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INTRODUCTION.

In the last few  years our know ledge abou t caloric properties
of many substances has been increased considerably.

In particular it has been shown th a t many solid bodies show
abnorm ally large specific heats in some small tem perature
regions. Such an anomaly will be indicated by the  te rm ;
transition point or transition region.

The transition points may be of a very different character.
In some cases the  specific heat becomes very large but can
still be represented  as a continuous function of tem p era tu re ;
^  o ther cases there is a discontinuity in the energy, accom* *
panied occasionnally by an anomaly in the specific h ea t or by
hysteresis effects, or bo th  a t the sam e time j in very few cases
the specific heat is discontinuous and the energy continuous.

Parallel w ith the exploration of these types of transitions
progress has been m ade in explaining their mechanism. Here
the  m ost succesful theories are  the theory of P a u l i n g 1)
explaining the caloric anomalies in crystals which contain
polyatomic ions and the theory of J o h a n s s o n  and L in d e , which
shows tha t the therm al anomalies of alloys can be understood
by adm itting a transition from  an ordered  to  a disordered state.

In the  following pages we will try  to  arrive a t a provisional
answ er to  the question: „W hat predictions can be made from
the type of a transition as to  the mechanism by which it is
caused.”

The m ethod applied here was already given in a paper published
in 1934 2). In the second p a rt of this previous work some mistakes
had been m ade, so th a t its value for the problem  considered
was bu t small. Therefore the  p resen t w ork is given w ithout
reference to  the form er.

l )  L. P a u l i n g ,  Phys. Rev. 36, 430, 1930.
*) A. Bijl,  Physica 1, 1125, 1934.



CHAPTER I.

The order-disorder transitions.

§ 1. The transition o f Cu-Au alloy.

It will be useful first to  discuss the  newer theories about
transition points. As these theories have been developed in p a r
ticular for the order-disorder transitions, we shall limit our
selves to  these. For a short survey of the  experimental facts
we shall follow the description of the phenom ena as given
by J o h a n s s o n  and L i n d e .1)

A Debye-Scherrer pho tograph  of a wire of Cu-Au  alloy (50 at.
°/0 Au) shows m arked superstructure lines, when the wire has
been sufficiently annealed betw een 300° C. and 400° C.

These lines disappear when the wire is heated above 420° C.
and appear again after sufficiently slow cooling.

The superstructu re  lines of the lower tem perature  form belong
to  spacings which are abou t double the spacings of the high
tem perature form . The high tem perature form is cubic face
centered and the unit cell contains, therefore, four atoms. If
we take  a unit cell in which two A u  and tw o Cu atom s are
present and build up a crystal by repeating this unit cell with
a fixed configuration of the Cu and A u  atoms the crystal thus
obtained m ust show the observed superstructure lines. So the
change in the  s truc tu re  is p robably  due to  an ordering of the
gold and copper atoms.

It is easily seen th a t the unit cell of the ordered  form has
no longer cubical symmetry b u t has an axis of symmetry which
is perpendicular to  the lattice planes which contain two equal

i) C. H. J o h a n s s o n  and J. O. L inde , Ann. Phys. 25, 1, 1936. See for
complete references pag. 47 of that article.
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atom s of the  same unit cell. Parallel w ith this loss of cubical
symmetry is observed a tetragonal deform ation, which appears
with decreasing tem perature a t about 400° C., b u t increases
still more a t lower tem peratures.

The electrical resistance of the  alloy determined a t rising
tem peratures increases abnormally, bu t continuously, from about
250° C. up to  420° C., and increases very rapidly — probably
with a discontinuity — a t this tem perature. Above 420° C. the
resistance curve is again „norm al” ; it is a linear function of
tem perature.

W hen the  resistance is m easured at falling tem peratures
another curve is obtained. The curve from  420° C. till 400° C.
is a sm ooth continuation of the high tem perature cu rv e ; a t
400° C. there  is a sudden decrease and below 400° C. it is
about the same as the one obtained with rising tem peratures.

M easurem ents of the specific heat show a strong  increase in
the specific heat from abou t 300° C. to  400° C. The determ i
nations of the  specific heat by S y k e s  and others ') fo r some
other alloys do not show the  hysteresis effects. It would be
very rem arkable if a hysteresis in the  resistance w ere not
accom panied by a hysteresis in caloric properties too. So we
may a t this m oment anticipate that more accurate determ inations
will show  a similar behaviour of resistance and specific heat.

A lthough the  transition of the Cu-Au  system shows many
finer details, the facts m entioned above perm it us a description
of the transition  in the following w ay:

A t very high tem peratures the  different metal atom s are
divided a t random  over the lattice points. There is, however,
a tendency tow ards an ordered  arrangem ent of the atoms. A t
about 400° C. this process of ordering show s a discontinuity,
so th a t below the transition tem perature  large ordered regions
exist in the  crystal, which a re  indicated by a low electrical
resistance and  superstructu re  lines in the  X-ray pattern . A t
still lower tem peratures this process is com pleted, and causes
a fu rther decrease in the electrical resistance, an excess specific
heat and a shortening of the tetragonal axis.

*) C. S y k e s  and F. W. J o n e s ,  Proc. roy. Soc. 157, 213, 1936.



6

W ith rising tem perature the process goes in the  reverse
direction. It is, however, impossible to  obtain the transition at
the  same tem pera tu re ; we m ust distinguish th ree  tem peratures:

7V Tm and Tb ( T a > T n > T b).

Tm is the tem perature w here both  phases are in equilibrium,
i.e. w here their therm ic potentials are  equal, b u t betw een Tm
and Ta the lower tem peratu re  phase does not pass into the
more stable „disordered” phase and similarly between Tm and
Tb the disordered phase does not pass into the ordered one.

In conclusion, it seems justified to  consider the process of
ordening as a process, in which the  phase transition is merely
an incident, and we must ask ourselves w hether such incidents
are inherent o r no t in the  mechanism of the ordering.

§ 2. The theory o f  B r a g g  and W i l l i a m s .

Some years ago B o r e l i u s 1) described the phenom ena ob 
served a t the o rder-d isorder transitions by representing the
free energy of an alloy as a function of the „degree of o rder”.
The actual degree of o rder in the crystal is fixed by the  con
dition th a t the  free energy is a minimum. As a m easure for
the degree of d isorder was used the deviation of the electrical
resistance from  an extrapolation of the low tem perature part
of the resistance curve. This choice was justified by the fact
th a t the electrical resistance is very sensitive to  deviations of
the lattice from periodicity.

B o r e l i u s  could show th a t the introduction of the degree
of o rder as an „inner param eter” of the substance was suffi
cient to  represent in a formal w ay the experimental da ta  known
a t th a t time. He could also invalidate the  criticism which had
been raised against the experim ental results of B o r e l i u s ,
J o h a n s s o n  and L i n d e  and show th a t these were due to
w rong in terpretation of the therm odynam ic theory of transi
tions. Recently similar m isunderstandings proved to  exist about
the concept of „transition poin t” of the second order, intro-

*) G. B o r e l iu s ,  Ann. Phys. 20, 57, 1934; 24, 489, 1935.
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duced by K e e s o m  and E h r e n f e s t  *). A lthough these diffi
culties have n o t yet disappeared en tire ly2) they have been
thoroughly discussed so th a t it seems perm itted  to  omit their
discussion here.

B r a g g  and W i l l i a m s 3) made the first a ttem pt to  solve
the problem  of the  transition of alloys with the aid of the
m ethods of statistical mechanics. They calculated the energy
and entropy as a function of the „degree of o rder” using some
assum ptions which we shall presently mention.

The degree of o rder was defined by com paring the a rrange
m ent of the atom s in the  crystal w ith the arrangem ent in a
perfectly ordered  crystal. W e suppose th a t in the ordered
crystal N  lattice points are occupied by atom s of the same
kind. If in the real crystal these lattice points are  occupied
by ^yV (l +  3') atom s of this k ind and $ N  ( 1 — a) atom s of
the o ther kind, and  if in an entirely random  distribution of
the atom s these num bers would be both \ N ,  we may call <r

, the „degree of o rder” of the lattice.
This definition of degree of order has some m inor incon

veniences. By replacing every atom of a  crystal by an atom  of
the o ther kind, <r changes sign so  th a t it may be as well ne
gative as positive. M oreover, if there  is perfect o rder in most
p a rts  of the crystal bu t in such a way th a t these parts  do not
fit with each other, the value of <s is still zero according to
the  definition.

B r a g g  and  W i l l i a m s  first try  to  derive a relation betw een
the degree of o rder and the energy of a crystal. They observe
that in a perfectly ordered  crystal some energy is required to
in terchange the places of tw o unequal atoms. In a completely
disordered crystal we m ust expect, however, th a t this in te r
change will cause on the average no increase in energy.

It is therefore assumed that an interchange of tw o unequal

!) W. H. K eesom , Communications Kamerlingh Onnes Laboratory, Leiden,
Suppl. 85a; P. E h r e n f e s t ,  Suppl. 85b.

2) Cf. E. J u s t i  and H. N i tka ,  Phys. Zs. 38, 302, 1937.
3) W. L. B ragg  and E. J. W i l l i a m s ,  Proc. roy. Soc. 145, 699, 1934;

151, 540, 1935.
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atom s requires a certain  energy which depends only on the
degree of o rder in the crystal. This is equivalent to  the as
sum ption th a t every atom  which fits into the ordered  lattice

which we may call a „right” atom  — has a certain energy
differing from  the energy of an atom  not fitting into the o r
dered lattice — i.e. a  „w rong” atom — by an am ount only
dependent on the degree of order.

This assum ption is m ore specialized by assum ing tha t the
relation betw een the above m entioned energy difference or
interchange energy V  and the degree of o rder a can be re
presented by :

(1) V  — --- XT.

V  is the derivative of the  energy U (calculated per atom)
with respect to  t. S o we h a v e :

(2) U  =  — -J- XT2.

This form of the relation between U and t  is not justified
by B r a g g  and W i l l i a m s .  It is, of course, impossible to  do
this as long as no more special inform ation is available about
the forces which tend  to  produce an o rdered  arrangem ent.
The only thing which is ra ther certain is th a t U is a mono
tonie function of t ; the results deduced from (2) can, however,
not be regarded  as rigourous.

For the  determ ination of the equilibrium value of t  we
m ust also know  the relation betw een the  en tropy  per atom,
S, and t .

A natural extension of the  above m entioned assum ption is
to  suppose th a t to  every division of i  N  (1 +  t)  „right” atoms
of the same kind over their possible lattice points, corresponds
the same energy. The expression for S  is than readily obtained
by the calculation of the num ber of different arrangem ents of
•J- (1 -j- <r) atom s over N  lattice points. The num ber of pos
sible configurations W  of the crystal is the square of this
num ber, as there  are tw o independent superlattices. The
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entropy is equal to  k log W, and is obtained in the fo rm : ')

The equilibrium value of <r is now  determ ined by the  con
dition th a t the free energy F  is a minimum as a function of o-.
T herefore:

W ith this equation the  problem  of determ ining the degree
of order and  the energy as a function of tem perature is in
principe solved.

It has been rem arked by F o w l e r * 2) th a t the theory of
B r a g g  and W i l l i a m s  is very similar to  the  W e i s s  theory
of ferromagnetism. There is, in fact, so much analogy between
the theories th a t both  become identical in their algebraic form
if the ferrom agnetic theory is applied to  m agnetic atom s for
which only tw o directions of the m agnetic m oments are
allowed.

In the W e i s s  theory the elem entary m agnets are  directed
by an „effective” field H eg which contains a term  proportional
to  the m agnetisation already obtained:

where H ext is the external field and //ƒ„ is the m agnetisation
divided by the  sa tu ra ted  m agnetisation.

The absolute value of the w ork done in turning one magnet
is equal to

(3) 5  =  ƒ (*).

X 7  —  T —  .

(5) Heff. ---  Htxt. “F  b i j l

(6) v  =  2^ H'g. =  2ft Hext. +  2bv ƒ/ƒ„.

!) The introduction of G ib b s ’ entropy in B o r e l i u s  paper(l.c.), corresponds
to this entropy.

2) R. H. F o w l e r ,  Proc. roy. Soc. 151, 1, 1935.
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This energy can be com pared with the „interchange”
energy in (1) if Hext. is zero and ///„  is called the degree of
o rder of the elem entary m agnets. The en tropy  of a state with
m agnetisation is likewise found by considering the num ber of
ways in which (1 +  ///« )  A/2 elem entary m agnets out of N
can be directed along the lines of force. So this entropy is the
same function of 1/1x in the ferrom agnetic case as it is of v
in the trea tm en t of B r a g g  and W i l l i a m s .

As is know n, the  W e i s s  theory leads to  the existence of a
sharp  C u r i e  point, and so does also the theory  of B r a g g
and W i l l i a m s .  These au thors drew  attention to  the fact th a t
this result depends on the  special assum ption (1). They m ade
therefore clear th a t also the existence of a C u r i e  point in the
ferrom agnetic case is no t certain from  a theoretical point of
view, as there is no reason to  expect th a t th e  relation (6) gives
the exact expression for the energy required  to  tu rn  an elemen
tary  m agnet.

O ur conclussion m ust be tha t the theory  of B r a g g and
W i l l i a m s  gives a valuable qualitative discussion about the
transition point, b u t th a t it cannot give definite information
regard ing  the physical conditions necessary for the existence
of a C u r i e  point.

§ 3. The theorie o f B e  th e  and P e i e r l s .

B e t  h e 1) and after him P e i e r l s 2) gave another discussion
of the same problem . They first in troduced some hypotheses
which simplified the physical model of the alloy and m ade it
suitable for exact calculations. In this way they avoided the
necessity of using assum ptions which could neither be proved
nor disproved on the basis of their model.

B e  t h e  first gives an in teresting discussion of the definition
of the  concept „degree of o rder” . In the same way as indicated
by P e i e r l s  he in troduced tw o different concepts of order,
viz. „short range” and „long range” order.

1) H. A. B e t he, Proc. roy. Soc. 150, 552, 1935.
2) R. P e i e r l s ,  Proc. roy. Soc. 154, 207, 1935.



11

For the definition of the „short range” degree of order we
shall restrict ourselves to  such superstructures in which the
entirely ordered crystal is already determ ined if only it is
known by which kind of atom  one single lattice point is oc
cupied. This would for instance be the case in a body centered
alloy, in which the com ponents are  present in equal amounts.

We may now com pare the nearest neighbours of a given atom
with the nearest neighbours of a sim ilar atom  in a completely
ordered crystal. The num ber of nearest neighbours which
would fit into the ordered  crystal is clearly a measure for the
degree of o rd er of the crystal considered. We may proceed
in the same way for every atom  in the crystal. If p is the
chance th a t a pair of nearest neighbours is „ordered” the
quantity

(7) i  — 2p —  1
is called the  „degree of sho rt range o rd er” . For a com pletely
ordered  sta te  a is unity, for a random  distribution of the
atom s f  is zero.

In more com plicated cases the degree of o rder can be defi
ned by considering the chance th a t an atom  is of the same
kind as an atom  occupying the corresponding place in a neigh
bouring unit cell. This definition is, however, no t always useful
for physical applications.

The degree of o rder defined above may considerably differ
from zero, while the degree of order defined by B r a g g  and
W i l l i a m s  is still zero. To distinguish it from the form er the
latter is called by B e t  h e : „the long range o rder” of the
atom s.

In a qualitative discussion of the  problem  B e t  h e  concludes
th a t the disappearance of the „long-range” order will be ac
com panied by a jum p in the specific heat, b u t tha t above that
tem pera tu re  the short-range o rder will persist. The decrease
of this order with rising tem perature  will also cause an
anomaly in the specific heat above the transition  tem pera
ture . This is in fact in accordance with the experimental
determ inations.



12

The physical assum ption which B e t  h e in troduced in his
theory is th a t tw o neighbours, which are  „ordered” will have
an energy different from a pair of nearest neighbours, which
are no t ordered. For instance, if in a cubic body-centered
crystal the centre is occupied by the same kind of atom  as a
corner, this configuration will have an energy V in excess of
th a t of the configuration, in which these lattice points are oc
cupied by  different atoms. W e shall always assume in this
brief discussion th a t all nearest neighbours in the ideally
ordered  sta te  are  different from each other. M oreover it is
assum ed that only nearest neighbours interact. Therefore the
to ta l energy of the crystal is determ ined by the num ber of
equal neighbours, i.e. by the degree of „short range” order.

W ith these assum ptions the probability th a t a certain  lattice
point (which we shall call the „cen tral” lattice point) is occu
pied by an atom  of a given kind is determ ined entirely if the
configuration of the nearest neighbours of the central lattice
point is given. These nearest neighbours of the central lattice
point are  called the „first shell” ,

Again the  probability  for a certain configuration of the
central atom  and  the first shell is determ ined if the configuration
of all the nearest neighbours of the first shell is given. These
lattice points are called the „second shell” and so on.

The treatm ent of B e t  h e  is now an approxim ation in which
the  influence of the different shells on the order of the central
atom  is calculated. The calculation cannot be m ade by general
form ulae, and therefore only the influence of the tw o first
shells has been taken into account.

B e t  h e ’s calculations are  divided into tw o p a rts ; in the first
p a rt he only considers the s ta tes  in which the long range
o rder is z e ro ; in the second part he considers in more detail
the states with non-vanishing long range order.

W e shall give here a representation of B e t h e ’s calculation
which is due to  M o tt  and J o n e s .  !)

Let us call the  probability th a t a nearest neighbour of the

!) N. F. M ott and H. Jo n e s , Properties of metals and alloys, pag. 28.
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central atom is no t of the same kind p. The „short range
o rd er” is than equal to :

7 =  1 — 2p.

If we only take into account the interaction betw een the
first shell and the central atom the energy difference betw een
the states in which a certain  atom  of the first shell is equal
o r unequal to  the central atom is V. So the relative p roba
bility of these states must be equal to

e (— V/kT)

and we o b ta in :

=  e ( -  V /kT ) ,  or1 — p

(8) * =  tanh (V I2kT).

In a similar, bu t of course m ore complicated way the con
figurations of the atoms including the second shell can be
investigated. In this second approxim ation the value of a- differs
a t the high tem peratures only slightly from  (7), a t low tem pe
ratu res the deviations are considerable.

In the states with long range o rder the atom s are  divided
in „R” atom s (right atoms) and „W ” atom s (w rong atom s).
The R atom s fit in to  the o rdered  lattice, the  W atom s do not.
O f course there are  m ore R atom s than W atoms. In o rder to
make it possible to  trea t the states with non-zero long distance
order in an analogous way it is assum ed th a t the long distance
order has the effect th a t fo r an atom  of the last shell con
sidered the probality th a t it shall be a R atom  is 1/(1 -)- i).

Let us call the num ber of lattice points in the first shell z.
Then the relative probalility th a t in a state  in which there
are n W  atoms in the first shell the central atom  is R, which
will be called r„, is equal to :

(9) >■ = (£ ) « *  e (— n V / kT).

The factor e ( — n V jkT )  is due to  fact th a t the  energy of
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this state is equal to n V ; the factor (^) in introduced to account
for the number of arrangements of the n W atoms in the
first shell.

Likewise the probability for a configuration in which n
W atoms are in the first shell, and the central atom is W is
equal to

(10) wn -  g )  e- e ( -  (z -  n) V/kT).

The relative probabilities that the central atom is right or
wrong are given by:

(11) r =  Z r n =  ( l + e e ( - V / k T ) y
O

and

w =  2 zvn =  (f e (— V / k T ))*.
o

On the other hand the probabilities for a R or W atom in
the first shell are respectively:

(12) r, =  2 (z — n) (rn +  zv„)
o

and
Z

w\ =  2 n (rn +  wn).
O

As the atoms in the first shell are not in a physical sense
different from the central atom, we have:

— =  I I
w wx *

which equation reduces to:

(14) / e +  e(—V/kT) V ~ 1
\1 +  * e (—  V/kT))

It is now possible to calculate the „long range” order as a
function of temperature. It turns out that this long range
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order is zero above a certain tem perature  determ ined by the
eq u a tio n :

(15) =  1/log (z/z — 2).

If the tem perature  is increased to  Tc the short range order
diminishes together with the long range order, and becomes
equal to  the sho rt range o rd er calculated w ithout assuming
long range order. Therefore a jump in the specific heat m ust
be expected, as for T — Tc the  energies of both  states (i.e.
the  states w ith and  w ithout long range order) become equal,
bu t the specific heats rem ain different.

It m ight also be possible tha t, even a t a low er tem perature,
the free energies of both states becam e equal. In fact this was
found to  be the case by Peierls for an alloy of the general
composition A3 B.

The specific heat curve is sufficiently close to  the experimen
tal curves, to  perm it the  conclusion tha t the experiments do
not contrad ict the basic assum ptions.

A  closer examination of Bethe’s theory  raises doubt as to
its value in connection w ith the  transition phenom ena. W e
m ight ask, for instance, w hether the m ethod of successive consi
deration of more and m ore shells surrounding  the  central
atom  converges, and  if it is convergent, w hat would be the
result if the calculations were carried out in a high approxim ation.

This would mean th a t we should calculate the o rder of
neighbours taking into account the influence of many shells,
i.e. for a small crystal. As the o rder of neighbours is closely
connected with the energy of the crystal, we m ight expect
th a t in the  same way as the  energy the degree of o rder would
decrease slowly at low tem peratures, more rapidly in the
neighbourhood of a „critical” tem perature, and again slowly
a t high tem peratures.

In fact B e t h e ’s curve for the second approxim ation shows
this character much better than the  curve for the  first
approxim ation.

This means, however, th a t if we really calculated the o rder
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of nearest neighbours in a high approxim ation we should
approach more and m ore the real curve and should not need
the approxim ation including long range order.

The in troduction of this calculation and  more specially the
introduction of the probality £ proves, therefore, to  be a
correction for the  fact th a t the first calculation does not con
verge rapidly enough. Similarly we may expect th a t also in
calculations with long range o rder the value of £ becomes
unim portan t if we carry ou t the calculation for many shells.
For we may imagine tha t the surface of the crystal coincides
with a certain shell, and it is clear tha t a t the surface s may
be chosen at will.

The „correction caused by the introduction of the  probability
6 is the difference betw een the o rder of neighbours with and
w ithout long range order and is very im portant in the neighbour
hood of the  Curie point. If the curve for the sho rt range
order can be in erro r w ithout the  introduction of £ immediately
below the  Curie point, it will probably not be very reliable
above the Curie point either. So the conclusions about the
transition phenom ena are very uncertain from  a theoretical point
of view.

It seems, therefore, th a t the m ethod of B e t h e  is perhaps
trustw orthy  below and  above the  transition  point, bu t tha t it
gives no reliable results in the immediate neighbourhood of
this tem pera tu re ; it does not convince us, for instance, th a t
the model gives a possibility for a C u r i e  point.



CHAPTER II.

The phase transition as an association.

§ 1. The aim o f a theory o f  transitions. The phase transition
as a process o f  association.

Thermodynamics does not predict anything abou t the form
of the specific heat tem perature curve except th a t the specific
heat must be positive. So it is impossible to  pred ict anything
abou t the type of a transition by purely therm odynam ical
reasoning. Similarly therm odynam ics allows every hysteresis
effect except th a t it predicts in w hat direction a hysteresis
loop must be traversed.

As therm odynam ics and the general scheme of statistical
mechanics are exactly equivalent the same can be said abou t
general statistical considerations; there are  no types of dis
continuities in the partition function which can be excluded
a priori, and  if in the  configuration space some parts of a
surface of constant energy are separated  from each o ther by
regions of higher energy, all kinds of m etastable states are
possible.

It m ust be clear therefore th a t every prediction abou t the
transition type of a substance m ust be based on the physical
properties of the substance. If it were possible to  evaluate the
partition  function for a certain case, all properties of the
transition would be known a t the same time. It is, however,
very questionable w ether this can be achieved. We must,
therefore, find out some m ethod which allows of detecting
discontinuities in the partition  function w ithout exact calculation
of this function.
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As the different phase transitions have very different me
chanisms, it may be difficult to  find a physical description of
the  transition  phenom ena which will apply to  all cases. It is,
however, also of in terest to  posess a com plete theory for a
restric ted  class of transitions, especially if the  transitions in
this class are of different types. W ith this we have already the
opportunity  to  investigate w hat are the physical conditions
necessary for a transition of a certain type.

W e will therefore discuss the transitions which can be de
scribed as a process of association. This process is such th a t
a t lower tem peratures the  molecules combine to  groups of
associated units, which become larger and larger until a t very
low tem peratures one or a few macroscopically large associated
group is formed. It is recom m endable to  speak here of associ
ation of units rather than of association of molecules, because
this allows us to  apply the concept of association in more
cases; in the following we shall, however, often use the term
„molecules” instead of „units” .

A transition may be described as a process of association if
it possible to  define w hat the „units * are and if it is possible
to  give a definition of association which allows us to  determine
unambiguously w hether or no t a unit is associated with o ther
units.

If this is possible we shall define a „group of associated
units” by saying th a t a unit belongs to  the same group as the
units w ith which it is associated. Units which are not associ
ated  w ith others can be considered as form ing groups by
themselves.

As an example of how the conception of association may be
used we shall indicate how the associated groups may be de
fined fo r the  transition  of the alloys discussed above.

For this purpose we imagine the crystal to  be divided into
unit cells. This can be done in four different ways (because
there a  four atom s in a unit cell) bu t we shall only consider
one of these divisions. If a unit cell contains tw o A u  atoms
and tw o Cu atom s we shall call it associated w ith a neigh
bouring unit cell if this also contains tw o A u  atom s and two
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Cu atoms in the same configuration as in the first cell. For
this it suffices that the direction of the „tetragonal axis” is the
same for both unit cells.

If we consider only one division of the crystal into unit
cells, this definition allows an unambiguous division of the
unit cells into „associated groups”. Moreover, an entirely
ordered crystal is identical with an infinitely large group so
that the transition from disorder to order can be described
as an association of the unit cells into groups.

§ 2. Qualitative discussion o f the association process.

The problem of association can be treated as tha t of the
equilibrium of a chemical reaction, if the different kinds of
associated groups are treated as different kinds of molecules.
We must consider therefore the substance as a mixture and
determine, which mixture is stable against all possible reactions:

<l > (0  +  ( j )  =  (« •+ ;) .

(0  is in this equation the symbol for a group of i associa
te d  units. The treatm ent of this problem must make use of
the theory of mixtures. The application of the theory of mix
tures to the theory of phase transitions is not new. Many
examples have already been given by A. S m i t s  and collabo
rators '). That it is possible to obtain some new points of view
is due to the fact that we shall also consider here arbitrarely
large groups, and therefore an arbitrarily large number of
components.

Let the number of groups of i molecules in the substance
be denoted by n, (i =  1, 2, 3, etc.). The equilibrium values of
these /I , are functions of temperature. Thermodynamics gives
some very simple rules for the change of the n, with tempera
ture. If in the reaction (1) heat is developed when the process
goes from left to right, for every f and j ,  the equilibrium
constant of the reactions (1) will decrease with decreasing
temperature. Therefore the equilibrium will shift to the right.

,*) A. S m its ,  Die Theorie der Allotropie.
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The larger is the heat, developed in one elem entary process,
the more rapid will be the change of the equilibrium constant
K, for we have:

( 0 \  d  log K  —  4- Q
w  dT  ~  ^  k T 2

where Q is the heat developed in one elem entary process (1).
We will try  to  give a physical in terp reta tion  for this „heat

of reaction” which will be restricted, however, to  the larger
groups. For the very large groups, the internal s tructu re  of
the groups will be the  same. A difference between groups of
different size may be th a t they have a different ratio of
„surface” molecules to  „inner” molecules. If this difference
betw een the surfaces exists it will in general also cause a dif
ference between the  energies per molecule of groups of dif
ferent size. W e may call this energy difference the difference
in „surface energy” as it depends on the ratio of the num ber
of surface molecules to  the to tal num ber of molecules.

The h ea t developed if the reaction (1) proceeds from left
to  right is than  the difference in surface energy betw een the
tw o groups of i and j  molecules and surface energy of one
group of * +  j  molecules. This difference will in many cases
be positive, so tha t association will increase w ith decreasing
tem perature. Generally the heat of reaction will even increase
together with i and j .  If the num ber of surface molecules in
creases with some pow er of i, say with ik, the heat of reaction
in (1) is proportional to :

ik +  j k — (* +  j)k

This expression is no t only positive for 0 <C k  <C 1, bu t in
creases also if i and j  increase.

The mean energy developed in the reaction (1) may therefore
become larger if the substance is already partly associated,
because the values of i and j  become larger in all reactions.
As a consequence Q in (2) will also increase and the  equilibrium
will go to  the  right, m ore and m ore rapidly. Therefore a
possibility exists for cumulative processes. These processes may
lead at a given tem perature to  a discontinuity in the association.
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This short discussion may suffice to show the possibilities
for understanding transition phenomena with the help of an
association picture.

§ 3. The thermic potential o f a mixture.

In the previous paragraph it was already mentioned that
in a theory of an associating substance the theory of chemical
reactions in mixtures could be applied.

This theory is usually given in such a form that only
thermodynamical symbols are used. This opens the possibility
of following this example also here. Although the methods of
statistical mechanics are more fundamental, they often lead to
very complicated terminology and formulae. This is avoided if
the thermodynamical notation is used, which is, moreover, in
most cases merely a translation of the statistical notation. Instead
of „Zustandssume” or „partition function” the free enery is used;
the „number of states” corresponds to entropy, etc.

As the first problem in a statistical treatment of a system
is to find an expression for the „Zustandssumme”, our first
problem must be to give a general expression for the thermic
potential of a mixture.

We shall describe the mixture by the external variables p and
T  (or in some cases v and T) and by the numbers n,- of the
different groups (/ =  1, 2, 3 ---- k). The thermic potential >) is
than a function of all these quantities:

(3) P =  P ( p , T , n u n2, .......... „*)

It is well known that it is possible to introduce the partial
thermodynamic potentials for the molecules of different kinds.
This follows immediately if we observe that the value of P
increases proportional with the total mass of the system if the

x) The thermic potential used here will be the potential used by P l a n c k :

p  _  £ _U'+pV

This potential is a maximum in the state of equilibrium.
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composition is kept unchanged. We have, therefore, multiplying
all 7i/ by (1 -f- a) :

(1 +  / )  P  (n,) =  P  (n, (1 - f -  A ) ) .

Differentiation with respect to  A yelds for A =  0 :

d P
d n, *P(n.) =  2  71/

We may write therefore:
(4a) P = 2  71,7», ,

(4 b) U  = 2  71/17/,

(4c) V  = 2  77/ Vi  ,

(5a)

if we pu t:

Pi = dP
dn{ ’

(56) Ui = dU
dtii '

(5c) V i —
d V
d 71/

(U =  energy)

(V  —  volume)

The physical meaning of the pt, Ui and becomes a t once
clear if we observe th a t for any change in the mixture a t
constan t p and T  the corresponding changes in P, U  and V
can be expressed as linear com binations of the p{, u, and vt
respectively.

We introduce the  concentration of the molecules of the sort
7 by the definition:

Ci =
Z r ii •

so th a t

2 c /  =(7) 1 .
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O ne of the m ost im portant properties óf the pt is th a t they
can be w ritten as

(8) p, =  f t — f l lo g c , ,

in which the function ft  remains finite for every value of the
cit while the />, become infinite for c* —► 0.

This p roperty  can be proved directly from the second law
of therm odynam ics in every case where it is actually possible
to separate in a more or less direct way the different kinds of
molecules. ])

A general proof can be given on the basis of statistical
mechanics, and we will give this proof in a simplified form.

The therm odynam ic potential P  is connected w ith the ,,Zu-
standssum m e” or „partition function” Z  by the relation:

P =  k  log Z,

while the partition  function Z  is defined by:

in which the summation has to  be extented over all independent
states of the system, and Un is the energy of the sta te  n. 2)

We now consider a species of molecules which is sufficiently
rare, so th a t it is possible to  divide the substance into a
num ber of volume elements which contain many molecules but
are  still so small th a t the probability th a t one of them  contains
more than  one molecule of the kind considered is very small.

If r molecules of the  kind considered are present and the
substance is divided into s volume elements o r „cells”, r cells
contain a molecule, and  (s — r) do not.

The num ber of ways in which the molecules can be divided
over the cells is equal t o :

c _ si
_________ ~  r! (» -  r)!

*) Cf. A. R u tg e rs , Z. physik. Chem. A 173, 73, 1935.
2) If the system is under constant pressure, the system must also include

the piston, which causes the pressure p.
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This number S  is contained in the partition function as a
factor, and the thermodynamic potential, therefore, contains
the term k  log S. By S t i r l i n g s ’ theorem we have

k  log S =  k  [s log s — r log r — (s — r) log (s — r) ].

To the partial thermic potential p of the molecules considered
this term gives the contribution:

R < n ? S jS  =  _  _ j _
dr s s — r

If we use the fact tha t r s, and introduce the concentra
tion of the molecules considered

1 r
C — AT s ’

(N  is the mean number of molecules per cell), we obtain:

R  d ] °fr S  =  — R  log c — R  log TV.

So we have shown that the p contains a term which becomes
infinite as — R  log c for c —* 0.

Besides this term the logarithm of the partition function
only contains terms which are, for small r, proportional to  r.
For if the partition function for a cell containing one molecule
of the type considered is /j and the partition function for a
cell containing no molecule of the type considered is / 0, the
total partition function is approximately equal to :

^  =  S .  < / , ) ' .

From this expression it is easily derived that in k d log Z/d r
the term  R  log c is the only one which does not remain finite
for c 0.

These remarks are sufficient to  show that even in cases
where the formula (8) cannot be proved by purely thermo-
dynamic reasoning it is still justified to accept it.
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The ft in form ula (8) have a very simple meaning in the
case of an ideal gas. H ere they are independent of the com
position of the mixture, and the expression :

e ( f i / k T )

represents the partition  function for a molecule of the kind i.
In general it is no t possible to  a ttribu te  an individual partition
function to  a certain kind of molecule. This is only possible
in those cases where the  „partial” energy and volume for the
molecules considered [see eq. (3)] are independent of the
composition of the substance.

For this indicates tha t for all physically im portan t configu
rations of the system the influence of the other molecules on
the molecules considered can be described by a constan t factor.

§ 4. Application to an associating mixture. •

In an associating mixture the possible reactions are indicated by:

(1) (0 +  if) 5  (i +  j)
so we have to  consider the groups as molecules of different kinds.

For a given substance we denote by nlt n2, . . . .  m the
num bers of the different groups divided by A vogadro’s num ber.

If N is the total num ber of gram m ols we have ev idently :

Lin, =  N

The concentrations of the groups are  defined by:

(6a) C( =
n,

'L m

For the partial potential, energy, etc. we use the notations:
ipi, is,, e tc .:

(9)
dP

i  P i  =  - orii

so th a t the p, etc. refer to  a single molecule and can be
com pared for different groups.
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(10)

We will introduce the quantities <p, by the equations:

0) /<?( =  ip, -f- R  log c,.

The conditions for the equilibrium are very simple. They
express the fact that the function

for all i. This is most easily verified by calculating the change

As the sum of the concentrations must equal unity, we have
the additional equation:

function of temperature from this equation.

§ 5. The energy and specific heat for an associating substance.

The thermic functions for the associating substance may now
be obtained by the usual methods. The energy and the specific
heat are of special importance.

The energy is given by:

(11) P =  'Zint ̂

is a maximum at constant values of p and T. So we ob ta in :

(12)

in P  caused by a transition of some groups of k  molecules
into groups of i molecules.

As a direct consequence wo obtain by (7)

(13) Pmax. =  N p ,

while equation (10) can now be given in the form :

(14) c,

(15) 1 2  e i

If the <p,‘ are supposed to be known, p is determined as a

(16) U T> —d T
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If we use the formula (11) for the thermic potential we
obta in :

i o 1 i a I

The second term in this expression is zero for the state of
equilibrium because all fa are equal and 2i</n, / d T  is zero.
Introducing the tp* from (10) the energy can be expressed a s :

U  =  2  in { dHi- , or,
/  d T

(17) U  =  2  i ii/ ^

where ut is the energy per molecule of a group i molecules as
defined in (56).

The specific heat is obtained by differentiation of (17):

(18) c =  2  i m 2  i ut
/ o /  a l

The first term is the „normal” specific heat, the second term
is due to  the „transition energy”. We shall show that this part
of the specific heat is always positive.

An expression for drii/dT may be obtained from (6a):

(19)

i is found from (14):

drij _ dct dXrij
d T  ~  d T  1 +  Ci d T  '

(20) dci
dT

ICi
(u‘ — u)> where u =  U/N.

If we write the second term of (18) in the form :

it appears that the second term of dniJdT gives zero after
summation over i. The specific heat is finally equal t o :
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(21) e =  2  i Ui +  2 12 nt (Ui — n)2.

The „anomalous” part of the specific heat is therefore closely
related to the fluctuations in the „energy density” of the sub
stance.

The only thing we have so far assumed is that all the dif
ferential coëfficients of the tp,- exist. This is not always certain,
especially for the second derivative. We can only hope that
the definition of the association is given in such a way that
such inconveniences do not occur.

A part from this difficulty it seems that the description of
the association phenomena fits well the qualitative description
in § 2, and is not essentialy different from the usual associa
tion theory with a finite number of components.



CHAPTER III.

The possibility of discontinuities in the energy
and specific heat.

§ 1. The limits of the association model at low temperatures.

A closer examination of the formulae obtained in the pre
vious chapter raises the question whether the method used is
always correct.

Thermodynamics can only be applied if the number of
similar objects is very large, and in the method used even the
number of possible different groups is already of the same
order as the total number of molecules. It is therefore impos
sible that all n, are large compared with one.

There are two ways in which this difficulty can be over
come. Firstly it may be remarked that the summation over all
values of i is purely formal, because the values of c,- for lar
ger i are very small, so that the existence of these groups may
be neglected. So we shall obtain a fairly accurate picture if
we limit the values of i by some maximum value.

On the other hand, we may suppose that if the total num
ber of molecules is increased the c, remain constant. For
every given value of i we can make the number of groups of
i molecules arbitrarily large by increasing the total number of
molecules sufficiently.

From this point of view all cp, have a meaning, although the
value of rjt can only be found by statistical calculations. It
is therefore not only permissable to speak of <jas a well-
defined quantity but even of the limit of the sequence

Tl» ?2> ?3> T*...........
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This limit we will call <px ,  the therm ic potential of an in
finite group.

The second argum ent can only be used if the <p, and the
Ct do not depend on the  to tal num bers of molecules. It may
happen, however, th a t there exist groups so large th a t they con
tain a  num ber of molecules com parable with the  to ta l num ber
of molecules. In this case, the  num ber of these groups cannot
be made arbitrarily  large by simply increasing the total num 
ber of molecules. Therefore the picture of an associating sub
stance can no longer be applied.

The necessary and  sufficient condition for the correctness
of the form ulae is therefore th a t the expressions for the c,- de
crease sufficiently rapidly with i. W hen this condition is satis
fied, the  su m :

(1) Q =  2  e (1 ^ = - ^ )
1 A

is convergent.
By applying C a u c h y ’s theorem  for convergence, viz.

n

lim l /u„  <  1,

we find as a condition for convergence:

(2) lim ?< =  ? . <  p.
I  — f  •

Now the  equilibrium conditions express already for all i:

Pi =  P

and therefore, by ommision of the term  — R  logc, from p , :

?< <  P

We shall therefore always have:

? «  ^  A*

i.e. the  therm ic potential per molecule is always larger or
equal to  the thermic potential of the  infinite group.

Only in the case th a t =  fi i t  may happen th a t the
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association picture can no longer be applied. If a temperature
T0 exists where =  ft, we have from (II, 15).

(3) l = I e ( i ^ )

At temperatures higher that T0, f t  is always larger than
This can be easily shown, if we write (II, 15) in the form

! ' = * • ( * -ïi7 p t) e R ~  )

By differentiation with respect to T  we obtain:
rr 2  ^(?<a ^  f a i  tZrc)

dT  £  I Ci

If we may admit ut ua this left hand side is certainly
negative.

The results is therefore that at temperatures higher than
T0 the association model is correct.

At the temperature T0, however, f t  is equel to tp 8 .  The
meaning of this equality is that the thermic potential of the
substance is equal to that of an „infinite” group and that
therefore in the substance very large groups may be formed.
We shall therefore consider in more detail the properties of
the very large groups.

§ 2. The infinite groups and the low temperature phase.

The fact that at temperatures below T0 infinite groups may
exist in the substance leads to the supposition that the tempe
rature T0 is a „transition temperature”. The first question is,
therefore, whether there are similarities between an „infinite”
group and a „low temperature phase”.

The characteristic features of the phases in a two phase
system are, firstly, that the different phases are separated by
a boundary, and, secondly, that this boundary has some
simple geometrical form. Therefore only a small fraction of
the molecules contained in one phase is within molecular
distances of the surface.
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If we envelop the molecules belonging to  an „infinite” group
in a  boundary, th is boundary will in general consist of many
non-connected parts. The infinite group will inclose some
molecules which are not associated with it, b u t which are
surrounded on all sides by associated molecules.

If we w ant to  define the „low tem perature phase” it is of
course necessary to  count also these molecules as belonging to
the p h a se ; fo r if we did not the w ord „phase” would no longer
have a purely m acroscopic meaning.

A fter the  elimination of all the inner surfaces of the infinite
group the rem aining surfaces m ust show some simple geometrical
form  if we wish to  call it the boundary of the „low tem perature
phase” . This condition will no t always be fulfilled and we must
distinguish tw o kinds of states of the infinite g ro u p :

a) the „open” states, where the num ber of surface molecules
is com parable w ith the total num ber of molecules, and

b) the „closed” states, w here the  num ber of surface molecules
is very small com pared with the to ta l num ber.

Only if the infinite group is form ed in a „closed” state  we shall
call its boundary the boundary of the „low tem perature phase” .

Even with this restriction the definition of phase is no t yet
entirely equivalent to  the  therm odynam ical concept.

It is now possible to  reduce the difference of the phases to
a difference in the geom etric connections between the associated
molecules. In the low tem perature phase it is always possible
to  find a  chain of associated molecules connecting two associ
a ted  molecules, while it is not possible to  connect tw o unasso
ciated molecules belonging to  the  phase by a line which does
not pass trough  an associated region.

In the high tem pera tu re  phase it is always possible to  con
nect tw o unassociated molecules by a line which does not pass
through an associated region, and  it is in general no t possible
to  connect tw o molecules by a chain of associated molecules.

If together w ith the infinite group no low tem perature phase
is definable, there  may be different geometric relations. The
relative position of associated and unassociated regions may,
for instance, be like the pores and the body respectively of a
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sponge. It is even conceivable th a t the infinite group is flat in
one direction or form s a cha in ; this may happen, fo r instance,
in crystalline liquids.

§ 3. The existence o f  a transition temperature.

W e  shall now discuss the question w hether there  is a tem 
pera tu re  T0 for wich the relation (3) is satisfied.

This will certainly not be the case, if the series:

(4) 5 = 1  )
1  J \

is divergent for all tem peratures. It is therefore of interest
first to  show, th a t the series 5  is convergent if the infinite
group is one such th a t a „low tem peratu re  phase” may be
defined.

The expression i<p, measures, according to  its definition, the
increase of the therm ic potential of the system by addition of
a group of i molecules, ap a rt from  the term  R  log c,. The ex
pression i ((ft — <j>x ) m easures therefore the difference betw een
this increase and the increase obtained if we add i molecules
to  an „infinite” group, i.e. to  a group containing many p a r
ticles com pared with i.

For the convergence of the sum 5  only the assym ptotic
value of i(<f, — cpx ) is im portant. As now the structures of
all large groups are equal, the difference i (<p, — <px ) is only
caused by the different num ber of surface molecules in both
cases. The num ber of surface molecules fo r a group of n mole
cules is proportional to  n I*. The increase of the to ta l num ber
of surface molecules of all groups after addition of a group of
i molecules to  the system is therefore proportional to  z'%, while
the increase in the num ber of surface molecules if the mole
cules are added  to  a very large group is negligible. The expres
sion i (<ft — (fgg) is therefore equal to  a ih .

This difference may be ca lled : the therm ic potential of the
surface of the group. From  the fact th a t the group has a
simple external form we may conclude th a t this surface poten-
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tial is negative, because otherwise the group would spontane
ously increase its external surface.

The general term of the series S  approaches therefore
e (« i2/®), where « is negative. S  is thus certainly convergent.

Next we shall show that if the series S  is convergent there
will also' be a temperature at which its sum is unity.

From (4) follows:

dS _  i d(<Pi — <P«) e u  Ï SO-), o r:
dT R  d T  R

(5) |  =

If 5 is the smallest value which the smallest of the expres
sions i (u,- — u,» )/R takes on in a certain temperature region,
we h av e :

dS ^  S c
~ d T  >  r 2 *5, o r ‘

rflog»S ^  5
d T  ^  T 2

If S  at the temperature Tx has the value Sx we obtain by
integration between T  and Tx (T <C m ) :

log Sx/S >   ̂(~y  y "̂)

The right hand side can be made arbitrarily large (provided
5 always remains positive and does not tend to  zero) an
there will certainly be a temperature a t which

log Sx/S  =  log Si, or S  =  1..

For those cases where the infinite groups are formed in
open states nothing can be predicted. If the number of the
surface molecules is proportional to the total number of mole
cules in the group the surface effects do not cancel in the
value of «Pa, and so the value of i (<?, — ?« ) cannot be redu
ced to  surface effects.
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§ 4. Discontinuities at the transition temperature.

A lthough it is no t exclused th a t the  equation (3) is satisfied
in those cases w here the  infinite groups are  form ed in open
states we shall restric t the following discussion to  those cases
where these g roups are form ed in closed states, and a low
tem perature phase exists.

A t the transition tem perature T0 the therm ic potential of the
substance is equal to  that of the infinite group, and p a rt of
the  substance will therefore  combine to  form an infinite group
a t th a t tem perature.

W e have not assum ed th a t the are  independent of the
„com position” of the  substance, i.e. of the variables c<; so we
must adm it th a t also depends on the composition of the
substance. We m ust therefore consider the interaction between
the infinite group and the rest of the substance.

The simplest possibility is th a t the  interaction betw een the
„low tem perature  phase” and the res t of the substance is
confined to  the surface molecules. A n increase of the num ber
of molecules in the infinite g roup will cause a corresponding
increase of the „low tem peratu re  phase” and will no t cause
any specific change in the interaction betw een the tw o „phases” .

Therefore the value of <p q q  is in this case independent of the
mass ratio  of the tw o phases.

It is now  highly probable th a t a t the tem perature T0 the
energy of the substance will show a discontinuity. For the
energy of the substance above and a t T0 we may write (see II, 17):

(6) 9 U2 =  N ( Uaa +  * ' « ( « ' - « » ) )

The energy of the  low tem perature  phase is not equal to
th a t of the  infinite group, iiB . We m ust also account for the
energy due to  the included groups of unassociated particles,
and w rite therefore:

U, =  N( » « , + Z ,V ' ‘“/ c~ ° » ) )(7)
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For most cases it is clear that U\ <C U2, although this cannot
be proved generally. O f course, it is impossible th a t >  U2,
but we cannot exclude a priori the possibility tha t U\ —  U2.

In general we m ust assume that, a lthough the energy of a
group inclosed in the low tem pera tu re  phase is larger than  the
energy of the similar group in the high tem pera tu re  phase, i.e.

(ll'i —  Uao) >  (Ui —  Uoo),

th ere  are much less of such groups in the first case, so th a t
U2 >  U i. If this is the case, a t tem peratures below T0 the  low
tem perature phase is stable and is therefore also a „phase”
according to  the therm odynam ic definition.

The description given here may be applied to  practically all
transitions under constan t pressure, as the interaction betw een
the tw o phases may be neglected in all these cases.

§ 5. Monomorphic transitions.

The interaction betw een the low tem perature phase and the
rest of the substance cannot always be neglected. A  trivial
example of such an interaction is provided by the  transitions
at constan t volume. H ere the m ass-ratio of the tw o phases
determ ines the pressure in the system, and a change in the
pressure influences of course all the  cp,- as well as

A nother example of a specific interaction betw een the two
phases is given by the monomorphic transitions. These are
transitions which occur in crystals w ithout breaking up and
rebuilding of the crystal-lattice.In these cases the lattice pa ra 
m eters depend on the m ass-ratio of the tw o phases and  the
ratio  will thereby also influence the different <p< and «p*.

Finally we m ust mention the case in which the molecules
have fields of force which are  not „convergent” , i.e. fields of
force which may be perceptible even a t large distances
(com pared with molecular dimensions) with a suitable arrange
m ent of the molecules. As examples we may m ention the  fields
of electric and magnetic dipoles and the Coulomb fields of
charged particles.
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AH these cases may be trea ted  in a form al way by assuming
th a t the therm ic potential both  of the low tem perature phase
and of the high tem perature phase depends on their mass-ratio.

Let us, therefore, consider a state  of the  substance in which
an infinite group is form ed, and also a „low tem perature phase” .
Calling nx the num ber of molecules in the low tem perature
phase, and n2 the num ber of molecules in the high tem perature
phase, we may speak of the therm ic potentials of these phases
Pi and p2 :

/ q \  _  *P , dP(8) p, =  « n d f t  =  —

The m eaning of a differentation with respect to  n, o r n2
m ust be defined exactly. If we add  vx' molecules as a p a rt of
the infinite group the  low tem perature phase increases with,
say, v /  +  v , "  molecules, because also unassociated molecules
inclosed by the infinite group belong to  it.

We must, therefore, add  a t the same time unassociated mole
cules to  the system in such a  way th a t the to tal num ber of
molecules in the high tem pera tu re  phase, n2, rem ains constant.

W e have, of course:

P  =  riipi - J -  n2p2

The „equilibrium” betw een the phases is determ ined by:

(9) Pi —  Pi

If we assume p1 and p2 to  be functions of cx =  -{- n2),
the change of Cj with tem pera tu re  is given by differentiating (9) :

dpi d p 2
dcx d T d T
d T  ~ ~ dpi v _ 9 o r .o P2

dcx dcx

dcx 1 u i  —  “ 2

d T  ~ T 2 d Pi dp2
d Cj d Cj

(10)
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The numerator of the fraction may be assumed to be
negative (uj <[ u2) > the sign of the denominator is related
to  the stability of the equilibrium. The denominator can be
w ritten :

/ i i \  ABl  _  BJAl  —  1 d2P
'  '  dty dCi +  n2 dCj2

because:

J7* =  («1 +  n2> Oh — />2)-

If the equilibrium is stable, P  is a maximum, the denominator
is negative, and Cj decreases with increasing temperature.

Let us first consider the case that the equilibrium is not
stable. It must be expected that than either the substance will
be in a state for which Cj =  1, or for which Cj =  0.

If Tj is the tem perature where the low temperature phase
appears for the first time with decreasing temperature, we
have at T  =  Tx :

(12a) Pi (c, =  0) =  p2 (cj =  0).

For T  >  r „  and .Cj = 0 ,  Pi <C Pi- Similarly, if at T2 the
high temperature phase appears for the first time with increa
sing temperature, we have at T  =  T2:

(126) p, (c, = 1 )  =  p2 (c, =  1).

If the equilibrium between the „phases” is not stable,

èPi dp2
ö Ci <D p||

and a t T  — T2:

P\ (ci — 0) <  p2 (c, =  0). (compare (126).

This is only the case for temperatures higher than Tx, and
thus T2 will be higher than Tx.

The phase transition will therefore show a hysterisis effect.
When cooling down, the low temperature phase will only be
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form ed a t T  —  Tj ; when w arm ing up the high tem perature
phase will be form ed a t T  =  T2. Between 7 j  and T2 a real
equilibrium tem perature Te exists w here:

Pi (ci = 1 )  =  Pi (e, =  0).
b u t a t this tem perature the tw o phases will no t change over
because the interm ediate sta tes where q  is betw een 0 and 1
have a higher therm ic potential.

These considerations can be applied to  the m onomorphic
transitions. If in a crystal a transition occurs w ithout form ation
of a new lattice, both  phases m ust have about the same lattice
param eters. This will be true  in particular a t the tem perature
where one of the phases begins to  exist.

The thermic potentials of both phases are, of course, depen
den t on the lattice param eters, and in the pure phase these
lattice param eters are so adjusted as to  make the therm ic
potential a  maximum.

So we have:

Pi (ci =  1) >  Pi (ci =  0), and

Pi (ci =  0) >  p2 (c, =  1).

As a consequence both  term s of the sum

d P\ d P2
d  Ci d  Ci

are positive, and any equilibrium betw een the tw o phases will
be unstable. So the hysteresis effects m entioned above must
be expected.

This seems to  give a satisfactory explanation of the hysteresis
effects observed in the transitions of Cu Au3 ') and N H 4C l* 2).

In these transitions tw o transition  tem peratures and T2
exist; betw een Tj and T2 there is no transition  from the high

*) G. B o r e l i u s ,  C. H. J o h a n s s o n  und J. O. L in d e .  Ann. Physik, 86,
291, 1928.

2) A. Sm i t s und C. H. M ac  G i l l a  v ry .  Z. phys. Chemie, A  166, 97, 1933.
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tem perature phase to  the low tem perature phase nor a transi
tion in the reverse direction. Especially for N H 4Cl has this
been determ ined with much care.

If we take experim ents with pow der, instead of with large
crystals, the  tem peratures and T2 may be som ew hat different
for d ifferent grains, and this m ight cause a deviation of the
hysteresis from  the  simple N H 4Cl type.

A lthough this cause of hysteresis exists for all discontinuous
monomorphic transitions, it must be stressed th a t even in pure
substances still o ther causes may exist giving rise to  more
complicated hysteresis phenom ena. This will probably the case
for Cu A n  ') and C H 4. * 2)

§ 6. Long range forces and discontinuities in the specific heat.

The argum ent used in the preceding paragraph , which showed
th a t a coëxistence of tw o phases in a monomorphic transition
is unstable, is quite general and there  are not many possibilities
fo r interactions betw een tw o phases to  which a similar argum ent
cannot be applied.

As a first possibility may be m entioned the phase transitions
at constan t volume. H ere the therm ic potential of both phases
is influenced by the pressure, and the pressure is again deter
mined by the m ass-ratio of the phases. The coexistence of the
tw o phases is stable. If the pressure is indicated by w, we have:

(13) * £ l  =  _  *  and =  -  V4
0 7T 1 O 1 T

and, therefore

d(Pl  —  p2) _  —  V\
Ö7T T

Now an increase of cx means a decrease of tt if only the
specific volume of the first (or low tem perature) phase is
smaller than  the specific volume of the second.

J) C. H. J o h a n s s o n  und J. O. L inde , Ann. Phys. 25, 1, 1936.
2) A. Eucken,  E. Ba r t h o l o mé ,  Nachr. Ges. Wiss. Gottingen 2, 51, 1936.
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So we h av e :

(15)
d (pj  —  p2)  _  v 2 —  Vi

d ^  T
d n
dCi

and this is negative.
So the denom inator in (10) is negative, d2P/dCi2 is also

negative, and the equilibrium is stable.
Instead of a discontinuity in the energy we m ust observe in

these cases a discontinuity in the specific heat of the system.
The energy above the transition tem peratu re  T0 is given by

U2 and  below T0 it is equal to :

(16) t /  =  t / ,  +

The specific heat is obtained by differentiation:

(17) c dU,
dT 4- ( l  — c,) d(U2~Ur)

dT
i  (u2- u xy

T 2 dPi_ _  dPi
dcx dCj

The last term  is obtained by insertion of the expression for
dci/dT  from  (10). A ccording to  this form ula the specific heat
m ust be discontinuous a t the  tem perature T0; below T0 it will
be larger than  above T0. It must be assum ed th a t neither
Ui — U2 no r d(pi  — P2) /dc1 is infinite.

In m ost observed cases the specific heat is very large near
the transition  point, and decreases rapidly a t lower tem pera
tures. If we only observe one discontinuity  in the specific heat
this m ust be explained by assuming th a t the expression
d(pi — p2) /d c, increases with increasing tem perature from ne
gative infinite to  a small negative value.

This is actually the case in the transition liquid gas a t
constant volume. Here the  expression

d (Pi —  p2)
dci

reduces by applying the  ideal gas law to  the vapour and
neglecting the  volume of the liquid to :

d log 7T
d^
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It is of course possible th a t tw o discontinuities exist. If we
cool dow n a  liquid in a suitable volume, we may observe a
discontinuity a t the  tem perature  w here the solid phase begins
to  exist and  also a t the tem perature w here the last drop  of
the  liquid is frozen.

A second possibility fo r a specific interaction betw een the
tw o phases leading to  a stable equilibrium is provided by
those transitions in which long range forces play a part. Such
transitions are, for instance, the ferrom agnetic transitions and
the  transitions of S e i g n e t t e  salt.

O ne of the properties of the „low tem perature phase” in
these transitions is th a t many dipoles are directed parallel.
The com bined field of these oriented dipoles will no t be
restricted  to  the  volume occupied by the low tem perature
phase, b u t will also be of im portance outside this volume and
there  it will tend  to  orient the dipoles in the  direction of the
field. A t those places where the  direction of the external field
is n o t the same as th a t ' of the dipoles which are already orien
ted , it will act against the increase of the low tem perature
phase.

It seems hardly possible to  apply here too  the form al cal
culation of the equilibrium betw een the tw o phases as given
in the  previous paragraph . B l o c h  ’) could show, however,
th a t the m ost stable state  of a  ferrom agnetic body is no t one
single group of parallel magnetic dipoles, bu t a combination of
differently oriented regions. This effect is also a consequence
of the m agnetic interaction betw een the dipoles. If we w ant
to  have a more detailed picture abou t w hat happens a t the
C u r i e - p o i n t ,  we may therefore assume th a t the low tem pe
ratu re  phase is form ed in different regions in the crystal with
differently directed magnetisation.

Between these regions there m ust be, of course, disordered
regions, which in our picture we m ust call the „high tem pera
tu re  phase” . Very near to  the C u r i e  tem perature these dis
ordered  regions will practically contain all molecules of the

!) F. B lo c h , Zs. Phys. 47, 295, 1932.



43

crystal, but at lower temperatures the ordered regions increase.
This suggests that the transition will not be a sharp transition

of the kind first, but a transition of the second kind. The
arguments given do no permit a more rigourous proof.

It is of interest to remark that many transitions which were
formerly believed to be transitions of the second kind are
at present known to be transitions with latent heats. At this
time the only transitions for which the experimental evidence
indicates a transition of the second order are the ferromagnetic
transitions, the transition of S e i g n e t t e  salt, the superconduc
tors and liquid helium. One might therefore be inclined to
accept the hypothesis that all jumps in the specific heat are
due to some non converging interaction. In the first three
cases it is not difficult to convince oneself that an interaction
of the „non convergent” type is possible.

For liquid helium this is not obvious, and it is therefore of
interest to remark that a wave mechanical treatment of the
interaction between hard spheres contains in fact a possibility
for a long range interaction. This will be shown presently but
only in a very crude way, so that it is not possible to decide
the question whether or not this effect has anything to do
with the mechanism of the transition point of liquid helium.

If we consider one impenetrable molecule of diameter g in
closed in a sphere of radius R  -f- g/2 the Schrödinger eigen
functions are the well-known expressions:

(18) '■Pn.k =  h  + * (K r) Yk (&, <f),

where Yk is a spherical harmonic of degree k, Ik + { is the
Bessel  function of degree k +  'ƒ2 integer) and is the
n’th root of the equation

(19) h  + * (/„ R) =  0,

which expresses the boundary condition that the wave function
must be zero at the wall of the vessel.

If we want to study the interaction between two hard
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spheres we may do this in a provisional way by assuming the
second molecule to  be fixed in the  center of the enclosing sphere.

The boundary conditions for the wavefunction of the „free”
molecule now becom e:

The eigenfunctions are  now combinations of B e s s e l  func
tions of degree k  +  £ and  — k — ; the first function contains
the  factor rk+i and the second one the fac to r r -*-*, so tha t is
infinite a t  the origin.

W e p u t therefore:

and can choose a, b and  A„ is such a way tha t the boundary
conditions (20) satisfied.

This leads to  the equation fo r A„:

W e assum e that s Near the  origin the B e s s e l  function
Ik (r) can be approxim ated by c* rk, so th a t the left hand side
of (22) is approxim ately equal to  <*A2 t + I  s 2<:+1, where a: is a
constant.

The righ t hand side may also be approxim ated if we restrict
ourselves to  the first pow er of the change in A„. If the solution
obtained from (19) is called (A„)0 we may w rite:

W e shall fix our a tten tion  on the change in the energy value
in its dependence on R.  The energy of the „free” molecule is
equal to  h2 A2 /8ir2m, and A„ is, by (20), inversely proportional to  R.

So we obtain, if we p u t An =  sn/R :

(20) 'P'n.k&R) — 0 and

^ '«,*(*>) =  0.

(21) = [ a I k+\ (*„/•) +  b I_k (**r)]

(22) I k  + i (^n s)
I - k - i  (A„ s)

Ik + j  (K R)
I - k - \ ( K  R)

« A » + l  g2*+l
f t

A  (Ik + i (r)
dr \I

R  A A
k - i  (r)Jr =  h„)0/R

(23) « 4 K2m '  R 2k + 3 ‘ *
h2 s2k + 2 A ( Ik + i (r)

d r  \I. i ( r ) ' r  =  (Sn)0
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The coëfficiënt of A U  is w ritten in such a form th a t it is
independent of R.  The change in the energy value is therefore
proportional to  R - 2k~3, and is rapidly decreasing with indreasing
R  for every value of k  ^  1. For k  — 0, however, it decreases
only as R - 3 and corresponds therefore to  a „non converging
repulsion” betw een the particles.

This result does not allow of a direct application to  a „gas”
or „liquid” of hard  spheres. Nevertheless it suffices to  show
that the influence of quantum  mechanics may lead to  unexpected
consequences and tha t it may be responsible for some in ter
action of a non convergent type no t existing in classical mechanics.

§ 7. The configuration o f the associated units.

H itherto  we have limited ourselves to  those cases where the
infinite group is form ed in closed states. In this parag rap h  we
shall discuss the question w hether the picture of association
can be applied, and, if so, w hether the infinite g roups will
be form ed in open states or closed states.

As a first example we shall apply the  association picture to
the só-called „Schottky transitions” . It is assumed th a t in these
transitions the molecules of a substance have some discrete
energy levels such th a t the interaction betw een the molecules
is independent of the energy level occupied by the molecules.

It is very easy to  determ ine the partition  function which
describes the specific heat etc. due to  this transition . It is
known that no discontinuity can be expected.

If we would define in this case an „association” betw een
molecules, th is could be done in a form al way by saying th a t
tw o molecules are  associated if they are  nearest neighbours
(in a crystal) and  both in the lowest energy state .

The „infinite group” would than  have a very irregular form
and it would not be possible to  speak abou t the „surface”
of this group o r to  define a low tem perature phase (comp. § 2).

W ith decreasing tem peratu re  the mean size of the group
increases and we may expect th a t a t some tem perature the
dimensions of some groups will become comparable with those
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of the crystal; a t this tem perature it is no longer correct to
apply the usual form ulae for association.

We may now introduce in the system a small coupling
betw een nearest neighbours so th a t they tend  to  be in the
same energy state. This will, of course, no t prevent the for
mation of the  infinite group in „open states” . Only if the
coupling is sufficiently large, will the  associated molecules
group themselves together in closed states.

From  this example we see th a t in some cases we must
distinguish betw een the transition  energy, which is here the
energy necessary for the molecule to  pass into an excited state,
and the  correlation energy, which is the  energy gained if two
molecules which are in the lowest energy state  are placed so
th a t they are nearest neighbours. If this correlation energy is not
sufficiently large it is useless to  apply the picture of association.

A similar situation is m et with in the so-called „rotation-
transitions” . It is generally accepted, though not always with
proof, th a t many transitions in salts with complex ions are due
to  a  transition  of these ions from  a v ibratory  m otion to  a
ro tary  one. It is assum ed th a t a transition of some ions from,
say, vibration to  ro tation induces the o ther ions to  do the
same, because it reduces the energy difference betw een the
„vibration” and „ro ta tion” levels. Very little is as yet known
about the real mechanism of this interaction. We may consider
tw o limiting cases:

Firstly, we may think th a t the field of force in which the
ions move is practically independent of the sta te  of motion of
these ions themselves. In this case the transition is exactly
analogous to  the  S c h o t t k y  transitions.

Secondly we could imagine th a t the field of force changes
so th a t a t low tem peratures the ions would not ro ta te  unless
their kinetic energy should be very high com pared w ith k T
and a t higher tem peratures they w ould ro ta te  unless their
energy were extremely small.

An argum ent in favour of the  second assum ption is provided
by B ijv o e t  and K e t e l a a r ’s X-ray investigation ’) of N a N 0 3.

t) J. M. B ijv o e t  and J. A. A. K e te la a r ,  J. am. chem. Soc. 54, 625, 1932.
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They could show that a t low tem peratures the distance betw een
a N a  ion and a Af0 3 ion is too  small to  allow a ro tation of
the n itra te  ion (which is considered as a rigid body) and at
high tem peratures the distance is sufficiently large fo r rotation.

Even if the second assum ption is made, and  the  transition
to  a ro ta to ry  m otion of some ions makes it easier fo r other
ions to  do the  same, it is no t yet necessary th a t the ro tating
ions (and similary the v ibrating ones) combine into g ro u p s; it
is equally possible th a t they tend  to  the largest possible distance
apart. Every ro tating  ion in a „vibrating” phase is equivalent
to  a local expansion of the  lattice. The com bined effect of
these disturbances is certainly to  increase the mean lattice
distance and to  facilitate ro tation for o ther ions. But never
theless it may happen, th a t the local disturbances of the lattice
are  such th a t the probality  th a t a ro ta ting  ion is found in
the  immediate neighbourhood of another ro ta ting  ion is
smaller than  on the average.

The real mechanism of the interaction betw een the com
plex ions will often be of another kind. This is m ost clearly
dem onstrated by the fact that some salts even decrease their
volume when passing from  a vibratory to  a ro ta to ry  state.
The aim of the preceding rem arks was, however, to  show
th a t even details of the  transition mechanism may be very
im portant, no t only for the question w hether or n o t it is possible
to  trea t the transition  as an association process, b u t also for
the  question w hether o r no t the  transition will be discontinuous.

A very rem arkable experimental case is th a t of the transitions
of N H 4C l !) and of N D 4C l1 2) of which transitions the first shows
a discontinuity in the energy (with hysteresis) and the second
a continuous one (without hysteresis).

To understand qualitatively which factors are  im portant in
determ ining w hether an infinite group is form ed in an open
state or a  closed one the transition gas-liquid may be taken
as an example.

1) A. Sm its und C. H. Mc G illav ry ,  Z. phys. Chem. A166, 97, 1933.
2) A. S m its  and G. J. M uller , Nature 139, 804, 1937.
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Let us call tw o molecules associated if they are less than  a
certain distance ap art (this distance m ust be chosen in relation
to  the dimensions of the molecular field). In a dilute gas the
only reason why associated groups are  form ed is th a t their
energy is lo w ; their a-priori probability is in fact very small. The
larger associated groups will therefore be form ed in closed
states. In a com pressed gas, however, there  would b e  a larger
a-priori probability  for the form ation of associated groups
even if these groups should not have a small energy, because
the molecules are on the average much nearer to  each other.
Therefore the structure  of the infinite g roup is a t higher pres
sure not only determ ined by the condition th a t its energy is
small, bu t the configuration will also be such th a t it has a
larger a-priori probability.

W ith increasing density we may therefore expect tha t the
configuration of the infinite g roup  approaches more and more
and m ore a random  arrangem ent. Therefore more and more
inclusions of unassociated molecules will occur, and finally the
m ost frequent arrangem ent will be in open states.

Parallel with this change the  energy of the low tem perature
phase increases and it is therefore possible tha t the low tem pe
rature  phase shows an anomalous specific heat. If we cool
down a  gas a t higher and higher pressures a density will be
reached a t which the infinite groups are  no longer form ed
in closed states, so tha t no low tem perature phase can be
defined as in § 2. The corresponding pressure might be iden
tified with the critical pressure. It is no t yet possible to  prove
this supposition.

§ 8. The order-disorder transitions.

Similar considerations give also a provisional answ er to  the
question why in so many transitions in which a laten t heat is
observed this latent heat is so small com pared with the total
energy change during the transition. In most cases the specific
heat anomaly is very im portant, specially on the low tem perature
side of the transition. As an example we shall take the order-
d isorder transitions discussed in I. A t the same time we shall
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add some rem arks to  this discussion in order to  facilitate a
comparison betw een these theories and the present treatm ent.

The association may be defined as indicated in II, § 2. For
every unit cell 16 different arrangem ents exist (each of the
4 lattice points can be occupied in tw o different ways). If one
unit cell is o rdered  (i.e. if it contains tw o Au  atom s and tw o
Cu atoms) there  is a probability  of [1 — (15/16)®], or 0,33, tha t
it is associated w ith one of the six neighbouring cells. A nd if
already m ore than  l/16 th  p a rt of the cells are  ordered, this
probability  is correspondingly larger. Therefore even a t elevated
tem peratures there will exist o rdered  groups of considerable
size, b u t in „open” states. A t low er tem peratures these groups
will combine by additional association of some cells and form
either open groups, o r closed groups w ith many inclusions of
disordered regions. So there  is a perfect analogy with the gas
in the critical region and  similar effects in the specific heat
may be expected.

The argum ents given do no t provide a  basis fo r a qualita
tive calculation of these anomalies. For such calculations the
theories discussed in I are useful.

The theory of B r a g g  and W i l l i a m s  considers mainly those
states of the alloy w here the  „right” and „w rong” atom s are
present in unequal amounts. For, if the alloy is considered as an
agglom erate of groups, the ratio betw een the num bers of „right”
and „w rong” atom s m ust very nearly equal unity. Only if an
„infinite” group is present, or a low tem perature phase is
form ed, may the num bers of the tw o kinds of atom s be
different from each other.

The „degree of o rder” defined by B. and W. is also closely
related  to  the num ber of particles in the infinite group. This
degree of o rder is the  difference betw een the num bers of
„right” and „w rong” atoms, divided by the to ta l num ber of
atom s. If we assume th a t the „finite” associated groups con
tain as many „right” as „w rong” atom s, these groups give no
contribution to  the degree of order. This degree of order is
then equal to  the num ber of atom s contained in the infinite
group (supposed to  contain „right” atom s) divided by the
to ta l num ber of atoms. This is no t entirely correct, because
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the groups inclosed by the infinite group will consist mainly of
„w rong” atom s. So the degree of o rder will become somewhat
smaller.

It is also possible to  give the analogue of B e t h e ’s short
range order. A  very good m easure for this order is the total
num ber of groups, divided by the num ber of groups which
w ould exist in a  perfectly random  arrangem ent.

We have shown th a t it is very well conceivable th a t the
transition  from a sta te  in which only finite groups exist to  a
sta te  in which infinite g roups are present, passes w ithout any
discontinuity in energy or specific heat. It seems therefore th a t
this possibility cannot be excluded a t p resent also for the
order-disorder transitions. P e i e r l s 1) and L a n d a u 2) seem to
regard  it as obvious tha t some discontinuity m ust occur. This
can only be proved, however, if it is assumed th a t the free
energy as a function of the degree of long range o rder satis
fies some conditions, such as th a t it can be developed as a
pow er series in th is degree of order, etc. These assum ptions
are no t necessary, and therefore the proof of the existence of
a discontinuity has no t yet been given.

A lthough the p resent trea tm en t may be of use for the  p u r
pose of localising the uncertainties left in the existing theories,
it cannot replace them . So far it has n o t been possible to
base on it some quantitative calculation of the specific heat
anomalies or of the  laten t heat.

§ 9. Phase transitions in linear and two dimensional systems.

An interesting application of the  calculations in § 1 and § 3
is possible in the  problem  of the  phase transitions in linear
and tw o dimensional systems.

For a linear system it can be shown th a t no discontinuity in
the energy or specific heat is possible. This has been proved

!) R. P e ie r l s ,  Helv. pbys. Acta, suppl. II, 81, 1934.
2) L. L a n d a u ,  Phys. Z. Sow. Union, 1937.
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already several times ') bu t for com pleteness’ sake it will be
repeated here. Strictly speaking we m ust limit ourselves to  the
statem ent th a t the existence of a discontinuity can never be
proved with the help o f an association theory.

The proof is as fo llow s: For the existence of a discontinuity
it was necessary th a t a tem perature should exist w here the
expression (3) was equal to  un ity :

5 =  2 e(/liz iï«L ) =  i

From the properties of the expressions i (cp, — (p^) it m ust
now be shown th a t for a linear system this equation is no t
satisfied a t any tem perature. There are  tw o causes for a  diffe
rence between the therm ic potential of a group i molecules
and th a t of i  molecules as a part of a very large group. In the
first place the surface e ffec t; because the  „surface” of a group
consists of the tw o end molecules, independent of the size of
the group, this will give a term  in i (<p, — <pw ) which approaches
a constant value for high values of i. Secondly the g roup of i
molecules has a degree of freedom  which the i molecules
associated with a very large g roup have not got, viz. the
coordinate of the  center of gravity  of the group. This adds
also a constan t term  in the  i (<p, — «p^).

So the general term  of the  series S  does not tend  to  zero,
bu t to  a constant va lue ; S  diverges and its sum can therefore
never be unity. If we w anted to  prove in general th a t no dis
continuity is possible in a linear system, we should still have
to  prove th a t all <p, are continuous functions of tem perature.
This proof will however not be attem pted here.

In a tw o dimensional system  the absolute value of expressions
'  (?. — ? » )  may increase with i \  if the groups are  form ed in
closed states. Therefore phase transitions are possible and
this is w hat we also observe in the  study  of surface films.

The same is true if in a three dimensional system the mole-

!) K. F. H e r z f e ld  and G. M. G o e p p e r t M a y e r ,  J. chem. Phys.2, 38,1934.
G. H e 11 e r  and H. A. K ra m e rs ,  Proc. roy. Acad. Amsterdam, 37,378,1934.
R. P e i e r l s ,  Helv. phys. Acta, suppl. 2, 82, 1934.

i
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cules form  plane arrangem ents. W e may even call this ordered
configuration of the molecules „low tem peratu re  phases” . If
a  transition tem perature should exist, there  would be a  strong
interaction betw een the  high tem perature phase and the low
tem perature phase. We m ust therefore expect either a discon
tinuity in the specific heat or hysteresis effects, b u t never a
normal phase transition.

It is an interesting problem  w hether such cases are  realized
in some crystalline liquids. U nfortunately no t many accurate
determ inations of the specific heats of these liquids exist.

§ 10. Recapitulation.

Finally we shall briefly repeat the m ost essential points from
the preceding discussion.

A substance in which a transition takes place may sometimes
be described as a mixture of groups of associated units. The
concentration of the groups containing i  associated units is
given by

where the <p, are functions of tem perature and concentrations,
and  are  always finite.

This description of the substance is only possible a t tem pe
ratu res above the transition tem perature T0, which is deter
mined by :

2 e ( i ^ )  =  1.

A transition tem perature is no t possible in a linear system,
but in a tw o dimensional and in a three dimensional one it
may exist.

Its existence can only be proved if the „infinite groups” are
form ed in „closed s ta tes”, i.e. in sta tes w here the num ber of
surface molecules increases relatively more slowly than  the
to ta l num ber of molecules in the group. If this is the  case, the
expressions i (®,- — ^ ) depend fo r large i on surface effects.
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If the groups are  form ed in closed states, it is also possible
to  define a „low tem perature phase” below the tem perature T0.

A t the tem pera tu re  TQ there  will be a discontinuity whose
character depends on the  interaction betw een the high tem pe
ratu re  phase and  the low tem perature one. The possibilities a r e :
a. a normal phase transition, if the interaction betw een the

tw o phases can be described as a surface effect;
b. a phase transition with hysteresis, if the equilibrium between

the phases is no t stable. This is proved to  be the  case in
most m onom orphic transitions.

c. a jump in the specific heat if a stable equilibrium betw een
the phases is possible. It is suggested th a t a necessary
condition for this equilibrium should be the existence of a
„long range” interaction betw een the molecules.

It is useful to  add  here some points which could not be
solved with the m ethod proposed.

It is never possible to  exclude the existence of a discontinuity,
because the <p< may prove to  be discontinuous functions of
tem perature. The reason why th is can never be excluded is
th a t the definition of the associated units is in general rather
arb itrary .

The m ethod also fails to  give a general m ethod which allows
a reduction of the partition  function in such a way th a t dis
continuities may be detected more easily.

Finally some suggestions may be m ade to  which the preceding
discussion gives rise.

It does not seem to be impossible to  tre a t the low tem pera
tu re  phase and the high tem perature phase symmetrically. We
may, for instance, describe the liquid-gas transition as a gradual
form ation of „gas bubbles” in the liquid, just as we have
described the  reverse transition as a gradual form ation of
liquid drops in the gas phase. Similarly these gas bubbles m ay
combine a t a transition tem perature to  macroscopically large
vapour bubbles, and cause a phase transition.

A  final point is, th a t the most im portant question in the
problem  of phase transitions is how  to  determ ine the properties
of the infinite group. It seems therefore probable th a t in a
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consistent statistical theory a division of the configuration
space into a number of „phase cells” will be made. Every cell
will be different from another cell in that a relation which
exists in the configurations of one cell between practically all
the particles at the same time, exists in the other cells only
between a limited number of particles simultaneously. It seems
at present impossible to indicate such a relation without am
biguity.



SAMENVATTING.

*
Men kan de veranderingen die bij een om zettingspunt in

een stof w orden waargenom en dikwijls beschrijven als een
proces d a t in principe continu gedacht kan w orden, ook in
die gevallen waarin in werkelijkheid een discontinuïteit optreedt.

Bij de overgang damp-vloeistof kan dit het meest aan 
schouwelijk gebeuren door deze overgang op te  vatten als
een associatie. D oor deze beschrijvingswijze ook op andere  ge
vallen toe te  passen, komt men to t eenige nieuwe ge
zichtspunten.

O nder invloed der wederzijdsche aantrekking w orden de
moleculen in een dam p geassocieerd to t groepen van twee,
drie of m eer moleculen. Deze associatie zal bij lagere tem pe
ratuu r steeds voortschrijden, to td a t de vloeistoftoestand is
bereikt, w aarin bijna alle moleculen to t een groote  geassocieerde
groep zijn vereenigd. Men moet hierbij b.v. twee bolvormige
moleculen als geassocieerd beschouwen als hun m iddelpunten
minder dan een gegeven afstand van elkaar zijn verwijderd.

Voor een meer exacte beschouw ing van d it proces kan men
gebruik maken van de theorie der chemische evenwichten. De
toestand  van de damp w ord t aangegeven door de aantallen
(n,) of de concentraties (c,) van de groepen van i geassocieerde
m oleculen; de therm ische potentiaal is te  schrijven als een
som over deze g ro ep e n :

P =  2  i m iiit

waarin i f&{ de therm ische potentiaal van een ï-voudige groep
is. Schrijft men de Gibbsche m engentropie expliciet op, dan
heeft men

—  i f y  —  / ? lo g C i
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w aarna men uit de evenwichtsvoorwaarde (P maximaal) v in d t:

Hierin is (*■ de therm ische po ten tiaal van de stof per mol.
De overige therm odynam ische grootheden kunnen hieruit
w orden afgeleid en als sommen over i opgeschreven w orden.

H et proces van het vloeibaar w orden verloopt nu volgfens
de experimenten m et een discontinuïteit, en het is de vraag
of in de boven gegeven beschrijving deze discontinuïteit ook
te  voorschijn komt. Dit blijkt inderdaad  het geval te  zijn.

Hierbij is de grootheid  <px , de limiet van voor groote i,
van veel belang j deze grootheid  bepaalt b.v. het voorkomen
van zeer groote  dichtheidsfluctuaties in de damp. H et blijkt
n.1. da t er geen discontinuïteit mogelijk is, tenzij er een
tem peratuur bestaat, waarbij de therm ische potentaai van de
dam p gelijk is aan deze „thermische potentiaal van de oneindig
groote groep” . De voorw aarde daarvoor luidt d a t een tem pe
ra tu u r moet bestaan, w aarb ij:

(1) Z e ( i  (P* ~ 7> - ) = 1

(Deze vergelijking volgt door in de identiteit 2  c,- =  1 te
sulstitueeren p =  Om deze vergelijking te  bespreken m oet
er iets bekend zijn om trent de verschillen <p, — <px . Dit is in
’t  algemeen slechts mogelijk, indien de geassocieerde groepen
als „kleine druppels” zijn te  beschouwen, d.w.z. als zij bij toe
nemend molecuulgetal een relatief kleiner aantal oppervakte
moleculen hebben. Men kan dan inzien dat de veranderingen
in de energie, entropie, enz. die plaatsvinden bij com binatie
van grootere groepen alleen bepaald worden door oppervlakte
effecten, en dat dus in ’t  bijzonder de verschillen i (<j>f — <px )
evenredig zijn met het oppervlak van de groep van i moleculen,
dus met i 2/s. (Bij zeer groote  groepen vallen de oppervlakte
effecten, per molecuul berekend, w eg ; het verschil i  (<p4 (f*)
bevat dus juist de bijdrage van het oppervlak van de groep
van i moleculen).
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Indien de „oneindig groote groep” werkelijk deze eenvoudige
vorm heeft, blijkt, dat men in een toestand  van de stof waarin
zoo een groep aanwezig is, ook een „lage tem pera tuurphase”
kan definieeren. Deze „phase” bevat alle moleculen, die door
he t uitw endig oppervlak van de groep w orden om sloten. Zou
het aantal oppervlakte moleculen niet relatief klein blijven, dan
zou weliswaar een „oneindig groote  g roep” kunnen ontstaan,
doch het zou niet mogelijk zijn, een „lage tem peratuurphase” als
macroscopisch begrip te  definieeren.

Bij de tem peratuur T0, waarbij aan (1) is voldaan, zal nu de
damp, bestaande u it min of meer geassocieerde moleculen, in
evenwicht zijn met de „lage tem pera tuu r phase” , en er zal een
norm ale phase overgang plaats vinden.

De boven gegeven beschrijving kan nu form eel w orden uit
gebreid  op andere gevalien, w aarin het mogelijk is bij de over
gang he t begrip „associatie” te  definieeren. Dit is b.v. mogelijk
bij de ordeningsovergangen in legeeringen.

Bij deze uitbreiding zijn eenige complicaties mogelijk. Men
overziet de mogelijkheid daarvan, indien men zich een toestand
van de stof voorstelt, w aarin  de „lage tem pera tuur phase”
(l.t. phase) en hooge tem pera tuur phase (h .t. phase) gelijktijdig
aanwezig zijn. Terwijl bij de overgang damp-vloeistof onder
constante druk  het evenwicht tusschen de afzonderlijke phasen
niet w ord t beïnvloed door de m assaverhouding van de twee
phasen, behoeft d it niet altijd zoo te  zijn.

Men kan hier tw ee m ogelijkheden onderscheiden. Ten eerste
kan het evenwicht van de phasen labiel zijn, zoodat bij elke
tem peratuur hetzij de h. t. phase, hetzij de 1.1. phase stabiel is
en er geen coëxistentie der phasen kan optreden. Ten tweede
kan een stabiel evenw icht mogelijk zijn. Men m oet dan een
sprong in de soortelijke warm te verw achten bij de tem peratuur,
waarbij de l.t. phase het eerst optreedt, terwijl bij dalende
tem peratuu r deze phase aangroeit.

H et eerste geval doet zich voor bij de z.g. m onom orphe
overgangen in kristallen. Hierbij w ord t he t k ristalrooster bij de
overgang niet verbroken. De l.t.-phase moet dan ontstaan  in
een rooster, waarvan de roosterafstanden die zijn van de h.t.-
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phase. De zuivere l.t.-phase zal echter andere roosterafstanden
hebben, en daar deze afstanden overeenkomen m et de meest
stabiele toestand  van deze phase, zal de l.t.-phase, die coëxisteert
m et de h.t.-phase, steeds m inder stabiel zijn dan de zuivere
l.t.-phase. Hetzelfde geld t voor de h.t.-phase.

Zoo zal dus, bij de tem peratuur Te w aar de zuivere phasen
dezelfde therm ische poten tiaal hebben, geen overgang plaats
vinden. D aarvoor zou immers noodig zijn da t een tusschen-
toestand  w erd overschreden, w aarin zeer veel moleculen to t
een l.t.-phase zouden zijn aangesloten, doch de roosterafstanden
die van de h.t.-phase zouden zijn. Deze toestand zal m inder
stabiel zijn dan de u itgangstoestand en dus niet spontaan op
treden . De overgang zal eerst bij een lagere tem peratuur op
treden . Eveneens zal bij verhooging der tem peratuur het punt
Te zonder overgang gepasseerd w orden en de h.t.-phase bij
hooger tem peratuur optreden.

De hysteresis-verschijnselen die men op deze wijze kan ver
w achten, komen overeen m et w at men bij m onom orphe over-
gangen w aarneem t, in het bijzonder bij NH^Cl en Cu3Au.
Sommige van dergelijke overgangen vertoonen meer gecompli
ceerde hysteresis verschijnselen die vermoedelijk slechts door
een nadere beschouwing van het mechanisme te verklaren zijn.

De mogelijkheid van een stabiel evenwicht tusschen twee
phasen is gegeven in een systeem da t onder constante druk
afkoelt. M inder triviaal is het geval dat er krachten zijn tusschen
de moleculen die slechts langzaam op g roo tere  afstand afnemen,
b.v. dipoolkrachten. Als de w erking van deze krachten door
een geschikte plaatsing der moleculen versterkt w ordt, kan
het krachtveld van een geordend  gebied to t ver buiten dat
gebied m erkbaar zijn. O p deze wijze is ook evt. een wissel
w erking tusschen tw ee phasen mogelijk.

Bij de vorming van een ferrom agnetische phase geven de
gelijkgerichte elem entairm agneetjes aanleiding to t een m agne
tisch veld, d a t op sommige plaatsen de overige magneetjes
parallel richt aan de reeds bestaande ordening, op andere
plaatsen daartegen in. Dit kan aanleiding geven to t het naast
elkaar bestaan van verschillend georiënteerde gebieden, ge
scheiden door ongeordende gebieden. Deze laatsten (de h.t.
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phase) zullen beneden het Curiepunt afnemen ten koste van de
eersten (de l.t. phase). Er is dus aanleiding tot de hypothese,
dat het ontstaan van een Curiepunt samenhangt met het be
staan van directe langeafstandswerking tusschen de moleculen.

De bovengenoemde noodzakelijke voorwaarde (1) voor het
bestaan van een „overgangstemperatuur” geeft aanleiding tot
een nieuw bewijs dat in een lineair systeem geen phaseover-
gangen mogelijk zijn. Dit bewijs berust op het feit, dat de
„oppervlaktewerking” uitgedrukt in i ( < p ,  — cp x  ) voor een lineaire
groep steeds de werking is van twee moleculen en dus voor
grootere i constant wordt. De reeks divergeert dan en er is
geen temperatuur, waarbij aan (1) voldaan is.

Men kan inzien dat voor een tweedimensionaal systeem een
phaseovergang wel mogelijk is, omdat daar het aantal rand-
atomen met i toeneemt, en (1) convergeeren kan.

Op grond van de in het begin van deze samenvatting ge
noemde beschouwingen kan men ook een analogie vinden
tusschen het verschijnsel van de kleine verdampingswarmte van
een gas in de nabijheid van de kritische temperatuur en de
kleine latente warmte waargenomen bij veel monomorphe over-
gangen. Deze overwegingen voeren echter niet tot concrete
resultaten en leenen zich niet goed voor een verkorte weergave.
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