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OBSERVATION OF KNUDSEN A N D  GURZHI TRANSPORT 
REGIMES IN A TWO-DIMENSIONAL WIRE 

L. W. MOLENKAMP and M. J. M. DE JONG~" 

Philips Research Laboratories, 5656 AA Eindhoven, The Netherlands 

Abstract--We have observed electronic Knudsen and Poiseuille flow in a current heating experiment on 
electrostatically defined wires in (AI,Ga)As heterostructures. Current heating induces an increase in the 
number of electron-electron collisions in the wire, leading first to an increase (Knudsen regime) and 
subsequently to a decrease (due to Poiseuille electron flow, and known as the Gurzhi effect) of the 
resistance of the wire. 

In his famous 1909 paper on gas flow through a 
capillary, Knudsen[1] demonstrated that the pressure 
drop over the capillary first increases and then de- 
creases with increasing density. The mechanism is 
that with increasing gas-particle density, the number 
of interparticle collisions also increases. At low den- 
sities (what is now known as the Knudsen transport 
regime) this leads to increasing dissipation of forward 
molecular momentum at the capillary walls, while at 
higher densities laminar Poiseuille flow sets in, which 
decreases the effective particle-wall interaction. 

Because of the analogy between classical diffusive 
transport of electrons and gas particles, one may 
anticipate that a similar transition from Knudsen to 
Poiseuille also occurs in electron transport, where 
normal electron-electron scattering events (NEES) 
are the analogue of gas particle collisions. This issue 
has indeed been pursued since the early 1950's. 
However, it proved difficult to obtain reliable data[2], 
because the electron-phonon interaction is much 
more important than the electron-electron inter- 
action. 

So far, only preliminary indications of electronic 
Knudsen and Poiseuille transport effects have been 
found[3]. Most experiments were performed on pot- 
assium, as an exemplary simple metal. However, the 
observed changes in the resistance as a function of 
lattice temperature were limited to about 0.01% of 
the total resistance, because of the limited impurity 
mean-free-path I~mp and the onset of electron-phonon 
scattering. Observations of a positive temperature 
derivative of the resistivity dp/dT in potassium 
wires[4] could be assigned by Movshovitz and 
Wiser[5] as a Knudsen-like behaviour due to the 
combination of, relatively infrequent, normal elec- 
tron-electron and electron-phonon collisions. How- 
ever, until now there has been no observation of 
electronic Poiseuille flow. Electronic Poiseuille flow 
should lead to a negative dp/dT, a phenomenon 
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predicted by Gurzhi in 196316], and generally known 
as the Gurzhi effect. 

Here, we present a study of Knudsen and Gurzhi 
phenomena in two-dimensional wires, fabricated 
from high-mobility (AI, Ga)As heterostructures. 
Using this material to study NEES effects offers 
several advantages, allowing a clear and unambigu- 
ous observation of the Knudsen and Poiseuille flow 
regimes. The resistance changes caused by NEES 
processes can be larger than 10% of the total resist- 
ance. A full discussion of this work, as well as a 
detailed theoretical framework for calculations of 
NEES effects on the resistance for arbitrary electron 
temperature will be given elsewhere['/]. 

The wires used for the experiments are defined 
electrostatically in the two-dimensional electron gas 
(2DEG) of (Ai, Ga)As heterostructures. The lay-out 
of the TiAu gates is given schematically in Fig. 1. We 
report here on two wires, both fabricated from 
an (AI, Ga)As wafer with electron density 
n = 2.7 x 10 It crn -2 and lira p = 19.7 tim. Both wires 
have a width W = 4.0/zm, but they differ a factor of 
two in length L: L=63 .7 /~m in one wire, and 
L = 127.3/zm in the other. For transport measure- 
ments, the samples are kept in a cryostat at 1.5 K, and 
at zero magnetic field. The differential resistance is 
measured with standard low-frequency lock-in tech- 
niques, using a 100/~V a.c. voltage. 

In order to be able to study the effects of NEES 
separately from electron-phonon scattering effects, 
we utilize a peculiarity of (AI, Ga)As 2DEGs at low 
temperatures. In these materials, the coupling be- 
tween hot electrons and the lattice is orders of 
magnitude smaller than the coupling within the elec- 
tron system. This allows one to achieve selective Joule 
heating of the electron gas in the wires by passing a 
d.c. current I through the wire. This technique has 
proven to be very very useful for the study of 
thermoelectric phenomena in nanostructures[8]. The 
wires studied here are equipped with opposing pairs 
of point contacts in their boundaries, allowing us to 
determine the electron temperature Tas a function of 
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Fig. I. Lay-out of the gates defining the wires used in the 
experiments. Current is passed between Ohmic contacts 2 
and 4, and the voltage drop is measured between contacts 
I and 5. Ohmic contacts 3 and 6 can be used for measuring 
the thermovoltages across the point contacts in the wire 
boundaries. The wires studied here both have a width 

W = 4 #, but differ in length (L = 63.7 and 127.3/zm). 

/, using the quantized thermopower of  a point con- 
tact, as described in Ref. [9]. A typical example of  
such a measurement of  T vs I is shown in Fig. 2. We 
find that for III ~< 2 0 # A ,  and a lattice temperature 
T~ ~< 2 K, the electron temperature T in our wires is 
approximately given by: 
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Fig. 3. Drawn curves: experimental dependence of dV/dl 
on heating current i for the L = 127.3 #m (top curve) and 
L = 63.7 #m wire (bottom curve), respectively. The dashed 
curves are the result of our calculations, obtained using 
boundary scattering parameter a is 0.7, and width 

W = 1,~d5.5. 

T = T~ + (I/W)2pC, (1) 

where p is the resistivity of  the channel. The constant 
C is of  order C ~ 0.05 m2K/W. 

In Fig. 3 we show our data (drawn lines) on the 
differential resistance (d V/dl) of both wires. The top 
trace was obtained from the longer, the bot tom trace 
from the shorter wire. For  both wires we observe a 
remarkable behaviour of  d V/dI: an initial increase, 
followed by a decrease in dV/dl with increasing 

Itl[10]. 
To see whether NEES could in principle be respon- 

sible for this behaviour, let us estimate the elec- 
tron--electron scattering mean-free-path 1~ at 
T ~ 13 K [which, according to eqn (i), is the electron 
temperature in the wire at I = 15 #A  and T~ = i.5 K]. 
We have 1~ = VFZ~, where VF is the Fermi velocity, 
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Fig. 2. Transverse voltage V~ - V 3 as a function of heating 
current 1. In this experiment, point contact AB is adjusted 
between the N = 1 and N =2  for maximum quantized 
thermopower, and the thermopower of point contact CD 
can be neglected. The electron temperature in the channel 
can now be deduced from the size of the transverse voltage. 

See Refs. [8(b),9] for details. 

and z= the electron-electron scattering time, given 
by[l l]: 

z ~ ( T ) = ~ -  ~ In ~ + \ k F ]  

Here q is the 2D Thomas-Fermi  screening wave-vec- 
tor (q = me2/2n~#oh2). We find l~ ~ 1.7/am, which is 
much smaller than W. In this limit, the electrons 
undergo a random-motion due to frequent NEES 
events, and we assign the decrease in d V/dl to the 
Gurzhi effect. For  currents below 8/aA, dV/dI is 
positive. As l= >~ Wfor  Ill = 8 # A  and T~ = 1.5 K, this 
additional feature occurs in the right current range 
for the electronic Knudsen effect. Moreover,  we see 
that the total increase in dV/dI in the long wire is 
twice the increase in the short wire. This proport ion- 
ality to L rules out  a contact-resistance effect as an 
explanation for the anomalies. 

In order to substantiate our assignment of  the 
anomalous behaviour of  dV/dl to hydrodynamic 
phenomena, we have performed model calculations 
of  the effect of  NEES on the differential resistance of  
a two-dimensional wire. We have included NEES 
events in an electron path-tracing method originally 
due to Chambers[12, 5], and obtained a solution for 
arbitrary 1=, I~mp and W. In this method one follows 
the path of  an electron until it relaxes at an impurity 
or the boundary of  the system, and then determines 
a weighted average of  the path lengths. The resulting 
effective mean free path le~r is related to the resistivity 
p of  the wire by: 

p - l =  ne:. left. (3) 
m~ F 
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We assume that a fraction p of the incident electrons 
is reflected specularly at the boundary,  the remainder 
being scattered diffusively, and obtain for the effec- 
tive mean free path at position x along the width of 
the wire: 

l~(x) /-4/f0' lx/-f-S~-u:(~ -p)e-~/" = --~z du - p e - w/tu 

+ n-~ fo' du X / l u  U: foWdX'[leer(x') 

+ , . ,  w x ,,le ,. .,, o ,x  x ,  

Pe-(X + x)/tu ] 
-t -~ _ pc -  w/ l' (4) 

agreement with the experimental data is found with 
~t = 0.7, which implies that some 80% of all boundary 
collisions are specular. A high specularity for bound-  
ary scattering in split-gate wires was previously found 
in magnetoresistance experiments[15]. 

In summary, we have found convincing evidence 
of the occurrence of electronic Knudsen and 
Poiseuille transport regimes in the non-linear differ- 
ential resistance of split-gate defined wires in a 
2DEG. Our results verify speculations on hydro- 
dynamic flow phenomena in solids that date back to 
the 1950's and 60's, which only came within reach of 
the experimentalist after the development of metals 
of sufficiently high mobility, and nano-li thography 
techniques. 

where l - l -  - i  =limp+l~ l, and O(x) is the unit-step 
function. The average effective mean free path can 
now be obtained from le~=(I/W)S~'dxlar(x). 
Equation (4) is solved self-consistently using numeri- 
cal methods. 

For  a comparison with the experiments, we relate 
l~ to I using eqns (1)-(3). The resistance of the wire 
is obtained from R = V/I = hn/2e2kF W + pL/W,  
where the first term is the two-dimensional Sharvin 
contact-resistance[13]. Subsequently, dV/d l  is evalu- 
ated numerically. The dotted lines in Fig. 3 are the 
results of  our calculation. In both cases, the calcu- 
lated dV/d l  values are 60-80f~ smaller than the 
experimental values. This is due to the resistance of 
the wide 2DEG leading to the wires, which is not  
included in the calculations. In addition, we did not  
include the lattice heating for currents III > 20 # A  in 
our modelling. Apart  from this the agreement be- 
tween experiment and theory is very good. Two 
remarks must be made regarding the parameters used 
in our modeling. Firstly, one expects that due to 
depletion the electronic width of the wires is slightly 
smaller than the lithographic width; we have set 
W = limp/5.5 for both wires. In addition, we noticed 
that using a constant value of p for all angles of 
incidence leads either to a too large value for d V/dI 
at zero heating current, or a too small Knudsen effect. 
It is well known from metal wires that in reality p 
depends on the angle of incidence 0, such that p--.  1 
for grazing incidence (0 ~ + n/2. According to Ref. 
[14]: 

p(O) = exp[--(~ cos 0)2]. (5) 

Using this expression in eqn (4)--where u = cos 0 -  
we obtain the numerical results of  Fig. 3. Good 
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