
J. P. KUENEN. On the influence of gravitation 
on the critical phenomena of simple substances 
and of mixtures. 

I. The fact, that in the neigbourhood of the critical 
point in co

_
nsequence of the large compressibility, gravi­

tation must exercice an important influence, has been 
remarkecl by Gouy 1). The influence results in mak ing 
the density of the �>ubstance enclosed in a tube per­
ceptibly difl'ereut at different levels. As usual the cor­
responding changes of the pressure and the height are 

determined by the relation dp = - !_ g dh , where v V 
denotes the volume and g the acceleration of gravitation ; 
but to a small value of dp near the critical point cor­
responds a large value of dv. For numerical deter­
mination the shape of the botbermals in tbatneigbourhood 
should be accurately known. GouY calculated some values 
for carbonic acid by aid of SARRAU'� formula for that 
substance ; his results are laid down in  a table to be 
found in his paper quoted above. 

In the graphic representation with p and v for coor­
dinates, the greater compressibility is expressed by the 

1) Oompt. Rend. 1 1 5, p. 720-722. 
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small slope of the isothermals. The different conditions 

of a substance present in a vertical column are repres­

ented by some subsequent points of an isothermal, 

which form together a small section of an isothermal. 

While at some distance from the critical point this 

ser,tion is very short and may be treated as one point 

for (liiferences of level as may occur in experiments on 

the critical state, say from 10 to 20 cm., the length 

of the curve becomes p�rceptible near the critical point. 

From Gouy's table one finds that at the critical tem­

perature of carbonic acid near the critical point to a 

di fference of height of 10 cm. corresponds a difference 

of density of 6 percent : at �0 cm. distance the change 

of density would amount to about 10 per cent. At a 

definite temperature and a definite mean volume ofthe 

substance, the lenght of the little curve, or what comes 

to the same the number of tne phases, which are in 

equilibrium above each other in the tube, is only de­

pendent on the height of the column, and this in its 

turn is connected in a simple manner with the quantity 

of the substance and the bore of the experimental tube. 

Let us suppose the temperature to be lowered towards 

the critical temperature, the total volume of the sub­

stance being kept constant. The mean volume (or density) 

will remain the same during this process. The lenght 

of the curve however will i ncrease because the slope of 

the isothermals decreases and the curve as a whole 

will shift more or less along the clirection of the v-axis, 

because the distribution of the densities above and below 

the middle is unsymmetrical. Now three cases may 

occur : when the temperature reaches the critical tern-

5 
perature the l ittle curve may either be on the left of 
the critical point 1) or it may be on the riaht 2) or 
f .  I 

IS ' 
ma ly  the critical point may fall on the section of the 

curve itself 3) .  In the cases A and B the substance will 
still be homegeneous. Not till after lowering the tem­
perature a little further the curve will reach the so 
called bot·der-curve also given in the figure with one 
of its ends. At that moment a very small quantity o f  � second phase will app�ar (retardation being excluded) : 

m case A a bubble of vapour will appear in the top of 
the tube, corresponding to q', in case B a drop of l iquid 
at the lower end of the tube, corresponding to p' ' 
When the temperature goes on being lowered, these. 
small quantities will increase from zero upwards. The 
conditions of the substance then present in the tube 
are represented by two sections of the isothermal the one 
coming on to the border-curve from the vapour-side, 
the other from the liquid side. From the point in the 
tube, where the vapour and liquid are iri contact, i. e 
the liquid surface, the phases increase in density clown­
wards and decrease upwards. Gravitation cannot brincr 
any change in the condition of equilibrium and th: 
phases which are in equilibrium with each other at 
any temperature remain the same. When the temperature 
reaches some distance below the critical temperature, 
the length� of the curves diminish and very soon they 
may practrcally be treated as two points, belonging to 
the border-curve. With a given quantity of substance 

1) (case A, p' q' in fig. 1) 
2) (case B, p" q") 

3) (case C, p r q) 



enclosed in a tube above mercury the different cases 
may of course be realised by taking the volume first a 
little smaller than the critical volume, afterward::; some­
what larger. What will happen however, if the volume is 
taken very near the critical volume (case C) ? At the 
critical temperature one of the p hases, at a certain 
distance from the ends of the tubes, will have exactly 
the critical density and pressure. This phase is repres­
ented by point r) in which the critical isothermal 
touches the border-curve. Immediately below the critical 
temperature in that point of the tube a cloud and then 
a flat meniscus will appear. The place in the tube, 
where that will happen, depends on the volume chosen. 
Consequently : between two limits of volume situated 
on both sides of the critical volume the distance of 
which might be calculated from the shape of the critical 
isothermal and the height of the column, a flat liquid 
surface will appear at different levels in the tube, the 
higher the smaller the volume, and, as follows from 
the consideration of the figure, always exactly at the same 
temperature, the critical temperature of the substance. In 
the case of carbonic acid enclosed in a tube of about 10 cm. 
leugth, the distance of these limits, between which the 
liquid surface will appear in the body of the tube, will 
amount to about 6 percent of the entire volume, as 
calculated from GouY's table. The value for this distance 
resulting from Gouy's experiments 1) and given by my 
own 2) is of the same order of magnitude. 

1) GorrY, Compt. Rend. 1 16, p. 1 289. 
2) K uENEN1 Communic. etc. n ° .  81 p .  1 1 - 1 2. 
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From the above follows immediately what will be 

observed by reversing tho process, i .  e. by heating the 

substance at different constant volumes. If the volume 

is smaller than a definite volume Vt , the l iquid will 

i11crease regularly and at a temperature mose or less 

below the critical temperature fi l l  up the whole tube. 

If the volume is greater than a larger volume V2 , the 
liquid will decrease during the heating and evaporate 

entirely. Between v1 and v2 however the liquid surface 

will rise or fall, but at last become flat and dis­

appear, at a definite temperature independent of which 

volume between the limits v1 and v2 has been chosen. 
That temperature is the critical temperature and no other. 

This result was mentioned by me on a former occa­

sion 1 )  without further explanation. It justifies completely 
' the method of the meniscus' for determining critical 
temperatures. The same may he saiu about the method 
as it was original ly described by A NDREWS in which, 
instead of change of temperature at constant volume, 
was used change of volume at constant temperature, 
although the first for reasons of practice seems to me 

to be preferable ; with pure substances the method is 

bound to give correct values for the critical temperature 

and differences from the results of other methods find 

thc�ir explanation in impurities or in many cases in the 

uncertainty of the rival methods. The method of the 

densities (l\1ATIIIAS) 2) which serves very well for de­

terminmg the critical volume, when the critical tern-

1) KuENEN, Communic, etc. n ° ,  8 p .  10.  
2) CAILLETET et 1\fATrriAs, Compt. Rend. 102 p. 1 202, 104  p. 1 563, 
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pm·ature is already known, is not to be recommended 
for the critical temperature itself as some extrapolation 
is ah7ays w�nted, even when �t is applie

_
d with the Qmost 

care ) .  Whichever method IS used, I t  will always be 
very desirable to stir the substance, because impurities, 
which are never entirely absent, produce retardation 
and also differences of density 2). 

I t  may also be observed, that the method in question 
makes it  possible to measure the critical pressure and 
also, with a near approximation, the critical volume of the 
substance. In taking the volume equal to the volume at 
which the meniscus appears and disappears in the middle 
of the column the mistake is only very small. Sometimes 
the critical volume has been taken equal to the volume at 
which the liquid at the moment of the disappearing 
of the meniscus filled the tube entirely : this erroneous 
procedure leads to great mistakes. 

II. In deriving the influence of gravitation on the 
critical phenomena of mixtures of two substances, I 
shall make use of the �-smface of VAN DER WAALS 3) . 
I shall only consider the case of one plait, the vapour­
liquid plait, existing on the surface. On page 35 of his 
treatise he treats of the action of exterior forces on the 
mixture. The results obtained by him have therefore 
simply to be applied here. The ·-/;-surface may be 
described either for a constant "·eight of the mixture 

1) AMAGAT. Compt. Rend. 1 1 4  p. 1 093-98. 
2) KuENEN. Commun. etc. n o .  1 L 
3) VAN DER WAALS. Archives Ncerl. 24, p. 1 -561 Zeitschrift 

iir Phys. Chemie 51 p. 1 33-173. 
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or for a constant number of molecules. In the case 

before us t he first method is preferable as regard:; sim­

plicity. In fact vAN DER W AALS proves that in that case 

for phases being in equilibrium under the influence of 

gravitation G �)v 1) has a constant value, while in the 

other case that quantity still depends 011 the height h 

and only : G �t-1 (M1 -M1) gh (M = molecular weight) 7 + 
is a constant. We shall therefore use the first method. 

In order to show by means of the surface, what phases 

will be present in a vertical column, we imagine curves 

to be drawn on the surface, for which ( � � )u has a 

constant value. 1 shall call these curves 'gravitation­

curves'. The phases in question form together a section 

of a gravitation-curve. (For simple substances the gra­
vitation-curve coincides with the isothermal). A second 

condition makes it possible to determine which points 

of a gravitation-curve correspond to definite heights of 

the column. This condition is simply dp = - � dh� and 

is in itself clear apart from its thermodynamical derivation. 

If not only the gravitation-curves but also the isopiestics 

� p = - (: t )x = constant � , the determination of which 

is entirely analogous to that of the gr.-curves, are 

drawn on the surface these two sets of curves make 

it possible to derive the phases present in the tube 

1) x = composition. The v added to the differential coefficient 

expresses that v is kept constant during the tlifferentation. 
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completely. For our purpose it is sufficient to consider 

the course of the curves in the critical region . We 

obtain this soonest, if we use the relation between dp 
on the one and dx (or dv) on the other side along the 

gravitation-curve. This relation is given by a formula 

on page 37 of VAN DER WAALS's treatise, viz : 

or also by aid of wel l known relations :  

J � -J- � 2 ;]; _ ( 6 2  ·.V )z � d X = _ (6 p) d p 1 � 2 x  � u 2 6 x � �  ' 6 x  u 
Let : 6 2 � � 2 tJ.; 6 x2 � u2 

(1) 

(2) 

(3) � 2 ·+- �2 ·.V 
this A is the expression that with 6 u 2 and � x2 
determin[:ls the stability. In all the points of the connodal 

curve A > o except in the plaitpoint, that being a point 

of the spinodal curve at the same time : there A = o. 
If we substitute that in (1 ) or (2), as in the plait-

point we have in general (�; )P or G ;)u �o, we find d P = o or 
d x = oo · dx dp 

This result has n o  other meaning than that in the 

p laitpoint an element of the isopiestic co"incides with 

an element of the gravitation-curve. As the isopiestic 

1 1  

touches the connodal-wrve in the- plaitpoint the gravi­
tation-curve will do the same. In fig. 2 is represented 
the case of the plaitpoint lying to the si ( le of the small 
volumes. The pressure in the plaitpoint in that case is 
a maximum-pressure and 

or G�)u > o 

not only in the plaitpoint but also close by it. As at 
the same time A > o, d x and d p according to (1) 
and (2) have the opposite sign and the two curves 
isopiestic and gravitation-curve wi l l  intersect in the 
manner shown in fig. 2. Two curves which intersect 
and touch each other in the same point have a mutual 
contact of the 2"d order. Hence i t  follows that in the 

· · 
t 1 d v  · 1 c b h v, x proJeCtiOn no on y d x IS equa 10r ot curves . d2 V m P but also d-----;· The curves have the same radius x-

of curvature. 
The proof of this proposition may also be given thus. 

In correspon(ling points of the connodal curve not only (� �) (� �) � x but also 6 x u have the same value. The first 

can be expressed by saying that the pressure is the 
same in the two points. In approachting the plait­
point the two corresponding points approach each other 
and at last co'incide, in the plaitpoint. From this we 
conclude at once that the isopiestic in P has an element 
in common with the connodal curve, i . e .  touches the 
connodal curve. Exactly the same reasoning holds good 
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for the curve along which iJ x u is  a constant ; i .  e. the 

gravitation-curve also touches the connodal curve in P. 

Therefore the two curves touch each other and as they 

have to intersect at the same time the mutual contact 
d 2 v 

will be of the second order : accordingly -cl • equal for :c -
both. cl2 V 

We need therefore only determine d-----. for one of x-
the two curves in order to know the same quantity 

for the other. We shall  calculate here (���)p , i .  e. for 

the pressure-curve ' ) .  

From dp = 
G�)u d x  + 

G�)x 
d v follows : 

i) 2 ·� 
( u  o x i! u 
i! xp) � 

i)---;;2 
As moreover for any function � 

G�)p (��)v + G�)x (� �)p 
one finds : 

1) The idea of considering the sign of (�:�)p m the plait­

point I took from a letter from Prof. VAN DER W AALS1 written 
on occasion of my paper communicated to the Physical Society 
of London. May 24th. 

J 
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{
�2
x
u
2)P 

(j 3 -J; iJ 2 -.fJ iJ 3 -t- iJ 2 -.fJ 
i!x2i!u + 2  i!x i! u  i!x i!:�2 i! u 2 

( (j 2  "+')3 iJ u2 

Into this expression we now introduce the quantity 
A as defined by (3). This leads to : 

(i) 2�) (j 1.1" 

A. + 

This expression is generally true. It may be used to 
determine the course of the p-curves in  the v, x pro­
jection. In P, where we want to know the value at 

A h
.
l 

i! A present, o ,  w 1 e � > o because a point 

shifting from P in the direction of the positive v-axis 
enters the unstable region. Hence in the plaitpoint : 

> 0.  

i .  e. the curvature of both isopiestic and gravitation­
curve is turned to the same side as that of connodal 
curve. 

A similar reasoning may be used to determine the 
relative situation of the curves in case the plaitpoint 
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should. l ie towards the side of the large volumes of the 

( � u )  � A  . 
plait. ln that case � �2 p < o because r-;; .> o and tt 

appears that again the curvature has the same sign as 

that of the connorlal curve in the plaitpoint .  

A s  recrards the seconci surface described for a constant 

number 
b 

of molecules mentionecl before, the conditions 

belongi11,,. to it may be decuded from those for the Grst 
b 

' 

surface by means of the substitutions. 

:/ 
u = -l�M.--1 -;("1---x-;');---;+---.M-;r-2---:X-::r' 

M2 x' 
x = -;:M,.-,-1---,-( 1.---x-;2')

'--+-;---.:M.-2---:x�' 

w here the da:>hes denote the quantities belonging to 

the 2nd surface. They can also be derived independently. 

It has already been stated that the formulas become 

less simple. Instead of (1) one obtains 1 ) : 

The sio·n of the second side in this case cannot 

be fixed �n general . Excluding the special case in which 

the coefficients become zero the conclusion with respect 

I) VAN DER W AALS l .  c. p .  42 by putting P1 = P2 glt. 

11 I 

! 

: 
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to  the plaitpoint remains the  �ame. If M1 __..'> M2 as in the 
case of C02 and CH3 Cl 1) the coefficient is still positive : 
but this need not be so. With very large volumes, wbrre G:)p is about zero, the sign depends entirely upon 

l\J1 - M2 , but near the plaitpoint such is not the case . 
In every special case one will have to determine the 
sign of the second sicle. However al l that cannot 
affect tbe general conclusion about the plaitpoint, w hich 
forms the ba::;is of the w hole argument. 

The conclusion in question is sufficient to derive 
the critical phenomena of a mixture under the in­
fluence of gravitation. The most natural way to de­

scribe the phenomena is to consider what will happen 
during continuous change of volume at tbe temperatures 
that come into account. In the case represented in fig. 2 
if we do not take into account the influence of gravitation 
we obtain the following result 2 ) :  between two definite 
temperatures, different for every mixture, the tem­
perature of the critical point of contact Tn and the 

plaitpoint temperature TP ( T�t > Tp), with increase of 
volume, the point representing the couuition of the 
mixture will pas:o. through the connodal curve between 
the points P and R. In those cases so called retrogade 
condensation of the first kind (r. c. I.) takes place, i .  e. 

a liquid appears the quantity of which increases regul­
arly from zero up to a certain point and then decreases 
and at last disappears. Below Tp the condensation is 

1) Communications etc. n °. 4. 
2) Communications etc. n °. 4, p. 8. 
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normal, i. e. the liquid surface appears right at the 
top of the tube and the quantity decreases down to 
zero all this with slow increase of volume. Ex.actly at 
the 

'
plaitpoin-ttemperaturel the point on the smface 

passes through the plaitpoint and in that 
_
case only a 

flat lif]_uid surface wil l appear somewhere m the body 
of the tube, which falls on further increase of volume 
and in the meantime becomes more and more distinct, 
until the liquid is evaporated. 

We shall now take into account gravitation. The 
condition of the mixture is now no longer represented 
b y  one point but by a small section of a gravitation­
curve, the length of which as with a simple substance 
is connected with the height of the column. The values 
of v and x in the different points of the tube are situ­
ated on both sides of the mean value of these quantities 
for the whole mixture. The mean value of x of course 
does not change with change of volume. If the course 
of the O'ravitation-curves, some of which have been 
drawn i�l fig. 2 1 ) ,  is consiclered, three cases will be 
seen to be possible. If the temperature is somewhat 
below Tp the little curve wil l  with its left end, cor­
responding to the top of the tube, reach the connodal 
curve on tbe right of P. At the top of the tube there­
fore a l iquid surface will appear and the liquid wil l  
decrease continual ly (case A). It may also happen that 
the temperature is so much above TP, that the curve-

1) These curves may be continued within the plait and the 
parts contained between the connod�l-c�rve are t

_
hose which 

will play a part in the theory of cap1llanty of a miXture. 

J 
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section reaches the connodal-curve with its right end between P and R. In that case l iquid appears down at the lower end of the iube : the liquid increases, reaches a maximum value, then decreases and disappears (case B). Within a region of definite extent, situated ori both �ides of Tp, a different thing happens. The gravit­ation-curve comes into contact with the connodal-curve ' the two curves touching each other always exactly in  P (case C) 1). At the point in the tube corresponding to the point of contact (the height of which depends on the temperature at which thA change of volume takes place) occur the plaitpoint-pressure, volume and composition. At that point therefore with gradual increase of volume a clow.l and afterwards a flat liquid surface will appear. At a certain d istance above Tp (the plaitpoint temperature of the homogeneous m ixture) the motion of the meniscus will still preserve the character of retrograde condensation I, but at tem­peratures very near Tp the appearing meniscus will not rise perceptibly, but move downwards from the beginning after its appearance. Hence the region in which retrograde condensation exist will be somewhat smaller than without gravitation . It  must not · be over­looked that the temperature Tn will also appear a little 

1) An accurate contemplation of the figure will make clear that these· three cases are the only ones possible. In that lies the point of the whole reasoning. It will never happen that the curvesection reaches the connodal·curve between P and R with its left end, which corresponds to the top of the tube. This wouid lead into extraordinary difficulties. 

�J�L_�----------��--------------------�--------------------------� 



1 

j 

18 

higher, because the curve-section will reach the connodal 
curve even if its mean point lies a little beyond the 
plait. But this rise of TR is probable less than the 
rise of the lower limit of r. c. I, because the influence 
of gravitation is bound to be greatest near P. 

On reversing the process, i . e .  in compressing the mix­
ture at constant temperature, the fol lowing phenomena 
appear. Below a definite temperature : normal conden­
sation ; next above that a range of temperatures at 
which the liquid surface disappears during compression 
before the ·whole of the mixture is liquid ; next a region, 
in which the meniscus before disappearing begins to 
fall more or less and at last a region in which the 
liquid evaporates entirely 1 ) .  Thi� last one is really the 
only one in which the typical critical phenomenon of 
mixtures, viz. retrograde condensation, is manifested 
completely. 

This result may explain the difficulty which the de­
termination of the plaitpoint temperature gave me in 
my experiments on C02 and CII3 Cl 2). 

Entirely analogous phenomena will be the con­
sequence of gravitation in the other case, when the plait­
point lies on the other side of the critical point of 
contact. I shall not go into this at length. In this case 
also gravitation will reduce the region in which retro­
grade condensation (here r. c. II 3)) comes clearly to 

1 )  This result was briefly mentioned by me some time ago, 
Communications etc. No. 4, p. 9 note. 

2) KuENEN, Communications etc. Nu. 4, p. 12 .  
3 )  " " " " 1 3, p. 15 .  

J 
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light. In an experimental investigation which I have 
carried out lately, originally undertaken with a view to 
realise the case of r. c. II, the results of which have 
been communicated by me to the Physical Society of 
London in its meeting of May :24th, gravitation must 
have largely contributed in concealing the phenomenon, 
the possibility of which however could be proved. A 
circumstance which in the cas_e of mixtures encum­
bers the observation of the phenomena is, that stirring, 
though desirable for eliminating retardation, on the 
other hand disturbs the gravitation-equilibrium and 
therofore is of little use. With simple substances this 
drawback of course does not exist. 
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Erratum {)om•nnnication N°. I S. 

In part of the copies of this Communication the formula on p. 9 
line 9 from the top has been printed incorrectly. Read : 

2d 

h1 = (h + 0 029) Fa-=rJ2 ' 1 '2d 
r1 

-
(ra-r2)2 

E1.•ratum {)ommunicatiou N°. 20. 

In part of the copies of this Communication on the title-page 

in the title : for plantinum read platin urn. 
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