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INTRODUCTION

In this thesis part of the magnetic properties of isolated paramagnetic
spin systems will be analysed from a theoretical point of view. Isolated
spin systems are systems of paramagnetic spins, arranged in a rigid lattice.
In the general theory of paramagnetism the interaction between the spin
systems and the lattice vibrations is also taken into account and this gives
rise to the so-called spin-lattice relaxation. In the present investigation
we concentrate our attention on the internal properties of the spin systems
and of these properties specifically the first-orderresponse to a change in the
external magnetic field. This response is given by the relaxation function
(chapter III). Equivalent information is given by the high-frequency
susceptibilities z'(w) and y”"(w), which are related to the relaxation function
by a Fourier transformation (ch. I11).

Special attention is paid to y' for frequency zero (ch. I, II) and the
discrepancy between the value of this quantity computed in a thermo-
dynamical way (zs) and that found with the aid of the theory of the
adiabatic approximation (i), in the case of a large constant external field,
if use is made of standard perturbation methods. For large macroscopic
systems in which there is a dipole-dipole interaction between the spins,
one should expect these two susceptibilities to be equal and we are of the
opinion that the discrepancy for these systems is determined by the misuse
of perturbation calculus. If one makes certain hypotheses, of a very general
character, about the nature of the energy spectrum of such large systems,
it is possible to prove that g5 = yis, for all values of the constant external
field (ch. IT). We have the opinion that we can give these hypotheses
plausibility by relating them to well-known properties of the energy spectrum
of small systems. One of the hypotheses is equivalent to the second law of
thermodynamics.

For small systems and large constant external fields a general relation
between ys and Zis, in the case of powdered crystals, is derived on the basis
of a perturbation calculation (ch. I). For a large class of systems without
exchange interaction between the spins, we found yis/yzs = 4/5; this ratio
is determined by the tensorial character of the different terms in the spin
hamiltonian.

If there is an exchange interaction this value obeys the inequality:

0 <yisfys < 4/5, if S < 3/2.




The value of yjs computed in this way with the aid of perturbation
methods, also has a physical meaning for large systems (ch. 1I) and is
denoted by y;*™ for these systems, to distinguish between this quantity
and the correct value of the isolated susceptibility: yis(= zs), determined
in chapter I1. 7™ does not correspond to the susceptibility for frequency
zero for these large systems, but gives the value of z’ in a certain frequency
interval, the lower boundary of which is of the order of the so-called spin-spin
relaxation time. The upper limit of this interval is of the order of the Larmor
frequency wg (ch. 1I).

For simple systems, containing only one kind of magnetic spins, the
change from ys to 7i®™ is marked by the spin-spin relaxation time r, 7.c.
in the neighbourhood of the frequency 1/7, 3" drops from zs to yis5™, when
the frequency increases. A more precise definition of = may be given by
means of the asymptotic behaviour of the relaxation function, showing an
exponential form:

A exp (—t/r) + B.

For the computation of = a detailed analysis of this relaxation function is
necessary.

In the chapters ITI, IV and V a general method is developed for computing
spin-spin relaxation times for two different cases. In the first one the constant
external magnetic field is large as compared to the total internal field Hy;
a general definition of this quantity is given in chapter IIL.

(Hi2 = H; 2 + Hi"?' - [‘11"2'. Hi“, H,"‘_ and H,‘”

correspond respectively to the contributions of the dipole-dipole interaction,
the exchange interaction and the electric splitting to this internal field).

The relaxation is effected by the non-secular part of the interaction, .e.
that part that does not commute with the component of the total magnetic
moment in the direction of the constant external field. It is shown that =
is, in first order, given by the zero-value of the frequency distribution of the
matrix elements of this non-secular part in a representation diagonalizing
the secular part and the magnetic moment simultaneously. This result was
already known, but a detailed derivation has never been given, since
standard perturbation methods cannot be used for this problem. Also,
higher order corrections to the value of = are given for the general case of
simple systems containing only one group of spins (all spins are of the same
kind). A generalization for the systems containing more groups is indicated.
For these systems the number of relaxation times equals the number of such
groups (ch. I1I).

In chapter IV a numerical illustration of the theory developed in chapter
I11 is given. A comparison with the experiments is made for the ammonium
cupric Tutton salt. Another part of this chapter is devoted to discussion and
criticism of previous theories on the subject.

i(ld
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The final chapter of this thesis is devoted to the second case of spin-spin
relaxation; a special mechanism is observed in salts in which there is a large
electric splitting due to the crystalline field (ch. V).

When the Zeeman splitting and the electric splitting are of the same order
of magnitude we may expect the possibility of two-spin processes for which
the sum of Zeeman and electric energy is approximately conserved, giving,
nevertheless, a net change of the total magnetic moment of the system.
The corresponding relaxation time(s) is (are) computed with a method
quite similar to that developed in chapter I11. For this relaxation mechanism
we restrict ourselves to the case that:

H,Hi,> VH 2+ H; ?,

2.¢. the splittings in the one-ion spectra are large as compared to the shifts
caused by the interactions. Only part of the operator of the total spin
moment contributes to the relaxation, 7.e. the part that commutes with the
zero order hamiltonian containing the Zeeman and the electric terms.
Also, in this case the relaxation is effected by the non-secular part of the
interaction and, for the simple systems, the corresponding relaxation time
is given, in first order, by the zero-value of the frequency distribution of
this non-secular part in a representation diagonalizing the secular part
and the zero-order hamiltonian simultaneously. In a way quite similar to
that indicated in chapter ITI, a generalization for more complicated systems,
containing different groups, is given.

We think that in this thesis we have given a general theory of paramagne-
tic spin-spin relaxation phenomena, in the case of relatively large splittings
in the one spin energy spectra. For the case that neither H nor H;, is large
as compared to H;,, and H;_, we do not believe that there will be relaxation
phenomena in the sense of the chapters I1I, IV, and V, i.e. in general, the
relaxation function will not have an asymptotic exponential form.




CHAPTER 1

THE RATIO OF THE ISOLATED AND THE ADIABATIC
SUSCEPTIBILITY OF PARAMAGNETIC CRYSTALS

Synopsis

For certain powdered crystals the value 4/5 is derived for the ratio of the isolated
susceptibility (yis) and the adiabatic susceptibility (ys) in the case of a high-frequency
field parallel to a strong constant field H. The derivation is given by means of geo-
metrical arguments which give an insight into the remarkable fact that for so many
crystals one finds the same value for the ratio of the two susceptibilities.

1. Introduction. The purpose of this chapter is to compute the ratio of the
isolated magnetic susceptibility zis and the adiabatic magnetic susceptilility
ys for certain powdered crystals, in the case of large values of H (the constant
external field).

In section 2 the spin hamiltonian is given in its most general form in the
case that we restrict ourselves to ions with a nondegenerate lowest orbital
level and S < 3/2 for the lowest multiplet. Exchange interactions are not
considered.

Section 3 gives explicit expressions for the two susceptibilities in terms
of the energy eigenvalues of the spin system and a simple expression for
(s — 71s)/xs in the case of large values of H. In section 4 we find the simple
result yis/xs = 4/5 for those cases mentioned in section 2, making use of
general geometrical arguments.

2. The spin hamiltonian. Let us consider magnetic ions with a non-
degenerate lowest orbital level. The spin-degeneracy of this level is removed
by an external magnetic field H, an electrostatic interaction of the ions
with their surroundings and a dipole-dipole interaction between the different
magnetic ions.

The magnetic and electric splittings are supposed to be small compared
to the distance to the next orbital level.

We confine ourselves to the case of an isotropic g-tensor for the lowest
multiplet with ¢ = 2 for all the ions (no orbital contribution to the magnetic
splitting in the lowest multiplet). The susceptibilities are calculated for
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those temperatures for which %7 is small compared to the excitation energy
of the next orbital level, but large compared to the splittings in the lowest
multiplet.

If we neglect exchange interactions and restrict ourselves to the case
S < 3/2 for all the magnetic ions, the so-called spin hamiltonian has the
form1)2):

H = — .’ﬁn H i Siz i Eh.l)hle,éz ~ .}r\‘h(-\.h E l)} “ 5 E),(S ~ H/,,’,Z) t

hx

+ 8%B0® Zj<k 753 [+ Sie—3(Sj- 1) (Sk-1yx) [r 2] (1)

In formula (1) the indices 4, 4, § and % number the different magnetic ions.
Sia» Siy and S,z are the components of the spinvector Sy of the A-th ion
in the directions of the magnetic anisotropy axes (Xn, ¥a, zp) of this ion.
Siz is the component of the spinvector S; in the direction of the external
magnetic field, fg is the Bohr magneton and ry: the radius vector of the
distance between the ions § and k.

The magnetic anisotropy is induced by the anisotropic electric interaction
of the ions with their surroundings. The electric interaction gives rise only
to quadratic terms in the spin operators in the case S < 3/2; a transformation
to principal axes for every ion separately gives the most general form:
Zn[Dn{Siz® — 3Sn(Sn + 1)} + En(S)z2 — S;z%)], in which a constant is
added to make the trace zero; Dy and Ej are constants, depending on the
asymmetry of the electric interaction. For S > 3/2 we have in the most
general case a more complicated form; higher order terms in the spin
operators will appear in the hamiltonian of the electric interaction.

Besides the individual systems (¥4, ¥, Zp) We consider one general system
(¥, ¥, 2) whose z-axis is directed along the external magnetic field.

Now we take such large values of H that we can consider the second and
third terms in (1) as small perturbations and we write formula (1) in the
following form:

= — g’[))(]llsz - N = //0 + .y/', (\z = }_:; .\.,',;). (2)

An elementary perturbation calculation gives a convergent series for the
eigenvalues of (2) only if we restrict ourselves to the case of a small number
of ions (see e.g. Bloembergen 3)). In the following we restrict ourselves
to small numbers of ions though in all practical cases this number is so
large that our series diverges. In the case that there is no dipole-dipole
interaction the given result still holds for larger numbers. (See also the
remark at the end of this chapter).

3. The susceptibilities zis and zs. For the definition of the isolated and
adiabatic susceptibility (zis and ys) we refer to Broer 4), who gives general

formulae for these quantities. We consider only the case of high-frequency
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fields parallel to the constant field H and in that case from Broer’s results
we can, making use of the fact that Tr # = 0. in a simple manner derive:
Il 28

Vig = — - 3t et AL I
e i BT (1 & aE3 )

1 1 l:y (é:é'm ):’ (3,82 1<\, p 06 )f).] :
= Wi e | B — (2y8,°) 7\ 2eCa 07 ) |-
[h [l, 7) /\‘Y ¢ lél‘l Y=y ) 6’11 ( )

& (o = 1, ..., p) are the eigenvalues of (1) and (2), is their total number.
For large isolated systems of ions these two quantities xs and yis, and their
difference, have a simple interpretation in certain cases. If an interaction
between the ions is not included in our hamiltonian #¢ + #”', the zs can be
interpreted as the susceptibility to be found when, during the whole
period of the high-frequency field, an equilibrium distribution over the
discrete one-ion levels is conserved by means of the interaction, the yis being
the susceptibility in the case that no transitions, that would maintain an
equilibrium distribution, take place. yis is only different from zero when
the expectation value of the magnetic moment for one or more of the one-ion
states depends on the value of H, the non-diagonal elements of u, the
magnetic moment in the direction of the external field, not all being zero
(g = — 86 JOH ; Oy J0H = — 826,/0H? 0 for one or more o’s). Per-
turbation calculation gives in the lowest order of 1/H:

(s — z18)/xs = Tt H gec?/ Tr H 2. (5)

H' e is that part of # that commutes with #’. Calculating the quantity
(5) for a crystal powder, we must average the right member over all directions
of the external field H with respect to the crystal axes.

There is some discussion as to which of the two quantities ys and yis is
to be identified with an experimental high-frequency susceptibility, measured
in the frequency interval (1/7, <o <1/7g) (v = spin-lattice relaxation
time and 75 = spin-spin relaxation time). In the remark at the end of this
chapter we shall pay some attention to the value of (4) for large systems. In
connection with this problem, the computation of zs — zis for large systems,
we also refer to Klein 9).

4. The ratio of yis and s for powdered crystals. Before starting the com-
putation of (5) we introduce the Eulerian angles (asx, fx) and (xn, fr, Vh)
which respectively define the position of the vectors rjk and the systems
(%n, ¥n, n) with respect to the axes (¥, y, 2).

The last step in our computation of (5) for a powder will be the averaging
over these Eulerian angles.

These angles are defined in the following way: fji is the angle between
the z-axis and the vector ik, o indicates the angle between the projection
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of the vector rj; on the xy-plane and the v-axis: Bn is the angle between the
z-axis and the Zj-axis, «; that between the projection of the Zj-axis on the
xy-plane and the x-axis and y, measures the angle between the #-axis
and the zZ,-plane.

We now can write # in the form:

H = — gPoHS: + Ti T3 _o (—)M Urops(ap, Pny yn) Usa_p1(Sh) -
+ Bk Xire—a (—)M Trop(rse(osm, Bix)) T52-p(S;, Sk). (6)

In this formula Ur)sy, and T8y are components of irreducible tensors
of rank 2. If we have exchange terms in (1), we should also have terms of
the form const. X T%yo(S;, Si) in (6), whereas S values larger than 3/2 lead
to the appearance of tensor components U8y with L > 2, in the spin
hamiltonian. For the definition of irreducible tensor operators, the compo-
nents of which we have characterized by the symbols 773 and Uy (in
our case L = 0,2), we refer to Edmonds 6).
In (6) the tensor operators Ussyr and 7825 have the following form :

(’vsiZf‘z(sh) = Sp+?,

(-"'82-:;1(511) = (51);‘5?12 + Shz Shs),

Us30(Sn) = §14/6 [Sps2 — 1(Sn+ Sn= + Sp-Si+)],

T83.45(Sy, Sk) = SjeSis, (7)

T%241(8y, Sk) = F (SjaSkz + SszSia),
’I‘Sgn(s_f, Si) = ‘;\ 6 _-\.jz-\.ks — i(.\‘j,.\'ku -+ .\')-‘Sk,)_‘_

The S are step operators: S, — S, -+ 1Sy.
In the appendix we have given explicit expressions for Uape(ap, fin, ynr) and
Trom(rsu(oyx, fx)). In our calculations we only need their transformation
properties:

Trom(rye(agn, Bix) = Sar D?mm(ogk, ik, 0) Tran (2, 0)jz =
= Z%m (ks Pk, 0) T720(0, 0) s, (8)
Urap(en, Bn, y0) = S D2arar(on, Pn> ¥n) Urapg(0, 0)p.
The 2233 are the matrix elements of the irreducible representation of the

rotation group for L = 2,
We shall also need the following properties of the Tsopr and Usopy:

J‘—‘ 100 ’)Jl,.\l’ (\j = S}.‘ =3 2)'
= 16 oy .m (Sj= Si =1), (9)
[:‘- 1 oy (S5 = S = 1/2),

Tr T 201(Sy, Sk) T51:(S;, Si)

Tr T#'50(Sy, Sk) To2m(Sy, Sp?) = 0 for j #7 andfor k # k'

(7 <k and ' < k",
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= 24 om,m (Sn = 3/2),
Tr Us'op(Sn) Usonr(Sa) 1= 4 oar,m (Sa= 1), (10)
= 0 (Sa=13)*%),

e (,"8’3M(S,,)(v'b‘g_,‘,,-(S,,') — 0 for h £ 4.

The calculation of Tr 75 0x(Sy, Sk) T%2a1°(S;, Sy) with Sy Sk is omitted.
In the general case we find:

Ty T"’?gM(Sj, S ngM'(Sj, Si) = A(Sy, Sk) Onm, M,

(11)
Tr Us'op(Sn) Us2ar'(Sh) = B(Sn) oM, M-
The 2%y obey the following orthogonality relations:
/’ 5 / O l o o
D% s (o Py Y1) DPm (o, P ) MR — Lonnrr Opgiaeers (12
12)

«jkBike

D%* ok, Pik, 0) Z2om (24K, Pik, O) = omar-

The bar indicates averaging over the variables indicated at the right end.
From (6) we have:

H' — Sn Sar (—)MUTau(on, B, yn) Usa—m(Sn) +
4+ Sy Sur (—)MTrap(rielogr, fix) T22-m(S, Sk), (13)

A see = Sn Urz0(n, P vn) Us20(Sn) +

+ Sj<k Trao(rselegr, Bix) T20(Ss Sk)-

Tr #'2 is independent of the angles ok, Bik, %ns Bns Vi this is to be ex-
pected on geometrical grounds because of the non-existence of interference
terms between the electric and the dipole-dipole part of the perturbation.
From (13) we find, with the help of (8), (1 1) and (12):

Tr 2Py — Tr #T P —

iy - A ot -
— S Saryas Sarrgarra(—)Me e Tr Usta_ary (Sn) Use-ara(Sn)-

7 ; e R PhYR T
- G2 apr v on, B, v0) D3 2nag (o By V) wPlyh ) o110, 0)aU"28,(0, O)n+

+ Byek Sayag (—) Mt M2 Tr Ts'o_nr,(Ss, Sk) T52-m5 (S5, Sk)

- D% op1y (23 Pk, O) Doma ik, Pk, 0)k:Rik Tro0(0, O)gx T720(0,0)5 =
S ety S ()M MoOnr ary 50M aa U 2y (0,0)nU"2a1,/(0,0)nB(Sn) 4
4 Syck Saymg (—) Mtz Saryar5 3T720(0,0)k Tr20(0,0)54 (S5, Sk) =

— Y B(Sn) Zar Ur*20(0, 0)n UTast(0, O)n +

+ Bk A(Sy, S) T720(0, 0)5x T720(0, 0)j-
Thus we have:
Tr #'2 = Tr AP = 35 B(Sa) Su Ur*20(0, 0)a UTzm(0, 0)n +

- Dk A (S5, Sk) T730(0, 0)s& T750(0, 0) k. (14)

*) In the case of S'= } there is no *‘crystal splitting”.
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The computation of Tr # 2P is now easily performed. In the deriva-
tion of (14) we met a summation over M; and Ms; for Tr # "—"\.,‘,,“"3'7 we
have to leave out this summation and to take only the term which corres-
ponds to M, M 0. Thus we find:

Tr 2y P = 1 Tr A El 1Tr 2, (15)
and for a crystal powder we have:

(s — 718)/xs = TT H 2pp P Trop’e = L
or

Zis/xs = 4/5.

This result has a very simple qualitative explanation: in ys we have an equal
contribution from all the tensor components (M = —2, ..., 4+2) and in 2is
contributions only from the non-secular ones (M £ 0), all of them having
the same value. In all the cases that there are only tensors with L > 2
(no exchange) the fraction yis/ys will obey the inequality 4/5 < zs/7s < 1.
If there are only tensors with L 0 (exchange, no crystal splitting and no
dipole-dipole interaction) yis/zs = O and in the most general case (L = 0,2,...)
this fraction can have all possible values between 0 and 1.

Remark: The given result holds only for a small number of ions, if there
is a dipole-dipole interaction. In all practical cases measurements are done
on large (macroscopic) systems for which the perturbation calculation we
have used does not converge, since a dipole-dipole interaction is present

In the case of large systems with a dipole-dipole interaction present and
all the dimensions of the system becoming infinitely large for N — oo
N = the total number of ions), we hope to be able to prove the following
relation between ys and yis:

lim (x5 — 7is)/zs = O.

N-»00

Appendix: Explicit expressions for the tensor components UT®py,

7

Urasa(e, B, ) = e =2 [Dsin?p + 3E {(1 — cos )2 eT 27
(1 4- cos p)2 e +27}],
Urssi(e, B, ) = F de*™ [Dsin B cos f + 3E {sin B (1 — cos B) e 2 —

— sin B (1 + cos f)e %)

Urso(, B, y) = 113'\ 6 [D(3 cos®f — 1) - 3E sin?p cos 2

Y1
- ke o .
IToso(rse) = — § (2P0)® —— (xyx =+ tysx)2,
)";/.-"
Ty 3 ) \D I | .
TTo41(rgx) = £+ 5 (gPo)2—— (X =+ 1y31) Zyx,
2 30




i‘;;‘-'-’).

Tra0(rse) 1V 6(2P0)* ——

ik, Vi and zj are the components of rj In the system (x, ¥, 2). They ar

well known functions of ey, frk.
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CuAPTER I

THE ISOLATED AND ADIABATIC SUSCEPTIBILITIES
OF LARGE SYSTEMS

Synopsis

[t can be shown that for large systems of magnetic ions with dipole-dipole inter-
action the isolated susceptibility 715 and the adiabatic susceptibility ys are identical,
if two hypotheses are made about the nature of the energy spectrum of such systems.
These hypotheses say that the density of energy levels of such systems and the de-
rivative of every energy eigenvalue with respect to H, the constant external field,
can be approximated by continuous functions of the energy, for a fixed value of H.
The derivation of the equivalence of yis and ys is given for single crystals for all
directions of the external field with respect to the crystal axes and for all values of
H, whereas the ratio yis : s = 4 : 5, derived in the previous chapter !) for a certain
class of small systems, refers to powders only and to large values of H,

Finally it is shown that in the case of large H there is always a frequency interval
in which the high-frequency susceptibility of a powder has the value of g5, computed
in the previous chapter, though the single crystals in a powder are expected to be much
larger than those systems for which the computation given in that chapter is correct.

1. Introduction. In the previous chapter 1), to be referred to hereafteras I, the
value 4/5 was found for the ratio of the isolated and the adiabatic suscepti-
bility of certain powdered crystals. In the case of systems with dipole-dipole
interaction a restriction was made as to the number of magnetic ions (the
number of ions in one single crystal in the powder has to be very small; the
heat contact between the single crystals was supposed to be negligible).
In a concluding remark the result, to be expected for large systems, was
given. By large systems were meant such systems for which elementary
perturbation calculation does not give a convergent series for the energy
eigenvalues.

The purpose of this chapter is to show the identity of yis and ys for large
systems of magnetic ions with dipole-dipole interaction. One only considers
ions with a zero orbital momentum. The result ys = zs refers to single
crystals as well as to powders, yis being independent of the direction of the
external field H with respect to the crystal axes. The restriction S < 3/2,
made in I, can be abandoned too and the equivalence of the two sus-
ceptibilities holds for all values of H.




Only those lattices are considered which contain one sort of magnetic
ions and for which ¥, (#%)% is independent of j (rj is the distance
between the j-th ion and the &-th ion).

In section 2 the hamiltonian of our system is given. Section 3 contains
formulae for the quantities ys and g, valid for arbitrary systems. It is
shown that the main point of our derivation will be the computation of
S (06,/0H)2, where &y (x=1,2,...) are the energy eigenvalues of the
system. The quantity X,(06,/¢H)? is a rather complicated symmetric
function of the eigenvalues &,; an explicit expression of this function is
given in section 4. In principle this symmetric function can be expressed in
terms of the trace of powers of #, the hamiltonian; one has thus a straight-
forward method to compute the value of ¥,(0¢,/¢H)? as a function of H.
But this method leads to insurmountable difficulties in the case of large N,
the total number of ions. Therefore in section 5 asymptotic values of
Tr 20 = ¥,6,2n for large N are given, which enable us to compute the
value of the quantity 3,(66,/éH)? for systems, all dimensions of which are
of the order Nt Use is made of two hypotheses concerning the properties
of the energy spectrum of our systems. These hypotheses can be given well
defined physical contents. The first one says that the level density can be
approximated by a continuous function of the energy, for a fixed value of
H. In the second one the same is postulated for the derivative with respect
to H of every energy eigenvalue.

In both hypotheses our magnetic system has an arbitrary but fixed
position with respect to the direction of H.

In section 6 it is shown that for large values of H thereis always a frequency
interval in which the high-frequency susceptibility of a powder has the
value of zis derived in I. One can thus distinguish between two extensive
quantities: the value of yjs computed in a way which is correct for small
systems only, if one defines zis by means of formula (3) of 1, and the value of
y1s, defined in the same way, computed with the aid of the method given
in this chapter, a method which is only correct for large systems. For the
first quantity we introduce the new symbol 5™, whereas we reserve the
symbol y;s for the last one.

One expects that the greater part of the single crystals in a powder are
much larger than the so-called small systems, for every practical value of
H. The powdering has only the effect that the measured value of yjs takes
the value of ys for a single crystal averaged over all directions of the

field H.

2. The hamiltonian. The hamiltonian of our system only contains a
Zeeman term and an interaction term, since only the case of zero orbital
momentum is considered. If the ions have higher orbital levels with L 0,
our hamiltonian is, as a matter of fact, a spin hamiltonian. In all cases k7
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is supposed to be small compared to the orbital excitation ene rgy, but large
compared to the splittings in the lowest orbital level.
Consequently the hamiltonian has the form:

H = — gfioH ¥; Siz

-+ (2f0)2 b - [(s 8) L8 (S;-1r1) ‘)I» r}/)]. (1)

Yik Yk~

In formula (1) the indices 7, { and 2 number the m: ignetic ions, S;; is the
component of the spinvector S; of the i~th ion in the direction of the magnetic
field H, By is the Bohr magneton and ry; the radius vector of the distance
between the ions j and &, 7 being its length. The Landé g-factor will have
the value 2 in all cases. Only those lattices are considered which contain one
sort of magnetic ions and for which 3}, , i 73k~ % is independent of j.

3. The susceptibilities yis and ys. In I formulae for zis and ys — zjs were
given, both in the high temperature approximation:
43 2
Jx/ 13 26,

s = o 5 SRS 4
/.L\ /) /\Y .—\(‘\ . 9 2 (2)

: A [\, <m\>z S 1(\‘(( (‘(5‘\>2J "
Rk iy v e e 2yt S\ AP acon S

For a discussion of the physical meaning of these quantities one is referred
to the chapter mentioned, In (2) and (3) 6, (2= 1,2, ..., p) are the eigen-
values of (1) (p being their total number).

For the computation of zs and y;s in the present case no use will be made
of perturbation calculation and the result %s = yis 18 valid for all values
of H.

One can write (2) and (3) in terms of 2ul08,[CH)2, To = ¥, 6,2 = Tr 3#2
and the derivatives of the latter with respect to H: so one has:

_ eyl [ \‘<m\>2 e ,1.] i
S el o B ) )

el 1 1[\‘<;(5\>2 ((6/eH) T)2 :
B = B oH ) 4 T, ] )

The most important part of the sections 4 and 5 will be formed by the com-
putation of ¥ (2&,/¢H)2.

4. Explicit expression for X, (86 ,JeH)2 in terms of the energy eigenvalues.
In this section a system ul hm ‘ar equations is given for the quantities
(e€,/oH)2 in terms of the energy eigenvalues (5,3.

First definitions of the quantities 7", and 4,, which play an important
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role in the following derivation, are given:

Ty'= E‘, & hide— Ty #n (6)
1 R, ,
A n 1 n+2. (7J

(H 1~ l}(ll -+ 2) cH?

The unknown quantities (66 ,/0H)? and 22¢,/0H> (¢ = 1, ..., P) obey the
linear equations:

A 86, \2 pul el g
I @1{) o Gl Al=1,2....20). (8)

If all energy levels are non-degenerate, Cramer’s rule leads to the following
expressions for (06, /¢H)? (e = 1, ..., p):
(66 JeH)2 = D,|D,

D = f3rdxi ... [y dxp 1=y €, T15-1 x5 Dop(E'y .o 6p, X1 .- Xp), (9)

1 \‘.-,II ‘,{ r & » oy - (« k
o= TP ) L., dzp | | =)
k! Jo JO o o
b 4 P - e s -
30 W é, 11 XsDon(b1 i G py Xy e X )}
: 1 ) d==1 Vo 2P\ ”m P
) &, =0.

In this formula Dy, is a Vandermonde determinant of degree 2p, also
called an alternant, see e.g. Aitken 2). In his notation our determinant
Dap(81 oo €p, X1 i Xp) takes the form:

&9 ((-‘-_3] &3 ... & P Lxyp ... .\'),21' -1,

One can prove now, in an easy way, that:

9H)2 = 3, D,/D, (10)

¥ (¢6

d (X X

is a symmetric expression in the eigenvalues &; this form can be reduced
to an expression in terms of the T'»'s and these quantities 7', can be found
by a straightforward calculation. For a system with a discrete non-degenerate
energy spectrum (9) and (10) give a general way for computing yis. In the
present case, however, (N very large) this method has no practical usefulness,
the computations being too complicated, and in section 5 another method
for the determination of the value of X, (8&,/0H)? is given.

P
of the equality of yis and ys. In this section only large systems are considered,
the dimensions of these systems all being of the order N? (e.g. a cube with
an edge of length aN*, a being the interionic distance).

In section 1 we gave a definition of large systems in general. Two hypo-
theses are made about the nature of the energy spectrum of such systems:
Hypothesis I: The level density can be approximated by a continuous

5. Explicit expressions for X, (06/0H)? and X, €.2" for large N. Proof




function of the energy, with an arbitrary accuracy, taking N sufficiently large.

Hypothesis II: The derivative with respect to H of every energy
eigenvalue can be approximated by one continuous function of the energy,
also with an arbitrary accuracy, N being sufficiently large.

Both hypotheses are supposed to be valid for arbitrary direction and
length of the vector H.

In 5.1 it is explained why one is induced to expect such properties of
the energy spectrum as formulated in a qualitative way in the hypotheses 1
and II. This part of the section has a pure heuristic character.

In 5.2 the hypotheses are given in a pure mathematical form (hypotheses
I# and 11?) and it is shown that, making use of these hypotheses, the equality
of yis and ys can be derived.

5.1 The hypotheses T and II are based on the special character of the
hamiltonian which gives a mutual coupling of all the ions. This hamiltonian
cannot be separated in parts which contain different groups of degrees of
freedom which do not interfere. If one has a small number of ions it is a
well known fact that the total number of crossings of energy levels is very
small for such values of H for which we can look at the dipole-dipole
interaction as a perturbation. In this case one can divide the perturbation
into two parts: a secular one and a non-secular one. The zero order hamilto-
nian (Zeeman energy) and the secular part can be diagonalized simultane-
ously and the corresponding eigenvalues are all linear functions of H, for
all directions of H.There are many points of intersection and in the neighbour-
hood of such a point the non-secular part of the perturbation gives a modifi-
cation of the two corresponding levels, which can be described to a good
approximation in terms of the matrix element of the interaction between
those two states only. In the case that this matrix element is zero the point
of intersection is not taken away, in all other cases the levels “repel’” each
other. We suppose that this repulsion also works in the case of small H and
large N and that this is the cause of the particular properties of the energy
spectrum formulated in the hypotheses (for large N the number of pairs of
neighbouring levels for certain value of H is very large; these pairs, being
made up of levels with much differing slope in many cases, would lead to
a great number of intersection points. In the case that the slopes of the two
levels in one pair are approximately equal, the number of intersection points
is small),

The two hypotheses are given quantitative contents in 5.2.

For systems of ions without interaction the given argument does not hold.
All energy eigenvalues of the system are the result of an addition of the
eigenvalues of the individual ions. There is in general no relation between
the value of the derivative of such an energy eigenvalue, being a compo-
sition of innumerable parts, and the eigenvalue itself and one expects that




one cannot approximate this derivative by a continuous function of
the energy. In this connection we refer to I, in which we derived yis = 4/5ys
and where we excluded an interaction in the case of large N.

The first step in the proof of the equality of y1s and zs will be the compu-
tation of asymptotic values of Tap (n =1, 2, ...) and of the level density
as a function of the energy.

From (6) it follows lhdt.

] 1 1 1 —
sy, Pgul s _— Tr 2 = €,
S+ 1)¥ N ° (2S+1)¥ N ' : (11)

1SS + l)(.!,’ﬂ())‘z [H? 1H 2.

In section 2 we have restricted ourselves to systems which contain only one
sort of ion, the spin of all the ions 1lms‘ being the same; the corresponding
eigenvalue is denoted by the letter S. €2 is the mean square of the energy per
ion, which is a simple function of H and the internal field Hj, defined in the

following way:
H;2 = 25(S + 1)(gPo)% X5 7%~ 6, (12)
U#k)
The sum S5 #8 is independent of the index &, as assumed in section 2.
We now define (2S + 1)=¥ N—*2 T, as the moments of the energy
distribution function.
For large N the higher moments can all be expresse d in terms of €2,

apart from terms of the order 1/N:

1 i 1 e ] I 727 1
Lop= ; . — Tr 2= i (€2)™ ol—). (13)
(254 )\ Nm (2541)N Nm 2n ml N

Only the even moments are of interest, the odd being of vanishing order for
large N.

From (13) it follows that for N — oo the moments are those of a Gaussian
distribution function and the continuous density function (hypothesis I)
will have the following form:

F T I AT I — i INE \
p(E[N?) = T »(_l),g‘. LERINE (14)

5.2 Restricting oneself to one special kind of systems. as define d in the
first lines of this section (e.g.: in the case of a lattice structure which is
simple cubic one only considers cubes or only rectangular parallelepipeds
with a fixed ratio of the lengths of the edges), it is supposed that one can
give an exact mathematical formulation of hyj mtht sis 1:

Hypothesis I8: For an arbitrary energy & and an arbitrary positive
energy /e, one can find a natural number Ny, so that for every number of
ions N, with N> Ny, one can find an energy ¢, in the inte rval |e' — g| < 34e,
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giving the total number of energy levels in the interval |6, — Nig| < AN e
by the formula: (25 4 1)¥ 4e p(e’). p(e) is defined by:

l I oy
ple) = - e X, (14a)

: ~5\3
V2 (€2)*

Similar limiting procedures can be given for one- or two-dimensional lattices.
Also in those cases we expect that an asymptotic expression (14a) for the
level density can be given: the parameter H; figuring in (14a) has different
values for the different cases.

Differentiating both members of (13) with respect to H, one sees that the
derivatives o6 JoH obey the equations:

l l o

14
= s S £ 2m-1 X

1 (2m)! T D 1oy 1
TSR SR ) AP et ey gl )
(2S5 - 1)N Nm JH 2m ! JH N

I (2m)! (zym H O<] ) (15)
omml ' HRL3HE I )

In hypothesis II it was supposed that for large N ¢&,/oH as a function of
& can be well approximated by a continuous function. Formula (15) gives
the values of the odd moments of the product of this function and p, the
even ones all being zero.
Hypothesis IT can now be given in an exact formulation too:
Hypothesis II2: A continuous function 8E /¢ H () can be defined with the
following properties: For an arbitrary ¢ and 6 > 0 one can find a 4¢ > 0 and
a natural number My so that for every &, in an interval [Nie — & | < $4eN*
with N = M (N is the number of ions) the following inequality is obeyed:
1 ad, oE

g)| < 0.
Nt oH cH o=

Making use of the two hypotheses I# and 112 one can derive:

: 1 ] o, I 62m)) - H
lim — : . .\-:\ (f\‘llh*] = = 7 (6'—’),” i
Nooo (25 4 1)N Nm cH 2m ! H?Z 4 YH2
(e 1 22 ( 2m—1 ( (l )
de - &) =<l £). O
SIS TRV -
For m 1,2, ... (16) gives the values of the odd moments of the function

¢E|oH (e) p(e). If we want to find the form of the function éE/9H (&) we have
to solve the moment problem given by (16). One sees immediately that our
problem has the simple solution:

OE|0H (e) = e(H|(H2 + 1H2)). (17)
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It follows from (17) and hypothesis II2 that the energy eigenvalues obey
the following asymptotic differential equation:

86, /6H ~ &8, (H|(H? + $H?)). (18)
The equation &6 ,/6H = &,(H|(H? + 1H?)) has the general solution:
& =0 VH? + Tm‘z (19)

Our hypothesis 11* has now the following meaning: for large N all the energy
eigenvalues as a function of H can be written in the form (19) apart from
a difference which is negligibly small.

For the whole energy spectrum the numbers ¢, are distributed in a Gaus-
sian way; this follows from the Gaussian distribution of the energy eigen-
values.

One now has an energy spectrum for which the condition, formulated by
Klein 3), for the equivalence of yis and ys, is fulfilled. This condition l.c.
formula (13), has the form:

(6EJoH — oE|eH)|(E — E) =y, (20)
v being independent of E. One sees that in our case oEJ¢éH and E, denoting
mean values for the whole spectrum, are zero and that ¢ has the value
H|(H? + 3H?).

One now can evaluate the value of 3, (8€,/éH)? for large N making use
of hypotheses I# and II* and formula (17):

li s Y (08 ./0H)2 = " OOI‘ -l:”’: ~J27 “ H?2, (21
.Im . Y, (06 JoH)? = w(.é ple) -'(,H (&) | = UI., ¥ 1H)? . (21)

N—+c0 = o

So one can derive from (4), (11) and (21):

Zis 1 1o 1 1 o
lim [' = lim — [f - 3, (08,/0H)2 + 3 — 02|eH? 1-_:] =
Nsoo 4V Ay p N * pN

1 2 [1 H? 1 Lol s e py e b
X5 : — ; = — S(S+1)(g po)= — 3
kT H2+ 1H? H® + 1H? i 3 oo T e P e e

LH 2 .%o : (S
S lim =— =lim —
H2 + 3H® n-voo N Nsoo LY
and
lim (s — zis)/N = 0. (22)
N-»o0

This is in contradiction with the result given by Broer 3). One can say that
the difference of yis and gs is zero for infinitely large systems.

The derivation of the equivalence of yis and ys for large systems can
readily be generalized to more complicated cases in which the ions have
a Stark splitting and when there is an exchange interaction. In all cases we
take it for granted that there is a dipole-dipole interaction.
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6. The susceptibility for large values of H, as a function of the frequency. In
I we called special attention to the fact that there is some discussion as to
which of the two quantities zs and y455™ is to be identified with an experimen-
tal high-frequency susceptibility z'(w) measured in the frequency interval
(I/7r < @ < 1/7); in this expression 7, is the spin-lattice relaxation time
and 7, the so-called spin-spin relaxation time. There are many definitions
of the quantity ;. We introduce a more suitable parameter wg, being the
lower boundary of the frequency region in which there is a measurable spin
absorption. In the following lines it is made plausible that for the frequencies
in the region (1/7 < @ < ), in the case that 1/7, < wy, the high-frequency
susceptibility y'(w) has the value ys = 75 and that there will be an interval
(w1 < @ < w2) in which y'(@) for a powder has the value Zis5™ _wg, my and
wz obey the inequality wg < w1 < ws < wpy, oy being the Larmor frequency
gfhoH I,

In the argument use will be made of the two quantities f(w), the shape
function, and y”(w), the imaginary part of the complex susceptibility. In our
definition f(w) will be normalized in such a way that:

b : (¢ Po)®
flw) do = limy_,_ — —— 3 28 [Sz.52. 23)
Jo. S N RS e AP (
We suppose that this limit exists if we restrict ourselves to those systems
as defined in the first lines of section 5. The moments of the function Hw)
are given by the formulae:
roo 0
; . I (g Po)?
[w) @22 dw = limy ,_— - = YarB 192,82 @ g2n. (24)
/S ( N0 N (2S + 1|» i B 3 xf \
In (23) and (24) « and g label the different energy eigenstates of the spin
system, S; is the operator of the z-component of the total spin moment, i.e.
the component in the direction of H. Sz,g is the matrix element of this
operator corresponding to the eigenstates « and §; wag = (64 — Ep)/h, &
and &g being respectively the energy eigenvalues for the eigenstates « and .

x
One can write z"(w) in terms of f(w) by means of the asymptotic expression:
2" (@) N ~ (7w [2RT) f(w). (25)

In the following lines our system has to be considered as an essentially
isolated system so that for all finite values of N y'(w) and z"(w) are continu-

ous functions of @ *). We take N so large that the asymptotic equality of
(25) can be replaced by the formula:

2"(@)|N = (70)2kT) f(), (26)

*) The surroundings of our svstem proper consist of the lattice, the bath in which the ecrvstal or
crystal powder is placed, ete, The energy spectrum of these surroundings is supposed to be continuous

(see e.g. Tolman %))
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the difference between the two members of (25) being negligibly small.
%' (w) and %"(w) obey the well-known Kramers-Kronig relations:

2 I o v (o)
TJ0 @ w (27)
2 ([ wy'(e)
Z"(m’) = it = - m[—( = (lu)’.
17 A D 1 By 10
From (26) and (27) it follows that:
7 ] |‘°° b 1o’ (28
— ' (@) s oAy w') dw'. (
N (e RT Jo @2 — w? At =)

For the integrals in (27) and (28) one should take the principal value. In the
following lines an analysis of the form of the function f(w) is given. It was
not possible to give this analysis with a great mathematical rigour.

In the most general case our spin hamiltonian has the form:

K= W+ Hga Koz + Hg=Ho+ H'. (29)

In (29) #'4a contains the dipole-dipole interaction, H'.r the exchange
terms and #’g the Stark splitting terms. 7 represents the Zeeman
energy: —g PoHSz. K aa, H' ex and #'g can be expressed in terms of
tensor operators:

! “ “ 4+ L Ty ’ 5.
H == .\_JI LI. . 4,8 L_ll =7 (*,)"’ L "Ly (%n, I}Ih ]'h) { L-Mm (SI()
= Ya ' st(h),

)

H'aa =% Tior St -2 (=)™ Trana(ryeloges i) To2-a1 (S, Sk)
3 Sin ' aald, B), (30)

2 i

H ’(’,r S | \',‘ "_ -'ljk ]‘S(")(S'i. s/.’ o L :.:j % 4 ’(’,r(]-- /\»)'

2 i

For the definitions of the tensor operators UTpy, Usr-m, Tronr, TP2-m
and T%go we refer to I. These operators are defined to within an arbitrary
constant which is taken the same for all the components of one tensor. It
is needless to say that in the inner products of two tensors Ury, and U%p,
respectively 77s and T3, figuring in (30) the two corresponding constants
are not independent.

As already presumed in (23) and (24) all ions have the same S and g-value.
In fact we make the same restrictions as given in section 2: only those
lattices are considered which contain one sort of magnetic ions and for
which ks 7767% 18 independent of j. N B

Further restrictions are made regarding the quantities €(j), €%f(]),
e_'l,\-,(j), :3,1,/(}') and :'-’CI(}') defined in the following way:

52(].) == E‘Zz(/) -+ €2.,\'I<]) = 5 fzcld(]) -1 fgr,’.r(]“): (31)




€2(j) = (gBo)2 H2 Tr S,2/(2S + 1) = ¥S(S + 1)(g po)2 HE,

25e(7) = Tr{A"(7)}2/(2S + 1),

S b & (32)
€aa()) = % X Tr {F" aa(, R)}2/(2S + 1),

(k *,n
2ezlf) = 3 X Tr {o"ealjf, R)}2/(2S + 1)2.

(h#7)

We restrict ourselves to lattices for which the quantities €%5(7), €2qalf) and
2:,,,(_;',) are independent of j.

Finally we introduce the operators #”3; and the quantities €237, bayr and b:

H'm = Zn X6, (—)™ Urp—p(on, Br, yn) UsLar(Sn) +

t 3 X ()M Trop(rir(ogr, Pix)) To2(Sy, Sk)

t doar 3 Xjar Ak T300(Sy, Sk), (33)
s ] 1 1 1 )
Sy = — Tr H _pp Ky = — : -Tr H" 310 ' 01, 34)
€y N @S +1)¥ M y N 2SI M My (
bu = (2m/e%) CH2, b = X by (35)

C is the Curie constant which is equal to 1S(S + 1)(g Po)2/k, & being the
Boltzmann constant.
The mean square energy per ion can be expressed in terms of H, b and C:

€

(8-

3S(S + 1)(g Bo)2 (H2 + b/C). (36)

Following the same lines of argument as given in section 5 the level density
can be approximated by a continuous function of the ene rgy of the form:

1 1 g
p(E[NY) - s e (37)
V2r (&2)

[t is possible now to evaluate the right member of equation (23):

o0 y 1 (g Po)? 2 T
{ /((u)(](v) = lim \;' i2\ “ ‘1).\.' -\-n =B -\,?-m' s =

v 0 N-soo 4

I (g Po)?

= lim o5 Ty (B Suapl® — Za Saa?] =
= lim ;IT = ,1 —=i = (i(gY)',; 1 ,‘(:_‘\_:1,{»,\2] ss
Naoo N (25 + 1)¥ oH - oH?
RT vis . RT »s . RT, )
— lim -,('L = lim - f\ = lim —- ,[l—)A " : (38)
N—voa, N Nesoa | -2 N=co: AV b+ CH?

For the details of the derivation we refer to sections 3 and 5 in which an
entirely similar computation was carried out.
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The moments of the function f(w) can be expressed in terms of
commutators [, [, [, ... [#,Sz) .1, n=1,2, ...

n

In these expressions » indicates the total number of operators 7.
From (24) it follows:

e ! l (g fo)? !
») 02" de = lim - —> S, a2 (&, — &p)2"
IR e L o e T M T i (6o — &)
. 1 gp )2 )
i L €B0F (D) e o, (o, . (.S 1 (39)

e AN (28 A LR :

For large values of H the moments corresponding to small values of # can
be approximated in the following way, if one restricts oneself to such large
values of N that terms of the order 1/N can be neglected:

& I (g Po)2 (g PoH)* ™V

JU f@)w=" dw= -‘\,' (25 + 1N hen

Use was made of the commutator rules [Ss, #'y) = M #'py and of the
fact that Tr o'y’ 'y = 0 for M’ # M.

Sy M20 Tr Ay H . (40)

From (40), (34) and (35) it follows:
_/\J'o/‘(m) w2 do = (g ﬂ()]] [h)27 Y im M?2n (hyy CH?) RT (Z()‘J‘,\']. (41)

It is easy to verify that for large H the function f(w) can be approximated
in a fairly good way by a function of the form:

filw) -+ 2RT (Z()“‘.‘\P) ::_” 0 (l).‘\,],“(.‘ll"zb) ol — waM), (42)
in which 8w — wgM) is the well known Dirac delta function and
on = g poH|[h. fL(w) obeys the normalization condition:

[ filw) do = kT (0/N)(bo/CH?). (43)

In (42) we made use of the symmetry relation by = b—pr, whereas (43) was
found by means of the normalization condition for f(w) given in (38). We
suppose that the function f1(w) is only appreciably different from zero in a
bounded region of the w-axis. Or, formulating the properties of f(w) in a
more quantitative manner, we make the following hypothesis:

For every « with 0 < o < | and an arbitrary small positive & we can
always find a field H and two frequencies @ and w2, obeying the inequalities
0 < w < dawyg and 0 < wg — w2 < lawpy in such a way that:

i o flw) do < BT (s g/N). (44)

Thus in a good approximation one has f(w) = Oinan interval (o1 < o < w3)

of finite length, taking H sufficiently large. One has, in the same approxi-

mation fj(w) = 0 for @ > m1.
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It is possible now to evaluate y'(w) for frequencies w in the interval
(01 < @ < wg), making use of (28):

(@) = 250 Ta>0 bm/CH2 () < 0" < ®3). (45)

This quantity is equal to y;s%™, which follows from formula (5) of 1.

We already introduced the frequency wy, being the lower boundary of
the frequency region, in which there is a measurable spin absorption. The
frequency region in which wfi(w) is appreciably different from zero is thus
the interval wy < w1 and, in accordance with the experiment, our
theory gives:

(@) = 30 b|CH? = (I/mp + 0 < 0" < wy). (46)

In (46) 6 is a small frequency.
In general one has, in the case of a powder:

2 (@) 23m>0by  Tro#'? — Tr #'%,,  yom (47
s ST . = <2 )
2 (@") o by Tr #"2 1s

o' and " denote frequencies in the intervals (01 < o' < ws) and
(1) + 0 < 0" - @) Tespectively.

In (47) tlu bar denotes averaging over all directions of H (see, for the
details of the computation, chapter I). We cannot make any theoretical
predictions about the form of fi(w) in the framework of this chapter.

If we restrict ourselves to the case that S < 3/2 and to systems in which
there is no exchange interaction, ##’ has the form:

H' = XmH 'y = Znm(—)™ UT opr(an, B, yu) Usoae(Sa) +
+ & Dy, a0 (—)¥ 7':—,\1 (rsx(ogks Bix)) T2204(Sy, Si). (48)

In that case it can be proven that the average value of bar for all directions
of the external field H is independent of M. For the details of the nece ssary
computations we refer to I.

Thus for a powder one has:

7' (w) = 270 bJCH? = y4;8m (1 < o < ws), (49)
% (@) = 70 b|CH? = y35 = g5 (1/7r + 6 < < wp). (50)
For frequencies in the interval (o < o < 2wp) one has:
1(®) = 2 70 bJCH? = 1y;Mm,
whereas:
%' (®) =0,
for @ > 2wy in this approximation.

Broer 5) starts with the definitions of xis and ys as given in formulae (2)
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and (3) of this chapter. He computes the values of these quantities in the case
of large H by means of a perturbation calculation which does not converge
in any practical case. His result yis = $xs is in contradiction with our
result given in (50), but a quantity zs®® can be defined for which Broer’s
relation holds. However, Broer does not give any specification as to the
frequency of the high frequency field, whereas our result (49) is only given
in a specified interval. One can say that in the interval w1 < o < w2 only
the interaction of an ion with its nearby surroundings has practical im-
portance. One is allowed to divide all single crystals in the powder in a large
number of submicroscopic parts containing only a very small number of ions.
In the region w; < @ < wp the interaction between these submicroscopic
parts can be neglected for the computation of y'(w) and for these parts
Broer’s computations and ours given in I are correct.
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Cuaprrer I11
ON THE THEORY OF SPIN-SPIN RELAXATION I

Synopsis

A method is developed that enables us to determine the asymptotic form for large
times of the so-called relaxation function of spin systems, in the case of a large ex-
ternal magnetic field H. The spin-spin relaxation phenomena are described within
the framework of the spin hamiltonian; we restrict ourselves to those systems for
which all g-tensors appearing in the spin hamiltonian are isotropic.

Most attention will be paid to those systems in which all ions are identical and occupy
equivalent lattice sites, For these systems the asymptotic form of the relaxation
function is given by a function of the type:

Aexp(—tfr) + B,

in which expression 7 is the spin-spin relaxation time. For the quantity 1/7 we find a
series expansion:

= Zp—1 l7n)

in which the different terms 1/, correspond to different relaxation processes.

For more complicated systems the ions are divided into groups, according to the kind
of ion and the occupied lattice site. When all ions have the same g-value and the
interaction between the different groups is strong enough, the asymptotic form of the
relaxation function will be, in a good approximation, of the type indicated above,
that means that there is only one relaxation time. If this coupling is small there will
be in general a number of different relaxation times, this number being equal to the
number of groups. The same will be true for systems, containing different groups,
corresponding with different g-values.

1. Introduction. The purpose of this chapter is to compute spin-spin
relaxation times of idealized paramagnetic crystals, the magnetic properties
of which can be described partly in terms of a spin hamiltonian 1)2), in a
certain temperature range. The dynamical system corresponding with the
spin hamiltonian is called the spin system.

In the sections 2-6 our method for computing spin-spin relaxation times
is developed for systems in which all magnetic ions are identical and occupy
equivalent lattice sites. In section 7 a generalization of this method is
indicated for more complicated systems, containing different groups of
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ions. Groups of ions are composed in such a way that the translation that
carries one ion of a certain group into an arbitrary one of the same group,
is a symmetry operation of the lattice as a whole.

For the simple systems with only one group of ions, the asymptotic
form of the relaxation function, that will be defined in this introduction,
is given by a function of the type:

A exp(— t/7) + B,

that contains only one relaxation time =

More complicated systems, containing different groups, corresponding
with different g-values, or being very weakly coupled, have a relaxation
function that is asymptotically given by:

E‘., .'lp t‘X})(— t T(b-')) 4+ B,

in which the number of relaxation times is equal to the number of groups.

In all cases we restrict ourselves to systems of which all ions have isotropic
g-tensors.

In section 2 the spin hamiltonian for the simple systems is given in a
general form. It can be divided into two parts: 1, containing the Zeeman
energy and all terms commuting with this Zeeman term, the so-called
secular terms, and a part 'y, containing the non-commuting or non-
secular terms.

The determination of the relaxation time = for these systems results in
the determination of the asymptotic form of the diagonal term ¢.(t) of the
relaxation tensor ¢(f), following the method as given in the sections 2-6.
The tensor ¢(f) describes the magnetic response of a system, after an
external field h, of vanishing modulus 4, being cut down to zero at / 0.
We shall call @..(f) the relaxation function, the z-axis corresponding to
the direction of h. Besides the field h there will I)\ a constant field H,

parallel to h. We restrict ourselves to the case H > Hy; H; is the so-called
internal field, defined by H; = Vv 2b/C. In this formula C is Curie’s constant :
C 1S(S -+ 1)(gBo)2/k; for the definition of the quantity b we re fer to

chapter 11 3) (see e.g. formula (36) 1.c.). For the case for which H and H; are
of the same order of magnitude our method will not be correct in gener al,
as indicated in section 6. The same applies for the more complicated systems.

From f — — oo to { = O the total external field is equal to H + h; and
for ¢ > 0 it is equal to H. The field h gives an extra contribution to the
magnetic moment, which is given by:

I‘TI([) e A—l(; = (/) h,
M() 7oH, (1)
q (/) = 70y for + < 0,




xo 1s the static susceptibility and M({) the total magnetic moment, being
a function of the time. My were the value of the moment if the field A would
not have been applied. Kubo and Tomita 4) have given a general expression
for the relaxation tensor @(?). In their formalism 1’\_'1(_/) and Aﬁ” are ensemble
averages, corresponding to a canonical distribution:

po = exp(—pH)[Tr exp(—pH).
# describes the unperturbed motion of the system, z.e. the motion in the
absence of the disturbing field h. § = 1/kT, T being the absolute tempera-
ture and %2 Boltzmann’s constant.
The asymptotic form of g..(f) will be discussed in the case of large T
and N, the latter being the total number of spins. In section 3 general

expressions for ¢,.(¢) and:

@l
I = lim, ,, =Y
N-soo ['4\

are given for simple spin systems, these expressions being the starting point
of the determination of the asymptotic form of Pz2(1).

Section 4 gives developments of I'(f) and the related function £(f) in a
series of powers of # (1. A systematic reduction of the terms of the series for
£(t) is given in section 5. The section 6 will be devoted to the asymptotic
form of I'(f) and @zz(f), derived on the base of this reduction. So we find
Pz2(t) ~ A exp(—t/r) + B; the value of 1 7, being the sum of an infinite
number of terms: 1/r Y1 l/ma, is also given in section 6.

A generalization for the systems containing different groups of ions is
outlined in section 7. In this case the relaxation function will have the
asymptotic form:

@z2(l) ~ DILP: 5 exXp(— {jz@) 4+ B, 1/z@ Dty Yoy,

-l

[n chapter IV the results of our theory will be worked out in detail for the
ammonium cupric Tutton salt and compared with the experimental data.
Besides a comparison with other theories on spin-spin relaxation will be
givern,

2. The spin hamiltonian. The spin hamiltonian contains different terms,
corresponding to the Zeeman energy, the Stark splitting and the two spin
interactions (dipole-dipole interaction and exchange; more complicated
forms of interaction are neglected). The Stark splitting terms and the
interaction terms together are denoted by #”, whereas the Zeeman energy
is represented by .

For the simple systems we have:

»y/;() \'/;()II 1:/ \): - ,[ \-_:J 11}3 IIII: f2

~

(o)
(9]




In (2) the index j numbers the magnetic ions; Bo is the Bohr magneton.
' can be split up into different terms:

K =M (‘1),
corresponding to the commutation rules:

(S, (M)] = M(M),, M=0,+1,4+2, ... (3)

The total spin hamiltonian can be written now in the form:
H = Ho+ H' =H1+ H1,
H1= H#Ho + (0), (4)
H11 = E_\/ £ n(‘”)-

In formulae (4) 21 contains the secular terms and /11 the non-secular
terms of the hamiltonian. (M) corresponds to the operator #”'y, defined
in the previous chapter 3). :

In general the spin hamiltonian gives a good description of a part of the
magnetic properties of a group of paramagnetic crystals in a certain temper-
ature range (cf. our references1)?)). It is supposed that in this range a
series expansion, in terms of powers of 1/T, of the measurable quantities,
pertaining to the spin system, is possible and that the first term gives a good
approximation. Our calculations correspond with the experimental situation
in which the spin-lattice and spin-spin relaxation (or absorption) can be
observed seperately.

From an experimental point of view, the best way to study spin-spin
relaxation phenomena is by investigating the low frequency absorption.
In general this low frequency absorption has not a pure relaxation character,
part of it being resonance absorption. By means of perturbation calculation
it can be derived that the total contribution of the low frequency resonance
absorption to the integral: /§° f1(w) do is of the order of AT (xo N)(H/H)3
in the case of H > H;, (see for the definition of the function /i(w) chapter 113)),
whereas the contribution of the relaxation absorption is equal to
kT (0/N) (bo/CH?), in which form bp is a quantity of the order of CH 2.

Therefore in the case of H > H; the low frequency resonance absorption
may be neglected in the region where the relaxation absorption is appreciably
different from zero, so a detailed study of relaxation phenomena is possible.
This agrees with the theoretical situation: As indicated in section 6, our
formalism can only be applied in the case of H > H;.

In all cases one may expect that spin-spin relaxation phenomena cannot
be described well within the framework of standard perturbation methods.
Our method, developed in the subsequent sections shows considerable
differences with the standard perturbation methods, especially on the point
of the long-time behaviour of the systems.
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3. The relaxation function. In the linear theory, developed by Kubo and
Tomita 4), the relaxation function ¢zz(t) is given by the formula:

@ze(t) = [ A4 MMt + ih2)y — B(M )2, (5)
in which formula g L/RT. M(t + ih2) is the Heisenberg representation
of the magnetic moment operator, for the complex time ¢ + 1hA:

M_(t + th) = exp(— AK) exp(it A [h) M, exp(—itH [h) exp(iHt).
The brackets ¢, > denote the average value for the canonical distribution:
po = exp(—pA)/Tr exp(— B#). For an arbitrary operator 4 we have:
‘ ll p();l .
For simple spin systems, we have in the high temperature limit:
;W() - (M = ll /)():’l/l /(]II
C N 3
, —r (6)
Z0 7
C = }S(S + 1)(2Bo)2/k.

In (6) C is Curie’s constant and N the number of spins.

The function ¢,.(#)/N will be studied in the limit of p —0and N - co.
| From (5) and (6) it follows that:

‘ lim @.(¢)/ BN MM ,(¢) N,
Fon ()
for all finite values of N. <¢4>> denotes the normalized trace of an operator:
A LreAEe 1.

For a definite limiting procedure (cf. ch. II), we suppose that the following
limit exists:

lim @2.(f) /N = @(¢, p),

N—rco
for all values of # in an interval, containing the point # = 0. Finally it is
supposed that the repeated and the double limit exist: so we can write:

: q ::(’/) ) . Pz2(1) . e q 22(1)
. lim ——— = lim lim == Iim lim -
\4' w‘:‘o P4 i) N-»co .‘{ 4 N-sco =0 P4 (7)
1 D8 ) M .M .(t)
== 'I')— - lim - X I'(t).
=0 2] N-»oo

For a large essentially isolated spin system one has:
@22(t)
BN

in the high temperature limit *).

~ I'(1),

*) See the footnote on page 27 of chapter 11 3
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There exist simple relations between the function I'(¢) and the suscepti-
bilities yo and y*(w), o being the static susceptibility and y*(w) the complex
high-frequency susceptibility:

e ' | | e lia) it =)
— | AI'/dt (t) exp(— iwt) df = lim /')(,' lim %2 — A ,
- || 24 () /l\

0 N —»00 N-»rco (8)

M2 . 1

I'(0) = lim - lim L

N-—s00 4 fsl) P4

N-—»o0

From (8) it can be seen that in the limit of  — 0 and N — oo, all magnetic

properties in the linear region, are given by the function I'(f).
For a finite spin system, containing only one magnetic specimen, the

correlation function: <M. M.(f)>> can be written in the form:
; (.'\'(';())2 SIS o v (e ) Q
M M (1) M (Sza)® F Dary Ozayioz(l) fysls (9)
p sE
In (9) «, y denote the different energy eigenstates of the system, Szye Szay

and {Sz({)},, the corresponding matrix elements and p the total nnmlnr
of states.

For a simple (infinite) spin system it follows from ch. 11 3), formula (21):

X

i (gB0)® X (Szaa)® 1% = = LRCH2
lim = LS(S -+ 1)(gf0)* : (10)

N % b+ CH?

N-—=co /)
In this formula, the quantity b is given by:
7 . > >
/ 7 L€t €7da T €7exl:

K

For the definition of the mean square energy values €2y etc. we refer t
formula (32) l.c.
Combining (7), (9) and (10) we find the following expression for I'(f):

I e i CH?2 ol (1)
(¢) 1S(S 4 (gpo)> : - (1),
(£) 3 )(€Po) by CHZ )
in which expression:
. (gfo)® 1 : _
Q(t) = lim &9 > Szay 192(8) fyxe (12)

— Qiaky
Nroo /7 N :

The following section will be devoted to the evaluation of an expansion of
I'() and Q(f) in a series of powers of #'11.

The concluding part of this section will be devoted to the discussion of
one aspect of formula (11), well in accordance with thermodynamical

considerations concerning isolated spin systems (7, = co, 7 is the spin-

lattice relaxation time), for which we refer to Casimirand Du Pré ).




In section 5 it will be shown that lim 2(/) = 0, so that:
t-s00

4 355 CH?2 A %0 48
lim 7'(¢) 1S(S + 1)(gfo)2 L lim = —
{00 b+ CH2 200 BN
N-+ca
%s 15 the adiabatic susceptibility.
For a large essentially isolated spin system one has in the high temperature
approximation:
lim ¢2.(8) ~ 70 — 7.
t—»co
This result has a simple thermodynamical meaning:

At the time ¢ = 0 the ensemble average for the magnetic moment has the

value
; \ C(H+h) _.
M (0) My, ¢zz(0) h (H -+ h) Z0 T iV,
and the average value of the energy, before demagnetizing, is given by:
: C(H+h2+0b . CH(H <+ 2h) +b __
£(0) N N & r N #),

After demagnetizing this average value is equal to:

CH(H 4+ h) + b

E'(0) = E(0) + hM.(0) ~ = N.
: 1
For ¢ co there is again an equilibrium distribution: the corresponding
temperature is given by:
; CH2 4+ b __ CHH +h) +b _.
l (co) = E'(0) T N ~ 7 N,

from which formula it follows that:
| CH(H %) 4b 1
T CH2 + b T
SO l[l.lt:

CH "GH(H™=EhY 4=b"
,‘[;{;x;) = — - N.
1 CH?2 + b

We find in this way:

: ‘ M ;(c0) — My, CH [ CHH+h +b 1
lim gz:(0) . e el
» 00 \ it / 4

54 v CH?2
et RO L0 xS

T CHRAB , A %

So one may say that the well-known thermodynamical properties of spin
systems follow from our formalism in a simple way.

*) In all formula¢ of this scction the sign & denotes equality in thz lowest order of 4




A detailed comparison between our hypotheses, made in this chapter anp
in ch. 113), and those of statistical thermodynamics has not yet been
worked out, but it is clear that there exists an intimate relation between
hypothesis II of ch. II 3) and the second law.

4. Expansion of I'(t) and Q(t) in series of powers of # 11. Using the methods
of Kubo and Tomita l.c., the correlation function <¢M,M,(t)>> of a finite
system can be expanded in the following way:

1 ol {1 rln-2 P ln-1
MM ,(t)> Yo ‘ dt [ dis ... ' df ' diy.
o semc ()™ Jo l. ouniT Jo 5 1. 0 :
M; A ult), #ults), ..., Hrilta)] Mz, (13)
H1(t) = exp(itA 1/h) A 11 exp(—ilH'1/h).
In the n-th order term of the series in (13) we have used the abbreviated
notation:
(M,; #11(h), #1i(te), ..., # 11(tn)]
.‘[_7, H [1([1) .-/'//]l(/'_!) y ceely H ll({u) >
For the proof of (13) use is made of a series expansion of the operator M,(t)
in terms of # 11, which is found by solving the equation of motion, obeyed

by M.(t), by means of an iteration method.
The equation of motion has the form:

ih V(1) M(t), # [M(t), H 1+ H11l, (14)
and the iterated solution is given by:
M,(t) = M, O() + M D() + M) + ...,
M,O() = M., (15)
1 ~l fy tn-2 M1
won = —— | a [ 1ty f TR
() (h)n . n( l. 0 ¥ 1 Jo s l., 0 e

AMy; #onlty), #nte), ..o, H1i(tn)l.
For the derivation of (15) use is made of the interaction representation:
M, (t) = exp(it A 1/h) M;*(t) exp(—itA 1/h). (16)
Differentiating (16) with respect to ¢ gives:
ihM (1) = exp(itA1/h) {[M*(t),# 1] 4 ihM * ()} exp(— 1t# 1/h)
- [M,(8), #1] + exp(it A 1/R)ihM*(t) exp(—it A 1/h). (17)
From (14) and (17) it follows that:
TM (1), #11] = exp(it A 1/h) thM*(t) exp(—it A 1fh),

M), #1(— 1) ihM . (1). (18)




Integrating (18) with the initial condition: M,*(0) = M, one finds:

-1
M (t)= M, + [/]’ M), #n(—t)) dt.

(19)
The integral equation (19) is solved by means of iteration, giving
{ [t pl pla
M) = My + 35, o J“ dhy | s ‘ dty.
AMz; H(— t), Hri(— ta), ..., K 11(— ta) (20)
Inserting (20) into (16) one arrives at:

] ~t Ay rls
M.(l) =M, + ¥ Iﬂ(”’)” J“ (l/,,“ : Af e ‘ diy.
.’.\Iz: -7/‘”((/ = /1)

v
 HTE( — t2), oy H it — t)],
which solution can be readily transformed into the series given by (15).

Inserting the series expansion (15) into the correlation function << MM ,( )
immediately gives the formula (13)

On certain general conditions, that will be supposed to be fulfilled, I'(¢)
can now be expanded in the following way:

I'(?) = X320 I'n(t),

I ~ r iy Pln-1
Iy (1) \lm; ([,/’)”J“(HIJ (1/3...’ (8 174

0 0

(21)
< ‘l; (.‘[1, /1), (J[g, /-_)). (.‘1,,, [") VI,
? }4.1/1, May,oy Mu#0 >

N

in which expressions the time-dependent operators (M, ¢) are defined by:

(M, t) = exp(it #'1/h) (M) exp(—itH 1/h).

The said conditions being fulfilled (21) immediately follows from (4), (7) and
(13). Making use of the identity:

exp(efo) A exp(— a#y); ¢AS,

in which 4 is an arbitrary operator and « an arbitrary complex number, and
of the identity:

exp(a#’o) (M, t) exp(—aity) exp(—aMA) (M, ¢), A
it can be proved that only terms with M}

ghoH,
I'y(f) can also be written in the form:

0 contribute to (21), so that

1 t o tas)
I'y(2) \lm; -{l'/})" ‘:'(1/1.‘ (”g...{ di,.

o U J

</ s ‘[: (A‘Ix,/l), (.‘[2, [-_g),...,(“/,,./,,) M,>

B 22
N 4 (22)
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3 shie . v Y ot < £ y SI1T 211 .
in which formula ¥’ stands for the summation Xy a7, o, a1, 20
In the same way a similar expansion for the function Q(f) can be found.

This expansion has the form:

(1) o 2a(2),

1 [t oy 3
2u) = tim | dn | da .| di.
! ) _\'n_l., ([/1)" N II( I 0 ikl Jo oy (23}
- v M,; (M;, [|),(.‘[3, 39)5 vana (M., tn) @y ‘”l}“
DTN N .
Now it is supposed that the second line of (23) can be replaced by:
Q,(t) = fodty firdts ... 5~ dbp.
1 (ih)=" '[Mz; (My, t1), (M3, ta), .o (M, tn)layMzyn
. lim Sy 1h) (My, &), ( : ) (Mon, tn) loyM 2y (24)
N0 /)_\

The next section will be devoted to a reduction of every term £2,(f) to a
sum of terms of rather simple form.

5. Reduction of the 2y(f). The reduction of the 2y(/) consists in writing
the commutators:

(ih)—" S [M,; (My, ty), (Mg, t3), ..., (M, ty)] in terms of components of
irreducible tensors, and we are particularly interested in the part of each
commutator that is of the form: — gpM;, gy being a c-number. This part

will bz called the principal diagonal part. For the definition and the general
mathzmatical properties of tensor operators, we refer to Ed monds %),

For simple spin systems, in the limit of N — oo, the cozfficient —gy 18
uaiquely definzd, being a function of the form:

- gn(ty — ba, ta — 13, ..oy tu=1 — tn); depending only on the differences:
ty — ts, bs — 13, ...y tn—1 — ty. This follows from the symmetry of the
commutators, baing invariant for translations carrying one ion into other
ones, and from the orthogonality of the different irreducible, symmetric
tensor components that appear in the commutators. For the n-th commu-
tator the coefficient of M, in the limit of N — oo is given by

- gnll - {3, by — I3, +vuy tn—1 — In)

I Tr 3/ [Mz; (M4, t), (M2, t2), ..., (M, tn) M,

11

N :o (¢h)n Tr M ;2

lim Tr ::’ M,; (M, ty — ta + L2 -3+ ... +ilp—1 — ln),
N-+»00

(M, ts—t3+...tn1—tn), oons (M =1, bnm1—bn), (Mn) 1M/ (iR)* Tr M 2. (25)
The n})t'l‘;ltnl'Z

#’/1(11 /'.’, /‘.Z 9 /3,..../,,,[ /u) -‘[:' l26)
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is called the principal diagonal part of the commutator:

(1) X' [M;; (My, ty), ..., (Myu, ty)]. In general the g, contain a sum of
products of g; with & < », which can be found by means of repeated
reductions of lower order. That part of (26), that cannot be reduced to
products of gz of lower index, is called the irreducible principal diagonal part
of the n-th commutator and is written as:

- halt la, la — t3,..:; bn— tn) M3,
So the functions g, can be brought into the form:

.’\’n(fl - ¢ ves bn—1 —/tn) hn(ty l2, ls 13, ooy bn— tn)

5 E:’: illll(/l ",L’ ----- [/)'l '/p)/lw/ /l(lll-l [I"'J----v[II 1 /,,)
.\.:l; _" l:,” »2’ J /"r/”l 2, i [r/ 1 [q) /Z-r(/rpl [41-;’- trey ,r/'r 1«7 [(1~r) .
./I,, q .,-((,I.,A.l f,l.,-.-_g, ...,[,, 1 /,,) (27)

and the reduced form of the n-th commutator is given by:

()0 B [My; (My, 81), v, (Mg, £2)
= ‘l /1.'1(/1 = ,'_’v{'.f 7. /3' ~-~-/n 1 /n)

) -\—:;‘: -:' /]}’{/l - /2, ----[/1 1 //1) /III P (,p-l - ,;‘-2 ..... [Il 1 /,,)
bt 1 ol et 07 70T LT) & VSR G 1R TS R P 2 (28)

In (28) Ty(th, ts, ..., t) stands for the sum of all parts of the commutator
that are not principal diagonal. Now it is supposed that the contribution
of the tensors T, to the relaxation part of 2(¢) can be neglected in the case
of large external fields (H > H,). This statement can be formulated in a
more accurate way in terms of the function f(w), defined in section 6 of
ch. I 3). This function is given by the formula:

o) 2 z”("'») :

ol | wpw N
for a large essentially isolated spin system. From (23) and (24) l.c. and
formula (12) of this chapter it follows that:

() = [° [(w) cos (wt) dew. (29)

On general physical grounds we suppose that f(w) is a continuous function
of w. So we have:

lim 2(f) = 0.

{00
In the case of a large external field (H > H)) f(w) is composed of three parts,
as shown in ch. I1 3), except for very special cases (S > 3/2: Stark splitting
terms (M) with M > 2). The first part fi(w) is only different from zero in
the neighbourhood of the point @ = 0; the two other ones correspond with
the Larmor peaks, situated at the points w = wgy and o = 2wy respectively,
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wg being the Larmor frequency: gfoH [h. The breadth of the two peaks,
being of the order of gfoH;/h, will be independent of the value of H, for
H > H;.

From (29) it follows that also the function £(f) is composed of three parts,
two of them corresponding with damped oscillations, with a characteristic
time of the order of 2/gfoH;, independent of the value of H in our case. We
now suppose that the 77, only contribute to the oscillating parts, so the
function fi(w) is only determined by the principal diagonal parts of the
commutators. In section 6 it will be proved that the characteristic time of
the part of £2(¢) corresponding with fi(w), the spin-spin relaxation time, is
a rapidly increasing function of H, so that for asymptotic values of H and {
the contribution of 7, to 2,(/) can be neglected.

So the functions £2,(f) are asymptotically given by:

Qult) = — [ dty [2 dbs ... [ diy.

Jhaly = Ba)iti=p— ta) — BB (. ) Bucsl. )k

Jim as L o s W
N0 4 /)‘\
= — fddt fhdts ... [ diy.
Jha(ty — ta, coor b1 — tn) — 023 hp(...) Bu—p(.-.)
LS(S 4 1)(2Bo)2— 2,3 (30)
“a5(S 200)* ———— N =L, csey
35(5 + 1)(gho)*~ e e i

which follows from the argument given above and from (24). Also use is
made of formula (38) of ch. I1 3).

For the computation of the spin-spin relaxation time it will be convenient
to write the functions &, in the form of a complex Fourier integral:

hp(ty, i3, ..., tp—1)= [dwi dws ... doy-1 exp twit1+wsta+ ...+ 0p—1lp-1)-
T@D(wy, ..., wp-), (31)
F@-Y (wy, wg, ..., 0p-1) = X' & 0 L, (01, 2, .., @p-1).

In (31) the function ). 5, corresponds with the commutator:

(h)—2[M; (— My, t1); (— Mgy ts), ..., (— My, tp)]-

For all functions /%), there is a straightforward method for computing

the moments:

'/.(]m] dws ... ([n)‘, 1(::;1)"’((02)"‘1 (m,, ) I'(‘ .\lll My (_'”l» (L N ml,,,l).

All these moments can be expressed in terms of traces of commutators of
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the operators (M) and # 1. For instance the function Y arlw) is given by:
i (¢h)=2 Tr [M; (M, t), (— M, t5)] M,
im =2
Ne—soo I'r .1[:2
— [ dw exp {in(ty — t3)} /'WU.J/(”’)-
which formula can be transformed into:

) M2Tr (M, t)(— M)
lim

N-so00 h2 Tr S,2 J do exp (iwt) [V, (). (32)

From (32) it follows that the A-th moment of 7Y (o) is given by:

. .1[2—[-]“'»7/], Hi,l... [y, (1/) (* 1/)

dw ok f‘ l ’” u (m) =l g

| e A2tk Tr S,2

in which expression [y, [#1, [... [#], (M)] ... ] denotes the k-th commu-
k

tator of #'rand (M). For the determination of the moments of the functions

{(3) (4) 6 Rave fire % QP AT e I,

Itianadtsane Dariatsrsazaons » -+~ We have first to substract the reducible parts

of the corresponding commutators:
M; ( — M,, t), ( — M>, ta), ( — M3, i3), (— M, tg)] ... ele.

It should be noted that the second and third order commutators do not
contain reducible parts, whereas there are no first order ones (2(4)
= I'1(t) = 0).

The definition of the functions finats...ary., 1S given in such a way that
the absolute values of these functions show maxima in the neighbourhood

of the points:
:ll)] - .11](!)", Wy = (1[1 1= 1[_3) OH, «vcy Wp (1[1 t ]/_) 1o seisy == .‘[/,)u)”:,

respectively, which follows from the commutation rules (3). The functions:

A D) / - )
-l\,|ll'| |f:....1fp~|(”'l’ @2, s, ”)I') /(.ll;lullxn] (”)l i ‘1[1“'“' W21 (‘111 T “[2) (“’1"")’

are independent of the value of H, so the shape of the functions:

/(:l';)l..',w,,.: (w1, @z, ..., ®p), for all values of H, is entirely determined by
the values of the moments for H — 0. This enables us to give an estimate
of the field dependence of =, assuming a reasonable form for the functions
JM 3 and fy giving the main contribution to 1/r, as shown in the next
section. In that section it will be shown that in general the asymptotic form
of 2(f) is given by a function of the type:

Q(f) = 4 exp — tfr,

in which expression =, the spin-spin relaxation time, can be expressed in
terms of the functions /-1

Mp®
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6. Determination of the relaxation time v. From formula (30) it follows
that the functions 2,({) obey the asymptotic integral equations:

Qu(ty = — [ /3 dia [3* Algho(ty — t2) Lu-2 (t2)
4 [t dty [b Als [ dtsha(ty — t2, t2 — t3) 2n-s(ts) + ..., n = 2. (39)

Adding up all equations (33) we arrive at the equation:

Q) — 2(0) = — [ f3 Aty [ disho(ty — t2) O(t2) +
+ [ dty [b Aty [ Atghg(ty — b2, 2 — 13) (t3) + «..], (34)
that can be transformed, after differentiating with respect to ¢, into the
equation:
d

¥ Q1)+ fldtiha(tr) L(t—t)+ f3dh [ dishg(ty, t2) Rt —t1—12)+...=0. (39)
z ! ?

Now we shall show, without going into all mathematical detail, that (35)
is asymptotically obeyed by:

Q) = Aexp —t/r, H> Hi, t> hjgpoHy, (36)

in which expression the relaxation time = is given by:

Y % s 1 1 T 1 TL = /,To (1f|/1-_3(/1), 1 T = /(Tc (1/1_/}?0 (1f-_3/l;;(t1, 1~_7). (37)

-t

From the properties of the functions F) it follows that 1/71, [1/72|, |1/73], .-
are rapidly decreasing functions of H and that they obey the inequality:

. |1/78] < 12| L 1/m1, H> H;. (38)

For the proof of (36) we shall study in some detail the properties of the
functions hs(t1), ha(ta, t2), ... These functions have an oscillating character
and from section 5 it follows that their characteristic frequencies, determined
by the moments of their Fourier transforms FO, F®, ... are multiples of
the Larmor frequency mg. To give a prediction of the long time behaviour
of the functions &y, we have to look at the different components of the
Fourier transforms: /&' . . The function fBoL 5, has an extremum n
the neighbourhood of the point:

:.(.')| .\Ilm”, m9 (‘11 1 ‘[_g) WH, «voy Wp-1 (‘/] } ‘IJ o i | .‘1,, 1)(!)”:_

and the root mean square deviation of all variables w1, ws, ... will be of the
order of gfoH/h, independent of H, which follows from the computation
of the moments, as indicated in the preceding section. So the regions in
which the functions hs(t1), As(ty, £2), ... are considerably different from zero,
are in general given by:
{lta] < 61}, {|t1] < 02, |t2] < da}, ... in which 9y, 02, ... are times of the order
of h/gfoH; (independent of H).

Now the validity of the solution (36) can be demonstrated by direct
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inserting in equation (35). For ¢ higBoHy and H H;, the main contri-
bution to the integrals in (35) comes from the regions:
U 01§, &1 03, |tz 02y,

which follows from the fact that the rate of dec: ay of 2 : 1/7 is a rapidly

decreasing fnm tion of H, whereas those of hs, hs, ... as functions of f1, 11 and
f2, ... are not. 1/r being very small (35) can be replaced by:
d

i/ !..)(/) 1 /,: 1'1/]/13(!]) + /.{‘“l/nl; (i/g/[;;([],/-_)) oo .{.)(/) 0,
(
which is in accordance with (36) and (37) for t > h/gBoH;.

To compute the different terms | Tn N the series for 1/r we make use of
the formula:

oo - N

’ 1
’ d, ’ dw exp (twty) I(w) al(0) + 4 ‘ dw F(w) <”>’., (39)

and of certain symmetry properties of the functions F®. From formula
(25) it follows that the functions ga(tr, bo, ..., ty—1) show the symmetry:

n(/l-['.!y--w[u 1,)' (’*)" "5'"(* In—-1, = TRy vrp /l)-

From (27) it can be proved that the functions hn obey the same equality,

that immediately gives the following symmetry property of the functions
F) -

1.-([1)(,,)1, W, ..., 4:;”) ( )I;#l I-A(l))(f(r)lh =y 1, {"l)- (40)

So one finally arrives at the following expressions for the lowest order terms
in the series for 1/z:

/7y aFM(0),
. , (41)
= 2/'.7 (l(!) I'.(:’,)(Il), 0) ( > 3 ses
N w /P

Assuming a Gaussian shape for the functions ¥y 1 and fO)_; (these
functions obey the relation JMy,a(w) = D 1(— ), that follows from
(32)), and neglecting the contributions of the functions /”’u w (|M| > 1)
to 1/71, and all 1/7, (# > 2) in the series expansion for 1/7, we find that
asymptotically = shows a field dependence of the form:

T 70 €Xp (cH?),

in which expression ¢ is a quantity of the order of 1/H,2. This field de ‘pendence
\Im\\\ great analogy with that, predicted by [\l()]ll“ and Bouw kamp7),
\ detailed comparison of our theory with those of other authors will be
given in the following ch: ipter.
The contributions of af Vs _3(0) to the reciprocal relaxation time 1/+
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can be related with “single flips” (M = + 1, 4S; = 1) and “double flips”
(M = + 2, AS; = 2) etc. These “single” and “"double flips” (of which the
second ones are highly forbidden as compared to the single flips) have an

essentially collective character, this unlike the single spin reversals, in terms
of which the relaxation mechanism is interpreted in the theory of Kronig
and Bouwkamp.

“Triple flips” (|M| > 2) do not occur in first order except for very special
cases (see the remark after (29)).

The higher order terms in the series for 1/r, given in (37), correspond
with contributions of more complicated character, that are highly forbidden
if H> H;. In general they are related with multiple spin flips and small
corrections to the single and double flips included in 1/71.

For practical computations we always restrict ourselves to the contri-
butions to the first order term, corresponding with M = -+ 1. In that case
the relaxation time = is given by the formula:

7 = [2afM); 1(0)]-L. (42)
From (11) and (36) it follows that I'(f) has the asymptotic form:
) = 3S(5 + 1B 5y +
b+ CH?
+ A exp —tr, t > hlgpoHi, H> Hj. (43)

Now the quantity 4 is determined by formula (43) of ch. II 3), if one allows
for the fact that the contribution of the low frequency resonance absorption
to the integral: /¢° fi(w) dw, being of the order of kT (yo/N)(H/H)* can be
neglected if H > Hj(cf. section 2 of this chapter).
So one finds:
A = 1S5(S + 1)(gfo)2bo/CH?,
1 Tr (0)(0)

bo = lim — ——— :
DT e ot N Kkl

and the asymptotic form of the relaxation function ¢.,(f) is given by:
r/‘zz([) = A exp(—¢ T) + B,
A = y0bo/CH?, B = 30 CH?|(b + CH?).

As indicated in section 2, the best way to measure spin-spin relaxation times,
will be by investigating the low frequency part of %"(w) (one may also
investigate the corresponding part of y'(w), giving essentially the same
information). This part of y"(w) corresponds with the relaxation part of
f1(w), having the form:

@) = hO)

o 9. !
1 4+ o242

(44)
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in which formula 7 is given, in our approximation by formula (42). In the
following chapter the experimental value of 7, measured in a way as indi-
cated above, will be compared with our theoretical value, given by (42),
in the case of the ammonium cupric Tutton salt.

7. Systems containing different groups of ions. For systems containing
different groups of ions, a generalization of the formalism, developed in the
preceding sections can be given; in the following lines a brief outline of this
generalization will be given.

A group consists of ions that are identical and occupy equivalent lattice
sites, so that the translation that carries one ion into any other one of the
same group is a symmetry operation for the lattice as a whole.

The zero-order hamiltonian #, is now given by:

.//() = — H E;» .‘[zl‘ = — ﬁ()]l }_‘1':‘»'(") .\'27', V= 1,2, veey I). (45)

The index » in formula (45) numbers the different groups, P being the total
number of them. M,? is the z-component of the total magnetic moment of
the group » and S, that of the corresponding total spin moment, while g(®)
stands for the g-value of the same group.

The perturbation hamiltonian #” can be split up as indicated in section 2.
Now a further differentiation of the terms, contributing to (0) will be made.
We do not take into account Stark splitting terms in this section, so all terms
of (0) have a two spin character. Consequently (0) can be divided into the
parts: (0)®*), the indices » and 2’ indicating that in each term of (0) (@sv)
one of the spins belongs to the group » and the other one to group ", It will
be clear that (0)®?) commutes with Sz and S;* 4 S,¥. That part of
(0)®*) that commutes with S.? and S, separately will be denoted by
(0):(*:*); the other part will be indicated by: (0).?). So we have:

()@ = (0)zs(®®) 4 (0)4 (000,
If the g-values of all groups are different the secular and non secular parts
of the total spin-hamiltonian will be given by:

-//I —a -7/0 4 )_:L (O)w’” =1 Ez:<l" (O)zz“'"1"). (46)
D T 1 ol
H1 = T (0)£00) Dar<o (M).
#'1 obeys the commutation rules:
[9€1,S:Y] =0, v=12 ..., P,
thus commuting with the z-component of the spin and magnetic moment
operator of the individual groups.

The functions I" and 2 can be defined in an analogous way as for the
simple spin systems, and also a series expansion for these functions can be
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given in terms of # 11. So we have:
. 11

Qult) = Su2,0 (1),
Q) = Tu20(1), Q1) = B2, Lu® (1), (47)

QuO(t) =[5 A [§ Atz ... [5* dln.

lim _a\r (1/1) n \" M,? (.\[1,/1), (:_'\[._,"12) "
'—\' s /)‘\-

In (47) N is the total number of ions and in the summation ¥ the terms

(0) (¥ should be included. Now we have to find the different principal
diagonal parts of the commutators:

(th)—n T'[M.°; (M, ) ..

- ("[Ill {Il) .17“[.’},\

. (M y, ty)], that will have the form:

— “I:l"-.&'u“‘"”)(ll = /:3. /’_’ = /3, sy [" VT [,,).

The functions g,®?) are given by the formulae

= .i')a("""')([l = [2. '2 - [3‘ seny [n -1 = /n)

_ lim Tr Y [M2?; (.\Il..ll), (\13 £3), «vvy (My, ta)] MZ¥ : (48)
NS (th)® Tr {M;v'}2
and may contain products of gi(*?9 of lower index, in the same way as in
the case of simple spin systems.
So the reduced form of the different parts of the total n-th commutator is
given by:

(ih)-n X' [M0; (M, ty), (M3, ta), .

s (M p, ta)
DI MY [hy (052 (8 ta, o — 13, <oy tp—1 — tn) —
— o, Tpos hp®PO(ty — B2, b2 — 13, ..oy bp1 — tp)-

-/Infp("""')(’])vl — Lp+2s vevs tn—-1 — tn) + T (ty, Lo, ..., tn)- (49)

In formula (49) the functions /,®?) correspond with the irreducible
principle diagonal parts of the n-th commutator:

()= B IM2; (M, ta), -y (M, tn)

Inserting (49) into (47) we arrive at the following asymptotic formula for
Q,0(t) (cf. formula (30)):

Q.0 = — fEdty fhrdty ... [g* din.

\._g‘r’irhu(l""')([l — to,do — 13, cony ln—1 — /u) P

S E0L g @ () Bpe?(...)
: (MY by 1
Jim Yavy > ) (S0)
N-»t0 /"\




from which the integral equations:

QW) — QW(0) = — 3, [ fEdty [8 dlshs®2) (¢t - l3) 20 (1)
1 _/FI:(UL/"',“ (l/g_/}’,"(“3/13“'"”)(_/1 — {a, lo — /3) .(-(""(/3) = ks (5])

follow in a straight forward way.
After differentiating with respect to ¢ the equations (51) go over into:

1

(1/ QO + Tor [ f5 dtrhe®0(ty) Q@) (¢t — ty)

(

/0 by i At @) (ty, L) QO — £y — o) + ...] = 0. (52)

Following an analogous reasoning as given in section 6, we can find the
asymptotic form of (52), given by:

d

1
1/ L0(1) + v \n Q@H(1) 0, (53)
(

711("". )
in which the quantities 1/7,®:*) are given by:

1

- (v,v’
n' )

/‘fﬂ (“l-/":): dis ... /“w Aty s ]("!"‘)(/1, 7 VIR /,,). (54)

By choosing the right linear combinations of the functions QW(f) the
matrix Y, 1/7,®?) can be diagonalized and we have:

d > 1

= A7) AP() =0, 6 =12, ..., P, (55)
(

;lf_')
from which it follows that the asymptotic forms of Q(f) and ¢..(f) are
respectively given by:

Q) = X5 4; exp —t/7?,

- . (56)
q 2z(t) .\_‘,,—,:l’-, exp —i¢ v 4L B

The reciprocal relaxation times 1 7@, found by diagonalizing the matrix
2in 7@, will be given by a series expansion in terms of # IT:

A0 =3 § D, o2 (3P,

4

the number of relaxation times thus being equal to the number of groups
in the general case. Some of the |/+® may be complex, this follows
from the fact that the matrix: S /%% need not be symmetric; so part
of the relaxation may have an oscillatory character.

For the case that two or more g-values, corresponding with different
groups are equal and the coupling terms for these groups: (0).(®?) are large
enough we expect that the exchange of magnetization between these groups
is so rapid that they can be treated as one and the same group, so the
number of relaxation times will be reduced, being equal to the total number
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of different g-values. For computations of relaxation times in this case the
terms (0)+®¥) (gy = gv) should be included in #'y.

For two different groups having the same or nearly the same g-value,
but being very weakly coupled (the matrix elements of (0)+®?) being very
small, which may be the case for special crystal structures) there is no
reduction of the number of relaxation times in general and (0).®*) should
be included in #'17.

It need not be said that in the general case, one or more of the 77
be equal, but this degeneracy seems to be very exceptional.

Our method for determining relaxation times for simple spin systems,
as developed in the sections 2-6, has a great analogy with the method of
Van Hove8)for computing the relaxation time for more general phenomena,
in the case of systems with a continuous energy spectrum.

) may
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CHAPTER IV
ON THE THEORY OF SPIN-SPIN RELAXATION II

Synopsis

The method for computing spin-spin relaxation times, developed in chapter 111 *)
will be worked out in more detail for systems containing only one magnetic specimen.
Numerical calculations are performed for two types of lattices, and the results are
compared with the experimental value of = for the ammonium cupric Tutton salt.

Besides a discussion of older theories on spin-spin relaxation is given and a comparison
of these theories with our one is made, regarding the theoretical foundation as well
as the numerical results.

l. Introduction. In chapter I1111) we derived an asymptotic expres-
sion for the spin-spin relaxation time =, in the case of large external
fields, for magnetic crystals, containing only one magnetic specimen. This
expression was given by formula (42) l.c. In section 2 the function Dy, (o),
given by formula (32) of ch. II11), will be determined with the aid of its
moments of zero and second order, assuming a Gaussian shape.

So we arrive at a field dependence of = that is of the form:

T = 70 €Xp ((’11?').

Numerical calculations are given for two types of lattices 7.e.: those in
which the magnetic ions are arranged in a simple cubic lattice and in a face
centered cubic lattice.

In the final results, expressed in terms of the internal fields, the values
of H;,, and H; , corresponding with the contributions of the dipolar inter-
action and the exchange interaction to the specific heat, are inserted for
the ammonium cupric Tutton salt, and a comparison with the experimental
value of 7, as a function of the external field H, is made. Only for this salt
detailed experimental data were available in the region where a comparison
with our results is possible (H > H;). The actual structure of this Tutton
salt is more complicated than that of the two types of lattices, for which
our computations are given, but more realistic calculations corresponding
with this actual structure seem to be very time-devouring, whereas those for
the more simple lattices may give a good approximation, if one uses the

*) Reference 1.
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actual values of H;  and H, . Besides the experiments are performed with
powders, whereas our calculations refer to single crystals and special
directions of the external field H, with respect to the crystal axes. Section
3 is devoted to a discussion of older theories on spin-spin relaxation. The
numerical results of the theory of Kronig and Bouwkamp 3) are also
compared with the experimental ones for the ammonium cupric Tutton salt.
So one sees that our theory, leading to a field dependence of = that is quite
similar to that of these authors, but giving another value for certain
constants, gives a better agreement with the experiments. Besides we may
remark that the underlying ideas of their theory, describing the relaxation
mechanism in terms of reversals of individual spins, are quite different
from the fundamentals of our formalism.

In the first theory of spin-spin relaxation, given by Waller 2), only the
case H — 0 is treated. Broer 4)3) gave an extension of this theory for the
case H - 0 and his results are quite different from those of Kronig and
Bouwkamp and of this chapter. However his results do not refer to the
«“relaxation” part of the low frequency absorption, as is suggested, but to
the “resonance’” part. The distinction between these two parts can be made
in a theoretical way and the two parts show a quite different dependence
on H. In the previous chapter!) we showed that the “resonance’’ part can be
neglected in the region where there is “relaxation” absorption. As to the
computations of Wright ) of the field dependence of spin-spin relaxation
times the same remarks can be made.

The results of Bloembergen 7) and Pershan 8) are quite similar to
our ones for the first order contribution to 1/7, but in their method a straight-
forward correspondence with thermodynamical considerations concerning
spin systems cannot be shown in a simple way.

Finally attention is drawn to the similarity between the field dependence
of 1/7in our case and that of the line breadth of resonance lines, as computed

by Kubo and Tomita9).

2. Compulation of = for special cases. The asymptotic formula for the spin-
spin relaxation time given in ch. 1111), formula (42), will be worked out for
the case that the perturbation hamiltonian J#” (see section 2 l.c.) does not
contain Stark splitting terms. So the hamiltonian A’ contains two parts,
H'qa and H',,, corresponding respectively with the dipole-dipole and the
exchange interaction. A partition, as given in formulae (3) and (4) l.c.,
will now be given for #gq and H#” oy separately. One has:

H' = H'"qa + //”f'.l‘-

H' aq — Y(2B0)2 Sywrlrsr) 3 [(Sy-Su)—3 (rpe)=2 (S5- #52) (S 152)
Y2y=—2(M)aa, 0

H'ox =} Tpver Agi(Sy*Sk) = (O)ez-

54




The operators (M)qa and (0),, can be written as products of components
of irreducible tensors, for the definition and properties of which we refer to
Edmonds 19). Making use of the tensor notation we have for the dipole-
dipole interaction:

(M)aa = % Zjer ot (rsn) To23(S5, Si),
T3345(85,8k) = SjaSks,

T*3:1(8y Sk) = F (Sy+ Skz + SpzSks),

To30(Sy, Sk) = §v/6 [S12Ske — H(Sy+ Sk~ + S5-Si+)],

Traso(rix) = —3(gPo)? (rs) ™ (&sx + )2, (2)
i Trasn(rsx) = -+ 3(Po)? (rsn)=2 (Esx 4 tnsx) Ly,

Trao(rse) = —1/6 (gP0)? (rgi)~2 (3p® — 1),
‘ Si = Sz 4 1Sy, (&% Nyxs Six) ,»,I'A- ks ks Bl

and for the exchange interaction:
‘ O)ez = 3 Zjer AsT%00(Sys, Sk),

w T300(Sy, Sk) = SjzSkz + 3(Sj4Sk= + Sj=Sk+). (9)

In the final expression for 7, use will be made of the quantities H, and H,
defined in an analogous way as the total internal field H;; for the definition
of the latter quantity we refer to chapter 111 1),

| So we have:

2 1 Tr ’,1,1.'Z

N T
1S(S + 1)(gho)? H, 2 = it (N — o0).
: i) ) e N Tr1 '

In (4) N is the total number of spins; these formulae are asymptotic ex-

pressions for large systems.

As was shown in ch. ITI 1), the determination of the relaxation time 7,
in the case: H > H;, comes down to the determination of the function
[ —1(w). This determination, in all details, from a straightforward compu-
tation of the moments, as indicated in section 5 of ch. II1T1), is impossible
in practice.

; (N — o0),
(4)

So we assume a Gaussian shape for this function and in this approximation
the value of = will be fully determined by the moments of zero and second
order, and we have:

1 1
= 2.7|:J‘(1(!) fMq, |(H'):I :2?’(.‘1”))5:5-(«]) (gPoH )2/ 202 (Aw)?,

IR R e L el O T SO N
12 [r (—1)(1) h? Ir (1)t (1)

' dw ‘I'(“L_](m) = -




From (4) it follows that the internal fields H;,, and H; are given by:
H, 2 = 2x(gBo)* a=® Tkisp prs~% % = S(S + 1), 6)
(
H,; 2 = x(gBo) 2 Tkcep Agi.
In (6) a is the distance between nearest neighbours and pjx = 7ji/a. The
quantities H; % and H, ? have, for the two types of lattices considered
(simple cubic (s.c.) and face centered cubic (f.c.c.)) the values:

TABLE I
S.C. 5.C.Ci
Hia® | 2x(gBo)%a~® 8.36 (£ 5%) | 2¢(gfo)%a~% 14.39 (+ 5%)
H; .2 bx(gfo) 2 A2 12%(gBo) 2 A2
tex

For the computation of H; 2 it was supposed that A ;. is only different from
zero for nearest neighbours and has for all pairs of nearest neighbours the
value 4.

The quantities Tr (1)t (1) and Tr [(0), (1) t[(0), (1)] depend on the
direction of the external field H with respect to the crystal axes. Three
cases will be considered:

a. a simple cubic lattice, H parallel to the (100) direction: (s.c. (100)),

b. a face centered cubic lattice, H parallel to the (100) direction:

(f.c.c. (100)),

c. a face centered cubic lattice, H parallel to the (111) direction:

(ficic.: (L119):

We shall first give explicit expressions for:
(N Tr 1)-1 Tr {(1)* (1)} and (N Tr 1)=2 Tr {[(0), (1)]* [(0), (1)I}, (N — o0),
in the general case and then give their values for the three cases a, b and c,
in terms of the quantities a, 4 and x.
1 Tr (1)t (1)
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In the numerical evaluation the sums marked with an aste Tisk, being small
with respect to the sum of all other terms, will be neglected. The summation
sign ¥« indicates a summation over all lattice sites k different from an
arbitrary but fixed site 7. In the summation ¥ 2kupn= we sum over all sites
k=1, both of them being different from an arbitrary but fixed .
The values of the quantities (N Tr 1)~ Tr {(1)* (1)} and

(N Tr 1)~ Tr {[(0), (1)]* [(0), (1)]}, expressed in terms of x, @ and A, for
the three cases a, b and ¢, are given in Table II.

FABLE 11
s.¢.(100) I f.c.c.(100) f.o.c.(111)
Vl'l' | 1)t1) \*"‘J[fn" a-%0.189 13’:3‘1)’07 'a-%1,123 r3(gffo)* a~® 0.850
NTril
I'r {(0), {1)1t[(0), (1) ¥I(gfo)% a-12 gfo)® @12
0.0009 0.15
NTrcl [; 4¢ J . [;} 21 - :'
v X

v3(gfo)ta-6.421.51 v¥(gfo)t a0 A2, - 23(gfo)t a-8 A2
09 e

« | 16.71 v | 492 -

X X

Now we are able to express the quantity (4w)2, that appears in (5), in terms
of the internal fields H,  and H, , with the aid of the Tables I and II. The

A

values of 4#%2(Aw)?2 in the three cases are given in Table III.

FTABLE 111

s.c.(100) f.c.c.{100 f.c.c.(111)




Now we shall first compare the theoretical and the experimental field
dependence of = for the ammonium cupric Tutton salt. In Table IV the
results of measurements of Verstelle *) are given.

FTABLE IV
H T

7.96-10-8

| 1.28-10-8

1550 0.796-10-8
1360 | 0.404-10-8
1250 | 0.266-10-8
1100 | 0.175-10-8

If one plots log + versus H2, the corresponding yoints lay, within the
8 g1 3
experimental error, on a straight line and so all experimental results may

be given by:

T = (0.35-109) exp (H?/0.78- 108) sec, (H in oersted). (7)

The experiments of Verstelle are done with powdered crystals.

For the theoretical value of = we have to know the values of H; > and
H, 2. These can be derived from the measurements of Benzie, Cooke and
Whitley 11). So we find:

He2 —311-103@2, H, %=58-10302, H, 2= 253-103 02

The quantity x for this salt has the value: }-3=1, (S=1). Now the

theoretical field dependence will be determined by the value of the quantity
2h2(Aw)2/(gPo)2, that is given, for the three cases considered in Table V.

TABLE V

s.c.(100) f.c.c.(100 f.c.c.(111)

203 Aw)?/(gfo)® 73-104 02 | 60-10% O% | 74-10t 0%

If these values are inserted in formula (5) a reasonable agreement with
the experimental field dependence, given by (7), is found. However it
should be taken in mind that (7) refers to a powder, whereas in Table V,
theoretical results are given for single crystals and special directions of the
external field, We have omitted the rather complicated computations to
determine #2(4dw)? for a powder, but our calculations are only performed to
give an order of magnitude of the theoretical estimate.

If the extrapolated value of = for H = 0 is denoted by 7o the theoretical
formula for = has the form:

- 79 exp (cH?), (8)

*) Verstelle, J. C. tobe published.
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in which the quantity ¢ is equal to: (gf)?2 2h3(Aw)2. From (5) and (2) it
follows that 7 is given by:

lw
TO = e = ;
V2a [dw [V (w) (9)
S (gfo)? I — &) Epi®
do [y, 1(w) = 35220 5, L= NGy
g . 12a6 ijb

The theoretical values of 7y for the three cases, derived from Table IIT and
(9), are given in Table VI.

FABLE VI

s.¢.(100) | f.c.c.(100) | f.c.e.(11l)

7.0- 109 sec L.8-10-9%9sec | 2.7-10-9 se

These results are in disagreement with the experimental value of 70, given
by (7): 79 =0.35-10-9 sec. It has not been possible to give a satisfactory
explanation of this discrepancy so far. We expect however that for this salt
the contribution of the “double flips” to 1/ (see section 6 of ch. III 1)) is
much more important than one should expect on the base of rough calcu-
lations as performed in this section. The field dependence of both contri-
butions should be of the same form, roughly spoken, because of the simple
quadratic dependence on H of the experimental value of log = and so the
agreement as to this field dependence between theory and experiment as
found in this section may have some significance. The coupling with the
nuclear spins of the copper ions has not been taken into account : we expect
that the corresponding contributions to the function /Dy _i(w) have a
breadth thatis very small as compared to the total breadth of this function.
Small deviations from the isotropy of the g-tensor (g = 2) are likewise
neglected.

3. Discussion of other theories on spin-spin relaxation. The first theory
of paramagnetic relaxation was given by Waller 2). He confined himself
to the case H = 0 and as for the amplitude of the variable ficld, he studied
both cases & < H;and h > H; (in his notation H corresponds with our field
). The only interaction between the spins, being taken into account, is a
dipole-dipole interaction. For the case & < H;, he computed a characteristic
frequency »y, (v9)~! giving the order of magnitude of the time necessary
for the spin system to reach internal equilibrium, after the field % being
suddenly switched on at ¢ = 0. The characteristic time (r0)~! was found to be
of the order of magnitude of % gfoH ;. Spin-lattice relaxation was not taken
into account for this low field case.

As stressed by Broer 4)9), the frequency vy corresponds to the breadth
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of the shape function f(w), that can be computed in a simple way by the
method of moments, developed by Van Vleck 12). In general one cannot
expect in this case that the relaxation function ¢..(f), related by f(w) through
the formulae (11) and (29) of ch. I1I 1), has an asymptotic exponential form,
and for the exceptional case that this will be true, the corresponding = will
not be related in a simple way with the quantity (vo)~1.

Kronig and Bouwkamp 3) were the first to give an estimate of the
field dependence of 7. In a rather simple model they computed the chance
that the external field H is compensated by the local internal field, assuming
a Gaussian distribution for the component of this internal field in the
direction of H. So they arrived at the formula: 7(H) = 7(0) exp H?/H*
The quantity H) is of the order of H,,, only the effect of the dipole-dipole
interaction being taken into account. For a face centered cubic lattice they
arrived at a value of Hy? that is given by:

3 19.2x(gfo)?
11()2 — ]92 ‘li — ‘(’ P()) = ill .)'

ab ab

This value of Hy2 refers to single crystals, for arbitrary directions of H,
and thus also to powders. For 7(0) they took the value of the relaxation
time as computed by Waller.

As to the field dependence of 7 for the ammonium cupric Tutton salt,
discussed in section 2, this would lead in our language, in both cases b and
¢, to a value of 2(hdw)2/(gpo)2, that is equal to: 4-104 @2, whereas the ex-
perimental value is: 78-10% @2, So, in this form, the theory of Kronig and
Bouwkamp shows a large discrepancy with the experimental results.
When the formula of these authors is replaced by: 7(H) = 7(0) exp H2/2H 2,
H = H, ? -+ H, 2 arather good, but not very significant agreement with
the experimental results is found. However Kronig and Bouwkamp,
giving a primitive but clear description of a possible relaxation mechanism,
succeeded in predicting the general character of the field dependence of 7,
without computing the precise value of 242(4w)?/(gfo)%. In our opinion this
could only be done by means of a more detailed quantum mechanical
treatment, as given in the foregoing section.

In general one cannot expect a simple connection between the relaxation
time for large values of H and that of Waller, through a formula of the
form: +(H) = =(0) exp H2/H?, because of the entirely different nature of
the two quantities 7(H) and 7(0)= (v)~!; the first one can be related with
a relaxation mechanism, described in terms of individual spin flips, whereas
such a relation does not exist for 7(0).

The similarity of the field dependence of the relaxation time computed
with the method of this chapter and of that of the relaxation time of Kronig
and Bouwkam p becomes clear if one considers that in both cases =1 gives
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the velocity of a rate process that becomes more and more forbidden as H
grows larger. The difference between the two theories lays in the fact that
in our case the elementary processes, giving rise to paramagnetic relaxation,
are of a character, more complicated than that of the single spin flips of
Kronig and Bouwkamp.

For the case H = 0, the asymptotic form of the equation (35) of ch. I111),
given in section 6 l.c., cannot be used, because of the fact that the contri-
butions to the integrals originating from the neighbourhood of the point
(t1, t2, 23, ...) = (0, 0, 0, ...) do not give a good approximation for the value
of the total integrals, in this case, the characteristic times of the functions 4s,
hs, ... and of Q(f) being of the same order of magnitude. We do not expect
in general an asymptotic exponential decay in this case.

Broer 4)5) made use of standard perturbation methods to predict the
field dependence of the low frequency part of f(w) in the case: HS- H;
and doing so he arrived at a field dependence of = that is of the form:
7 = const. X H%/H? This result is in contradiction with that of K ronig
and Bouwkamp and that of our theory.

This discrepancy can be understood by means of the following argument :
The absorption computed by Broer has not a relaxation character but it is
resonance absorption, because it originates from small clusters of spins for
which perturbation calculus does converge, whereas relaxation is a typical
many spin phenomenon. Broer’s absorption gives a contribution to the
integral /f(w) de that is of the order of RT (xo/N)(Hi/H)* and we have
neglected this contribution for the region in which there is relaxation
absorption. (For large spin systems (N — oo) the perturbation calculus will
diverge in the general case as can be seen from straightforward evaluation
of the different terms in the series for the eigenfunctions).

Miss Wright 6) following the same line of thought as Broer, gave a more
precise calculation of the field dependence of 7, arriving at a similar result.

An entirely different approach, more similar to that developed in
ch. IT11), was given by Bloembergen ¢.a.”). In a paper by Pershan?¥)
the method was worked out in detail for the cross relaxation in LiF, for
which a comparison was made with the experimental results. The distinction
between “cross relaxation’” and the Kronig Bouwkamp relaxation does not
become quite clear for simple spin systems in the paper 7). For these simple
systems, containing only one magnetic specimen (S = 1), their method
leads to the following cross relaxation probability :

4z Tr (1)t (1) 1 (gBoH)?
- exp — —————,
202(A )2

B2 NTrl /{2r(dw)?)
including only single jumps.

Introducing this transition probability into a rate equation for the
magnetization, including the proper Boltzmann factors, we arrive at:
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‘—_‘.,’p'()]l A ,‘:[f()ll

exp - —— — eXP——
s L g 2kR1 2kRT Tr (1)t (1)
‘IV N - = gpPo = .
d? h? 2 N Tr
1 opoH)? s
———@Xp — -(“_/7”4——) — = —— M.,
V127 (Aw)?} 2h2(Aw)> T

:n which formula = is the spin-spin relaxation time given in section 2 of
this chapter. In this way the method of Bloembergen e.a. leads to the same
value for = if only spin reversals of first order are taken into account (cf.
section 6 of ch. 111 1)).

However the mechanism of the relaxation does not become quite clear
in their hybrid method for computing relaxation times and the rate equation
given above does not lead to the real asymptotic value of M, prescribed
by the rules of thermodynamics.

One cannot expect to find the good answer following their method because
of the fact that typical collective properties of the relaxation mechanism
were not taken into account in a proper way.

As to the computation of the cross relaxation time in the case of LiF
(see Pershan l.c.) a method can be followed as indicated in section 7 of
ch. IIT 1).

The author also developed a method to compute the so called “cross
relaxation’” time in some paramagnetic alums 13), for the case that the
crystal splitting and the magnetic splitting are of the same order of magnitude.
An outline of this method will be given in the next chapter.

Our formula for 1/ry, given in ch. III1) (41), shows a great analogy with
the formula for the linebreadth Aw; in the case of strong narrowing, given
by Kubo and Tomita?), formula (8.14). Assuming that there are only
contributions from M = + 1, 2 and that the corresponding functions
fM_ar.m(w) have a Gaussian shape, it follows from (32) and (41) of ch. ITI 1)
that the relaxation time 71, for the case: H — 0, is given by:

1 " M2Te (MY (M) 1 l: Tr (M)t (M) ]5
= 278 D M=1,2 —_— —— | = .(10)
T ¢ 72 Tr S;> V2% Ir[(0), (M)t [(0), (M)

This formula is not simply identical with (8.14) of Kubo and Tomita
l.c.. but the latter can be transformed into (10) by replacing S— and Sy
by S, and writing @; = 0 %), One should expect that the two quantities
Awy and 1/71 were equal for H = 0, because of the fact that for this case
there is no longer a distinction between the parallel and the perpendicular
components of S;. However our formula (10) does not give a good approxi-
mation for 1/7 in the case of H = 0, because of the higher order processes
becoming very important for small values of H. So (10) only gives the

*) Strong narrowing implies that in our formula (10), (0) can be replaced by # ex.
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extrapolated value of the reciprocal relaxation time. Besides we do not
expect a Debye form for the low frequency absorption curve in the case of
small # and the asymptotic expression for 2(f) given in ch. I11 1) is not
correct in this case. We can only state that for H = 0 ; 1/7; and Aw, are
of the same order of magnitude: gpfoH; 2 hH; . The difference between Aw,
and 1/ry can be further illustrated by evaluating their values in the limit
of H — oco. In our case we have 1/7(H (%)) 0, whereas:

‘/'/ T !T()z
Adwy(H = o0) l ’ -
2

Wey

corresponding with the fact that for large values of H, only the secular part
of the interaction contributes to the moments of the absorption line (trun-
cation).
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CHAPTER V
ON THE THEORY OF SPIN-SPIN RELAXATION III

Synopsis

A typical relaxation mechanism is studied for which the change in magnetic energy,
accompanying a spin flip, is compensated or partly compensated by the change in
electric energy. The spin flips are all two or more spin processes for this mechanism.

An essential part of the argument is the partition of the operators of the total
magnetic moment and of the total spin moment in a diagonal and a non-diagonal part,
in a representation diagonalizing the zero order hamiltonian, containing only the one
spin parts of the total spin hamiltonian (Zeeman parts and electric parts). Only the
diagonal part of the moments contribute to the spin-spin relaxation.

Just as for the more simple case, treated in previous chapters 1)2), the number of
relaxation times equals the number of groups of ions. Most attention will be paid
to simple systems, containing only one group.

1. Introduction. In this chapter a relaxation mechanism will be studied,
first indicated in a paper by Verstelle, Drewes and Gorter 3). A short
discussion of this mechanism has already been given by Bloembergen e.a.t).
It is expected to be very important if the Zeeman energy and the electric
energy of the single spins are of the same order of magnitude. The character-
istic processes are two spin flips for which the change in magnetic energy is
compensated or partly compensated by the change in electric energy. Also
more complicated processes of the same nature, in which three or more spins
turn over simultaneously, are possible. (The electric energy arises from
inhomogeneous electric fields acting on the paramagnetic ions; the corres-
ponding contributions to the spin hamiltonian and general properties of
this operator are discussed in the papers 5)6)).

In section 2 the spin hamiltonian is given in its general form. The zero
order part of this hamiltonian: #p, only contains the one spin parts:
Zeeman energy and electric energy. Just as for the case treated in the
chapters III and IV 1)?), the spins may be divided into different groups,
according to the form of their contribution to Hp and the way they are
surrounded by other spins. For simplicity we restrict ourselves to the case
that all ions have an isotropic g-tensor, the g-values of all of them being
the same. Throughout this chapter most attention will be paid to simple
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systems, containing only one group; the generalization for the more com-
plicated systems will be shortly indicated.

The perturbation hamiltonian 2, containing the two spin interaction
terms, can be split up into different parts, that are characterized by
their commutation relations with #:

[#o, H'(An)] = An'(dn), n =123 ...,

in which the real quantities 4, are a number of differences of eigenvalues
of .

All 4, are continuous functions of H and we choose them in such a way
that they all have continuous derivatives with respect to the components
of H. For the secular part of #”': #7(0), the quantity 4, obeys the equality:
An(H) = 0.

An analogue partition of the operators of the spin and of the magnetic
moment may be given; doing so the z-components of these moments: S,
and M, corresponding with the direction of the field H, have the secular
parts 5:(0) and M.(0) respectively, commuting with #'(0). The partition
of the operators #”’, S, and M,, indicated above, is discussed in section 2.

The spin-spin relaxation time(s), given by the asymptotic form of the
relaxation function ¢,(f)!), will in this case be fully determined by the
correlation function:

(M 4(0) M;(0, )>> = (gfo)% <(S:(0) S;(0,%)>>, in which formula M,(0, 1)
and S5;(0, 7) are the Heisenberg representation of the secular parts of the
z-components of the magnetic moment and of the spin respectively; fo
is the Bohr magneton. The operators M,(0,#) and S,(0, #) are given by:

M (0, ) = gPoS:(0, 1),
v g
S2(0, t) = exp 7 -t (#o + H') S;(0) exp — T/(.y/(, + H).
3 [

In section 3 the asymptotic form of the relaxation function ¢,,(f) and
that of the related functions I'(f) and 2(f) (ch. 111 1)) are derived. In that
section we made use of a method similar to that exposed in ch. II1 1); both
methods are based on the formalism of Kubo and Tomita 7). For the
simple systems it will be shown that g.,(f) has a simple asymptotic ex-
ponential form:

@zz(t) ~ A exp — t/v + B,

in which formula 7 is the single spin-spin relaxation time. It is shown briefly
in the same section that in general, for the more complicated systems
containing different groups, the number of relaxation times equals the number
of groups.

2. The spin hamiltonian. The operators S;(0) and M,(0). The total spin

65




hamiltonian may be divided into two parts: the zero order hamiltonian
and the perturbation #'. #y only contains the one spin parts of the total
hamiltonian, 7.e.: the Zeeman energy and the electric or Stark energy,
arising from asymmetric crystalline electric fields 3)6). If the hamiltonian
of the free i-th spin is denoted by #(7) we have:

Ho = iHo(i).

All magnetic ions having the same spin S, the #%(i) have in general
2S + 1 non-degenerate eigenvalues (H # 0). There may be different
groups of ions: for all ions of a certain group the contribution to #’ has
the same form. Besides all ions of one group have the same surroundings
of other magnetic ions, the translation that carries one ion of a certain
group into another of the same group being a symmetry operation for the
lattice as a whole. The zero order hamiltonian may thus be divided into

the parts corresponding with the different groups:
'”’0 —— E,,.//()r, v = 1,2,..-,1.

In this formula » numbers the different groups, P being their total
number. We shall mainly restrict ourselves to systems containing only one
group (P = 1) and the generalization for more complicated systems will
only be briefly indicated.

The perturbation hamiltonian #’ may be written as a sum of two spin
interaction terms, more complicated forms of interaction are negligible
in general:

H = S G, 7), A1) = H'G,).

H'(i,])is the operator of the interaction between the 7-th and the j-th spin
(dipole-dipole and exchange interaction).

Taking a representation for which # is diagonal it can be shown in a
simple way that ' may be divided into different parts:

H' = o H'(A) + H'(0), (1)

~an
that are characterized by the commutation rules:
[(Ho, H'(An)] = ApH'(An), [Ho, #'(0)] = 0. (2)

In formula (1) the real quantities 4, are equal to a finite number of
differences of eigenvalues of #, being functions of H. These functions
A,(H) may be chosen in such a way that they have continuous derivatives
with respect to the components of H. #”'(0) is called the secular part of 7,
corresponding with a difference 4 that obeys the equality: 4(H) = 0; it
is supposed that none of the 4, figuring in the sum in (1) is identical to:
0. The A, may be arranged in pairs of opposite values and from the hermiti-
city of the operator #” it follows:

H'(An)t = H'(— 4n), 2 = #"(0). (3)




Now we may write the total spin hamiltonian /# in different ways:

H =Ho+ H' = H1+ #,

Hy=Ho + H'(0), (4)
,//'” = ‘\_:,, ”,(]")

In formulae (4) #’; contains all secular parts of # and #; all non-
secular parts. An analogue division can be made for the operators for S,
and M. It is assumed that all ions have isotropic g-tensors with the same
g-value for all of them. So we have M = gfoS and it suffices to give the said
division for S; only. (Just as in the chapters III and IV 1)2) the z-axis
corresponds with the direction of the constant external field H and that of
the parallel high-frequency field).

The division of S, takes the form:

Sz = ZadSa4s) + S:(0),
[# 0, So(Aq)] = AaSo(A5),  [#0, S:(0)] = 0, (5)
Se(dp)t = S:(— 4z),  Si(0)t = S;(0).

Every 45 will be equal to one of the 4,: the Ay correspond with energy
differences in the two spin spectra, whereas the 4; give the energy differ-
ences in the one spin spectra. From the foregoing it is clear that none of
the 45 is identical to: 0.

The operators #’(0) and S.(0) may be determined without solving the
secular problem for the unperturbed hamiltonian #, as will be shown in the
Appendix I.

To find the different non-secular parts #”’(4,) and S:(47) it is necessary
to diagonalize #, but for the determination of the spin-spin relaxation
times it is not necessary in principle to have the explicit form of 2#'(4,)
and S;(45), neither the values of the 4, and Ag.

In the next section we shall analyse the asymptotic form of the relaxation
function ¢..(f) and that of the related functions I'({) and (). For the
definition and the physical meaning of these quantities we refer to ch. I11 D
The asymptotic form for large times of these functions will be determined by
the asymptotic behaviour of the correlation function {<{S.(0)S;(0, £)>>, in
the high temperature approximation. For the single spin systems g,,(f) will
have an asymptotic form as given in the introduction:

@zz(t) ~ A exp — t/r + B,

in which formula 7 is the spin-spin relaxation time. For more complicated
systems the asymptotic form of ¢.(f) will be a sum of exponential functions,
apart from a constant. These exponential functions correspond with the
different relaxation times 7?. The total number of relaxation times will be
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in general equal to the number of groups of ions. As was done for the
operator #y, the operator S, may be divided into the parts corresponding
with the different groups. So we have:

S;: =35z, il b sl 2

A division as made in (5) for the operator of the total spin moment can be
made for the different groups individually:

S:? = XS (4q) + S2/(0), (6)

and the determination of the relaxation times for the systems, containing
different groups, consists in the analysis of the asymptotic form of the
correlation functions:

<¢S2(0) S;%(0, 2)>>.

If for reasons of symmetry or incidentally the one ion spectra of two dif-
ferent groups are identical and if the two spin interactions between these
two groups are strong enough, there is a rapid exchange of magnetization
between these two groups and it may be necessary, for an adequate de-
scription of the relaxation phenomena in this case, to treat them as one
and the same group.

In the next section we mainly restrict ourselves to systems, containing
only one group. The solution of the problem for the more complicated
systems is only briefly indicated.

3. Expansion of S.(t) and Q(t). Determination of the relaxation time. To
determine the spin-spin relaxation time(s) of a spin system we have to
analyse the asymptotic form of the relaxation function g.(f). The definition
and the general properties of ¢..(f) and the related functions I'(f) and Q(?)
were discussed in some detail in ch. IIT 1) section 3.

In the present case the functions ¢.(f), I'({) and Q(/) are composed of
different parts corresponding with the different parts of Sz, given in (5). If one
looks at the form of the shape function f(w), being the Fourier cosine trans-
form of () (cf. ch. I111) section 5), it is easy to see that the operators S;(45)
give rise to resonance absorption lines at the frequencies |45|/h, i = 1,2,...;
the operator S;(0) is the origin of the low frequency relaxation absorption
and gives relatively small corrections to the resonance absorption intensities
(this may be seen from simple time-dependent perturbation methods).

We are only interested in the low frequency relaxation absorption,
corresponding with that part of ¢(f) that has, in general, the longest
characteristic time(s), the spin-spin relaxation time(s). In most cases those
parts of ¢.(f) that correspond with the resonance absorption have charac-
teristic times of the order of h/gfoH; (Hi® = H,; 2+ H, 2 cf. ch. 111 1)),
whereas the relaxation time(s) is (are) expected to be much larger and showing
a strong dependence on H.
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Our method for computing the relaxation time(s) only gives convergent
results for the case that the distances between the two-spin levels A4, are
large as compared to gfoH;, for analogue reasons as those leading to the
restriction: H > H; in ch. I11 1). Only the experimental results with diluted
crystals are suited for an analysis following the lines of this chapter.

From the foregoing it will be clear that for asymptotic values of the time:
> higPoHy, the relaxation function g..(f) is given by (cf. ch. I111)):

pa(l) = Blgho)? <<S:(0) Sx(0, 83>, B = 1/kT, (7)

if one uses the high temperature approximation (we are only interested in
that temperature region for which higher powers of may be neglected). In
formula (7) S;(0, ¢) is the Heisenberg representation of the secular part of
the operator of the z-component of the total spin moment. The z-axis
corresponds with the direction of the external magnetic field H. The operator
S2(0, #) is given by:

S2(0, ) = exp (it H[h) Sz(0) exp(—it A[h). (8)

From (7) and the definitions of I'(f) and Q(t) given in ch. 111 1) it follows
that the asymptotic forms of these two functions are given by :

S2(0) S.(0, 1)>;
I'(t) = lim (gfo)2 A _‘( ) ;
N-so00 A\
> h L’[)'()[Ii (9)
e iy Se(0)}ay5:(0, )

XYL Syl

Q(f) = lim

N-»o0 4

ya

In formulae (7) and (9) <<4>> denotes the normalized trace of an operator

A: Tr A/Tr 1. o, ¥, ... indicate the eigenstates of #, P being the total
number of them. N is the total number of spins. As to the limit: lim we
N-»0c0

refer to the corresponding remarks in section 3 of ch. III 1),

To determine the asymptotic form of the functions g¢..(), I'({) and (1)
for times of the order of the relaxation time(s) we make use of a series
expansion for the operator S,(0, £) in terms of #11. Now we shall first give
the analysis for the simple spin systems. At the end of this section the general-
ization for the more complicated systems will be briefly indicated.

The expansion for the operator S,(0, {) in terms of #'y1 is the analogue
of that given for M,(f) by Kubo and Tomita 7), cited in ch. ITI 1). From
the definition of S,(0) it follows that the eigenvalues of this operator are
single valued functions of the corresponding eigenvalues of #, except
for very special values of the components of H i.e.: those values for which
multiple spin flips may occur, without changing the unperturbed energy.
A representation, diagonalizing #y, may be chosen in such a way that S,(0)
is diagonal and that its (diagonal) elements are all continuous functions of H
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for all values of the components of H. The same is true for the operator
A'(0) and it can be proved in an easy way that the commutator of S;(0)
and #'(0) vanishes for all lengths and directions of H:

[S:(0), #'(0)] = O. (10)

Following a derivation, analogue to that given by Kubo and Tomita,
we find the following expansion for S,(0, #), starting from formulae (4) and
(8):
S2(0, £) = SO0 + S, () + S, @) + ...,
S;0 = S,(0), (11)

~\‘z(”‘)(/) = (I./I)*"f‘: (-Vl‘/.f)l dis ..._/.,:" '(“"1.\'3(0’; H ”(/1), H “(/2), cony I [1([")],
in which formulae the time-dependent operators #'g(th), # n(ls), ... are
given by:

H(t) = cxp( II tAH ,) H 1 cxp(— /I—[ //‘;).
i 7

From (10) it follows that the first order term in the series in (11): S;@, is
independent of £. Combining (9) and (11) we arrive at the following expansion
of the function I'(f):

B =" 0 A onkl)s

I(t) = lim 8P0° ]"m “,, at [l at (12)
% *_\‘ oo (R)® Jo l. o Jo 3

KIS0 ; .//“(h). H ”(13), os .//”('[,,)' S.05%5
N :

The second line of (12) may be transformed into:

o 2 t rlh tn-
Iu(t) = li (80)? f dI;J dts ... ( dip.
J 0 Jo

11m -
N oob (I/I)'" 0

oy

L[S0 (M, 4), A (A2, L), ooy H'(An, ta)] SO

t A Ae=0 N ’

following the same lines of thought as those leading to formula (22) of ch. I111).
As to the function 2(f) we arrive at an analogue expansion (cf. formulae
(23) and (24) l.c.):

Q) = X539 L£ald),

t 4 Pla-1
..Q,,([) = [ (l/] [ (1/-_3 ' (1/,,. (]3)
JU o v

0
o (gB0)2 B[SO ; " (Ar, 1), H ' (A2, t2),..o, H' (A, tn) 1.,,-{.'\;(«»%
R T (¢h)» pN
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in which formula ¥}’ stands for the summation Yo Just as in formula

(4) none of the Ay obeys the equality: Ax(H) = 0. The time dependent
operators #'(Ay, ;) are given by:

) i
H(Ag, tr) t‘.‘\i])(/ tpH |> H'(Af) ('Xl)( =7 9% .7/|> .
(] (]

To determine the asymptotic behaviour of the functions 0,(f) we have to
look for the principal diagonal part of the commutators:

(i8)=" B[SO ; A7 (A3, 41), H'(As, ba), ..., H'(An, t)],

following the method developed in ch. III 1). This principal diagonal part
has the form:

— T (/1 s /g,/g — [3 ........ /,, i [,,) .\.:(”", (14)

sSh v

in which formula the c-number g, (ty — ta, ts — s, ..., ty1 — tp) is given by:

_.L’z/([l — 0 e W) _i;l)
. T B [S0; " (M, h), #H'(A3, t3), ..., H'(An, tr)] S:©
= lim ' ; (15)

i (ih)n Tr (S, 02

If the irreducible part of (14) is denoted by:

— ha(tys — b2, 80 — tg, ......, bn-1 — tg) S;0),
Q,(f) may written in the form (¢ sufficiently large):
Qu(t) = — [ dby f§* Abs ... [ Aty [halty — 3, ..., tn-1 — ty)

:(,(()) : :\“,(U):
-2 . 219 ~2 Xyl 2 o
— _\_‘;" o /I,,( ..)/I,, I’( ) ...] IIm {\'/‘()): -\—“"'/' 4

N-»o0 /).\

It is beyond the scope of this chapter to determine the quantity:

(16)

(S, O} 15,00

. 0-\9 o 2 xyl*’2 ya
lim (gfo)2 Tary T

N->co [h-\
but is not necessary to know its value for computing the relaxation time 7.
Still following analogue lines of thought as those developed in ch, I111) we
arrive at the following equation for the function (1)
d [®

Q) 4 | dths(ts) Q(t — £)
(l/ JO

ri
. ’ (“|
Jo

hat has the asymptotic solution:

vty
’ (l/-_)/l;;(/],/g) .(.)(‘/ — {1 - /g) e 0, (]7)

&0

Q) = 4 exp — iz, (18)
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if certain general conditions are fulfilled. It was not possible to indicate
in detail all the conditions, but we suppose that the following two are the
most important of them:

a. the differences of the unperturbed energy eigenvalues of the system
of two spins are large as compared to gfoH; : 4, > gfoH;,

1). t =>> h gﬂ()Hi.
In (18) 7 is the spin-spin relaxation time, given by:

sl 1 l‘T“, 1 TL = f';” d/]llg([]),

11

l/79 = /(;” dty [° dishs(ty, t3), ... .

For the general case the quantities 1/71, 1/7s, 1/73, ...
will obey the inequality:

Zlljrg| L |17 <€ 171,
and may be expressed in terms of the complex Fourier transforms of the
function /.

These Fourier transforms are given by:

/lll({lr [2- seny [Ilv—l) =

= '/.(1(')] dws ...... dwy—1 exp 1wty + wats +
+ ... Op—ilp—1) FOD (0, ws, ..., 0p-1), (19)
from which formula it follows that the quantities 1/71, 1/7s, ... are given

by (cf. ch. II11)):
1/r1 = aFM(0),

1 20
lfr5 =2in ‘.(lm["(z)((v), 0) < > . . (20)
~ ll

(0}

For practical computations it will be sufficient to compute only the first
order contribution to 1/7 : 1/71. The functions F(® are in principle determin-
ed by their moments that can be computed in a straightforward way with
the aid of formula (15) and (19). However, in a practical case it is more
suitable to split up F® into different parts that correspond with the
different commutators, figuring in (15). These different commutators
correspond with different sets of values of the quantities 41, 4s, ..., 44.
So we have for instance:

FMD(w) = g /",'"T . (),
Tr[S,O; ' (A, 1), H'(— Ay)] SO ,
lim - (4a ) - ( i (21)
A hi2 Tr {S,O}2
= [dw exp (iwt) D, _, ().

n

The definition of the functions /M), _ | (@) is a straightforward generalization

n

of that given for the functions /M _ ., ;,in ch.III 1). In an analogue way
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the functions:f@, . 5@ oy may be defined. For the determi-
nation of the moments of the functions f®, , . . f@, . we
have first to substract the reducible parts of the corresponding commu-
tators (cf. ch. I111)).
The leading term in the series for 1/ : 1/7; may be approximated in
general by:
lfr1 = 270, _, (0), Apm = Min.(|4,)),

for analogue reasons as those leading to the approximated value of 1/7;, in
ch.. III 1).
In this approximation the relaxation time = will be given by:

T 27fW, . (0)]71. (22)

For the computation of this approximated value of = it will be necessary
to solve the one spin eigenvalue problem, i.e. diagonalize the matrix of
Ho(?) (cf. section 2).

In Appendix II some simple numerical illustrations of the theory,
developed in this section, will be given.

For the more complicated systems, containing different groups of spins,
there is a straightforward generalization of the method indicated above.
The functions 2,(f) should be divided into different parts £2,® (1), corres-
ponding with the different groups. This division goes parallel with the
partition of the operator S,: S, = 3,S5.?, and a partition of the S.v
into a secular part and different non-secular parts, as indicated in formula
(6). So we have:

Qt) = X 20(1), 2u(l) = Ty 2,O(1), QO = ¥, Q,O(),

dV »E a1
Q20 = fEdty [ dbs ... [i dt,. (23)
gk x‘,y(k’{)’u)z}: S:*(0); .7/"(.1,:/1), ...... S (Ags ) \},g.s'_,.«»:,ﬂ.
N-s20 (zh)npN

The second line of (23) leads to a system of linear integro-differential
equations for the functions QW({), as indicated, for the analogue case, in
szction 7 of ch. III 1).

The number of these equations, being given by the number of groups,
is equal to the number of relaxation times, for the general case. For reasons
of symmetry or accidentally two or more relaxation times, that may be
computed from the asymptotic form of these equations, may be equal.

As to the field dependence of = for the simple systems the following
general remarks can be made. In first order the relaxation time is completely
determined by the functions f@, _, (), that have maxima for the
frequencies: m = A,/h respectively.

The quantities 4, are functions of H, but in general the dependence is
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not linear: That means that the shape of the functions /@, , (w) depends
oa H in general, so that the field dependence of = will be more complicated
than that for the simple case treated in ch. IIT ). However, it may be possible
that in the neighbourhood of a field Hy, for which one of the 4, is equal
to: 0, this 4, may be expanded into a series of the form:

Ap(H) = a.(H — Ho) + ..., (24)

and that for |H — Hy| sufficiently small, the first term in this series gives
a good approximation for the value of 4,,(H). For H; sufficiently small,
that means for high magnetic dilution, there may be a range of values and
directions of H:

H; € |H — Hy| < K, (K > 0),

for which (24) gives a good approximation of A,(H), while in the same
interval our method can be applied. In this region the relaxation time will
be given by:

T = [2nf®, _, O]

and the function f®, _, (0) may be well approximated by an expression
of the form: Coexp G(H — Hp). G is a quadratic expression (homo-
geneous) in the components of the vector H — Hp; the coefficients in this
expression may be determined by computing the moments:

[dof®, _, () and [do(w — du/h)? D, _,.(0),

by mzans of formula (21). Cy is a constant.

The relaxation mechanism exposed in this chapter is believed to be the
origin of a typical phenomenon, indicated by Verstelle, Drewes and
Gorter3). For certain paramagnetic alums, z and z”, measured at a fixed
fraquency, show a sharp field dependence in a certain region of values H.
A datailed comparison with the results of our theory is not possible because
of the fact that the experiments are performed with powders, and the 7
computed following the lines of this chapter shows a strong anisotropy.
How:ver, we have the impression that their results and the results of the
theory given in this chapter are qualitatively in agreement with each other.

APPENDIX 1

The determination of the operators S;(0) and #'(0). Formulating the
problem in a general way we have to find that part of an operator B that
commutes with a given operator 4. As to the operator S; the problem is
reduced to the problem of finding that part of the operator Si; that
commutes with #(i), ¢ denoting the i-th spin. The sum of all these secular
parts is denoted by S;(0).

For the operator #’ we have to find that part of the operator A (1, ])
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that commutes with #(i) 4 #¢(j); the sum of these parts is denoted by
#"'(0). For the solution of the general problem we suppose that all eigenvalues
of A are different. For that case: 1, 4, 42, ..., Allisa complete set of
operators, commuting with 4, if / is the total number of eigenvalues of
this operator,

From this set an orthogonal set may be derived by means of Schmidt’s
orthogonalization method:

Co=1, Co = 1/(Tr 1)},

Ci=A4 — (Tr ACy) C, C1 = Cy/(Tr C;*),

Cy = A% — (Tr A2Cy) C; — (Tr A2Cy) Co, Ca = Cy/(Tr C3 )i,

Cy = A3 — (Tr A3Cy) Cs — (Tr A3C;) Cy — Cs = C3/(Tr CiHh,
— (Tr A3Co) Cy,

The diagonal part of the operator B is now given by:
‘\_:{(_ IU (Fr 1;(,)(‘,

For a practical case it may be more simple to diagonalize the operator A4
and to determine the diagonal clements of the operator B in the corres-
ponding representation.

[f two or more of the eigenvalues of Ho(2) or Ho(i) + #o(j) coincide for
special directions and lengths of H the corresponding diagonal parts of
Sizand #”(i, j) can be determined from the diagonal parts for neighbouring
values of the components of H.

APPENDIX 11

Numerical examples. To illustrate the results of this chapter we shall
compute the relaxation time 7, for the case discussed in section 3, for some
simple lattices. These lattices do not correspond with actual salts, but our
calculations may give an insight in the qualitative behaviour of the spin-
spin relaxation phenomena for the case that the Zeeman and the Stark
splitting are of the same order of magnitude.

One of the most simple zero order hamiltonians, giving the typical
relaxation phenomena, has the form:

Ho = XiHo(t),

: e . : I
H'o(1) = —ghoHSi + D[Si2 — 5], Si=34 g=2. ®

# o(7) commutes with S;; and the energy eigenvalues for the free -th spin
may be characterized by the corresponding eigenvalue of Si,: m.
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So we have:

m = 3: Ei =D F 3gfoH, I
m= -+ %: Ey = —D F gfoH. (th

The secular part of S,: S, is simply given by: S;(0 = S,. For all ions the
crystalline field has axial symmetry and we study the case that the vector
H is directed along the crystal axis, that is the same for all ions. For this
case the one spin energy eigenvalues show a very simple dependence on D
and H, whereas the corresponding eigenstates are fully characterized by
the value of m, just like the energy eigenvalues.

There are real spin hamiltonians showing resemblance with (I), e.g. that of
chromium potassium alum. This salt, however, contains four ions per unit
cell, corresponding with four different magnetic axes. The perturbation
hamiltonian 7, giving rise to the two spin transitions we are interested in,
contains two spin interaction terms. We only take into account the dipole-
dipole interaction, and with this restriction #"' is given by formula (1) of
ch. IV2). The typical two spin transitions we are interested in, are the

following ones: A couple of spins 7 and j, originally in the state (m; = — §,
mj = + 3), also indicated by |—1%, 1>, makes a transition to the state
1

1, 5. The difference between the energy of the initial and that of the final
state is given by:

Am = 2(D — ghoH), (I11)

and it follows from section 3 that this transition has a large probability for
Am ~ 0 or gfoH ~ D. As already outlined in section 3 we restrict ourselves
to the case that:

Am| > gPoHy,

for the computation of the relaxation time 7 and suppose that all other

differences |4, are large as compared to |4,,|. The change of the z-component
of the spin for the double jump, indicated above is: 2. (It is a whole number
because of the fact that we study an exceptional case for which S; commutes
with 7).

Introducing the quantities @ and H in the following way:

= 2(1) — g[f()ll) h=— 2;’[)‘()[7 /I, 17 =H—D g[)'(),

and assuming a Gaussian shape for the function /M, _, (w) we have:

/"1’_,”'_ - l,,.(”’) = ‘/'(l).,_“_ _,"‘((T,) exp — (w — @)2/2(. lw)2. (IV)

For the definition of the function f®, _  we refer to section 3. Now the
relaxation time 7 is given by:

A == 2-7/'”’.1”.,-1,,. (0)11, (V)

and its numerical value can be determined by computing the following
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moments, that are given by formula (21):

. 4 Tr H mWH (Am
J dofD 1) = ] /Ii [r) S,2 et

S;2 (VI)
4 Tr ~//’(._|m), .//'(O) H'|. 'm)v 7 '(O) '

’(lm(m — 02N, () hd Tr S;2

The different parts of #': #'(A4,), #'(0), are defined in section 2. The
operators #7(0) and #”(4y) are defined in the most simple way by giving
the matrix elements in a representation, diagonalizing all S;,. We have:

1 (,"“7{0)2 9o

H'(0) = § a5 =i Siz55z — (S1+57-) + (S Si+) )
(I — 3&4s%) pis~3, (VII)
e o (EB0)y* e e it e
H'(An) = — & - e }-‘i:i (Si+S574) (515 — 45)2 pij

For the definition of the quantities: &y, niy, Sy, py and a we refer to
ch. IV 2). The same applies for S;;, Sy, ete.
(S#+5;-) and (S;-Sy4) correspond with those parts of the operators S;;.S;
and S;-S;; that obey the commutation relation:
[(St2Syx), # 0] = O,

with the restrictions outlined in section 2 ((S; Sj+) should be continuous
functions of H). In an analogous way (S;Sy; ) is given by:

// 0, (St Sj-:),. = Ap.

The matrix elements are derived in an easy way and we have:

3 3 1(SesSi)| =5 B =243, &3 (Se+S)| 3. =
3 (S-S 3 > = 3, -
@SS b —b = 2v3, <, =1 [(SuS1)] —1, b Sk
—1, (S-S § —b =4
From (VI), (VII), (VIII) it follows that the moment of zero order is given by:
y i(eBayt L, (1 —§4y2)2 ;
.f(l{!)!(])~’"'-—Jm(”') s 33 2 L“”) : P?JG i e

For the moment of second order we find a rather complicated expression.
In the general case it is given by:

ghe ‘ P )
f‘l"’(”’ — @P A —a(@) = & (860 o s s .

64 /13”1; it ] il ke u:.)—:h k

<Tr | (\;..\j ), 5'-‘8‘/7 — 1 (\;\'_) -t (.\}:_A\"T‘r)}v-

'A(‘\.l ) s‘h‘,sk.. (Sl \ ) + (\‘-—\l:):*'
(&g — imy)® (1— -i}“)(SM “/M) (1 — 3La2)(pis 7 PracPi) 304 Tr S2.
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Now we suppose that the most important contribution to this second
moment originates from the following combinations of indices:

(i) = (hk) or (if) = (kh),
(;"j) = (l_zk) or (;1) = (kh)
So we find the following approximated value of the second moment:

[do(w — @)%, _, (o) =

oBa)\8 4 1 —:..'_’.2 1 _3:“22 |
= 335 _(hffol.,— |:1647 > N = 6,;)_* (= i e %
hidq12 Lit#1) o =
e o (,‘;EJF??].
=ty =19
Pij

In formula (X) the summation /5., indicates a summation over all
indices § and ; (that may be equal), different from a fixed index 7. The sum-
mation X/, just as in formula (IX), indicates a summation over all indices
i, different from a fixed index 7. From (IV) it follows that the quantity (4w)?
is given by the quotient of (X) and (IX).

The relaxation time = may be expressed in terms of Aw, H and
[dof®, _, (o) and is then given by:

— _ [ hdo\2
r=Aw {V2n [d(:)/‘l’,tm,‘,m (w)}1 exp 2H? ,f< 1ﬂw> , H= H—D|/gBo. (XI)
J | \ gPo
It will be convenient to express the final results in terms of the internal
field H;, that is given by (cf. the chapters III and IV 1)2)):

15 (860)°

He = 3———Sjenpy% (S =13)
a

We made numerical calculations for two types of lattices: simple cubic and
face centered cubic lattices, that are indicated by s.c. and f.c.c., respectively,
in table VII. This table gives the values of the zero order moment and of
(Aw)2 for these two types of lattices. The combination of this table and
formula (XI) immediately gives  as a function of H in the range of values
of H indicated in the beginning of this appendix.

TABLE VII

LA™ 4, — Aml®) (Am)?

gfla

exp 2I7'~'/( Ao )L

2 | 0.79(gBeH M) ] exp H2/0.39H 2
L il W i

s.c. ! 0.112(gBoH /)
e
|

fec. | 0.109(gfoHdM? | 0.29(gBoH A2 | exp H/O.15H2

The results given above serve as an example for the application of our
theory. For the greater part of the real cases the computations are far more
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complicated. In most salts there are more than one group of spins and there
cannot be found directions of H for which the component of the spin of each
group in the direction of H commutes with # . For this reason the one spin
eigenvalues and eigenstates depend in a complicated way on H, and also
the quantities 4, and S.©. However the general character of the field
dependence of the relaxation time(s), in the neighbourhood of a value Hy,
for which one of the 4, = 0, will be the same, having the form:

uHZ ’

in which formula « is a quantity of the order of 1, that depends in general
on the direction of H — Hj. +(H = H)) is only a theoretical quantity, not
corresponding with the actual value of = for H = H,.
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SAMENVATTING

In dit proefschrift wordt cen theoretische analyse van de paramagnetische
spin-spinrelaxatieverschijnselen gegeven en een berekening van de ver-
houding van de geisoleerde en de adiabatische susceptibiliteit van spin-
systemen. De samenhang van deze onderwerpen wordt getoond in hoofdstuk
I1: de spin-spinrelaxatietijd markeert het frequentiegebied waarin 7' (o)
daalt van de waarde van de adiabatische susceptibiliteit (ys) tot die van de
geisoleerde susceptibiliteit (z8™). Er kunnen ook verschillende spin-spin-
relaxatietijden zijn.

Van de geisoleerde susceptibiliteit wordt een algemene definitie gegeven
in hoofdstuk I. Onderscheid wordt gemaakt tussen de geisoleerde suscepti-
biliteit, berekend op een wijze die alleen correct is voor kleine systemen en
waarbij gebruik gemaakt wordt van elementaire storingsrekening (yzis®™)
en die welke gevonden wordt met methodes, die alleen van toepassing zijn
voor grote systemen (zis).

Voor de laatste wordt bewezen dat deze gelijk is aan de adiabatische
susceptibiliteit (hoofdstuk IT). zs*™ correspondeert ook met een extensieve
grootheid van grote systemen, maar komt voor deze systemen niet meer
overeen met de susceptibiliteit voor de frequentie: @ = 0. In hoofdstuk I
wordt een eenvoudige relatie van y;S™ en zs afgeleid; we bewijzen:
7is"™/zs = 4/5 voor een grote klasse van poeders van magnetische zouten.

Spin-spinrelaxatietijden worden berekend in de hoofdstukken III, IV
en V: in hoofdstuk III voor systemen in sterke uitwendige magneetvelden,
met enkele numerieke resultaten in hoofdstuk IV (voor dit geval is de
Zeemanterm in de spinhamiltoniaan zeer groot ten opzichte van alle andere
termen. In hoofdstuk V wordt de invloed van relatief sterke kristalvelden op
het relaxatiemechanisme onderzocht. Voor enkelvoudige spinsystemen, die
slechts één type magnetische ionen bevatten, vinden we steeds één relaxatie-
tijd, die wordt gegeven door de waarde voor frequentie nul van de frequentie-
verdelingsfunctie van de matrixelementen van het niet-seculaire deel
van de wisselwerking, in een representatie waarin de nulde-orde-hamiltoniaan
(Zeemanenergie en electrische energie) en het seculaire deel van de wissel-
werking diagonaal zijn.

Een generalisatie voor meer gecompliceerde spinsystemen, die verscheidene

groepen ionen bevatten, is aangegeven. De resultaten van de theorie worden
in hoofdstuk IV vergeleken met die van andere auteurs, voor zover het de
processen geanalyseerd in hoofdstuk TII betreft.
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