the compact form

y. = PA ( 7 - n Qß~lA )~1P , (2.11)

and we thus finally obtain for the diffusion coefficient the

expression

G(k)D(k)/DQ= l + Ν
-1
<ί·{Ρ nA (7 - n Qß^A )~1ηΡ }(£|k>k>. (2.12)

Expression (2.12) for the diffusion coefficient D(k) is exact and

fully contains the many-body hydrodynamic interactions between the N

spheres. It is the required extension of the formula for the self-

diffusion coefficient D
g
 given in eh. II, eq. (II-3.16). As we have

shown there - and will see again in the next section - such formal

operator expressions are very useful in a study of concentrated

suspensions.

3. Renormalization of the connectors

(m,m)
Let γ (m = 1,2,3,.. .) be an arbitrary constant tensor of rank

2m. We denote by γ
ο
 the diagonal matrix with elements
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r i c (m>m) / o 1 N{γ } = δ γ . (3.1)
o n,m nm -o

A matrix of renormalised eanneetcrrs A ±a defined - for each γ - äs
Ό

A = A ( l- y09ß~l A)'1. (3 .2)
'o

The n, m element of the matrix A is a renormalized connector
i i ^

A ' , which in turn is a convolution operator with kernel

~
Ύ
° A

(n
'
m>
(?).

*o ( m , m )
We now choose γ to be a function of the average number density

—o
of the spheres n = N/V,

(1,1)
γ = n l,
-o o -

(m,m) (m, m) (m, m) (m,m) ->· (m, m)
v - γ Θ Β Θ Α (r=0) = n l , m > 2. (3.3)
— o — o — -γ ο —

o

The tensor l ' used in this equation is a generalized unit tensor

of rank 2m,

where the Δ-tensors are defined in eqs. (II-2.9) and (II-2.19). The

renormalised "density" y(r), with average γ
0
, is given by

γ(?) Ξ γ
ο
η
ο
 n(r); (3.5)

the corresponding diagonal operator γ has kernel Y(r)6(r'- r). The

renormalized density and connectors defined above will be explicitly

evaluated in section 4.

In eh. II we defined renormalized connectors A according to eq.

(3.2), with γ
0
 replaced by n

Q
, and used the identity

A (? - n Οβ"
1
 A )~

1
n = A

n
 ( I~ °

n Qß'1 Α
Π
 )~

1
η, (3.6)

o o

where δη = n-n
Q
 denotes the density fluctuations. If one substitutes
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this identity into eq. (2.12) and expands the operator between braces

in this equation in powers of δη, one obtains an expansion for D(k) in

correlation functions of density fluctuations of higher and higher

order (a socalled fluctuation expansion). For the case of self-

diffusion, this expansion was eyaluated to second order in eh. II. The

renormalized connectors A account for a füll resummation of the
"o

many-body hydrodynamic interactions in the absence of correlations,

and in this way for the fact that (in some averaged sense) spheres

interact hydrodynamically via a Suspension with density n , rather

than through the pure fluid. As we shall shortly see, the renormaliza-

tion of the density, defined in eq. (3.3), will moreover account for a

partial resummation of correlations.

The following identity will prove very useful in our analysis

-l -i -i ° -l
A (7 - n Qß A ) n = A (7 - δγ QB A ) γ· (3.7)

γ
ο ^o

This formula differs from the previous one (eq. (3.6)) in that it con-

tains the renormalized density γ, density fluctuations δγ = γ - γ
o(n,m)

 r
 ο . °

and cut-out connectors A = { A \ with kernels
-γ

ο
 γ

ο
 a,m

(n,m) (n,m) Γθ if r = r' and n = m,
o -> ,-> o ->· -»·
A (r r') = A (r

1
- r) = ~( ,

 N
 (3.8)

-γ Υ l (
n
>
m
)

0
 ° [_A (?'- r) if r Ö r' or n * m.

^o

A proof of eq. (3.7) is given in the appendix of this chapter.

Substituting this identity into expression (2.12) for D(k) one finds

o

G(k)D(k)/D
Q
= l + if^-tPnA,, ( 7 - δγ ̂ß'1 Av Γ

1
«»? }(£|£)'k>, (3.9)

'o 'o

where use has been made of the fact that γ P = n P , in view of defini-

tions (3.3) and (3.5).

If one expands the operator between braces in eq. (3.9) in powers

of δγ one obtains again an expansion for D(k) in density fluctuation

correlation functions, since δγ = γ η δη (cf. eq. (3.5)) is linear in

the density fluctuations δη. The δγ~βχρ3ηβΐοη differs, however, from
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the δη-expansion considered in eh. II, in that the contributions from

a special class of correlations (which we call ring self-aarrelatiane)

are in the former expansion included in the lowest order term. Indeed

each term in the δγ-expansion may be obtained by partial resummation

of the δη-expansion.

The difference between these two expansions of the diffusion

coefficient may be understood äs follows. An s-point correlation

<ön(r. )6n(r„). . .6n(r )> contains many terms which are proportional

to delta functions 6(r. - r ) (k, S. = l, 2,..., s; k * ,$.)· For s = 2 one
K Λ

has e-g.

<δη(Γ
1
)δη(?

2
)> = η

ο
δ(?

2
- ?

χ
) + n^ [g( |?

2
~ rj)-!], (3.10)

where the delta function term represents the self-correlation and g(r)

is the pair distribution function. As a consequence of self-
s

correlations, an expression of the form <(δη ) > contains a class
(m, k) -> o

of contributions with factors A (r=0) (m, k = 1,2,3,...). Referring
"o

to a diagrammatic representation, this factor is called a ring self-

correlation. We remark that a contribution from these ring self-

correlations is most important when the upper indices m and k of the
(m, k ) ->

 Λ

factor A (r=0) are equal . In this case we speak of diagonal ring
n
o

self-correlations .

Similarly, an s-th order correlation between renarmalized density
o s

fluctuations <(δγ ) > would contain terms with factors
o(m,k) -> 'o
A (r=0). However, in view of definition (3.8) of the cut-out
'o

connector field, these terms are zero, unless m Ö k. For this reason

the various terms in the δγ-expansion do not contain diagonal ring

self-correlations. The contributions of these have been resummed alge-

braically by the renormalization of the density through eq. (3.3).

To conclude this section we give the expression for the self-

diffusion coefficient D_, which follows from eq. (II-3.16) with the
fa

For example, the contribution (of second order in δη) to^the self-

diffusion coefficient from the term with the factor A
 <2
>

2>
(r=0) is

-0.084D
Q
, at the highest density considered in ch.Il" _>(cf · table 2).

At the same density, the term with the factor A _ (r=0) contributes

only -0.002D
Q
. ~̂ ·
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use of identity (3.7),

o

I D / D - l + n"1^ ( - δγ -1 Γ1* }(r |r)>. (3.11)
ro 'o

Note that, due to translational invariance, the r.h.s. of this

equation is independent of r. We recall that, äs indicated in section

2, D is also the large wavevector limit of D(k), given by eq. (3.9).

One must realize, however, that if one first expands the r.h.s. of eq.

(3.9) in correlation functions of δη of higher and higher order, this

series expansion is not equal term by term, in the limit k ·> °°, to the

corresponding series expansion of eq. (3.11). We shall return to this

point in section 5.

4. Evaluation of the renormalized connectors

In order to solve eq. (3.3) for γ
ο
 we make the following "Ansatz"

(m, m) (m) (m, m)

!
0

 = γ
ο i ' '

 (
 )

where γ is a scalar function of the density n
Q
. As we shall see,

this is indeed the form of the solution. The generalized unit tensor

l ' was defined in eq. (3.4) and has the property that

(n, m) ->
The evaluation of the renormalized connector field A (r),

'o
defined in section 3, then proceeds entirely äs the evaluation of

Cn ,m) ->
A (r) in eh. II, section 6, and gives
o

(n, m) Jn.m) _3 £ > (n, m)
A (r) = A (?) - (2it) J/dJ e lk r A (£)
~̂ o

χ φ5 (ak)[l + φ5 (ak)]"
1
. (4.3)

^o ""Ό

4 3
Here φ = -r- na n is the volume fraction of the spheres and the
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function 5
γ
 (ak) is given äs an infinite sum of Bessel functions

" 9 (p) -l 2 - 3 2
3
γ
 (ak) = Σ |-πε

ρ
γ
ο
 n^ (2p-l)

Z
 (ak)

 J
 Jp_

%
(ak). (4.4)

We have defined ε
2
= 5/9, ε = l (p>3). The case considered in eh. II

corresponds to γ
 p
 = n for all p· The series in eq. (4.4) can then

be summed analytically and gives the function S(ak) defined in eq.

(II-6.6).

To calculate the density dependence of γ
0
, given by eq. (3.3), we

need the result

, . , . „

B
(m>m)

 Θ A (r=0) = l
(m
'
m)
(2m-l)/dk k~V _,(k)4>S (k)

~
 m Y

χ [1+φ3 (k)]'
1
, m>2, (4.5)

'o

and for later use also

>
 -1 2 -l

A (r=0) = -l /dk k jf(kHS (k)[̂ S (k)] , (4.6)
γ
ο Ο ^

 Υ
ο
 Ύ

ο

(m,m+2) (m+2,m) ,

A (r=0) = A (r=0) = - y (m+1) ! (2m-l) ! 1Δ
~̂ o

 Y
o

x /dk k
-1
J ,(k)J _

4
.,,,α)φ8 (k)[̂ S (k)]'

1
, (4.7)

0
 m %

 -

(r=0) =0, if n ö m and n # m ± 2. (4.8)

Here (2m-l)ü = 1·3·5·. . .«(2m-3)«(2m-l); the Δ-tensors are defined in

eq. (II-2.9). Eqs. (4.5)-(4.8) are the analoga of eqs. (II-6.H)-
(n ,m) ·>

(II-6.14) for A (r=0), and are obtained by performing the angular
n
o

Integration in eq. (4.3), using the explicit expressions for

Substitution of formula (4.5) into eq. (3.3) shows that γ
ο
 is

indeed of the form (4.1) and gives for the scalar functions γ the

equations
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sufficient accuracy we approximate the function S (k) by
'o

(m) (m) » _. „ _,
γο - γο φ(2m-l)/dk k J ,(k)S (k)[l+<|>S (k)] = nQ, m=2,3,. . . (4.9)

0 m ^o ^o

One sees that γ differs from n by terms of order φ .

In order to solve the infinite set of coupled equations (4.9) to a

:y we approxims

(
L
)
 L

 q (?) _i 2 - 3 2
S (k) = S(k) + Σ |·πε (γ

0
 - njn^ (2ρ-ΐΓ k J ,W, (4.10)

'o p=2 "

for a given number L = 2,3,... . From the definition of S(k) (eq.

(II-6.6)) and S
v
 (k) (eq. (4.4)) it follows that
To

lim S (k) = S (k). (4.11)
L-x» " ο ι ο

With the above approximation the L-l equations for γ (m = 2,3,..,L)

in (4.9) decouple and may be solved numerically . We give in table l,

for volume fractions φ up to 0.45, the values of φγ /η

(m = 2,3,4,5) obtained by this procedure with L = 5.

To calculate the diffusion coefficient D(k) we shall in the next

section use these values for γ ; also, in expression (4.3) for
( n , m ) -> ...
4
V
 (r), we shall approximate S (ak) by S (ak), äs defined in

TO TO TO
eq. (4.10). An estimate of the error resulting from this approximation

can be obtained by repeating the calculation of γ described above to

a lower order. In table 2 we give for φ = 0.40 the values of
(m) (t ,1 > ->·

φγ /n (2<m<L) and l + A (r=0), obtained from this calculation
ο ο γ

ο

with L ranging from 2 to 5. One finds, in particular, that by in-

creasing the order L from 4 to 5, the change in γ (m = 2,3,4) is
(1,1)-»· °

smaller than 3%, while the value of l + A (
r=
0) changes by even

TO
less. This last quantity is equal to the large wavevector limit of

D(k), to lowest order in the expansion in correlation functions, cf.

section 5. Moreover, it has been checked that also for smaller wave-

vectors use of s' instead of s' would change the (lowest order)
TO T

0

results for D(k) by not more than 2%.

Use was made of numerical algorithms from the NAG library (Oxford).
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Table l

Values of the scalar functions φγ^
πι
'/η

ο
 (m = 2,3,4 and 5)

for nine different volumefractions φ.

Cm) //η

m=2 m=3 m=5

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.0553

0.1228

0.2048

0.3038

0.4224

0.5627

0.7267

0.9157

1.1310

0.0542

0.1177

0.1918

0.2777

0.3766

0.4895

0.6172

0.7601

0.9183

0.0533

0.1135

0.1813

0.2574

0.3423

0.4364

0.5402

0.6538

0.7776

0.0525

0.1104

0.1738

0.2432

0.3186

0.4005

0.4888

0.5839

0.6856

Table 2

Values of φγ<"ΐ)/η
0
 (2<m<L) for φ = 0.40, obtained by sol-

ving eq. (4.9) with the approximation of S by S'
L
 ' (eq.

(4.10)). The order L of this approximation is increased

from 2 to 5, the value L = 5 giving the results presented

in the prevlous table for the whole ränge of volume frac-
tions. Also shown, for φ = 0.40, is the convergence of the
quantity l + Αγ

1
'''(r

=
0),

 as
 *-̂

β or
der of the approxima-

tion increases.
Yo

L

2
3
4
5

**'/
m=2

0.783
0.868
0.901
0.916

no (Φ

m=3

0.711
0.745
0.760

= 0.40)

m=4 m=5 1

0.637
0.654 0.584

L + A * ' ' n ( r = 0 )
Yo

0.397 1
0.363 1
0.353 1
0.348 1
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We thus conclude that the approximation made by replacing S by
(5) °
S (defined in eq. (4.10)) is for present purposes sufficiently
'o

accurate.

5. Expansion of D(k) in correlation functions of renormalized density

fluctuations

We now return to the formal expression (3.9) for the wavevector

dependent diffusion coefficient. We first note that we may replace the

two density operators n in this expression by their fluctuations

δη = n-n . The terms containing the average n
Q
 do not contribute, in

view of the fact that

• τ* * (l>
m
) .;* * (1>™)Γ ry»· ~ik-r.

x
 ' ' -»·, >.

 f
,-»· ik«r.

v
 ,->· ·>,

 v
 ,

 n
 /e i\

k«Jdr e A (r'- r) = Jdr e A (r - r')«k = 0. (5.1)
~̂ o

 Y
o

Indeed these Integrals are proportional to either k«A '
m
 (k) or to

A ' (k)«k (cf. eq. (4.3) ), both of which quantities are zero for

all m, äs follows from eq. (II-2.15). The resulting exaot expression

for the diffusion coefficient D(k)

G(k)D(k)/D = l + N"1 ·̂! ΡδηΑ ( 7-δγ Qß~l A )~
1
δη Ñ} (J| £)·£>, (5.2)

^o ^o

is the starting point for an expansion of this quantity in correlation

functions of renormalized density fluctuations δγ of higher and higher

order.

To lowest order in δγ one has

-l -
 (1)1)

 + * -
G(k)D(k)/D

Q
= l + N <k· {δηΑ 6n}(k|k>k>. (5.3)

^o

In r-representation the two-point correlation in this equation can be

Note that if expression (4.3) for A '
 n
'

m>
 (r)

rs/
is substituted into eq.

(5.1), one may replace the connector°field A^
n
'
m)
(r) in this ex-

pression by A_
(n
'
m)
(r), since these two connector fields differ by a

finite amount in a single point only (cf. eq. (II-3.4)).
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written äs the sum of a seif- and a pair-correlation (cf. eq. (3.10))

r (1»1) , *+ (1>1) > * 2 (1)1) > *
<{δηΑ δη}(?| r')> = n A (r=0)6(r'- r) + n A (r

1
- r)

O —V O —V
"o 'o

|r·- r|) - 1], (5.4)

where g(r) is the pair distribution function. Transforming to wave-

vector representation according to eq. (2.9) one therefore finds for

D(k) to lowest order

- (1,1) .
G(k)D(k)/D

Q
 = l + k·A (r=0)«k

, + iic-r -
 (1)1)

 > ~
+ n

o
 Jdr e

1K r
 k-A (r)«k [g(r)-l]. (5.5)

'o

To evaluate this expression we used (äs in eh. II, cf. appendix D)

the Percus-Yevick approximation for the Fourier transform of the pair

correlation function

v(k) = J-d? eik*r[g(r)-l]. (5.6)

The structurefactor G(k), defined äs

G(k) = l + n0v(k), (5.7)

was calculated in the same approximation .

The first two terms on the r.h.s. of eq. (5.5) are wavevector inde-

pendent; from eq. (4.6) one finds

. (1,1) , o» '
l + k«A (r=0)-k = - Jdx(sinx/x) [1+φ3 (x)] . (5.8)

γ
ο
 π

 Ο
 γ

ο

The function S (x) was discussed in the last section. The third term
'o

on the r.h.s. of eq. (5.5) is, according to eq. (4.3) (cf. also the

first footnote of this section), given by

For the value of G(k) at k = 0, however, we used the slightly more

accurate formula of Carnahan and Starling
9
.
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n
Q
/dr e

lk
*
r
 k-A ' (r)-k[g(r)-l] = η

ο
(2π)

 3
/dk"'k'A ' (

~Ύ
0

χ [1+φ3 (ak')]~v(| - k"'| ), (5.9)"

where (cf. eq. (II-2.15))

~
4 2

n
o = ~ <t>(ak)~sin(ak)(l - kk). (5.10)

The results from a numerical Integration of these equations will be

given in the next sectlon. We note that for large wavevectors k the

integral (5.9) goes to zero and only the contribution (5.8) to the

diffusion coefficient remains, which in this limit represents the

self-dif fusion coefficient.

From eq. (5.2) one sees that the first correction to the result

(5.3) for D(k) is due to three-point correlations between renormalized

density fluctuations. In general this correction will therefore

contain the three-sphere correlation function and is difficult to

evaluate. Nevertheless, an indication of the accuracy of our lowest

order result for D(k) can be obtained by calculating the self-

diffusion coefficient D„ to higher order. Indeed D̂ , contributes to
o S

D(k) at all wavevectors,

, - . iM.
G(k)D(k) = D + V TN Σ <k«ji. .-k e

 1J
>, (5.11)

s B ±ö. ij

(cf. eqs. (2.1) and (2.2)), and is in fact the largest of the two

terms on the r. h. s. of eq. (5.11), over the whole ränge of wavevectors

and densities. For this reason we shall in the remaining part of this

section focus our attention on the self-diffusion coefficient, given

by eq. (3.11).

Upon expansion of eq. (3.11) for Dg in correlations of renormalized

density fluctuations, one finds for the zeroth order term D

(0) (1,1)
l Ds /DQ= l + A (r=0). (5.12)

'o

The r. h. s. of this equation is identical to eq. (5.8); the lowest
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order term therefore in the expansion of formula (3.11) for D is
O

equal to the limit k ·*· » of the lowest order term in the expansion of

eq. (3.9) for D(k). This correspondence, however, does not exist term

by term for higher order terms. (See in this connection the remark

after eq. (3.11).) The values of D (resulting from a numerical
s
 *

Integration of the integral in eq. (5.8) ) are shown in table 3, for

various volume fractions up to φ = 0.45 .

The lowest order correction D to D results from two-point
s s

correlations; it is given by (cf. eq. (3.11))

(2) _i , °
1D /D = n P <{ A δγ Qß ~ A δη
- s o o l γ

ο
 γ

ο

ο _ ο

+ Α δγ Q.B Α δγ Qß A n }(r| r)>P , (5.13)
""Ό

 Υ
ο
 Υ

ο °

or, written out explicitly (cf. eqs. (3.5), (3.8), (3.10), (4.1) and

(4.2))

(2) (3) (1,3)
 n r

l (3,1)

1D /V Y
0
 n A (r=0) 0 B

tJ
>

J;
 0 Α (r=0) +

Ό Ό

» (m) (m+2) _ (l, m) , .-l (m,m+2)
+ 2 Σ γ Ύ n Vdr A (r) Θ B

Un
'
m;
 Θ A (r=

~0 o

m=2
 Ύ

ο
0) Θ

/ +o +9 ,) . » (m) (l, m) . .
B
(m+2
'
m+2)
 . A (-r) + Σ γ Jdr A (?) 0 B

(m
'
m)

Y
o m=2

 Y
o

(m,l) o, co (
m
) (k) (l, m) , .-l

A (-r)[g(r)-l] + Σ Σ γ γ Jdr/dr'A (r) 0 B^
m
'
m;

'o m=2 k=2
 Ύ

ο

(m, k) . , .-l (k,l)
0A (?'- r) 0 B

U
'
 ;
 0A (-r')[g(|r·- r| )-!]. (5.14)

~̂ o
 Y

o

To simplify this expression we have also used eqs· (4.7) and (4.8).

The above eqs. (5.12)-(5.14) are the analoga of eqs. (II-5.7), (II-5.9)

*With the approximation of S by S
 t5)
, cf. section 4.

TC. <o
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and (II-7.3), which give the first two terms of the expansion of D in

correlations of w renormalized density fluctuations. Note however that

C 2 )
the present expression for D does not contain terms with factors

(m,m) ->·
 s

A (r=0), since these diagonal ring self-correlations are here

already accounted for in the zeroth order term D
CO
 , cf. the dis-

S

cussion in section 3. This is in contrast to the expansion given in

eh. II, where corresponding factors did occur in the second order term

(eq. (II-7.3)).

The above lowest order correction D may be evaluated using the

results of section 4 (cf. the similar calculation in eh. II, app. D).

As in eh. II, we have restricted ourselves to a numerical evaluation
(n ,m)

of those terms in eq. (5.14) which do not contain connectors A
'o

with n or m larger than 2. This amounts to a restriction to correc-

tions from monopole-dipole and dipole-dipole hydrodynamic interactions

between density fluctuations. The results can be found in table 3.

Table 3

The δγ-expansion of D„ to second order
O

φ

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

S 0

0.887
0.781
0.685
0.598
0.521
0.454
0.397
0.348
0.307

+ D ( 2 ) / D
s o

+ 0.012
+ 0.012
+ 0.007

0.000
0.008
0.014
0.020
0.023
0.025

= D /D
s o

0.90
0.79
0.69
0.60
0.51
0.44
0.38
0.33
0.28

6. Results and discussion

In the previous sections we have calculated the concentration

dependence of the wavevector dependent (short-time) diffusion

61



coefficient D(k) for spherical particles in Suspension. For this

purpose we derived the exact expression (5.2), from which one can

obtain D(k) äs an expansion in correlation functions of higher and

higher order. The lowest order term in this expansion (eq. (5.5))

fully contains the many-body hydrodynamic interactions between an

arbitrary number of spheres. Moreover, the contributions from a

special class of correlations, the socalled (diagonal) ring self-

correlations, are included in this term.

For the particular case of the (short-time) self-diffusion

coefficient Dg (which is the large wavevector limit of D(k) and is

given by eq. (3.11)) we were able to calculate not only the zeroth

order term D (eq. (5.12)), but also the lowest order correction
(2) s

D thereto (eq. (5.14)), which is due to two-point correlations. In

figure l we have plotted D /D and (D + D )/D äs a function ofs o s s o
the volume fraction φ (from table 3). In the same figure we have also

shown the corresponding results from the alternative expansion of D
b

considered in eh. II: there the zeroth order term D' contained no
S

contributions due to correlations. If one compares the zeroth order

results D and D
1
 from these two alternative expansions (the two

s s
dotted curves in fig- 1), one sees that due to the inclusion of

contributions from ring self-correlations the values for D
g
 in the

absence of correlations decrease by almost 40% at the highest volume

fractions. Moreover, the lowest order correction D is in the

present expansion at most 8% of D , whereas the corresponding term

D' in the expansion considered in eh. II was 20% of D' , at the

highest volume fractions.

We conclude therefore, that the present expansion - resulting from

an (algebraic) resummation of a special class of correlations — pro—

vides a more reliable zeroth order result for the diffusion coeffi-

cient than the expansion of eh. II. We note that to linear order in

the density these two expansions are, however, identical ·

As argued in section 5, one may use an error estimate for D to

obtain an indication of the accuracy of our lowest order result for

This results from the fact - observed in section 4 - that the renor-
malized density differs from the real density by terms of order φ

2
.
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D(k). Indeed Dg/G(k) (where G(k) is the structure factor) gives at all

wavevectors the largest contribution to D(k), which may also be

written äs (cf. eq. (5.11))

-l - - ̂ KjG(k)D(k) = D + Iĉ TN Σ <k·^. .-k e J
>. (6.1)

s B
 iitj

 ij·

To lowest order the r.h.s. of the above equation is given by eq. (5.5)

and contains D
(0)
 (cf. eq. (5.12)). It is found that adding the

correction D to D changes this lowest order result for D(k) by

less than 10% for wavevectors ak <̂ 3 (where a is the radius of the

suspended spheres). This remains the case for all values of the wave-

vector if the volume fraction φ does not exceed 0.3 . However, at

small wavevectors and the highest densities considered, our lowest

order results for D(k) become increasingly less accurate due to a near

cancellation of the two terms on the r.h.s. of eq. (6.1).

In figs. 2 and 3 we have plotted for five values of the volume

fraction φ the results for D(k)G(k)/D
Q
 (which is the longitudinal

part of the wavevector dependent Sedimentation velocity, relative to

its value at infinite dilution) and for D
Q
/D(k). Note that in the

absence of hydrodynamic interactions the first quantity is identically

l and the second quantity equals the structure factor G(k). A compari-

son with experiments is possible for the large and small wavevector

limits of D(k),

D = lim D(k), D = lim D(k), (6.2)
3 k-*»

 c
 k+0

which are the (short-time) seif and collective diffusion coefficients

respectively. In fig. 4 we have plotted the theoretical values for

these two coefficients, together with experimental results
3
'
7
'
8
.

The diffusion coefficient at small wavevectors has been measured,

by means of dynamic light-scattering, by Cebula, Ottewill, Ralston and

The values plotted contain the lowest order values calculated from

eq. (5.5) to which the correction D
g

(2)
 (given in table 3) has been

added. In this way the values for D
g
 given in fig. 4 are obtained from

figs. 2 and 3 in the limit k -s- ».
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0°

ο

ο Ο1 Ο2 Ο3 04 05

Fig. 1.
 D

?
/
D
o
 versus

 Φ
 as
 results from the first two terms of

tlie ογ-expansion considered here (curve c corresponding to
D (0), curve d to D <0> + D

s
<2>)

 an(
j from the δη-expansion of

eh. II (curve a: D'CO), curve b: D'<0) +D'<2>).

Fig. 2. Wavevector dependence of D(k)G(k)/D for five values of
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α

Fig. 3. Wavevector dependence of D /D(k) for five values of

1.6

1.2

O
Q

0.8

0.4

0
0

D
c

0.1 0.2 0.3 0.4 0.5

Fig. 4. φ-Dependence of the (short-time) seif and collective diffu-

sion coefficients, D
S
/

D

O
 and DC/ÜO respectively. The solid

curves correspond to the values given in fig. 3, in the two
limits of large and small wavevectors. Experimental data for
D are taken from ref. 3 (lower dots), for DC from refs. 7
(triangles) and 8 (upper dots).
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Pusey7 for micro-emulsion droplets and by Kops-Werkhoven and Fijnaut8

for silica particles. These experiments both indicate that the collec-

tive diffusion coefficient is rather insensitive to changes in the

concentration over a large ränge of volume fractions. This remarkable

result is confirmed by our calculations of DC, shown in fig. 4 for

volume fractions φ < 0.3 (äs we remarked above, at higher concentra-

tions our small wavevector results become less and less reliable due

to cancellations). One should keep in mind, however, that on the time

scale of these experiments7'8 a particle diffuses over a distance of

several radii, whereas our results are — strictly speaking - valid

only for short times in which the configuration of the particles

remains essentially constant.

Pusey and van Hegen3 measured the diffusion coefficient of latex

particles of radius a = 0.6 μ, at large wavevectors k » 18/a for which

D(k) has attained its large-k limit. The time scale of these measure-

ments is such that a particle diffuses over a distance of about a/10.

For the densities considered one may therefore assume that the confi-

guration of the particles is essentially constant on this time scale

and that the measured quantity is indeed, äs argued by Pusey and van

Hegen, the short-time self-diffusion coefficient. One sees from fig. 4

that the theoretical results for Dg agree with the measurements up to

the highest volume fractions. We recall that in eh. II good agreement

was obtained only for φ ̂  0.3 .

7. Interpretation in terms of an effective pair-mobility

Our lowest order result (5.5) for the diffusion coefficient can be

written in a form similar to eq. (2.1)

-l
 N - eff - ̂ ii

D(k) = kßT[NG(k)] Σ <k'^.T'k e 1J
>, (7.1)

i,3=1
 1J

with ]fff given by (cf. eqs. (5.8)-(5.10))

This time scale is the decay time of the electric field auto-

correlation function, which is of the order of (D
Q
k
2
)~'.
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p f f - 1 9 4 3 -3 > ik'R. . - 4 2
tiVV= (6πη

3
) | (| πβ )(2

π
)

 J
/dk e

 J
(l-kk)(ak) sin (ak)

χ [1+Φ3 (ak)]'
1
. (7.2)

'o

This quantity depends only on R. and R. and may therefore be inter-

preted äs an effeative pair-mobility. The renormalization factor

[1+φ3γ (ak)] in this expression accounts for the many-body hydro-

dynaraic interactions between an arbitrary number of spheres, including

contributions from (diagonal) ring self-correlations.

For small values of ak, S (ak) behaves äs
10

S (ak) =f γ£2)
/η

ο
 + 0(ak)

2
, (7.3)

'o

äs follows from expansion of definition (4.4). Since the largest con-

tribution to the integral in eq. (7.2) arises from small values of ak,

one may approximate S (ak) in the integrand by its small-k limit (the
'o

numerlcal consequences of this approximation for D(k) are discussed

below). One then has for the effective pair-mobility the simple ex-

pression (cf. the evaluation of the connector A .' in ref. 6)

:.j ^ ^

+ «a/R^^l - Sr^rV.))], (7.4)

with the definition

* 5 (2)
η = η(1 + - Φ Υ 1 · '/n ). (7.5)

2 o o

The vector R. .= S.- R. has magnitude R . . and direction r .= t. ./R. .·
•̂ J J -̂ (2) ^~^ ^~

The renormalized density γ is given äs a function of nQ in table 1.

If one calculates D(k) from eq. (7.1), with the approximation (7.4)

(using the Percus-Yevick pair correlation function), one finds values

for D(k) which are smaller than the results^" shown in fig. 3, espe-

"̂We recall that these values result from eqs. (7.1) and (7.2), with
the addition of the correction D <2)/G(k), from table 3.

o
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cially at small wavevectors. For ak ̂  3, however, the difference is

less than 10%, over the whole ränge of volurae f ractions. For self-

diffusion in particular, one finds from eq. (7.4) that (cf. eq. (2.2))

(7.6)

This formula differs from our füll result (fig. 4) by at most 7%.

Expression (7.4) for the effective pair— mobility has a simple

physical Interpretation: it is the mobility tensor - up to terms of

order (a/R — ) - of two spheres, in a fluid with viscosity η · We

shall show in the next chapter that, within the order of approximation

of eq. (7.1), η equals the effective viscosity of the Suspension. To

linear order in the density this Identification is in fact exact,

since γ
ο
 = n

Q
 + 0(φ ) (cf. remark after eq. (4.9)), so that

η*= η(ΐ +| φ + 0(φ
2
)), (7.7)

which is Einstein's result for the effective viscosity.

We stress the fact (noted also in eh. II) that the hydrodynamic

interaction between two particles in a Suspension is not sereened by

the presence of the other particles. By this we mean that the effec-

tive pair-mobility discussed above is of long ränge (it falls off äs

l/R). In contrast, Snook, van Megen and Tough10 have proposed an

empirical sareened pair-mobility to reproduce the experimental data

for the diffusion coefficient. In view of the above, there does not

appear to be a physical motivation for their choice.

It should be mentioned that screening of hydrodynamic interactions

does occur in a different System, viz. in a porous medium consisting

of immobile particles in a viscous fluid (see e.g. ref. 11). The

properties of such a medium - which are different from those of a

Suspension, in which the particles may move freely - were studied (in

particular for large concentrations of the particles) by Muthukumar ,

including also the effect of many-body hydrodynamic interactions.
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Appendix. Proof of eq. (3.7)

We Start from the identity

A(l-n gs'
1
 A )

-1
n = Α

γ
 [ 7 ~ (η-γ ) Qß'1 A J^n, (A.l)
'o 'o

where A has been defined in eq. (3.2). It is convenient to define
'o

an operator I with kernel

l, if ? = ?',

0, if r" * r»,

and a matrix B with elements
'o

(A.2)

(m,m)
{ B } =δ Α (r=0). (A. 3)
1 D ;

 -
 νY

0
n,m nm

With these notations we can write

A = A + 8 I, (A.4)
Υ V V'o 'o 'o

o
where A„ is defined in eq. (3.8). In the same compact notation we

Y
° -l

have for v = v n n,1
 Ό o

γ = n(7 - Qß~l β Γ1
, (Α. 5)

'n

cf. eqs. (3.1) and (3.3).

We note t

the identity

We note that äs a consequence of the fact that A I = 0, one has
'o

Av
 = AY (? - Y0 Qß

 l Β
γ
 Ι)"

1
. (Α.6)

Ό Ό Ό

Upon Substitution into the r.h.s. of eq. (A.l) and repeated use of

definition (A.4) one then finds
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AO ~ n QB
 L
 A)

 X
n = Α

γ
 (7 - n QB

 1
 Α

γ
 + γ

ο
 QB""

1
 Α

γ
 )

-1
η =

° ° ° (A.7)

= A
v
 ( 7- (J - n QB'

1

 BV
 ΐΓ̂ η-γ > OB'

1
 A )

-1
(I - n Qß'1 Β I)~ln.

"o 'o 'o 'o

We now use the identity

-l -l -l ° -l °
(J - n Qß B l) γ QB A = γ QB A , (A.8)

^o ^o ^o

o
which follows from I A = 0, and another identity

'o

(7 - n QB""
1
 B Ι)

-1
η = n( 7 - Q.B"

1
 B )~l = γ, (Α. 9)

(cf. eq. (A.5)). Eq. (A.9) is a consequence of the fact that nln = n.

Substituting eqs. (A.8) and (A.9) into eq. (A.7), one then finds

° -lAO - n QB A ) n = A (7 - δγ Qß~ A )~ γ, (Α.10)
γ
ο

 γ
ο

where δγ Ξ γ - γ
ο
· This is the required formula (3.7).
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CHAPTER IV

EFFECTIVE VISCOSITY

1. Introduction

eff
The concentration dependence of the effective viscosity η of a

Suspension of spherical particles in a fluid (with viscosity η ) is

well understood in the regime of low concentrations. To second order

in the volume fraction φ of the suspended particles one has the ex-

pansion

rieff/r\Q = l + | φ + 5.2φ
2
. (1.1)

The coefficient of the linear term was first calculated by Einstein'

(cf. also ref. 2); the quadratic term has been evaluated by several

authors
3
"
7
, the value given in eq. (1.1) being due to Batchelor and

Green
4
 (with an error-estimate of 6%) .

Up to the order given in eq. (1.1) it is sufficient to consider

only the hydrodynamic interactions between pairs of particles. Higher

order terms, however, contain contributions from specific hydrodynamic

interactions of three and more spheres. In fact it has been demonstra-

ted in eh. II in the context of diffusion that these many-sphere

hydrodynamic interactions raay not be neglected if the Suspension is

not dilute.

In order to simplify the problem of solving the hydrodynamic equa-

Contributions to the effective viscosity from Brownian motion of the

spheres are neglected in these analyses, äs well äs in the present in-
vestigation. We shall return to this point in section 8.
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tions of motion in the presence of more than two spheres, an approxi-

mation which neglects the finite size of the spheres is customary.

Several authors8"10, for example, have treated the Suspension äs a

mixture of two fluids, one fluid (with volume fraction φ) having an

infinitely large viscosity, the other fluid having viscosity η · This

approach yields a very simple formula for the effective viscosity

η
β//
/η

ο
 = l + | φ(1 - | φ)"

1
, (1.2)

which for small φ is in good agreement with eq. (1.1). Indeed, one

might expect that a point-particle approximation is reasonable if the

Suspension is sufficiently dilute, since in that case the average

distance between the spheres is large compared to their radius. At

higher concentrations, however, this approximation is unjustified and

leads to incorrect results, äs we shall see in this chapter.

In this chapter we present a theory for the effective viscosity

which fully accounts for the hydrodynamic interactions between an

arbitrary number of spheres. Our analysis is based on: i) a general

scheine, developed by Mazur and van Saarloos , to solve the hydrodyna-

mic many-sphere interaction problem; ii) a technique of calculating

the influence of many-sphere hydrodynamic interactions on transport

properties of suspensions, by means of an expansion in correlation

functions of fluctuations in the concentration of the spheres of

higher and higher order. Such an expansion has been used in the

previous chapter in the context of diffusion.

In section 2 we give a formal theory for the wavevector dependent
eff

effective viscosity Ti(k) (of which the quantity η considered above

is the zero-wavevector limit) of a Suspension of spheres, by conside-

ring the average response of the Suspension to an externally applied

force. This theory (which makes essential use of the socalled method

of induced forces ' ) differs from the conventional approach where

the dependence -of stress on shear is considered. To obtain the effec-

tive viscosity by this second method (used e.g. by Peterson and

This same formula was first derived by Lundgren , from a different
starting point.
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Fixman ), one must find both the average stress and gradient of the

average flow velocity and eliminate the imposed flow between these

quantities. This double calculation is not necessary in the first

method (used e.g. by Freed and Muthukumar ), where one finds the

effective viscosity directly from the dependence of the average flow

velocity on the external force.

Using results for many-sphere hydrodynamic interactions obtained by

Mazur and van Saarloos (cf. section 3), we find in this way in

section 4 an explicit expression for the effective viscosity T)(k). As

illustrated in section 5, a calculation of coefficients in the expan—

sion of this quantity in powers of the concentration is from this

point on straightforward. (The zero-wavevector results given in this

section were previously obtained by Freed and Muthukumar by a similar

method, cf. the preceding paragraph.)

If the Suspension is not dilute, an expansion in the concentration

is no longer appropriate. For this reason we study in sections 6 and 7

the effective viscosity of a concentrated Suspension through an expan-

sion in density-fluctuation correlation functions of increasing order,

along the lines of eh. III. Each term in this expansion accounts for

the hydrodynamic interactions of an arbitrary number of spheres, and

contains the resummed contributions from a class of self-correlations.

Results for the wavevector and concentration dependence of Ti(k) are

given in fig. l and table 1. In section 8 we discuss these results and

give a comparison with previous work and experimental data. It is

found, in particular, that the divergency of the effective viscosity

which follows from the point-particle approximation (cf. eq. (1.2))

does not occur if the finite size of the spheres is accounted for

properly.

We conclude in section 9 with a discussion of the relation between

effective viscosity of a Suspension and diffusion coefficient of the

suspended spheres. In particular, we show that - within a certain

approximation - the product of η

independent of the concentration.

â ff
approximation - the product of η and self-diffusion coefficient is
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2. Formal theory for the effective viscosity

We consider a Suspension of N spherical particles with radius a in

an incompressible fluid with viscosity η . We describe the motion of

the fluid by the quasi-static Stokes equation, which - within the

context of the method of induced forces'·
3
'
14
 - reads

ext N ind

vp(?) - η
ο
Δν(?) -Ú (?) + Σ ? (r), (2.1)

j=l
 J

v-v(r) = 0. (2.1a)

Here v(r) is the velocity field, p(r) the hydrostatic pressure and

F
ext
(r) an external force density. The induced force densities

F"'.
nd
(r) (j = 1,2, ...N) are to be chosen in such a way that

ß . (?) = 0 for |? - ί. | > a, (2.2)
J J

v(r) = u. + 5. Λ (r - R\) for |r - S . | < a, (2.3)

p(r) = 0 for |r - t.| < a, (2.3a)

so that the velocity of the fluid satisfies stick boundary conditions

on the surfaces of the spheres. In these equations R. is the position
->· -> -*

vector of the center of sphere j, and u. and ω. are its velocity and

angular velocity respectively. We shall assume that the spheres move

freely in a large volume V, so that the forces and torques on the

spheres are zero. From eqs. (2.1) and (2.2) one therefore finds for

the force density induced on each sphere

ind ind

/dr F.. (?) = 0, /dr (r - R.) *?.. (?) = 0, (2.4)

(where we have furthermore assumed that F
ex
 (r) is non-zero outside V

only).

In order to obtain a formal solution of eq. (2.1) it is convenient

to introduce the Fourier transform of v(r),
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v^) = /dr β'' v(?), (2.5)

and similarly of p(r) and ?
ext
(r). The Fourier transform of F"!

nd
(r) is

defined (for each j) in a reference frame in which sphere j is at the

origin

ind -i£-(r-iL) ind

F\ (S) = /dr e
 J

 F\ (?). (2.6)

The formal solution of eq. (2.1) is then found to be

_ ext N -it'& ind

v(k) = (η k
Z
) L(l - kk).[f (k) + Σ e

 J
 f (k)]. (2.7)

J-i
 J

(The wavevector k has magnitude k and direction k = k/k; 1. denotes the

second rank unit tensor.)

Following the general scheme of Mazur and van Saarloos
12
, one can

use eqs. (2.2)-(2.4) to eliminate the induced forces in eq. (2.7) in

favor of the external force. The resulting solution for the velocity

field is of the form

ext

v(r) = /dr
1
 M(r|r')·? (r'). (2.8)

An explicit expression for the tensor M(r|r') is derived in appendix

A. The macroscopic velocity field may now be obtained by averaging eq.

(2.8) over the equilibrium distribution function of the positions of

the N spheres in the volume V. For an infinite System the average

<M(r|r')> will depend on the Separation r'- r only, äs a consequence

of translational invariance of the distribution function. In view of

incompressibility of the fluid (eq. (2.1a)), this average must be of

the form

<M(r|r')> = (2n)~3 /dl e""
ik'(r'~ ̂ (nik̂ TV - kk), (2.9)

giving for the macroscopic velocity the expression

(̂l - kk)·?̂  (£). (2.10)
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The function T)(k) defined through eq· (2.9) represents the wavevector

dependent effect-ive viscosity of the Suspension: indeed eq. (2.10)

gives the velocity field due to an external force F
ex
 (£) in an in-

compressible fluid with viscosity t|(k).

3. Results from the hydrodynamic analysis

As we show in appendix A, the tensor M(r)r') - which relates the

velocity at point r to the external force density at point r' (eq.

(2.8)) - may straightforwardly be derived from the results of Mazur

and van Saarloos · One finds the expression

(1,1) » N (l,n) (n,m)

6πη
ο
3 M(r|r') = T (r

1
- r) + Σ Σ Τ (ί - r) © £

n,m=2 i,j=l -"

β T̂ '̂ Cr·- äj), (3.1)

where £. .' is given äs an infinite series of reflections or scatte-

rings from the spheres,

(n,m) -l .-l (n,m) -l
r = B

(n'n) δ δ..+Β(η
'
Π)
 ο Α.. Θ B

(m
'
m)
 (l -δ,.)2

ij - nm ij - -ij - ij'

» o o c o « > N N N . . -l (n, p. )

+ Σ Σ Σ ... Σ Σ Σ ... Σ
 Β

(
η
>
η
.>
 Θ Α

s=l
 Pl
=2 p

2
=2 p

s
=2 J [-l J 1-1 J [-l ; -̂ 1

.,. ,,, .
Θ Β β Α. . ®. ..Β Θ Α. . Θ Β . (3.2)

~
J
1

J
2 ~

 J
s

J

ΓΡΙ ι. _̂ ν,ίη.ιη) _(η.πι),·*
Ν
 ,(η.πι) ,^ίη.πι) . , ,

The objects ζ.. , Τ (r), A and B in the above equa-
J
 ~

 J
 (n, m) , .-1

tions are tensors of rank n+m. The dot Θ in e.g. A... Θ g im, m;

prescribes an m-fold contraction, with the (nesting) convention that

the last Index of the first tensor is contracted with the first index

of the second tensor, etc. The definitions of the tensors T, A and
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B will be given below.

We first notice that in the absence of suspended particles only the

first of the terms on the r. h. s. of eq. (3.1) remains, which is the

wellknown Oseen tensor (see below). The perturbation of the fluid flow

by the spheres is accounted for by the generalized (dimensionless)

friction tensors ζ. .' , which relate an n-th order multipole moment

of the induced force on sphere i to an m-th order multipole moment of

the unperturbed flow on the surface of sphere j (cf. eq. (A. 4) in

appendix A). If there is just one sphere, ζ..' is unequal to zero

only for n=m and different multipole moments are uncoupled. The hydro-

dynamic interactions between two and more spheres are given by the

series of products of tensors A and B in eq. (3.2). This serles

constitutes an expansion in inverse powers of the interparticle Sepa-

ration, in view of the following property of the "connectors"

Â .'"
1
' (defined for i#j)

(n, m) (n, m) -(n+m-1) (n, m) -(n+m+1)

AU -
Slj

 R.. + F..
 RI
. , (3.3)

where the tensors G. . and F. . depend only on the direction of the

± ±
 -J-i -̂

vector R. . = R. - R. (and not on its magnitude R-M)· The tensor

B , on the other hand, is independent of the positions of the

spheres.

We shall now give the definitions of the tensors occuring in eqs.

(3.1) and (3.2). The general expression for the connectors A. .' in

terms of the connector field A
<n
'
m
'(r) is given in eqs. (II-2.3), (II-

2. A), (II-2.14) and (II-2.15). The

in terms of its Fourier transform by

2. A), (II-2.14) and (II-2.15). The "propagator" T
(n
'
m>
(?) is defined

T
n
'
m
(£) E Jd? e ' T

n
'
m
(?) = 6

1
tai

n
"
n
(2n-l)!!(2

m
-l)!!

k~
2
j;_

1
(ak)j

]
;_

1
(ak) k (l - ick) k ,

with the definition

j
p
(x) for p>l, ĵ (x) Ξ l, (3.5)
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where j (χ) = (̂ π/χ) J ,,(χ) is a spherical Bessel function. Finally
P P"

1
"? , . -1

we recall that expressions for the constant tensors g ' (n>2) are

given in eqs. (II-2.6) and (II-2.22).

4. Formulae for the effective viscosity

We shall in this section combine the results from the previous two

sections to give explicit formulae for the effective viscosity. We

first note that, according to eq. (3.1), the Fourier transform

= Jd? e - / d ? ' e'M(?|?') (4.1)

of the kernel M(r|r') is given by

(1,1) » N (l, n)

6πη3 Μ(£|£') = (2π) δ(£'- £)T (£) + Σ Σ Τ (
n,m=2 i,j

-ik**t. (n, m) iic'.R". (m,l). .

o e 1 æ±. & J
 Θ Τ (ί

1
). (4.2)

From translational invariance of ζ. . and of the distribution function

it follows that (for an infinite System)

N -ί£·5. (n, m) iit'-lL „

< Σ β
 χ

 ζ. . e
 J

> = n (2π) δ(£'-£)

" °
+

N (n, m) ik-R. .
x <N Σ ζ. . e

 1J
>, (4.3)

where n = N/V is the average number density of the particles.

From eqs. (2.9) and (4.2) we then find, with the help of eq . (4.3),

for the wavevector dependent effective viscosity r|(k) the formula

7
 » (l, n) , N (n, m) ik̂

6rca(n /T)(k)-l)(l - kk) = n k Σ T (k) Θ <Ν Σ ζ e
 3

>
n,m=2" i,j=l

 J

Q
T
(m
'
i;)
(i). (4.4)
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Use has also been made here of the explicit expression for T ' (k)

(eq. (3.4)). One may verify (using the fact that £·Τ
Π
 '"'(£) = 0 for

all n, cf. eq. (3.4)) that the r. h. s. of eq. (4.4) is the product of a

scalar function of k and the tensor !L - kk, äs implied by the l.h.s.

of this equation.

At infinite dilution the r. h. s. of eq. (4.4) vanishes and r|(k)

equals η for all k, äs it should. The influence of the suspended par—

ticles on the viscosity of the Suspension is taken into account by the

term on the r. h. s. of eq. (4.4), to all· orders in their concentration.

We observe that this term vanishes in the limit k-**> (cf. eq. (3.8)),

so that in this limit the effective viscosity is equal to the viscosi-

ty of the fluid

lim n(k) = η
ο
. (4.5)

k-*»

This limiting behaviour reflects the fact that for large wavevectors

the Fourier transformed imposed velocity field of the fluid remains

almost unperturbed by the presence of the spheres.

The zero-wavevector limit of the effective viscosity is of particu-

lar interest in the study of properties of suspensions. We denote this

quantity by

= lim r|(k). (4.6)

k>0

From the fact that Τ
(ι
~'

5>
(£) is of order k

r+s
~
4
 for small k (cf. eq.

(3.4)) it follows that only the term with n=m=2 in the series on the

r. h. s. of eq. (4.4) gives a non-vanishing contribution in the limit

k-»-0. For η
6
·'·' we therefore have the more simple formula

ff -~ n ~ - _, N (2,2) iek·!
(η lifn ~ 1)(1 - kk) = lim y φ(1 - kk)k:<N Σ ζ. . e

 1J
>

ε+O i i,j=r
lj

:k(l - kk), (4.7)

where the colon indicates a double contraction and φ denotes the

volume fraction of the spheres.
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Eqs. (4.4) and (4.7) are a most convenient starting point for the

calculation of the (wavevector dependent) effective viscosity of a

Suspension, by means of an expansion in powers of the concentration of

the suspended particles. This will be illustrated in the next section.

In order to study also the behaviour of the effective viscosity at

high concentrations (where such an expansion is no longer appropriate)

we shall now cast eq. (4.4) in a different form - adopting an operator

notation which has proved its use in the previous chapters.

First we define a modified connector field A ' (r) and a convolu-

tion operator A(n'm> äs in eqs. (II-3.4) and (II-3.10). Similarly, we

define an operator x ( n» m ) with kernel

T(n>m)(?|?') . j(n,m)(?,_ ?)> (4-8)

Next we introduce a matrix H of which these operators are the elements

T(n'm) if n=l or m=l,

(n,m) <*'9>
if n#l and ntfl.

and matrices B" and Q. äs in eqs. (II-3.12) and (II-3.13). Finally,

we recall the definition of the diagonal operator n, which corresponds

to the microscopic density field n(r), in eqs. (II-3.7) and (II-3.9).

For the kernel M(rlr'), given by eqs. (3.1) and (3.2), we now have

in this compact notation

6nt)0a M(r|r
r) = { H( 7- n Qß ~l H)~1}1 ̂ r)?'). (4.10)

In this equation the kernel is taken of the 1,1 element of the matrix

of operators between braces. From eqs. (2.9) and (4.10) we thus find

for the effective viscosity r|(k) the operator formula

(4.11)—. ltl - 1 ) 1 ,

where the Fourier transform of an operator kernel was defined in eq.
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(4.1). This alternative formula is a convenient starting point for the

calculation of the effective viscosity of a concentrated Suspension,

by means of an expansion in density-fluctuation correlation functions

of higher and higher order, cf. section 6.

5. Expansion in powers of the concentration

At low concentrations of the suspended particles an expansion of

the effective viscosity in powers of the concentration is appropriate.

To fir et order in the concentration eqs. (3.2) and (4.4) give

- l)(l - kk) = n
Q
k

2
 Σ T (£) Θ Β Θ Τ (£). (5.1)

m
=
2

The series in this equation may be summed analytically, in precisely

the same way äs the corresponding series for the connector field A was

summed in eq. (II-6.5). The result is

(r]0/T)(k) - l) (l - kk) = - <|>S(ak)(l - kk), (5.2)

where the function S(x) is defined in eq. (II-6.6). Eq. (5.2) implies

n(k) = η [l + <)>S(ak) + 0(φ2)], (5.3)

representing an extension of Einstein's ' formula for the effective

viscosity at zero wavevector to arbitrary values of k. For small k,

the function S(ak) behaves äs

S(ak) =| - glö- (ak)4 + 0(ak)6, (5.4)

äs follows from expansion of the r.h.s. of eq. (II-6.6). It is note-
2

worthy that the term of order (ak) does not occur in this expansion,

and that hence the finite wavevector corrections to Einstein's formula

are of fouifth order. Bedeaux, Kapral and Mazur , on the contrary,
2

found a nonzero coefficient for the term of order <Kak) in the effec-
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tive viscosity. It has been pointed out by Schmitz6'15, however, that

eq. (4.7) in the paper by Bedeaux et al. (which gives the function

which relates the Symmetrie gradient of the velocity field perturbed

by the presence of one sphere to the Symmetrie gradient of the

unperturbed field) is incorrect äs far äs terms of second power in the

wavevector are concerned. Indeed an error in this order would affect

the value of the coefficient mentioned above.

To second order in the concentration, only those terms in ex—

pression (3.2) for the generalized friction tensors contribute to the

effective viscosity, which depend on the positions of at most two
(2 2 )

spheres. For the dipole-dipole friction tensor ζ. .' we find, res-

trictlng ourselves to these terms, (cf. also eqs. (3.3) and (II-2.6))

r
(2>2)

 10 ,
 A +
 , 10>2

n
 , , <

2S
>

2S)

£±j --Τ
δ
υ 4

 +
 (-T)

 (1
 -

6
ij> -U

. iruq -ft (
2
3,2s) (2s,2s) ^ _„

to eighth order in the expansion in inverse powers of the Separation

of the spheres R. (The tensor Δ used in this equation is identical to

the tensor Δ
(2<2)

 defined in eq. (II-2.10).) The connector

A
t2s
'

2s)
= Δ : A

(2
'
2)
: Δ is traceless and Symmetrie in both the first

and second pair of indices; it consists of two terms of order R and

R~
3
 respectively (cf. eq. (3.3)). The tensor G.

<2s
'
2s)
 is given by

1 2

(2s,2s)

G. = - |· a Δ : (5r. r. r. r. - 2r. l r. ) : Δ, (5.6)

where r., = R., /R., is the unit vector in the direction of R.. · From
ik ik ik ik

this last equation one readily finds

3 (2s,2s) (2s,2s) 6 . . . .
t 10-, „-6 „ _ 125/ a -, ..,·._ .. .. _

"· 9-
1
 ik -ik '-ki

IK.

+ i
ik
 l r

ik
):A. (5.7)

The absence of a term of order R in the expansion of ζ
ί2
' in

powers of l/R is noteworthy.
 1

J
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The above equations enable us to calculate the zero wavevector

eff
limit η of the effective viscosity to second order in the concen-

tration. Substituting eq. (5.5) into formula (4.7) one finds for this

quantity the equation

(η
ο
/η

β//
- 1)(1 - kk) = | φ (l - MOk:^ + T_

2
 + T_

3
):k(l - kk), (5.8)

with the definitions

Ϊ1 = - Τ-Δ, (5.9)

T
2
 = 1°° n

o
 li. /d? g

o
(r) ̂ A(2S'2S)(?) , (5.10)

ε->·0

T
3
 = - ~ n

o
 /dr g

o
(r)(a/r)

6
 Δ : (2r"rr"r + ô 1 r) : Δ . (5.11)

Here g (r) is the equilibrium pair distribution function to lowest

order in the density,

0 if r<2a

g
0
(r) - -<J (5.12)

1 if r>2a.

The evaluation of T requires care because of the long ränge of the

connector field A. In terms of its Fourier transform we may write for

this contribution

) - -3. * (2s'2s>-, - +
 Ί(ek) + (2π)

 J
/dk'A (ί· )

v
( |ek-S'| )] , (5.

(2s
'
2s) - -

.13)

ε->0

with

v
Q
(k) = /dr e

ik
'
r
[g

o
(r) - 1] = -16

7la

2
k~

1
J
1
(2ak) . (5.14)

Using expression (3.6) for the Fourier transformed connector field one

finds, upon Integration,
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IQ A AA A

-2
 =
 ~9

 φ
(
5
-
 : k(
- ~

 kk)k :
 - ~ -)' (5-15)

in the required limit ε->·0. For the contribution T a straightforward

Integration of eq. (5.11) gives

T
3
 = - φ Δ . (5.16)

Substituting the results (5.9), (5.15) and (5.16) into eq. (5.8),

one finds for the effective viscosity at zero wavevector the equation

(η
0
/η

β//
 - IX! - kk) = [- | φ + (j Φ)2 - ̂|| Φ

2
](1 - kk), (5.17)

which gives the expansion to second order

η
β//
= n

0
[i +f Φ + 4.84 ψ

2
 + (ψ

3
)], (5.18)

found previously by Freed and Muthukumar
7
 by a similar method (cf.

section 1).
__o

The importance of terms of order R and higher in the hydrodynamic

interactions between two spheres (not included in eq. (5.5)) has been

investigated by Schmitz
6
. He obtained a value of 5.36 for the coeffi-

2
cient of the term of order φ , by including hydrodynamic interactions

of order R~
n
 with n<15. Although the coefficient in eq. (5.18) differs

from this result by only 10%, the convergence appears to be rather

slow: Schmitz estimates that terms of still higher order in l /R can

give further corrections of at most 5%. In the works of Peterson and

Fixman
3
 and Bedeaux, Kapral and Mazur

5
 certain contributions from

short-ranged hydrodynamic interactions are also included. These

authors obtained values of 4.32 and 4.8 respectively.

The above results for the second order coefficient - which are all

based on a multipole expansion of hydrodynamic interactions - may be

compared with the value of 5.2 ± 0.3 obtained by Batchelor and Green
4
,

from an exaat solution of the motion of two spheres in a linear flow

field.



6. Expansion in correlation functions

In order to study the effective viscosity of a Suspension which is

not dilute, we shall adopt the method of expansion in correlation

functions used in chs. II and III to calculate the diffusion coeffi-

cient of the suspended spheres. Formula (4.20) for t)(k) is the star-

ting point of our analysis. Following eh. III, we now proceed to write

this formula in terms of "renormalized" connectors, which account for

the fact that (in an averaged sense) spheres interact hydrodynamically

via the Suspension - rather than through the pure fluid.

Let γ ' (n =1.2,3....) be an arbitrary constant tensor of rank
-o

2n. We denote by γ
ο
 the diagonal matrix with elements

{γ } = δ γ
(η
'
Π)
. (6.1)

crn,m nm -o

The matrix H is defined - for each γ
ο
 - in terms of the matrix H

(given in eq. (4.12)), by

H
v

 Ξ
 H( 1- γ

0
 Qß~l H)"1· (6.2)

"o

This matrix has elements

(n,m)
T if n=l or m=l

if n#l and m#l,

( n ,m) ->· (n ,m) ->·
which are convolution operators with kernels T (r) and 4 (r)

TO To
respectively. The latter kernel is identical to the renormäLized

oanneotcf fi&ld defined in eh. III.

We now choose γ ' to be a function of the average number density

of the spheres n
Q
,

(n,n) (n,n) -l (n,n) ̂  (n,n) ^

v - γ ® Β Θ A (r=0) = n l (n>2) . (6.4)
—O -O - —v O —

o

The quantity γ
 (
' »' ' does not play a role in the analysis and need

not be further "specified.

85



The tensor l ' used above is a generalized unit tensor of rank 2n,

where the Δ-tensors have been defined in eqs. (II-2.9) and (II-2.19).

It has been shown in eh. III that γ is of the form
-o

(n,n) (n) (n, n)

ϊο
 = Y

o - '
 (6

'
6)

where γ " is a scalar function of n
Q
. The renormoLized "deneity"

γ (r), with average γ
ο
, is given by

Y(r) = γ̂ -̂ ηίΓ); (6.7)

the corresponding diagonal operator γ has kernel Y(r)6(r'- r).

We shall write formula (4.20) for the effective viscosity in terms

of the renormalized connectors defined above, using the identity

{ tf( 7- n QB"
1
 H)'

1
}, , = { H ( J- δγ Qß'1 u Γ1}, .. (6.8)

» 'o 'o '

The proof of this identity is very similar to that of eq. (III-3.7),

given in the appendix of eh. III, and is therefore omitted here. The

inverse operator on the r. h. s of the above equation contains fluctua-
o

tions δγ = γ - γ
ο
 and a matrix f/ with elements

if n=m#l

elsewise.

Here the out-out connector Χ(η
·

η)
 (η>2) has kernel

(r |')= (·-)-- (6.10)
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Substitution of identity (6.8) into eq. (4.20) gives for t)(k) the al-

ternative expression

(6.11)

Upon expansion of the inverse operator on the r.h.s. of eq. (6.11)

in powers of δγ, one obtains an expansion for the reciprocal of the

effective viscosity X(k) Ξ l/T)(k) in correlation functions of (renor-

malized) density fluctuations of increasing order

(0) (2)
\(k) = λ (k) + λ (k) + ···, (6.12)

where λ
 p
 (k) contains terms of order <(δγ) >. Each term in this

"fluctuation expansion" contains contributions from many-body hydro-

dynamic interactions of an arbitrary number of spheres. Furthermore,

the renormalization of the density through eqs. (6.4) and (6.7)

corresponds to an algebraic resummation of a class of self-correla-

tions, cf. eh. III (section 3). As a result, the contributions from

these special correlations are included in the zeroth order term.

We shall now give the expressions for the first two terms in the

fluctuation expansion of \(k). To zeroth order one finds from eq.

(6.11)

'1,1 Ι η
ο

 Η
γ
0
'ι,ι >

k
 '

or, by definition (4.12) and (6.3),

= -l τ
(1>1)
(£). (6.13a)

The lowest order correction to the zeroth order result (6.13) is of
2

order <(δγ) > (since terms linear in δγ give a vanishing contribution

after averaging) and is given by

(2) _ o o

λ (k){H} (£|£') = - <{ H δγ Qß LH δγ Q.B
 i
 H } (£ |k*')>. (6.14)

1,1
 η

ο
 γ

ο
 γ

ο
 γ

ο 1,1
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Το evaluate the two—point correlation in this equation, we note that

δγ is given in terms of the density fluctuations δη = n - n by

δγ = γ
ο
η δη, cf. eq. (6.7). In view of the formula'

6

<δη(Γ)δη(Γ')> = η
0
δ(Γ'- r) + n

o

2
[g(|r"'- r ) - 1], (6.15)

we find therefore

(2) (1,1) _, <» W W (l,m) ,n Γ
1
 <

m
»

A
>*

λ (k)T (k) = (τ,
0
η Γ

1
 Σ γ

ο
 γ

ο
 Τ (£) 0 B

(m
'
m
> e A (r=0)

m,A=2 Ό Ό

.
 n
-l (1,1)

 1
 » (

m
) (i) (l,

m
) -l

Θ B
 νχ>Λ
·' Θ T (k) + - Σ γ

ο
 γ

ο
 T (k) ® Blm

'
m;

η
ο m,1=2

 γ
ο

tt - ΐί·?
 (m
'
A)
- > (A A)"

1 U>1)
 -

Θ (Jdr e
1K Γ
 A (r)[g(r)-lj) Θ Β̂ '*' Θ Τ (k), (6.16)

'o 'o

where we have used that

(
m
>
m
) ,

 N
-l (m) , .-l

γ eB
(m
'
m)
 = γ B

(m
'
m)
 , (6.17)

—o - o —

cf. eq. (6.6). The function g(r) used in these equations is the equi-

librium pair distribution function. Note that the above expression

does not contain terms with factors A
 tm
'

 >
(r=0) with i=m, äs a con-

'o
sequence of the cut (6.10). Indeed the contributions from these parti-

cular correlations (socalled diagonal ring self-correlations, cf. eh.

III) are already accounted for in the zeroth order term λ (k),

through the renormalization of the density in eq. (6.4).

In the second term on the r.h.s. of this equation we have 0 replaced

in the integrand (for the case Ji.=m) the cut-out connnector A
 <m
'^

>
(r)

by A (r), since these two fields differ by a finite °amount

in a °single point only, cf. definition (6.10).
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7. Evaluation of the expansion in correlation functions to second

order

To evaluate the first two terms of the expansion of l/r)(k) in

correlation functions, we make use of representation (III-4.3) of the

renormalized connector field A
 (n>m

'(r) and of the corresponding ex-
'o

pression for T <n,m>(£)
'o

(n,m) > * (n, m) _,

T (?) = (2π) /dk e
 1K r

 T (£)[! + φ8 (ak)] , (7.1)
YO ~ YO

where the function S (ak) has been defined in eq. (III-4.4). The re-
Ύ
° (D)

normalized density coefficients γ (p = 2,3,4,5) have been deter-

mined äs a function of nQ to a sufficient accuracy in eh. III, table

1. To calculate the effective viscosity we shall again use these

values for γ , also, in the expressions for renormalized tensor
0
 (5)

fields we shall approximate S (ak) by S (ak), äs defined in eq.
YO Yo

(III-4.10). This latter function depends only on the values of

γ
 p
 with p<5. An estimate of the error introduced with this approxi-

mation is given below.

We are now in the position to evaluate the fluctuation expansion

(6.12) of \(k) = l/T)(k). To zeroth order one finds from eqs. (6.13)

and (7.1)

X
(0)
(k) = — [l + <|>S (ak)]'

1
. (7.2)

η
ο

 Ύ
ο

In fig« l we have plotted, for five values of the volume

fraction φ, the wavevector dependence of η /r|(k) to this order. The

reciprocal of the effective viscosity increases monotonically äs a

function of the wavevector, from its small-k limit

l i m x ( k ) = _ ( ΐ + φ γ ο / η ο )
-
 (7

.
3)

k-»0 o

(cf. eq. (III-4.4)), to its large-k limit

lim X
(0)
(k) = 1/η

ο
, (7.4)
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Fig. 1. Wavevector dependence of η /ri(k) for five values of the
volume fraction φ, äs results from eq. (7.2).

which is equal to the value at infinite dilution. (Note that the

large-k limits of XCO>(k) and \(k) are identical, cf. eq. (4.5).)

As mentioned above, the values plotted in fig· l are obtained by

approximating the function S (ak) in eq. (7.2) by S(5)(ak), defined
'o 'o

in eq. (III-4.10). It has been checked that repeating the calculations

and using the values of(4)to one lower order (approximating S by S
(p) 'o 'o

Y0 (p = 1,2,3,4) which correspond to this order of approximation,

cf. section 4 in eh. III) would not change the results by more than

6%, over the whole ränge of wavevectors and densities. For not too

large wavevectors (ak ̂  3) the change is even less, viz. at most 2%.

We now return to the fluctuation expansion (6.12) of \(k), to eva-

luate the next (non-zero) term λ (k), given by eq. (6.16). We shall

only consider here the limiting behaviour of this term for small and

large wavevectors.
(n ,m) ·> _, ,

Using the fact that T (k) is of order k
n+m 4

 for small k (which
'o

follows from eqs. (3.4) and (7.1)) one finds that only one term on the
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r. h. s. of eq. (6.16) contributes to λ (k) in the limit k+0, giving

(2) „ ,,. y , (1,2) -l
lim λ (k)(l - kk) = lim (6πη a) (γ ( }] k4

 T (k) : Z( ' }
k->-0 k+0 o o γ

ο

or explicitly

(2) °°

λ (k-0) = 20
3

4
η
0
~
1
(γ

ο

(2)
)
2
 (l +| ΦΥ

0

(2)
/η

ο
)-

2
 Jdq j

x [l + φ3 (aq)]~
1
v(q). (7.6)

'o

In this last equation use has also been made of expression (III-4.3)

for A ' (?)· We have furthermore defined
'o

v(k) = Jdr e
ik
'
r
 [g(r) - 1]. (7.7)

Table l

The fluctuation expansion (6.12) of X(k) = l/η(k) for k=0,

äs given by eqs. (7.3) and (7.6) to second order.

φ

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

V t 0 )(k=0)

0.879
0.765
0.661
0.568
0.486
0.416
0.355
0.304
0.261

+ n o\ ( 2 )(k=o)

- 0.005
- 0.017
- 0.030
- 0.042
- 0.051
- 0.057
- 0.060
- 0.060
- 0.058

= TiQX(k=0)

0.87
0.75
0.63
0.53
0.44
0.36
0.30
0.24
0.20
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Το evaluate λ (k=0) we have approximated the pair correlation

function by the solution of the Percus-Yevick equation, found by

Wertheim and Thiele'
7
 (an explicit analytic expression for v(k) is

given in ref. 18). The integral on the r.h.s. of eq. (7.12) was then

computed numerically. Results are given in table 1.

To conclude this section we note that for large wavevectors the

term λ (k) goes to zero

lim \
(2)
(k) = 0, (7.8)

k-*»

äs follows from eqs. (3.4),(6.16) and (7.1) (and might be expected on

account of the fact,

the same limit äs k-»·»).

account of the fact, mentioned above, that λ (k) and X(k) tend to

8. Discussion

We have calculated the wavevector dependent effective viscosity

T](k) of a Suspension of spherical particles. This quantity relates

the Fourier transforms of averaged velocity field and external field

of force, cf. eq. (2.10). The validity of the present analysis is

limited to a certain time scale or, alternatively, to a certain ränge

of frequencies. More precisely, if we consider an external force which

varies harmonically in time with frequency ω, the average response of

the fluid is described by T](k) in the regime

2it/T„ « ω « 3~η /ρ . (8.1)
O O O

Here η
ο
 and p

Q
 are respectively the viscosity and mass density of the

fluid, a is the radius of the suspended spheres and τ is the "confi-
L

gurational" relaxation time (see below).

The upper limit in eq. (8.1) is a consequence of our description of

the motion of the fluid by the quasi.- stat-Le Stokes equation (2.1),
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neglecting inertial effects (cf. ref. 2, § 24) . For e.g. spheres of

radius a = 0.5μ in water at room temperature, the upper limiting
__n r

frequency a η /p is 4· 10 Hz.

The lower limit to the frequency ränge in eq. (8.1) is due to the

neglect of contributions from Brownian motion of the spheres: whereas

in equilibrium this motion does not contribute - on the average - to

the velocity field, a non-vanishing contribution remains if the dis-

tribution function of the configurations of the spheres is perturbed
19 20by an external force ' . The validity of our analysis is therefore

limited to a time scale much smaller than the time t„ in which a\j
conf iguration changes appreciably due to Brownian motion, since on

this short time scale the deviation of the distribution function from

its equilibrium form may be neglected (cf. a related discussion of

time scales in theories of diffusion in ref. 21). The corresponding

lower limiting frequency 2π/τ is a few hundred Hertz at a volume
\j

fraction φ of the spheres of 0.45, for the System mentioned above. At

lower concentrations, this frequency decreases and in fact to linear

order in φ the viscosity is not affected by Brownian motion at all

frequencies '
 9
>

20
.

Having clarified the regime of validity of our analysis we now

proceed to a discussion of our results. We have evaluated r](k) through

an expansion of its reciprocal in correlation functions of (renorma-

lized) density fluctuations of increasing order (a socalled fluctua-

tion expansion). The zeroth order result (7.2) in this expansion

(shown in fig· 1) fully takes into account the many-body hydrodynamic

interactions between an arbitrary number of spheres, äs well äs the

resummed contributions from a class of self-correlations. For the case

of zero wavevector we have evaluated moreover the next non-vanishing

term in the fluctuation expansion (given by eq. (7.6)), which is of

second order and is due to correlations between pairs of spheres.

Results for

lim n(k) (8.2)
k+0

For an analysis where inertial contributions to the effective visco
sity are included, see ref. 5.

93



to this order are given in table 1.

It is interesting to compare these results for the concentration

dependence of the effective viscosity at zero wavevector with the

results from two simple formulae, which one can derive by making addi-

tional approximations.

The first formula

i\effhQ = l + f φίΙ-φΓ
1
 (8.3)

can be obtained by completely neglecting correlations between the

eff
spheres, cf. appendix B. This formula gives values for η which are

considerably smaller - especially at large concentrations - than the

results from the first two terms of the fluctuation expansion, cf.

fig. 2 (where the reciprocal of η ·'·' is plotted). In these latter

results, we recall, contributions from a class of seif—correlations äs

well äs from pair correlations are included. Formula (8.3) was first

proposed by Saito22 (cf. also the derivations in refs. 5,6,9 and 23).

The second formula

ηβ///̂  . ! +|
φ(
ι - l ψ)"

1
 (8.4)

takes into account the same class of self-correlations which contri-

butes to our zeroth order result (7.3) for r\e·'·'. However, to arrive at

eq. (8.4) these contributions are evaluated by an approximation of the

hydrodynamic interactions between the spheres which in a way neglects

their finite size, cf. appendix B. Whereas this socalled point-

particle approximation correctly describes the interactions between

the spheres if their Separation is sufficiently large, it fails at

smaller separations. Results obtained using this approximation will

therefore become less and less reliable äs the average Separation of

the spheres becomes smaller with increasing concentration. Indeed, äs

one can see from fig. 2, for large φ the values from eq. (8.4) deviate

strongly from the results obtained using the füll expressions for the

hydrodynamic interactions. Note, in particular, that the effective

viscosity according to eq. (8.4) has a pole at φ = 0.4, whereas if one
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Fig. 2. Volume fraction dependence of the reciprocal of the effective

viscosity at zero wavevector. The solid curve is taken from

table l, dotted and dashed curves from eqs. (8.3) and (8.4)

respectively.

0.5

Fig. 3. φ-Dependence of η /η . The solid curve is from table 1.

Experimental data points are from refs. 28 (squares), 29

(triangles) and 30 (circles).
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takes account of the finite size of the spheres the results remain

bounded up to large volume fractions .

Formula (8.4) was first derived by Lundgren'' and more recently by

several authors8'9'10. In the latter three derivations the Suspension

is treated äs a mixture of two fluids, one fluid (with volume fraction

φ) having an infinitely large viscosity, the other fluid having

viscosity η . Clearly, in such a treatment no account is taken of the

finite size of the suspended particles. The analysis of Lundgren, on

the other hand - although leading to the same result (8.4) - proceeds

from a different starting point and it is not clear to which extent

the influence of the finite size of the spheres on their hydrodynamic

interactions has been accounted for.

Before resuming the discussion of our results we mention still

eff
another formula for the concentration dependence of η , derived by

Mou and Adelman
27
. In this analysis some of the effects of the finite

particle sizes are included, according to the authors. Numerically,

their results are close to eq. (8.3) (and have for this reason not

been plotted in fig. 2).

A comparison with experiments is possible for the small wavevector

eff
limit η of the effective viscosity. In fig. 3 we show the data

obtained by Saunders
28
 and by Krieger and coworkers

29
 for suspended

spherical polystyrene latex particles. The radii of these particles

where of the order of Ο.ΐμ, with a narrow size distribution. Also

shown are the data of Kops-Werkhoven and Fijnaut
30
 for silica spheres

of radius 0.07μ . If one compares these experimental results with the

calculated values from table l (also plotted in fig. 3) one finds good

agreement for volume fractions φ £ 0.2 . At higher concentrations,

We mention in this connection that a pole in the plot of effective

viscosity versus concentration has been found in two different con-

texts by Kapral and Bedeaux
24
 (for a regulär array of freely moving

spheres) and .by Muthukumar25 (for randomly distributed immobile
spheres). However, the validity of these results is questionable (for
the same reason äs in the present case of randomly distributed freely
moving spheres), since in both these analyses higher order multipole
contributions to the hydrodynamic interactions (resulting from the
finite size of the spheres) were neglected (cf. also the discussion of
the former analysis in ref. 26).
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â ffhowever, our calculations give values for η which are considerably

smaller than the experimental data. Two remarks are in order, which

could each explain part of the discrepancy.

Firstly, we note that the expansion in correlation functions of the
eff

reciprocal of η has only been evaluated to second order. In parti-

cular, contributions due to specific correlations between the posi-

tions of three or more spheres have not been included. The magnitude

of these higher order terms can be estimated from the term of second

order (due to two-sphere correlations), which is ~ 20% of the zeroth

order result at the highest volume fractions considered (cf. table 1).

Secondly, we recall that - strictly speaking - our analysis is

valid only on the short time scale T«T„, in which Brownian motion has
u

not yet affected a given configuration of the spheres. The measure-

ments, on the other hand, were performed under static conditions.

Theoretical studies of dilute suspensions have indeed shown that the

eff
effect of Brownian motion is to increase η · It would be interesting

to perform dynamic measurements of the effective viscosity, in order

to study, through its frequency dependence, the influence of Brownian

motion.

9. The relation between effective viscosity and diffusion coefficient

In this section we shall compare the results for the wavevector

dependent effective viscosity T)(k) of a Suspension obtained in this

eh., with those for the wavevector dependent (short-time) diffusion

coefficient D(k) of the suspended spheres, obtained in eh. III. The

latter quantity is given by eq. (III-2.1) and describes diffusion of

the spheres on the time scale τ«τ_ over which their positions are
\j

essentially constant (see e.g. ref. 21). The large wavevector limit of

D(k) is the self-diffusion coefficient D
g
, given by eq. (III-2.2).

In eh. III D(k) has been evaluated through an expansion in correla-

tion functions of higher and higher order. As shown in section 7 of

The coefficient of the term of order φ
2
 in the density expansion of

η
0
·'·' increases due to Brownian motion by 20% to 6.2 ' .
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that chapter, the lowest order term in this expansion is given by eq.

(III-2.1) - with the mobility tensor |i . which appears in this ex-

eff
pression replaced by the effeotive pair mobility u. . (cf. eq.

(III-7.2))

eff -3, > -
ik
"̂ ii

 (1>1)
 > -l

 (0)

yfjy Ξ (2-ic) Jdk e
 1J

 A (k) (6na) λ (k), (9.1)

where the tensor A ' (k) has been defined in eq. (III-5.10);

λ (k) (defined in eq. (7.2)) is the zeroth order term in the

expansion in correlation functions of the reciprocal of ri(k). Through

the above equation effective viscosity and diffusion coefficient are

related to each other.

This relation takes an especially simple form for the coefficient

of self-diffusion D . To lowest order in the expansion in correlation

functions, the mobility tensor in definition (III-2.2) of D
g
 may be

replaced by expression (9.1) and one finds

sinaki2 , ,, , /o o\
~~)

 λ (k)> (9>2)

Since the largest contribution to the integral in eq. (9.2) arises

from the interval 0 ̂  k ̂  l/a (and since λ (k) is approximately

constant in this interval, cf. fig. 1), one may approximate λ (k) in

the integrand by its small-k limit - which is the reciprocal of the

effective viscosity at zero wavevector η •'̂  (to lowest order in the

expansion in correlation functions). Upon Integration one then finds

D
g
 » kgTie^-a)'. (9.3)

In fig· 4 we show the volume fraction dependence of D /D (where
1 -£*-£* ® ^

D = k Τ(6πη a) ) and η /η , resulting from an evaluation of the
Ο β O O

expansion in correlation functions for each of these quantities to

second order. One sees that both quantities have a similar concentra-

tion dependence, in agreement with eq. (9.3). Deviations from this

relation are due to: i) certain contributions from correlations; ii)

wavevector dependence of the effective viscosity (a consequence of the
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Fig. 4. Volume fraction dependence of the, reciprocal of the effective

viscosity at zero wavevector η
6
·'·' (from table 1) and of the

self-diffusion coefficient (from table 3 of eh. III).

finite slze of the particles).

We have discussed here the relation between effective viscosity and

diffusion coefficient on the short time scale τ«τ . Experimentally,

this relation has been investigated only on the long time scale

T»T
C

 30
·
31
; it has been observed that the product of self-diffusion

coefficient and effective viscosity is approximately independent of

the concentration, confirming - on this time scale - a relation of the

form (9.3).

Appendix A. Elimination of the induced forces

According to eqs. (7.2) and (7.3) of the paper by Mazur and van

one has for the irreducible multipole moments of theSaarloos 1 2
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induced forces on the spheres the following hierarchy of equations

(i = l,2,...N)
S.

(p) (p,p) '~p-i '_,.
F. = 6im

o
a(2p-l)!! B © n v

N (^ ð\~1 (P>
m
) (

m
)

+ Σ Σ V(P'PJ e A. . ® F. (p>2). (A.l)
m=2 j=l

 1J
 "3

(2)
 j#1

(Here with F only the Symmetrie and traceless part of this second

moment is implied.) The surface moment of the unperturbed velocity

field V
Q
 on the r.h.s. of this equation is defined äs follows

1 ̂  m«
n± vo = (4naV a /d? (? - ̂ VQ(?)6( |?-1 | - a). (A.2)

In the present case, the unperturbed flow is given in terms of the

external force by

ext
vo<£) Ξ (r̂ kW - kk)-i (f). (A.3)

The formal solution of the hierarchy (A.l) is of the form

•S.

(p) <"> N (p,m) .Jn-1
1

Σ Σ
m=2 j=l

F = 6πη a Σ Σ (2m-l)!!£ β η. ν (p>2), (A. 4)
= =

 J
 J °

with the generalized friction tensor ζ'?'"
1
' given by eq. (3.2).

The transverse part of the induced force is given in terms of the

moments considered above by the expansion (cf. ref. 12, eq. (3.14))

~ ind <= . _ ' -P-1
Ί
 (Ρ)

(l - kk)'̂  (k) = Σ (2p-l)!!i
 p
j _

1
(ak)(l - kk) k ® F

±
 . (A.5)

p=2

For the surface moments of the unperturbed flow, furthermore, we have

The tensor ]5_
(2
·
2>
 used here corresponds to B_

(2s
»

2s)
 i

n
 ref. 12.

Note furthermore that (in view of eq. (2.4)) both the first moments
and the anti-symmetric parts of the second moments of the induced
forces are zero and consequently do not appear in eq. (A.l).
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the identity (ref. 12, eq. (4.1))*

S
i _, ßúß'ß.. '„p

n. v = (2π) i^Jdk e j (ak) k v
Q
(k). (A.6)

J. y

Eqs. (A.3)-(A.6) yield for the velocity field given by eq. (2.7) the

result

(1,1) ext N c= -ι!"·!" (l,n)
6πη

ο
3 v(k) = T (k)«F (k) + Σ Σ e T (k)

i,j=l n,m=2

(n,m) „ ik'°R. (m,l) ext
e ζ. . s (2n)~

J
/d̂ ' e

 J
T (ί

1
)·? (k

1
), (A.7)

with the tensor field T defined in eq. (3.4). This equation implies

for the kernel M, defined in eq. (2.8), the expression (3.1).

e ff
Appendix B. Derivation of formulae (8.3) and (8.4) for η

1. Formula (8.3) (no correlations)

In order to arrive at formula (8.3) for the zero wavevector
e ff

effective viscosity η , we first redefine the connector field

A ' (r) in the following way

(2,2) (2,2)
A

Q
 (?) = A (r)g

0
(r), (B.l)

where the function g (r) was defined in eq. (5.12). Note that, since

A
Q
(r) and A(r) are identical for r>2a, we may replace the latter

field by the former in definition (II-2.4) of the connector A. ..
•P-F ""l J

Next consider eq. (4.7) for η · If we completely neglect correla-

tions, this expression (together with eqs. (3.2) and (II-2.6)) gives'

Note that, with respect to the formulae in ref. 12, we have made the
Substitution (II-2.11).

"̂The tensor _̂ used in this eq. is identical to the tensor Δ_
defined in eqT (II-2.10). ~~
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o f f ~ ~ ~ " i n (2s,2s) A

(ηο/η TT ~ l)(l-kk) = -^(l-kk)k:[A + lim Σ (- ·±|· nQ AQ (Ek))p]
ε->·0 ρ=1

:k(l - kk). (B.2)

Here we have used the fact that A ' (ek) is of order ε (cf. eq.

(II-2.15)), so that eq. (B.2) does not contain contributions from

connectors with upper indices n+m>4. From eqs. (5.10) and (5.15) we

see that

10
 (2s,2s) „ „

- ̂ ~ n
Q
 lim A

Q
 (ek) = φ(Δ - 5A:k(l - kk)k:A), (B.3)

ε-*0

and hence

(η
ο
/η

β
·̂  - 1)(1 - kk) = -5φ(1 - kk)k:[(l-0)A + 5φΔ^(1 - kk)k:A]~

1

:k(l - kk) = - | φ(1 + | φ)'
1
 (l - kk). (B.4)

Eq. (B.4) implies that

ο
 = l +|φ(1-φ)~

1
, (Β.5)

which is Saito's formula (8.3).

We remark that if one would replace the function g (r) in eq. (B.l)

by some other function of r which is unity for r>2a, one would obtain

an alternative formula for the effective viscosity in the absence of

correlations. To decide which expression for the connector field for

r<2a gives the most accurate results in this approximation, one would

have to compare the magnitude of the corrections from correlations. We

can, however, make the following observation: the particular choice

made above accounts to some extent for the impenetrability of the

spheres, since the connector field A ' (r) vanishes for r<2a. One

might expect, therefore, the resulting formula (B.5) to be more accu-

rate than - for instance - a formula which one would obtain by repla-

cing 8
0
(r) in eq. (B.l) by unity fm> all r. Indeed, in this latter

case one finds upon neglecting correlations the result
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η
β//
/η

ο
 = 1 +|φ, (Β.6)

which is inferior to eq. (B.5).

2. Formula (8.4) (point— particle approximation)

Consider the zeroth order result (7.3) for the effective viscosity

at k=0,

ff -5
 (2)

η
β
^/η

ο
= l +γφγ

ο
 /η

ο
, (B. 7)

(2)
where v is given äs a function of n through eq. (III-4.9)

o °

(2) (2) -

"*O ~ YO φ
 f -f

dk j
l
(k) S

v
 (k)[1 +

 *
S
v
 (k)] =

 "o"
 (B

'
8)

0 'o o

The function S (k) behaves for small k äs (cf. eq. (III-4.4))
'o

5 (2) 2
S (k) = |γ

ο
 /η

ο
 + ö(kZ). (B. 9)

'o

If in the integral in eq. (B. 8) one would approximate this function by
(2)

its zero-k limit, one would find for γ

(2)
 5

 _!
γ

ο
 = η

ο
(1 - | φ) \ (Β. 10)

which gives (with eq. (B. 7)) formula (8.4) for the effective viscosi-

ty.

Since the wavevector dependence of the function S (k) which renor-
<o

malizes the connectors (according to eq. (III-4.3)) is a consequence

of the finite radius of the spheres, the above approximation - which

neglects this k-dependence - may be called in this sense a point-

particle approximation.
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SAMENVATTING

De doelstelling van het onderzoek beschreven in dit proefschrift,

is de bestudering van de invloed van hydrodynamische intercLct-Les op

transporteigenschappen van suspensies. Hiertoe wordt de concentratie-

afhankelijkheid van diffusiecoefficient en effectieve viscositeit van

gesuspendeerde "harde bollen" onderzocht (op een körte tijdschaal

waarop de posities van de bollen niet noemenswaardig veranderen).

Het grote struikelblok bij de behandeling van hydrodynamische

interacties is de essentiele niet-additiviteit van deze koppelingen

via de vloeistof. Dat een beperking tot additieve paar-interacties in

niet-verdunde suspensies ongerechtvaardigd is, werd in dit onderzoek

voor de eerste maal expliciet aangetoond, door berekening van de zelf-

diffusie coefficient tot op tweede orde in de concentratie (zie hoofd-

stuk II). (Van experimentele zijde zijn P. Pusey en W. van Megen door

metingen van deze grootheid tot dezelfde conclusie gekomen.) Een theo-

rie die geldig is ook buiten het verdunde regime, zal daarom rekening

moeten houden met niet-additJ.eve hydrodynamische interacties tussen

een willekeurig aantal deeltjes. Met het oog hierop werd een techniek

van hersommatie van veel-deeltjes hydrodynamische interacties ontwik-

keld, gebruik makend van een door P· Mazur en W. van Saarloos gegeven

methode om hydrodynamische stroming längs meerdere bollen te analyse-

ren. Op betrouwbare wijze konden dan transporteigenschappen van gecon-

centreerde suspensies berekend worden via een zogenoemde fluotuati,e-

antwikkeling. Dit is een ontwikkeling in correlatiefuncties van dicht-

heidsfluctuaties van hogere en hogere orde.

In hoofdstuk II wordt deze fluctuatie-ontwikkeling uiteengezet in

haar meest eenvoudige vorm, voor het geval van zelf-diffusie. De

laagste orde term in deze ontwikkeling bevat de gehersommeerde bij-

dragen van hydrodynamische interacties tussen 2,3,4,5,... bollen - in

de afwezigheid van enige correlaties. Hogere orde termen bevatten cor-
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recties op dit resultaat ten gevolge van correlaties tussen fluctua-

ties in de concentratie der bollen. Deze correcties zijn belangrijk,

in het bijzonder bij de hoogst beschouwde concentraties.

Om deze reden wordt in hoofdstuk III een tweede. fluctuatie-

ontwikkeling ondezocht, die men uit de eerste kan verkrijgen door een

gedeeltelijke hersommering van hogere orde correlaties. De laagste

orde term van deze alternatieve ontwikkeling bevat reeds de bijdragen

van een belangrijke klasse van zelf-correlaties (dat zijn die correla-

ties, die aanwezig zouden zijn in het hypothetische geval van door-

dringbare bollen). Zowel een vergelijking met experimenten als ook een

berekening van de eerstvolgende term in de ontwikkeling geven aan, dat

deze laagste orde term betrouwbare resultaten geeft voor de diffusie-

coefficient over een breed concentratiebereik. Het derde hoofdstuk

wordt besloten met een interpretatie van de laagste orde resultaten in

termen van een eff&etieve paar-interactie.

In hoofdstuk IV wordt de effectieve viscositeit van de suspensie

bestudeerd, volgens dezelfde methode die in het vorige hoofdstuk was

toegepast op diffusie. In het verleden is bij de Studie van de visco-

siteit van suspensies herhaaldelijk gebruik gemaakt van een benadering

die de eindige afmetingen van de gesuspendeerde deeltjes verwaarloost.

Hoewel deze benadering te verdedigen is voor voldoende verdunde Sys-

temen, leidt zij tot volkomen foutieve resultaten bij hogere concen-

traties - zoals expliciet aangetoond in hoofdstuk IV. Tot besluit

worden in dit hoofdstuk de behaalde resultaten voor diffusie en visco-

siteit vergeleken. In het bijzonder wordt onderzocht een (voor de

eerste maal door D.J. Cebula en medewerkers waargenomen) empirische

relatie tussen zelf-diffusie coefficient en effectieve viscositeit,

welke inhoudt dat het produkt van deze beide grootheden bij benadering

onafhankelijk is van de concentratie.
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