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INTRODUCTION

If we consider an ensemble of radioactive nuclei of which the spin
directions have not a random distribution in space, we may expect
that the emitted radiations will show angular effects. First of all,
the angular distribution of the emitted radiation will deviate from
spherical symmetry. Besides this effect, (partial) polarization of the
radiation will occur. If we have two radiations emitted in cascade,
the directional correlation will be different from the correlation in
the case of randomly oriented nuclei.

In this thesis a theoretical treatment is given of the above men­
tioned geometrical properties of the radiations (especially y-ra-
diation) from oriented nuclei. The theoretical aspects of the methods
by which the nuclei are oriented will not be considered here.

In chapter I we shall calculate the angular distribution and pola­
rization of the emitted radiations. In this chapter we shall assume
that the nuclear orientation has rotational symmetry. To obtain
formulae which demonstrate the relevant physical features in a
simple way, it is of great importance to choose suitable parameters
for the description of the nuclear orientation and the polarization
of the radiation. Two separate sections are dedicated to this subject.
For y-dipole and quadrupole radiation, formulae will be given which
can be evaluated by simple substitutions.

In chapter II we shall study the influence of a (3-transition, pre­
ceding the emission of the observed y-radiation, on the angular
distribution and polarization of the y-radiation. This effect is of
importance as it often occurs in practice .As an example, the calcu­
lation of the angular distribution of the y-radiation from oriented
60Co nuclei will be outlined, taking into account the effect of the
preceding ^-transition. In this chapter we shall also summarize
which quantities of physical interest can in principle be found by
measuring the radiation from oriented nuclei.

In chapter III we shall drop the assumption of rotational symme-
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try made in chapter I. Then the angular distribution will be calcu­
lated for the radiation emitted by an arbitrary ensemble of radio­
active nuclei.

Using the. results of chapter III we shall give in chapter IV the
directional correlation of successive radiations emitted by an ensem­
ble of oriented nuclei assuming again an axis of rotational symmetry
for the initial ensemble of nuclei. For y-dipole and quadrupole ra­
diation explicit formulae will be given suitable for numerical evalua­
tion.



Ch a p t e r  I

ANGULAR DISTRIBUTION AND POLARIZATION
OF GAMMA RADIATION EMITTED BY

ORIENTED NUCLEI

S y n o p sis

The angular d istribu tion  and polarization of y-radiation em itted  by
oriented  nuclei is calculated assum ing pure m ultipole transitions. F or the
description of the  orien tation  of the  nuclei 2ƒ independent param eters fk
are u sed ; these are essentially the  s ta tistica l tensors in troduced by  F  a n o
(ƒ is the  spin quan tum  num ber of the  nuclei). The s ta te  of polarization of
the  y-radiation is characterized by the degree of polarization P  and  a real
three-dim ensional polarizationvector %0. If these quan tities fk, P  and  J-0
are used, the form ulae tak e  a relatively  sim ple form. F or th e  cases of dipole
and quadrupole rad ia tion  expressions are given which are suitable for
num erical calculation by  easy substitu tions.

§ 1. Introduction. If we have an ensemble of oriented nuclei, the
angular distribution of y-radiation emitted by these nuclei no
longer has spherical symmetry. S p i e r s 1) discussed this effect
and S t e e n b e r g 2) extended his considerations, both giving
formulae which are practical only, in the case of small nuclear
orientation. In the following sections we shall derive explicit formu­
lae for the angular distribution of y-radiation from oriented nuclei,
valid for any degree of orientation of the nuclei. Furthermore we
shall calculate the polarization of the emitted y-radiation.

The theory of y-radiation from oriented nuclei is closely related to
the theory of angular correlation of pairs of successive y-quanta
from nuclei oriented at random. In the latter case the angular correla­
tion function can be considered to be the angular distribution
function for the second radiation emitted by nuclei which have been
oriented by the emission of the first radiation in a fixed direction. A
short review of the relation between these problems will be given in



this section. The theory of angular correlation of successive y-quanta
emitted by nuclei oriented at random was given by H a m i l t o n 3).
Recent contributions have been made by F a l k o f f ,  L i n g ,
U h l e n b e c k 4) 8). R a c a h 8), L l o y d 7) and A l d e r 8).

We shall begin with some general formulae concerning the angular
distribution of radiation from oriented nuclei. We assume the nuclei to
be oriented in such a way that an axis tj of rotational symmetry exists.
The nuclear angular momentum quantum number and magnetic
quantum number are ƒ and m respectively (m determines the compo­
nent of the nuclear angular momentum in the direction ?), which we
call the axis of quantization). The orientation of the nuclei is then
characterized by the numbers am, these being the probabilities of
the states specified by j, m (Eam =1) .

/£'(#) is the angular distribution of the radiation from a nucleus
in the state

W(■&) is the angular distribution of the observed radiation.
ê  is the angle between the direction of emission of the observed

radiation and y\.
Now W{&) is given by

W{&) =  T,nian(I^{d).  ( l )

If the angular distribution of radiation with angular momentum
quantum number L  and magnetic quantum number M  is denoted by
F%{&), we can express / ”*'(#) in terms of F^(&) by

W  =  G%X-u (2)

The are the squared transformation coefficients for the addi­
tion of angular momenta (see formula 60).

In general there will be a 0 or y-transition (ƒ„, m0) -> (jt, mt),
which precedes the radiation under consideration. In this case the
ama give the initial orientation of the nuclei and we have to calculate
the relative populations am( of the levels mi in order to compute
W (ê) for the radiation emitted by the nuclei with spin If P(mQ, Mi)
gives the relative transition probability for the transition (j0, m0)
{ji, m>\, the expression for am, becomes

««, =  2 mo «m0 P(m0, mt),

P(mo> «*,)= L

2

(3)

(4)



We add some formulae on the angular correlation of successive
radiations emitted by nuclei which are oriented at random.
P(mu m2, ■&) is the angular distribution of the radiation emitted in
the transition m,) -> (/2, m2) . ê  is the angle between the direction
of the radiation and the axis of quantization. This quantity
P(mlt m2, &) is related to P{mx, m2), and F%{&) by

P(mu m2) =  /P (m u tn2, &) dQ, (5).
IRW  =  2 ma P{mv m2, ■&), . ( 6)

p (m i, m2,ê)  =  G’F^F^(§),  (wj = m2 + M). (7)

The angular correlation function W{&), giving the relative proba­
bility for the angle •& between the successive radiations, is given by
(cf. •))

W(0) =  C P(m0, mit ê  -  0).P(mi, mf, ê). (8)

Here the successive states of the nucleus are (j0, m0), w.) and
(jf, mf). With (6) we can rewrite (8) as

(9 )

amt = C X„u P(m0, mit & =  0). (10)

These formulae allow the following interpretation. The direction
^ =  0 of the first radiation is an axis r) of rotational symmetry in the
problem of the angular distribution of the second radiation. The
first radiation causes an orientation of the nuclei (jit mt) given by
(10). From this point of view the angular correlation is a special case
of the angular distribution of radiation from oriented nuclei. For a
derivation of these formulae we refer to 3) and 5). It is essential in our
interpretation of the formulae that (8) allows a “splitting of the
process into two parts” . Cf. ») for a discussion of this point.

In § 2 is discussed how the orientation of atomic nuclei can be
characterized. In § 3 the use of different parameters to characterize
the polarization of y-radiation is treated. With §§1,2 and 3 as a
basis the calculation of the angular distribution and polarization of
y-radiation of oriented nuclei is rather straightforward. This is
discussed in § 4. With the aid of more advanced mathematics,
namely, a method developed by R a c a h «), we can derive formu­
lae for arbitrary multipole order in § 5. Though the results of § 5
include the results of § 4, we have thought it worth while to discuss

3



this first method, as it gives a clearer understanding of some features
and relations in this field. Explicit formulae for the angular distribu­
tion are given in § 6, for the polarization in § 7 (in these expressions
the general expressions have been evaluated as far as possible). A
short note containing some of the results has appeared earlier u ).
Later we shall discuss the ways in which these formulae can be used
for the treatment of experiments with oriented nuclei12).

§ 2. The description of the orientation of atomic nuclei by the para­
meters fk. Generally the state of orientation of an ensemble of nuclei,
all with angular momentum j (or of one nucleus of which our knowl­
edge is incomplete), cannot be described by means of a single wave
function. We therefore use a density matrix (or statistical operator)
q with (2j +  l)2 matrix elements (compare e.g.13), part II and IV).
q is hermitian and normalized to

0mm = 1 • 0 *)
With each state y> =  £ m cm ipm, (12)
we associate a matrix {Qv ) mm' — cmcm" (13)
The probability of finding a system described by the density matrix
q in the state y> is then given by

W =  Tr (qqv). (Tr: Trace) (14)
If an axis yj of rotational symmetry exists, and y) has been chosen
as axis of quantization, then g is a diagonal matrix (compare *)).
Now the probability of finding a state xpm is given by

Qtnnr (13)
In this case g is determined by 2j +  1 numbers am. As =  1
on account of (11), there are only 2ƒ independent numbers am which
characterize the orientation. As in the results of the calculations in
the following sections am will appear always in combinations of the
form 'Lmrnham (often called moments), we therefore define 2j indepen­
dent combinations of this form, which are equivalent to the set of
2ƒ numbers am.

fk =  S;=0 O-k.v m am’ (16a)

fk =  0 if am ~  ^p=oApmp, (166)

ak,k j *• (16c)
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By taking am = mp (p =  0 ___k — 1) in (16ft) we get k linearly
independent relations for the k +  1 coefficients ak0 . . . .  xkk. It is
easily seen that these coefficients become entirely determined by the
additional condition (16c). This condition has been chosen in such
a way that the fk for totally oriented nuclei remain finite if we let
j oo (cf. (19a).. . .  (19d). Hence the fk are uniquely defined by
(16). If an arbitrary orientation is given by am, the dependence of
am on m can always be expressed by a polynomial of degree 2j :

am = J$_0A ptn*. (17)

Hence we obtain the following interesting property of the jk directly
from the definition (16): all fk with k >  2j +  1 vanish identically.

Since f0=  1 cannot vary there are 2ƒ parameters fk left which are
independent and suffice for a complete description of the orientation.
These fk will be used as they give simple forms to our formulae.
Explicit expressions for ƒ,, f2, f3 and /4 are:

A =  r *  m a m >  ( 18a)
/2 =  7~ 2 Pm m 2 a m  — ! / ( / +  1)] > (18 i)
h  =  ?“3 [s « » 3«m — I (3f  +  3/ — 1) S,„ mam], (18c)
f4 =  ?“4[Smw4am-i(6 f+ 6 /-5 ) Zmm2am+ is j( j-1) (7 +  1) 0+2)]. (\6d)
If the nuclei are totally oriented (am =  6mi), we calculate from (18)

u =  1 ( 19«)
/2 =  (2/ — l)/3/ (19ft)
/» — ( /— 1) (2/— l)/5/2 (19c)
U =  2 ( j -  l ) ( 2 / - l ) ( 2 j  — 3)/35f. (19d)

For numerical calculations it can be useful to approximate a distri­
bution by a polynomial in order to calculate the fk. If we have for
example a Boltzmann distribution

am =  C' exp (ftm) (with =  fiB/kTj), (20a)
we can write approximately

am = C (1 +  +  |/33w3 +  ^ 4w4) if 1. (20è)

Now if we have in general a distribution
am =  C (1 +  +  4̂2w2 +  +  + 4Wi4), (21)

it is readily shown that

Zi — iiii + l ) ^ i  +  15(7 +  1) (372 +  3/ — 1) ^ 3] n, (22a)

5



k  =  \Af (2 !-1 ) (7+1) (2ƒ +  3) +  é é  (2j - 1) (ƒ + 1) (2?+3)
(6/2 +  6/ — 5) -44]m, (226)

/3 =  (ris r 2) (7 -  1) (2 ƒ -  !)'(ƒ +  1) (27 +  3) (ƒ +  2) n, (22c)
ƒ4 =  ,iè).7“3 ( 2 / - 3 )  ( 7 - 1 )  (2/ 1) (7 +  1) (27 +  3).

. (ƒ +  2) (2j +  5) A4 n. (22d)
{(2/+1) C} 1 =  1/« = 1+ ^ 7(7 +  1) 4̂2+ k7(7 +  1) (372+ 3 /—1)^4 (22c)

We can derive an explicit expression for the ƒ* by comparing them
with the statistical tensors introduced by F a n o 14) according to
the definition

<|(77)*?> =  2mm- <m\g\m' > (— \)j~m <jmf, 7 — m\(jj)kq>, (23)
where <m\g\m'y are the matrix elements of the density matrix g,
and — m\{jj)kqy are the transformation coefficients for the
addition of angular momenta. In the case in which the ensemble of
nuclei has an axis of rotational symmetry r\ we write
ƒ* =  < |(J7) AO > =  < m\g\m > (— l)'“m < jm, 7 — m\(jj) kO >. (24)

The density matrix g is then entirely determined by the probabili­
ties am - <jn\g\m') and we can write

fk =  S,„ (— 1)'-” < jm, 7 — m\(jj) kO > an (25)
We now show that the fk introduced in this way differ only by a
constant factor from the fk defined by (16), i.e.,

fk =  wk{j)fk. (26)
To prove (26), we observe the fk to be of the form

fk =  2», am, (27a)
Rk(m) =  (— 1 y~m <jm, j — m\(jj) A0>. (27b)

Rk(m) is a polynomial in m of degree k, as may be seen from the
explicit formula for <jmj — m\(jj) kO > (Cf.10) formula (16)),

<,jmj — m\ (77) A0 > =

X 2 X(— I)1 [z! (2j k

~(2A +  1) ( 2 j - k ) \
-  (2 7 +  k +  1)!

*)!{(ƒ—m — z)!}2{(A

-1 (A!)2 (j+m)! (7—m)! X

j + m + z)\}2r l, (27 c)

by rewriting with this expression formula (27b)

Rk(m)
'(2A +  1) (2j — A) !“|*
- (27 +  A +  1)! _

[mk +  uxmk 1 -(- . . .  u0], (28)

6



From the orthogonality relations for <jmj—m\(ƒƒ) kOy it follows that
SM R„(m) Rp(tn) =  0, p < k  —  1. (29)

From (28) and (29) it is easily deduced that
Rk(m)mp =  0, p < k —  1. (30)

If am is given by am =  ApW’ it follows from (30) that
/* =  S„i?*(m)«m =  0. (31)

So the fk are of the form (16a) and satisfy the condition (16b). Hence
the fk and fk can only differ by a constant factor, which may be
obtained from (28) and (16c)

f j fk =  wk{j)
( 2 k \ - 1 ._tr (2/ +  6 + 1)1 1 *
\ * /  1 L(2& +  1) (2/ — k)\.

(32)

From (26), (27a), (27b) and (27c) an explicit expression for fk
follows

fk 2k\  —  +  *»)'■
k /  r~° (ƒ■—m—v)\ —k-\-v)\

(33)

For totally oriented nuclei (am =  dmi) fk has the value (a generali­
zation of (19a) . . . .  (19rf))

-y .
1 (2j - k ) \

(34)

§ 3. Characterization of the polarization of electro-magnetic radia­
tion. For a plane electro-magnetic wave which is propagated in the
direction k(|k| =  2n/A) we can write for the complex vector poten­
tial A and electric field strength E

A =  (C]e, +  c2e2) A, A =  A exp. i (k.r — cot), (35)
E =  (cje, -(- c2e2) E, E  =  — (dAjdt)/c — *|k|A. (36)

Here k/|k|, e t and e2 are mutually perpendicular unit vectors. We
assunle cx and c2 to be normalized to

lci|2 +  |c2|2 =  1. (37)
The state of polarization is characterized by the complex vector

C =  (Cp c2). (38)
Essentially two (real) parameters (e.g. the ratio |c,|a/|c2| and the

7



phase difference of c, and c2) are needed for the description of a
totally polarized wave (or photon). The state of polarization being
described by c, we define a density matrix g(c) (1S) II formula 4):

0(c)
|Ci |2 Ci C*

(39)
C *  C2 |C2|2 *

This special form of the density matrix occurs only in the case of
total polarization. The states of polarization of a partially polarized
beam of photons is described by a hermitian density matrix g:

Q11 Pl2 , (40a)
£'21 022

0ii “H 022 =  h (406)

0 =

In this case essentially three parameters are needed. Now the
probability W of finding a photon in the state of polarization descri­
bed by c is given by

W  =  c* g c =  Tr [pg(c)]. (41)
If Q =  q(c ') (totally polarized beam), (41) becomes

W  =  Tr [g(c') e(c)] =  \crf + e r f |2. (42)
Another description of the state of total polarization, discussed

by F a n o 16), makes use of parameters a and /?. These are related
to c by

c2/ci =  (sin a  cos P  +  * cos a sin /3)/(cos a cos p — i sin a sin /?) =
=  (sin 2a cos 2P +  i sin 2/3)/(I -f cos 2a cos 2/3). (43)

a and /3 are the angles which determine the setting of an ideal
analyzer (consisting of a A/4 plate and a Nicol prism) with respect
to e, for the case of maximum transmission. A real three dimen­
sional vector the polarization vector, can be defined as follows with
the aid of a and /3:

=  cos 2/3 cos 2a,
12 — cos 2/3 sin 2a, (44)
13 =  sin 2/3.

We can describe a state of total polarization by this vector The
relation between ?• and c, following from (43) and (44), is

m  = > i |2  —  |c 2 |2 ,

f2 =  CjcJ -f- cfc2, (45)
f3 =  i {erf  — cfc2).

8



In the case of a partially polarized beam, which is described by the
density matrix q (40), we can always write o in the form

e =  i ( i - - P ) |c,l2
c*c2

C ]C *

lC2|2
0 <  P <

(46a)

(466)
This means a decomposition of q into two parts, corresponding to
a totally polarized and an unpolarized part. P  is called the degree
of polarization of the beam. !*0 is the polarization vector of the beam
and is determined by c of formula (46a). To describe the polarization
of an arbitrary beam we shall use P  and S-0, containing again three
real parameters. With (41) and (46) it follows that the probability W
of finding a photon with polarization vector ^ in a beam described
by P  and %0 is given by

*F =  i( l  + P ? .5 o ) . (47)
For the special case of a totally polarized beam, with P  =  1, we find
a formula corresponding to (42):

W = |(1  + ? .  So). (48)

The formalism which has been described, for the polarization of
electromagnetic radiation, is to a high degree analogous to the
formalism for the polarization of electrons, developed in lS) part II
and IV. Compare e.g., formula (47) with formula (70) of 13) part IV.

§ 4. A calculation method of the angular distribution and polariza­
tion of 2L-pole y-radiation (especially for L — 1 and L =  2). The
angular distribution of y-radiation of a certain (L , M) pole character
results from the spherical eigenwave solution of Maxwell’s equa­
tion 16) 17) 4). We have used the solutions for the vector potential
(in the gauge of zero scalar potential) of the electric and magnetic
(L, M) pole radiation in the form in which they are listed in 4),
table I (For the physical quantity A the real part of the complex
quantity must be taken). The electric and magnetic field strengths
are obtained from the vector potential A according to

E =  — (8 A/ct)lc, (49)
B =  rot A. (50)

The angular distribution of the radiation of a given (L , M) pole
character is given by the magnitude of the Poynting vector S£C

9



If n is a unit vector in the direction of S f  then the magnitude is
given by

n • S f  = , (ck2l&7t) A • A*. (51)
We define

F f  (#) =  32n3r2c ~1 n  • S f . (52)
Then F™{&) is normalized to

f  F ?  (§) dQ =  8n. (53)
From (49), (51) and (52) it follows that

F^-d) =  4jr2r2̂ 2 A • A*, (54)
F f  (#) =  4n?r2 E E*. (55)

From the general expression for A one obtains an expression for
F¥ (#) according to (54) (Y% are the spherical harmonics):
F f(# ) =  [AnIL{L +1)) [2M2\ Y f  |2 +  (L— M) ( I + M + 1) | Y f +1|2+

+  (L +  M) (L — M  +  1) |Y f - !|2]. (56)
This expression becomes, for L =  1 and L —■ 2,

F°(ê) =  3 (1 — cos2#), (57a)
F f\ f i )  = | ( 1 +  cos2 #), (57 b)

F°(#) =  |  (6 cos2 # — 6 cos4 #), (58a)
F ± 1 (#) =  |  (1 — 3 cos2 # +  4 cos4 #), (58&)
F f 2(d) — |  (1 — cos4#). (58c)

These formulae apply for electric as well as magnetic multipole
radiation. With these results we have calculated the angular distri­
bution of 2L-pole y-radiation emitted by oriented nuclei according
to the formula (compare (1) and (2)).

W (* )  =  K , m. K ,  G p -M  ' F"(#), (59)
=  I <ƒ/»/ LM\ jfLjifn,->|2. (60)

In ls), pages 76 and 77, one finds tables of transformation coeffi­
cients Results obtained from (59), (60), and (57),
and (58) for dipole and quadrupole radiation respectively, are given
in § 6. Since

S ,„2 K/j, mv j 2m2 I j xj2 jmy\2 =  1, (61)
it follows from (53) and =  1, that W (#) is normalized to

ƒ!+(#) dfi =  8n. (62)

10



TABLE I

electric magnetic 2^-pole radiation; kryy 1. C =  — + ̂ eik̂ r~ct\
r \ n  J

Ér B, Er j B, 0

-E „

E»

B» B P
f 1 l / ( L  — M) (L +  M +  1) , , , .  „ .< 1/ yM+\ cos & e'f +
[2 \  L(L + 1 )  L

M u
+  Y j j  sin #  +

^L(L  +  1)
, | / ( L  +  « ) ( L - l f ± ,) ^  j
2 1 H L +  1) f. J

Ef —B# / ( B ~ M) (B + M +  1) yM + l +

i l / ( L  +  M) (L — M +  1) M_,
+ 2 |/  H L + l )  Yl J C

In order to calculate the polarization of the emitted radiation we
determine first the polarization vector 1-" of the radiation in direc­
tion (#) in the case of (L, M)-pole radiation. Now we need the field
strengths E and B, which follow with (49) and (50) from the expres­
sions for A given in 4) table I, for both electric and magnetic (L, M)-
pole radiation. We give the components Er, E6, Ev and Br, Bd, Bv
in our table I for large distance from the origin (kr^> 1) (Fig. 1

Fig. 1. The coordinates r, &, <p and  the  axis of quan tiza tion  q. e , e9, e?, are
u n it vectors.

11



TABLE II

D ipo le  ra d ia t io n

L =  1
M  =  0 M  -  ±  1

- E v B » E» B <P 0 L_ y ~ . e ^ 'V .C
V 4n  2

B V Ev B #
i
— V S  sin  C i  —1=: cos ft

V4ji 2

illustrates the coordinate system chosen). The tables II and III give
these results in a more explicit form for the dipole and quadrupole
case (L —■ 1, L =  2).

For the calculation of ^  (for radiation in a direction given by
( § ,  cp)) we take the two unit vectors e,, e2 defined by

e, - e#> e2 =  er  (63)

Now E can be written as

E =  E„ e, +  Ev e2, (64)
and (compare (36))

EJE» =  Cj/c, (65)

c2/c, can be calculated with the aid of Table II and III (for L =  1
and L - 2). According to (43) and (44) we then determine a, tg jü
and 5ol- The results are listed in the tables IV and V.

We write %qL as

%ol =  fi X|| +  f2 Xx +  f3 Xr (66)
The unit vectors X\\> Xi and Xc correspond to the following values

of a and /?
Xu -*-a — 0, P == 0
Xx ->• a =  n/4, p =  0 (67)

-> a arbitrary, P =  ji/4.

In connection with the choice of the vectors ej and e2 this allows
the following interpretation:
Xu determines the state of linear polarization when the electric
vector lies in the plane of k (direction of propagation) and rj (axis of
rotational symmetry).

12



TABLE III

Quadrupole radiation

electric magnetic L  =  2
M  =  0 M  =  ±  1 M  =  ±  2

— E <p

B v

E «

E v

B <P

- B »

0

*
— __ -«/—  cos & sin C

V  An v 2

—— ----- cos f t  e ± i(P.C
V atc 2

i  a/ 5
T  — — —  (1 —"2 cos2 ■») e±»>.C

V t e  2

±  1 a /S  sin # e ± 2t> .C
V 4 ji 2

i  a/ 5
—= r ---- sin #  cos #  £
V aji 2

TABLE V

State of polarization of quadrupole radiation

±  1 ±  2
a t g £

K M
% L a t g / 3

K M
^ 0  L «

t g  p

0 o o
COS # 1 —  5 cos2 ft  +  4 cos4 # 1

X | | 1 —  2  cos2 # t  —  3  cos2 ft  +  4  cos4 ft  *' COS #

—  2  cos #  +  4 cos8 #

1 —  3 cos1 ft  +  4 cos4#  c

0 o o — X u 0 1 —  2  cos2 ft 1 —  5 cos2 ft  +  4 cos4 ft
0 ±  COS #cos # 1 —  3 cos2 ft +  4 cos4 #  ^  ̂

—  2  cos #  +  4 cos8 ft
1 —  3 cos2 ft  +  4 cos4 ft c

K M
^0  L

electric

magnetic

1 - cos2 ft
1 +  cos2 ft

2 cos ft
1 +  cos2 f t A

— cos2 ft

X||±

1 +  cos2 ft

2 cos ft
1 +  cos2 ft

X| | ±



TABLE IV

State  of polarization of dipole radiation
M  =  0 M  =  ±  1

L  =  1
a tg ft EM

L a t g f t EM
S0L

electric 0 0 Xll 0 1
±  '

1 — cos* ft  2 cos ft
COS ft 1 +  cos’ 1 +  COS*

magnetic 0 oo — Xtl 0 ±  cos ft
1 — cos* ft 2 cos ft
1 +  cos* f t  1 -f cos* f t  ^ ,c

— X u  gives the state of linear polarization rotated through n/2
compared with the former.

±  Xi giye the states of linear polarization rotated through njA
compared with Xu-

+  Xo — Xc giye left and right circular polarized radiation re­
spectively.

The probability F^(ft, ?•) of finding a photon with polarization
vector J* in a direction ft follows from (55) and (48)

5) =  F *V ) • i( l  +  5 • =  4jr2f2E • E* *(1 +  \  • $*). (68)
If we now consider the ensemble of oriented radioactive nuclei, and an
axis Y) of rotational symmetry exists, we can calculate in a way
similar to (59) the probability W(ft, %) of finding a y-quantum in the
direction ft with polarization vector \

W{ft, %) =  Sm( M F?(ft, %). (69)

We can compute W(ft, %) as F^(ft) for (L =  1 and L 2) is given by
(57) and (58), and is listed in the tables IV and V.

As is clear from the formula (68) for F^(ft, ?■) the radiation of a
pure (L , M)-pole is totally polarized. The radiation from an ensemble
of oriented nuclei, however, is in general partially polarized. W(ft, %)
can also be written as (47)

W(ft,Z,) =  W( f t ) - W + P 5-5o). (70)
As W(ft) is known from (59), and W(ft, !•) from (69), we can obtain

P  and \ 0 from (70). For the calculation of the degree of polarization
P  and the polarization vector . i*0 it is sufficient to know W(ft) PE0.
Therefore we give the results for W(ft) P%0, instead of for W(ft, %)
in § 7.

From (59), (68), (69) and (70) it follows that
W(ft) Pij0 =  S„,iM G ^X -u  Fï(ft) (71)
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§ 5. Another method of calculation of the angular distribution and
polarization of 1L-pole y-radiation. In this section we shall derive
formulae for W{fi) and W(ff) P \0 for arbitrary 2L-pole y-radiation,
making use of the algebra of tensor operators developed by R a-
c a h 10) 8). During the derivation we shall drop constant factors
without further comment since these factors only affect the norma­
lization which is not essential in the problem. If 7) is the axis of
rotational symmetry and of quantization, then the probability of
emission of a y-quantum in the direction k with polarization described
by c (§ 3) is given by

* W(k, c, yj) =  SMim/ am{ | <ƒ, mt\ H\jf m, > |2. (72)

In the case of a pure 2z'-pole radiation we can write for the inter­
action Hamiltonian H, in a coordinate system with k as quantization
axis,

=  a L A f(C ) (73)

TLU are the components of an irreducible tensor operator of degree
L, which operate on the nucleus. aLM(c) are functions of c, and are
thus connected with the polarization of the emitted y-quantum.
Only «Li, and aL_ x are different from zero and are expressed by c as
follows 8), 6).

aL\ =7-(ci-*c2)/'v/2. aL-i= (ci+fc2)/-y/2 (electric 2L-pole radiation) (74a)
ai H c2+‘ci)/V2i an - ( c2“*ci)/V2 (magnetic 2i -pole radiation) (746)

With yj as quantization axis the Hamiltonian (73) takes the form
(with (k • Y)) =  cos ê ; cf. 8) formula (2).)

H ~  (0, §, 0). (75)
(0, &, 0) are the three Euler angles associated with the rotation which
transforms the coordinate system with k as z-axis into that whose
2-axis is yj. Making use of (72) and (75) we find for W(k, c, yj)

W(&, c) =  W{k, c, yj) =
«iViM-<?>,■ \Tp\ ?>/>*<?>,-! I (76)

With the relation 19) page 203, (16a))

D i i t r D p - * < . L~PLf*' ILLkQ > Dkea<_LL ka\ L—MLM'y (77)
and the formulae, (16') and (29) resp., from 10)
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<?>,. |T£| jfmfy =  (— \)it+Mt<fi\\TL\\ii> ■ — (78)
<L — fiL/u' \LL kg> =  (—l)*+e (2k +1)* V(LLk] —: p/t' (?), (79)

formula (76) becomes (with summation over m„ mf, M, M', fi, fi',
k, q and a)

W(ft, c) =  S am. afM aLM. (— 1)»+»+*-" (2k +  l)1 X
X < LLka | L — MLM'y V(jijf L; — «<»»,/*) V{j4tL \—mimtp') X
X V(LLk\ — w 'q). (80)
With formula (41) from 10) the summation over fi, /*' andm , can be
carried out and W(ê, c) becomes

IF(0, c) =  2  ami a*M aLM. (— 1)M"L | L — MLM'y X
X WfaiLk) LU) (— 1 )’' - ”• (2* +  l)4 (— 1)M V<34ik\ — Mt*te). (81)

Now we observe that (cf. formula (17) from 10)) that V(j^k-,
— =  Vüi j j i ; — m.ra.O) ó0e, which makes possible summation
over g. From this we obtain with the aid of (79), (25), (26) and (32)

W(&, c) =  (— 1)'k Cha{LL) W(jfjiLk; Ljt) fhw j lDk0a(0, #, 0), (82)

where Cto(LL) is the abbreviation
C JL L ) =  ( -  1)L" M u*m aLM. <LL ka\ L -  MLM'y. (83)

We shall now consider electric 2L-pole radiation by substituting
(74a) in (83). Then only CJ(LL) and Ck±2(LL) turn out to be differ­
ent from zero. Making use of (45) we find

CM(LL) =  (— I)1-" 1 <LLk0 | L\L— 1 > if k is even, (84a)
CM(LL) =  — (— l)i_1 <LLkO | L1L — 1> f3, if k is odd, (846)

C*2(ZX)-K*_2(ZX) =  (— \)L~l <LLk2\L\L\y. —  if £ is even, (84c)
Ck2{LL) +  Ck_2(LL) =  0 if k is odd. (84d)

With (84) and D*, =  Yak(&, 0) (2k +  1)“*, (82) becomes
W(V, 5) =  W(&, c) =

=  S* ̂  W(jfn Lk \ Lji) fk wk \2 k  +  I)"* {Y°k <LLkO \ L\L — 1> -
— Yl<LLk2\L\L\y ■ +

+  *koM W (jfjiLk- Ljf) fkwk l (2k +  I)"* Y°k <JLLkO\L\L— \) ■ f3- (85)
If the polarization is not observed, we can sum over the polariza-
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tion directions and obtain W{§) = W(§, !•) +  Wifi, — %). From (85)
Wfi) =

=  S*even 2W(jfnLk ;Lji) fkwk l (2k + 1)"* Y°k(ê,0) <LLkO\L\L-\>. (86)

Making use of (86) and of the representation

\  =  £i X|| +  £2 X± +  Xc> (87)
it follows that (85) can be written

W fi,l)  = \W fi) ( \  +  P \0 -%), (88)
with

Wfi) P\ 0 =
=  ^koid 2W(j,jiL k ] Lji) fkwk l (2k +  1)~* Y° (0,0) <LLkQILlL-l>xr-
~ 'Zkeven 2WÜftM \ Ljt) f„wk l (2k+ l)“*Yj(#, 0) <LLk2\L\L 1> X||. (89)

For magnetic 2L-pole radiation we must replace jp, by —^ in (89),
as is easily derived from (74b) in the same way as in the electric case.
Formula (86) remains unchanged.

1F(#) in formula (86) is not normalized according to (62), but this
normalization can be obtained by calculating /  W (■&) dQ.

§ 6. Explicit formulae for the angular distribution of y-radiation
emitted by oriented nuclei. We have calculated explicit formulae for
the angular distribution function W(d) (59) and the polarization
W(ê) Pl-0 (71) for the following cases:

dipole radiation jf =  ƒ< ±  1. jt =  ji,
quadrupole radiation j. =  ±  2.

ji and jf are the angular momentum quantum numbers of the
initial and final nuclei. We have assumed that there are no inter­
ference effects among radiations of different multipole character.
The formulae are then valid for pure dipole or quadrupole radiation.
We have made the calculations by methods both of § 4 and of § 5.
The method of § 4 does not give rise to long calculations in the
dipole case, but for the next order, quadrupole radiation, the amount
of labour required already begins to mount. For higher multipole
orders the method of § 5 is certainly to be preferred. The computing
work to get explicit formulae with the aid of the latter method is
now shifted to the evaluation of the general expressions in terms
of simple products, etc. Especially, the work to compute the
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W(j/jiLk, Lji) is considerable. However, once they have been calcul­
ated for a number of cases they can be tabulated and can be used for
many purposes (tables have been given by K. A l d e r 8)).

The results for W {&) are the same for electric and magnetic 2L-pole
radiation. The polarization, however, is different for the electric and
magnetic radiations (§ 7). We give here explicit formulae for W{&)
(normalized according to (62)).

D i p o l e  r a d i a t i o n  (L =  1).
j, *  ƒ, — 1, Wiê) =  2 ( 1 +  lN2f2P2 (cos 0)) (90)
jt =  ü , W(ê) =  2 ( 1 — IK J2P2 (cos (&)) (91)
j, =  j. +  1, W(&) =  2 (1 +  1M2/2P 2 (cos 0)) (92)

Q u a d r u p o l e  r a d i a t i o n  (L =  2)
jf =  Ü — 2, W{ff) =  2 ( 1 — -1V2/2P 2 (cos &) — 5AT4/4P 4 (cos 0)) (93)
jf =  j. +  2, W(0) =  2(1— “  M2/2P 2 (cos 0) — 5M4/4P 4 (cos §)) (94)

with
fk the degree of orientation of order k ((16), (18)),

P 2 (cos 0) =  § (cos2 0 — \)  (95a)
P 4 (cos &) =  -  (cos4 0 — f  cos2 & +  A) (956)

A , =  6, ƒ* (2/ — 6) 1/(2/)!, M* =  6* /* (2ƒ +  I) 1/(2/ +  * +  1)1 (96a)
=  2ik if k is even, bk =  21(*+1) if k is odd, (96b)

K, =  1 Mi +  1), K2 =  /</(ƒ< +;!)• (97)

§ 7. Explicit formulae for the polarization of y-radiation emitted by
oriented nuclei. We now give explicit formulae for W(ft) P%0. The
formulae given below are valid for electric dipole and quadrupole
radiation. For the magnetic radiation, the sign of Xj| is changed in the
corresponding formulae for the electric case, while the sign of
remains unaltered.

E l e c t r i c  d i p o l e  r a d i a t i o n  (L =  1)
jf =  jt — 1, W{d) P%0= 3N J\ cos $Xc — |7V2/2 (1— cos2 0) X|| (98)
j, =  jf , W{ê) P^0= 3 A 1/ 1 cos +  1^ 2/2 (1— cos2 0) X|| (99)

j, =  ƒ<+!, W(0) P?0= — 3Mi/i cos ^Xc—2^ 2/2 (1— c°s2 0) X| 1 (1 °°)
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E l e c t r i c  q u a d r u p o l e  r a d i a t i o n  (L — 2)

If =  ii — 2
W(§) P%Q= { r N2f2 (cos2 § - 1) + -iV 4/4 (-7 cos4 + 8  cos2 tf-1)} X,, +

+  {22V]ƒ, cos # +  5iV3/3 (— 5 cos3 # -f- 3 cos &)} Xc- (101)

It =  it +  2
JY(#) P%0= { f M 2f2 (cos2tf- l)+ fM 4/4 (-7 cos4 $ +  8cos2tf-l)}X|r

— {2M,/, cos # +  5 M3/3 (— 5 cos3 # +  3 cos &)} Xc. (102)

The angular dependent functions which occur in (98). . . .  (102)
are proportional to Y*($, 0) as also follows from (89). Here fk, N k, Mk,
K 1 and K 2 have the same meaning as in § 6.
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Ch a p t e r  II

GAMMA RADIATION EMITTED BY ORIENTED
NUCLEI

T H E  IN F L U E N C E  O F P R E C E D IN G  R A D IA TIO N S; T H E
EV A LU A TIO N  O F E X P E R IM E N T A L  DATA

Synopsis
The angular d istribu tion  and  polarization of y-radiation em itted  by

oriented  nuclei was expressed earlier x) w ith  the  aid of param eters fk. These
param eters characterize th e  s ta te  of orien tation  of th e  nuclei from  which
th e  rad ia tion  is em itted . H ere explicit form ulae are derived for the  change
of th e  param eters fk if th e  y-radiation  under consideration is preceded by  a
/3 or a  y-transition .

A discussion is given of th e  d a ta  of physical in terest, which m ay be
obtained  by  the  analysis of experim ental d a ta  on y-radiation  from  oriented
nuclei: m ultipole character of y-transitions, nuclear spins' and parities,
nuclear m agnetic m om ents, d a ta  on the  H am ilton ian  for the  /3-interaction
and  nuclear m atrix-elem ents for /3-decay.

§ 1. Introduction. For experiments in which radioactive nuclei are
oriented the life time of the nuclei must be rather large. Most half
lifes for y-transitions are very short, except for the isomeric transi­
tions. However, there are no, or very few, isomeric nuclei which have
a suitable half life', a suitable energy (in addition the y-radiation
must not be entirely converted) and which can be oriented by the
present experimental methods. Hence, the situation for observation
of the angular distribution and polarization of the y-radiation emit­
ted by oriented nuclei will generally be the following:

a) the nuclei which are oriented will be /3-radioactive with a suffi­
ciently large life-time.

b) the /S-transition is followed by a y-transition (fig. 1) or possibly
by two or more y-transitions in cascade (fig. 2).

For the calculation of the angular distribution and polarization of
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the y-radiation, the formulae of I, §§ 6-7 *) apply. We must only
keep in mind that in a ^-transition j0 -> ƒ,• according to fig. 1 the
initial orientation of the nuclei with angular momentum j0 is dis­
turbed. If we consider the distribution of the second y-radiation
according to fig. 2 we must also account for the change of orienta­
tion caused by the emission of the first y-radiation.

Fig. 1. Decay scheme. Fig. 2. Decay scheme.

In the next section we shall derive formulae connecting the initial
orientation with the orientation after the ft or y-transitions, which pre­
cede the observed y-radiation. These results together with the for­
mulae of I provide the theoretical formulae, necessary for the dis­
cussion of experimental data in this field. Which data of physical
interest can be obtained will be discussed in §§ 3 and 4.

§ 2. Calculation of the change of the orientation parameters fk by /3 or
y-transitions. We assume that there is an axis yj of rotational symme­
try. Then (cf. I, § 2) the orientation of the nuclei with spin j0 is com­
pletely characterized by the relative populations amg of the sublevels
mo ( ^ m o =  )̂■ After a /3-transition (or a y-transition) / 0 - >  ƒ,• the
probabilities am( are connected with a„o by (cf. I, § I formulae 3, 4)

a «0 > ( 1.)

SM<P MoM<=  1, (2)

where P„omi is the partial transition probability for the transition
(iomo) • For special cases P„gmj are given by the following
expressions.
A. P (0) =  ,5 (3)

This formula is valid for
a) allowed /3-transitions with matrix elements

I/ 1 I2 or | ƒ y5 |2
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b) a forbidden /3-transition with a scalar matrix element.
In these two cases there will often be other matrix elements which
play a role in Pmgtn(
B. =  |< ;>< 1M| \j0m0 >|2 . (4)

Here <j#n% \M \ j ( l/0w0> are the transformation coefficients for the
addition of angular momenta. Formula (4) applies for

a) allowed /S-transitions with matrix element

l / o  I2
b) first forbidden /S-transitions with matrix elements

| / o  /s r  |2, |/<x |2, | ƒ r  |2 or \ f y 5r |2

c) electric or magnetic y-dipole transitions.
C. P ^  — | < jitUi 2 M \ ji | 2/0 w0 > |2 (5)

This formula applies for
a) first forbidden /3-transitions with matrix element

b) second forbidden /8-transitions with matrix elements
R», A ijt Tijt or

c) electric or magnetic y-quadrupole transitions.
We shall consider a transition for which the formula

Pmlm, =  1 < ii LM  I U Bio m0 > I2 (6)
is valid, of which the above mentioned cases are examples. Since
from I, §§ 6-7 it is clear that for the description of the orientation
only the parameters fk are needed, we derive a relation between
fkHo) giving the orientation before the transition and ƒ*(/) giving the
orientation after the transition. We start with the formula (cf. I,
§ 2 formulae 25 and 26)

/*(ƒ<) =  »*(ƒ<) 2mj (— 1 — m,| nu kO > aM(. (7)

According to (1) and (6)
amt =  S„o a„o | < ü nti LM \ jiLj0 m0 > |2. (8)

With Racah’s definition of the functions V  (cf. 2) formula (16'))
<ƒ,.nti LM\ jiLj0m0 > =  (— l),0+”,« (27o+  l)1/a V{nLj0) miM  — m0), (9)
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it follows from (7) and (8) that
m = u > » ( i i ) (2 * + l) i (2j0+ 1) V(nnk-, X

X v (jiLj0; mtM  — m0) V (jiLj0; mfM — m0). (10)

Summation in (10) over mi and M  with formula (41) of Racah’s
paper2) gives the result

/*(ƒ,) =  »»ln) [2k +  l)* (2/0,+  i ) . ( -  i f +*-*+- x
x w (ƒ,•ioiiio> Lk)V{j0j0k- — m0m0 0), (11)

where the functions W  are the Racah coefficients. With the applica­
tion of (7) for j0 instead of ƒ,• and with the relation (9), formula (11)
becomes

/*(ƒ<) =  wk(ii) wk(jo)~l (2/0 +  1) W(jiLkj0; j0ji) fk(j0). (12)

From the explicit expressions for wk (I, § 2 formula 32) the product

wk[ji) w k(io) 1
.. .. [2ji +  k + 1)! (2/0 k) ! ~|*
Wo/W L(2ƒ, — *)! (2j0 +  k +  1)! J (13)

is obtained.
Tables for the Racah coefficient W(jiLkj0; jQjt) are given in several

papers3) 4) 5). With (12) we can directly calculate fk(j{) from fk(j0)
when j0, ji and L  are known.

In some cases the relation (12) becomes very simple. For the tran­
sition j0 -> j0 — L,

hil i)
jo (2jp — fy ! (2/,)!

{2jo) ! ji[2ji k) ! /*0o) (14)

or
N h(jt) /*(ƒ.) =  iV*(?0) /*(?o). (15)

where the functions IV* (y) are the same as defined by I, § 6 formula
(96a). For j0 -*■ j0 +  L,

M i )  =

7o (2/p +  1)1 (2jt +  k + l ) \
(2/0+ * + l ) !  ÜPjt +  1)!

(16)

M M h f o )  =  M k(j0) fk(jo), (17)

with M k(j) again defined by I, § 6 formula (96a).
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For 7o-> /o with total angular momentum quantum number of
the emitted radiation L — 1 we find

fkih) —
k(k +  1)

2fo(/o + 1)
(18)

§ 3. Example of the application of the formulae to the.angular distri­
bution of y-radiation from oriented “ Co nuclei. The formulae (I, § 6-7,
formulae 90-102) for the angular distribution and polarization of
y-radiation can be applied to actual cases using the results of § 2.
We shall illustrate this by dealing with oriented “ Co nuclei of which
the radiation has been investigated experimentally by D a n i e l s
et al. ®), G o r t e r  et al. 7), G r a c e 8) and P o p p e m a et al. *).

0 0 .3 2  M«V

>», 1.17 MeV

Y s 1.33 MeV
6 0  I

Ni ----------- ±-------------  If =0
2 8

Fig. 3. Decay scheme of ^Co.

We assume the decay scheme to be as is shown in fig. 3 (cf.
D e u t s c h 10)) where the transitions are electric quadrupole transi­
tions. Then I, § 6, formula 93 for the angular distribution applies i.e.
W(ff) =  2(1 *r~N2(ji) f2(jt) P2(cos &)—5N4(u) /4(/4)P4(cos#)). (19)

The formula (19) is written down for the angular distribution of the
first y-radiation. Initially, the orientation parameters fk(j0) are given
and the /*(ƒ,) are calculated for the evaluation of (19). However, for
“ Co the formula (15) may be applied and we need to compute only
Nk(jo) fkiio) for k =  2 and 4. We have evaluated fk(jQ) for j0 =  5 as a
function of /? with the assumption

=  C exp. (fim0) (20)
which is valid if we have a Boltzmann distribution over equidistant
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energy levels (with /3 =  fiB/kTj0, jj, nuclear magnetic moment, B
magnetic field at the place of the nucleus). The results for /„ f2, f3
and /4 are given in fig. 4 to give an idea of the magnitude of these
parameters and their functional dependence on (}.

Fig. 4. D iagram  of th e  orien tation  param eters ƒ,, /2, f3 and  /4 as a function of /}.

For orientations of the nuclei, which differ not too much from
spherical symmetry, the parameters f„ may be evaluated with the
aid of approximate formulae for (20). If e.g. the probabilities a„o can
be approximated by a polynomial of the fourth degree we use the
formulae 20, 21 and 22 of. I, § 2.

Using the obtained values for fk in (19) we obtain numerical results
for W{§). P o p p e m a et al. 9) compared the results with experi­
mental data and found a rather good agreement. Kxperimentally,
the angular distribution of the first and second y-radiation (fig. 3) is
measured together since the energy difference of the y quanta cannot
be separated easily with scintillation counters. Nevertheless the
results obtained from (19) can directly be applied for the following
reason. The angular distribution of the second radiation emitted by
the nuclei with spin je is determined by (19) if ƒ,. is replaced by
But again (15) holds and

Nkiii) fkiii) =  Ar* f c ) /*(ƒ,) (21)

which gives the result that the first and second y-radiation have
identical distributions.This will not always be the case for two succes­
sive y-radiations as follows from the formulae (12) and e.g. (18).

§ 4. Data of physical interest, which may he obtained from measure­
ments on the y-radiation emitted by oriented nuclei. Depending on the
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nucleus which is oriented, information about the orientation mechan­
ism or the nuclear process (especially the values of the nuclear
spins involved) may be known or still lacking. Generally speaking,
knowledge about the unknowns may be obtained if some informa­
tion is already available, so that the situation is not too complex.

1. Information of macrophysical or atomic nature may be obtained
if the nuclear physical part is known, especially the nuclear spins
involved and the nature of the /? and y transitions which occur. The
measurements of the angular distribution of a 2L-pole y-radiation
provides, in principle, the fk with k =  2, 4 ,* ,... up to the smallest
of the numbers 2L or 2 Measurement of linear polarization does not
give anything new here, but measurement of the circular polariza­
tion would give fk’s with odd k. For determination of the fk’s with
high k, a considerable orientation is required, otherwise they cannot
be obtained with any precision. Knowledge of the fk s obtained
from such experiments can be used

a) in order to obtain knowledge about the mechanism of orientation
if this is not known, or

b) if this mechanism is known, to obtain the temperature from the
parameters fk, so that the angular distribution of the y-radiation can
be used as a thermometer.

2. Information concerning nuclear physical data can be acquired
if the mechanism of orientation is sufficiently known. Data of the
following nature may be obtained:

a) The multipole order of the y-radiation may be determined from
the angular distribution since W{§) strongly depends on L (see e.g.
I § 6). For the decision as to whether we have magnetic or electric 2L-
pole radiation the linear polarization of the y-radiation must be
measured.

b) The values of the nuclear spins and parities may follow from the
multipole order and the electric or magnetic character of the y-tran-
sitions. The temperature dependence of the angular distribution will
also depend on j0. If and j, are known, j0 may be determined in
this way,

c) The magnetic moment of the initial nucleus may be obtained if
the mechanism of orientation as well as the character of the nuclear
process u ) 12) is known. If the population of the different m-levels is
characterized by a Boltzmann factor

«»„= exp. [^BfkTj0) m0] =  exp. (pm0), (22)
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we can determine from the measured fk the value of /3 and from f) the
value of yU if B/kTj0 is known. One obtains only the absolute magni­
tude of the magnetic moment by measuring the angular distribution
(or linear polarization) of the y-radiation. The sign could only be
obtained by measuring the circular polarization.

This way of measuring magnetic moments of radioactive nuclei is
of interest because most radioactive nuclei are not available in suffi­
cient quantities for the application of the usual methods. The
magnetic moments of odd-odd nuclei have a special interest because
they are mostly radioactive, so that very few data on magnetic
moments of odd-odd nuclei exist.

d) If the spins and parities involved in the y-radiation are known,
information may be obtained about the preceding ft-transition. This
will be particularly true if we have an allowed /8 transition for which
j0 =  jt. The function Pm m. (occurring in (1)) giving the partial tran­
sition probability is

Pmom{ =  (with * +  X =  1) (23)

for an allowed ^-transition, where P ^ m. and P„)m( are given by (3)
and (5). A and A' are determined by

17* = [(«3 + <$/(< + 4 f ]  [LH7I7 il2}. (24)
We refer for these notions on /9-decay to 13). |ƒ o|2 and |ƒ 112 are

nuclear matrix elements for /3-decay. If A could be measured and if
the ratio of the matrix elements were known one could determine
the quantity (c2 4- c2)/(c2 4- c%), which gives the relative magnitude
of Gamow-Teller and Fermi terms in the Hamiltonian for the /3-in­
teraction. If on the other hand, the value of (c2 +  c2)/(c2 +  c|) were
known, one could calculate the ratio of the matrix elements | ƒ o|2
and |/112.

We may indicate in somewhat more detail how A could be deter­
mined if we measure /2(/s) and f4(jt) in case of a quadrupole y-transi-
tion preceded by a /?-transition with j0 = j . The connection of
f id)  and /4(/<) with f2(j0) and /4(/0) is given according to (3), (18)
and (23) by

M<) =>/2(/o) +  (1 ~  A)- l ( j 20 +  j 0 -  3)/;0(/o +  1)] f 2 ( j 0) ,  (25)
Uii) =>/4(/o) +  (1 -  A) [(fo 4- io —  10)M o +  1)] h(h)- (26)
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We now suppose that the mechanism of orientation is known, then
we may assume that /4(/0) is a known function of /2(/0) :

fido) =  F{f2(io)}- (27)
If f2{ji) and f4(ji) are measured, the 3 unknowns f2(j0), /4(/0) and X
may be solved from the 3 equations (25), (26), (27). By making the
measurements for a number of temperatures, one could reach a
higher precision for 2.

A situation like this is realized for S8Co for which /0 =  jt =  2;
If — 0. Probably this is an allowed unfavoured transition with

orbitals for the odd nucleons in 58Co. (25) and (26) reduce to

/2(7*) — £0 +  2) /2 O0)- (28)
/*(?•) =  £(— 2 +  52) /4(j0). (29)

This means that
/4(7**) //2(7*) =  (f) AO'ol/AO'o) f°r 2 =  0, (30)

A (/.)M ,) =  h{jo)lf2(io) for 2 =  1. (31)

The strong dependence of /4(/,)//2(/<) on 2 means that 2 can probably
be determined with reasonable accuracy from such measurements.

A determination of |/o |2/| ƒ  112 for 58Co would be of interest to test
theories of the nuclear matrix elements for odd-odd nuclei such as
proposed by B r y s k 14).

We may add the remark that in all these considerations we assume
the nuclei to have no appreciable spin precession after the /? transi­
tion and before the y-transition. In the case of 58Co we have a dis­
integration by fi+ transition or by K  capture. Since the larger part
of the disintegration occurs by K  capture it is possible that our
assumption does not hold. The disappearance of the K  electron may
produce a magnetic field strong enough to cause an appreciable spin
precession.

In addition to their use for the study of the y-radiation itself,
sources with oriented nuclei might eventually be suitable sources of
linearly or circularly polarized y-radiation, which could be used in
other experiments.
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Chapter  III

ANGULAR DISTRIBUTION OF RADIATION
EMITTED BY ARBITRARY ENSEMBLES OF

NUCLEI

Synopsis
An arbitrary ensemble is described by a density matrix q with arbitrary

values of its matrix elements. An equivalent description is given by
F a n  o’s statistical tensors, which are used in this chapter. A simple closed
formula for the angular distribution of nuclear radiation from an arbitrary
ensemble is derived.

§ 1. Introduction. An arbitrary ensemble of nuclei must be
described by a density matrix,

where the double bar indicates an ensemble average. The numbers
cm are the coefficients of an expansion of a pure state \Ay into basic
vectors |m>

Here m is the magnetic quantum number; the angular momentum of
all nuclei is supposed to be j. In this chapter we shall investigate the
angular distribution of nuclear radiation emitted by an arbitrary
ensemble of nuclei. This problem presents itself in the theoretical
treatment of many phenomena as will be illustrated by the following
considerations.

First of all, if the quantization axis has rotational symmetry a
simplification is obtained since in this case the density matrix is on
diagonal form. A first example of this situation is found in the
problem of the angular distribution of radiation in a nuclear reaction
caused by unidirectional irradiation (which direction is taken as
quantization axis). A second example is the directional correlation

( 1 )

\A>  =  c j m y . (2)
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of successive radiations, when the direction of the first radiation is
taken as quantization axis1). A third example is the angular distrib­
ution of radiation from an ensemble of nuclei oriented in such a way
that an axis of rotational symmetry exists. The angular effects of
y-radiation in the latter case have been treated in previous
chapters2)3). In all these examples one studies the angular distribu­
tion of nuclear radiation emitted by an ensemble with cylindrical
symmetry, which is prepared by preceding effects.

However, the general case with non-vanishing off-diagonal densi­
ty matrix elements has also physical importance for a number of
phenomena. This can easily be seen in the nuclear reaction of the
type (a, b, c), i.e., one incident particle a in a fixed direction, followed
by two successive radiations b and c. After the absorption of particles
a the nuclei form an ensemble which has no longer spherical symmetry
but symmetry around the direction of a. After emission of b in a fixed
direction this symmetry has also disappeared and the ensemble is
described by a density matrix with non-vanishing off-diagonal
elements. If one wishes to calculate the angular correlation between
b and c we have the problem of finding the angular distribution of
radiation c. A second example is an ensemble of nuclei which has
arisen from orientation with cylindrical symmetry, and subsequent
emission of a first radiation in a fixed direction. With the density
matrix of this ensemble the distribution of a second radiation can be
calculated (in other words the correlation of successive radiations
from oriented nuclei). Finally a third example is an ensemble of
nuclei which has been oriented by means of such methods, that the
system has no axis of rotational symmetry 4) 5) ®). The calculation of
the angular distribution of radiation from such an ensemble presents
again the full problem of this chapter.

For the calculation of the angular distribution of the radiation
we shall use an alternative description of the ensemble from that
given by the density matrix qfcm,. This description is provided by
F a n o’s statistical tensors 7). They are defined by

<\jjkq> =  qmm. (— 1 y~M ijm 'j — m\ jjkq>. (3)

Here <jm’j — m\ jjkqy are the transformation coefficients for the
addition of angular momenta. The set of statistical tensors <|jjkq>
(with k =» 0 / . . .  2j and q =  — k . . . .  -)- k) is equivalent to the
density matrix Qmm.. They are, however, more appropriate in consid-
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erations on effects of geometrical nature. In fact with the use of the
statistical tensors we derive in section 2 a simple closed expression
for the angular distribution of radiation from an arbitrary ensemble.

In section 3 we give formulae for a few special cases. In section 4
we indicate in more detail some possibilities for the application of
the formulae obtained.

§ 2. Derivation of the angular distribution function. If an initial
state of a nucleus is denoted by \A> and a final state by |ƒ>, the rela­
tive probability of a nuclear radiation to be emitted in the direction
k by the ensemble is given by

W(k) =  Z, \<A\ H(k)| />I2. (4)

The double bar indicates an average over the ensemble of nuclei. The
operator H(k) is the interaction Hamiltonian for the radiation and
the nucleus. Introducing in (4) the density matrix defined by (1) and
(2) we obtain

JT(k) =  Qmm. <jm\ H(k) | jfmf>* <jm'\ H(k)\ (5)

We shall use the algebra of tensor operators, developed by R a-
c a h 8), for the evaluation of (5). The Hamiltonian is expanded in
irreducible tensor operators. In a coordinate system with k as 2-axis,
relative to which the emitted radiation is described, this expansion
reads

H — ZLM aLM Tm. (6)

In (6) the aLM are parameters which characterize the emitted radia­
tion. The components TLM of the irreducible tensor operators of
degree L operate on the nucleus. Relative to the coordinate system
with the quantization axis as z axis (6) becomes

H(k) =  ZLM„ aLM Tlm D^m(S), (7)

where S is the rotation in space which transforms the coordinate
system used in (6) into the coordinate system used in (7). DL is the
(2L +  1) dimensional irreducible representation of the rotation
group. With (7) we obtain for the distribution function (5)
W(k) -
=  ^Qmm'aLMaVM'<4m \TU jfmf> *<ïm' \TÏ  I jtmf>DL*M{S) D .̂M.(S). (8)
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With the definition of R a c a h ’s F-function
<aaè/3| abcy'y — (— l)c+y (2c +  1)* V(abc; a(j — y) (9)

and the relations
B&IS) D%,(S) =
- t kva(— \)M->‘<.L^ixLY\ LL'kqyDkea(S)<,LL'ko\L—ML'M'y, (10)

<jm \TL„\ jfmj> =  (— l)'+m <ƒ ||TL|| jp  V(jjfL; —  (11)
we derive from (8)

W(k) =  ZLL. <j \\TL\\ii>* <ƒ ||Ti '|| jp  x
X S Qmm-a*LMaL.M. ( -1  )— '+--»•+»+• (2k+1 )*<LL'ko \L--M L'M 'y  X
X Dhea(S) V(LL'k;— fifi'—q) V(jjfL ;— V(jjtL ';— tn'mfp') .(12)
The second summation has to be extended over mf, m, m', M, M',
(i, fx', k, q and a. Summation over fi, fi' and mf with the aid of formula
(41) from R a c a h ’s paper8) gives

JF(k) =  SLL, <j \\TL\\ jp* <ƒ Ill'll iP S (— 1)L' M+*
<LL'ka | L — ML'M'y X D*JS) W (j£'jk; jL) Smm, Qmm, (— 1)'"”

<ƒ*»'ƒ — m\ jjkgy, (13)

The second summation is over k, q , a, M  and M ' . We have omitted
unessential factors which only affect the normalization. The func­
tions W(jfL'jk; jL) are the R a c a h  coefficients8) 9). With the
statistical tensors <|jjkgy defined by (3) and the abbreviation

Cia(LL') =  ZMM. ( -  l ) L ~ u  a*LMaVM. <LL’ka\ L -  ML'M'y, (14)
the formula for the angular distribution (13) reads
W (k)= ’ZLL,<j\\TL\\jp*<j\\TL'\\ jp Xkea(~ \)kCka(LL') W(j,L'jk;jL) x

X <| jjkQ> D*a(S). (15)

As is seen this formula contains a sum of terms of which the factors
describe the relevant physical features of the problem, viz. two
physical factors <ƒ ||T'Z'|| jp  and <j ||rL'|| jp  pertaining to the nuclear
transition, a factor C ^LL') which characterizes the radiation,
the Racah coefficient containing the total angular momenta, the
statistical tensors which describe the initial orientation, and finally a
function D^(S) which depends only on the Euler angles of the
rotation 5.
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§ 3. Special cases. For a radiation with a single value of the total
angular momentum L formula (15) reads

JF(k) =  2 ^  ( -  1)* Cka (.LL)W(j,Ljk; jL) <|jjke> Dka(S), (16)

where factors now irrelevant have been omitted. For the case of
cylindrical symm etry of the ensemble, the density m atrix has di­
agonal form which means th a t only the statistical tensors <|//yfeO> =
s= fh(j) subsist (cf. 2) section 2). Thus a specialization of (16) is
obtained:

W(k) =  2 to ( - 1 ) *  Cka(LL) W(j,jLk■ Lj) h(j) DUS), (17)
which has been derived before 2).

For pure 2L-pole y-rays, of which no polarization is observed (16)
gives

^ ( k i) =  <L\L— 11 LLk0> W{jfjLk; Lj) <|jjkq> D*0(S) (18)
with only even values of k. The value of CULL) for y-rays has been
used in (16) (cf.2) formula 84). Specialization to the case of cylindrical
symm etry gives

IF(k) =  2* <L1L -  1 1 LLk0> WiiflLk; Lj) f„(j) DUS) (19)

with even values for k. Z)Jo(S) is proportional to the Legendre poly­
nomial Pk (cos ■&). The result (19) has also been derived before 2).

§ 4. Remarks ón some possible applications. As has been indicated
in section 1, the calculation of the angular correlation of two succes­
sive radiations from oriented nuclei presents a possibility for the
application of formula (15). If the ensemble of nuclei has an axis tj of
rotational symmetry the density m atrix is on diagonal form which
corresponds to the vanishing of all quantities <| jjkgy with 5 0. After
the emission of the first radiation in the direction k, the ensemble is
described by a full set of statistical tensors <|jjkq> which can be
calculated and depends on kj. This ensemble emits the second radia­
tion in the direction k2. For the calculation of the angular distribu­
tion of this radiation we can make use of formula (15) by substituting
the calculated values of <|}jkQ>. The angular dependent factor refer­
ring to the direction k2 is DhQa(T) where T  is the rotation which trans­
forms the coordinate system with k2 as z axis into th a t whose z axis
is T). A different procedure is obtained if we calculate the statistical
tensors <|jjk g \  describing the ensemble in a coordinate system
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whose z axis is k,. The relation between <]jjkq\ and <|jjkgy is
given by

<\HkQ \  =  Se <\jjkq\ Dke-Q{S). . (20)
With the use of <|//£g>ki in (15) we obtain again the angular distrib­
ution for the second radiation if we take for the angle dependent
factor Dkea(S~'T). The rotation S is defined for k, in the same way
as T  for k2. The formula obtained will be a natural extension of the
formula for the correlation function in the case of nuclei with random
orientation. In the latter case the direction rj becomes irrelevant and
only the rotation S~ 'T  which transforms k2 in k, will have physical
significance.

In the field of nuclear reactions we find a possibility for applica­
tion of (15) in the angular correlation between the directions of a
neutron and a y quantum emitted in the reaction 7L i«  w)8Be*(y)
8Be 10). The fixed direction rj of the incident deuterons will prepare
an ensemble of (compound) nuclei with cylindrical symmetry. The
angular correlation function can then be obtained along the same
lines as indicated above.
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Ch a pt e r  IV

DIRECTIONAL CORRELATION OF TWO
SUCCESSIVE RADIATIONS EMITTED BY

ORIENTED NUCLEI

S ynopsis
The correlation  p robability  W(k j, k 2, t]) for th e  directions and  k 2 of

tw o rad ia tions em itted  in  cascade by  an  ensem ble of oriented nuclei is
calculated. The u n it vector yj is an  axis of ro ta tio n a l sym m etry  along which
th e  nuclei are oriented. The resu lt is specialized to  the  case of y-y correla­
tions. F or tw o dipole transitions j -*■ j—-1 -*■ j — 2 and  for tw o quadrupole
transitions j -*■ j — 2 -*• j — 4 explicit form ulae are given, which are
suitable for d irect evaluation .

§ 1. Introduction. If two radiations are emitted in cascade by an
ensemble of nuclei we may ask for the probability TV(k,, k2) of
finding the two radiations in the directions specified by the unit
vectors k } and k2. For an ensemble which has spherical symmetry it
is clear that this probability can depend only on the angle & de­
termined by kj and k2 (cos # =  k[ .k2). If the ensemble has only
symmetry around an axis y) the correlation function will depend on
three angles determined by k 1; k2 and T). This will be the case for
nuclei oriented in a certain direction. In section 2 a formula for the
directional correlation W(k 1; k2, r\) is derived. In the calculations
we assume that there is no appreciable spin precession or reorienta­
tion after the emission of the first radiation and before the emission
of the second radiation. The latter effects have been studied by
G o e r t z e l 1) and A l d e r 2).

The application of the formula obtained is limited as in general
it contains unknown nuclear matrix elements. Only in pure multi­
pole transitions the nuclear matrix elements become irrelevant.
We have therefore given a specialization of our formula for the case
of pure multipole y-transitions (section 3). For dipole y-transitions
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1 ƒ — 2 and quadrupole y-transitions ƒ -» j — 2 -»• ƒ — 4
formulae are given suitable for direct evaluation (section 4). In
section 5 a numerical result is given for a temperature effect in the
y — y correlation of an ensemble of “ Co nuclei contained in a
tutton salt where two directions of orientation exist 3).

§ 2. The directional Correlation function. We consider an ensemble
of oriented nuclei with an axis i\ of rotational symmetry. Then the
orientation is described either by the relative populations amf of the
magnetic sublevels mi(mi =  —- j{ . . .  +  jf) or by the statistical
tensors /*(ƒ<) =  < \ jjfk0 > 4) 5). This ensemble emits two radiations
in succession in the directions k, and k2. For the characterization of
these directions we use the rotations in space S and T  which trans­
form the coordinate systems with k, ajid k2 respectively as 2-axis
into that whose 2-axis is tj. These rotations are determined by their
Euler angles. The nuclear spins of the initial, intermediate and final
state are indicated as jt, jt and j, respectively. The angular momen­
tum carried off by the emitted radiation is denoted by L (in the two
transitions, L, and L2 respectively).

After the emission of the first radiation in a fixed direction k,
there is no longer cylindrical symmetry and the ensemble is de­
scribed .by a density matrix or by the set of statistical tensors
< \jeje kq > 4) *). Using a coordinate system with kj as 2-axis the
statistical tensors for the description of the ensemble are < | jjjtq  >kl
which are related to the former ones by

< Ii j ,  M  >kl =  < \iJt kq > D)-q (S). (1)

Here Dk is the 2k -)- 1 dimensional representation of the rotation
group. The directional correlation function for kj and k2 is now
equivalent to the directional distribution function of the second
radiation (k2) emitted by the ensemble characterized by <|j j ek q \ i
(cf. 6)). Once we have calculated these statistical tensors we find the
correlation function by substitution of these tensors in formula (15)
of the previous chapter. In this way we obtain for JF(kj, k2, yj)

JF =  S2 < ƒ J  TL* II /;>*.<■ ƒ. II T**' II j, > X
X S ^  ( - l )kCka(L2L'2)W(jfL'2jek-, j , i 2)<|/,j ,k d \1Dlo[S~iT). (2)

The index 2 pertains to the second radiation. S2 indicates summation
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over all parameters which are not observed (e.g. polarization direc­
tions). Since k , is the 2-axis of the reference system, S ~ lT  which
transforms k2 into k, occurs in the formula (cf. 8) section 4).

If we begin with the general expression for the directional correla­
tion function 7)

^  amt I ( limi \ H\ | jeVtl^ (jettle \H2 \ ] / Wf') |2, (3)

we are led to the same result as can be seen by the following transcrip­
tion of (3). W ith

Qmemt ’ ^ 1  a m I H j  | 1 e m e i m i \ H  \ I 1em e X  (4 )
the formula (3) reads

^  ■'*2 Gm,me’ (  1 e ^ e  \ ^ l \  j t  \ ^ l \  I f  m f  /  • (5)

This expression reduces to formula (2) since it is the starting point
for its derivation (cf. 6) formula (5)).

The problem is thus restricted to the calculation of < \j,.j, kg >k .
The statistical tensors < \j,j, kg > referring to the system with Y)
as 2-axis are defined by

< I jd . kQ > =  £».«.- Q„t„e. (— 1 ) '• -”* < jemeje — mc\ jeje kg}.  (6)

Here < jem'eje — me | jeje kg > are the transformation coefficients for
the addition of angular momenta. The density m atrix gme„e', is
given by the expression (4). From (6) and (1) we obtain

< \i,ié ( ~  1 <?>I  1. ~  (5). (7)

We follow in principle the same procedure as was used previously 6).
W ith the development of the Hamiltonian in irreducible tensor
operators (cf. 6) formulae 6—7)

H) =  a LiM i D ? \ m 1 {S)> (8)

R a c a h ’s definition 8) of the functions V

< aabp | abcy > =  (— 1 )c+v (2c +  1 )* V(abc; a/3 — y), (9)

and the relation

<7>, 1^ 1  jcmi'>= (— 1)"+m' < ƒ j \\TLl\\jey V(jijeL l ]-— (10)
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we derive from (7) and (4)
1̂ U le^y^x  = - î ^ l m <U\\T H l .^ < U \ \T ^  || | () 2 « b . cll1m1 aL]̂ Mj. X

XD^Z, (S) D%m ,(S) D\e (S) ( -  i)f.-".+»+* (2k +  1)* x
x VijijJL-i.; mime/i i) V(ujeL'i;—mim'c[.i() V(jJe k; m'e—me—g). (11)
The second summation in (11) must be extended over mit me, me,
Hx, H\, M], M\ and g. Combination of the angle dependent factors
in (11) according to (W i g n e r 9))

(S) D l (S) =
=  SiAx(—l)"‘-^<Li kg | M > Z > L ( S ) <£,—M, Ae}£,M*». (12)
Z)^Mi,(5)DL(S)=S*,eV<i^;W | L[lk'Q'yD*,(S) <L[M[lx\ L[lkW\ (13)

makes the summation possible over me, ptl and g. This gives expres­
sions containing Racah coefficients W (cf. 8) formula 41). Applying
again Racah’s formula for the summation of m'e, fi[ and A, the result is

< I lei* kg >kl =  5, S w  < /< l | r Ll|l ƒ«>*<ƒ» II T Ll || je} X

^ M ! M ^o’k'lx (  I  ) i l  Ml<1T1M 1 a Ll 'M 1' (. L 1 M  J kg I L ] klx y  ■

x (h )
(21+1)* (2A+1)* W (jj, Ik'-, L(Ü) W(j,u kl- Lxje > k'OyD*,. (S).

The formulae (2) and (14) provide the directional correlation function
for two arbitrary radiations emitted in succession by an ensemble
of oriented nuclei. The resulting correlation function is not normal­
ized since normalisation factors have not been taken into account
in (4).

Remark. From (2) and (14) a more symmetrical form can be
obtained for the correlation function fF(k1( k2, yj) which reads

W( k„ k2, rj) =  s,s2 < n IIT̂ II /.>*< n I l l 'l l  i. > < j. F L*|| j, >

<7. WT̂ 'Wify S«'*rto»"(—l)*+*'C*-v' (LiL'i)Cka(LaL^(2k"+l)1'*(2k+ l)v*
< \iiii k'o > (21 +  1) Lxjc) W(3.nlAk!\ ljt) W ( l L ( k k k ' L x) .

• W(jfL'2 je k- jeL2) Se < k" -  gkg\ k"kk'0} D ^ .. (S) (T).

§ 3. Specialization to gamma radiation. In the case of pure multi­
pole y-transitions we can use the explicit expressions for aLM (5)
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section 5) and omit the nuclear matrix elements, which are now
irrelevant. In  this way we obtain from (14)

< l/ie^>kx= S Ml=±1,Ml {— \)l^ Mi ( L x~ M x kq\ L x k lx ')(L { M x lx \L x Ik'e)

(2^+1 )* ( 2 k + 1 )* W ijjf lk 'y L 'i j i)  W ( jJ ik l;  L xj e) < |j . j t k '0 >D k0e (S). (15)

To obtain the correlation function we must substitute (15) in the
formula (2) specialized to the case under consideration (cf. 6) formula
(18)) i.e.

W = i: kQa 2\L 2- \ |  L 2L 2 kO> W {jf j eL 2k ;L 2j , ) < \jei M \ P U S ~XT). (16)

I f  we use the notation (ref. 6) formulae 23, 25 and 26)

fAii) = wAii) < \un k'o > (17)
in (15) and insert it in (16) we obtain the correlation function in the
following form 10)

W (ki. K  *)) =  S*./*, (;f) C f  (ƒ<ƒ,ƒ, L xL 2) D& (S) D & iS - 'T ) .  (18)

In  (18) we have combined a number of factors to one function
C Ï '& i . j f L i L j .

Remark. A  specialization to randomly oriented nuclei must give
the ordinary correlation function. In  fact one obtains in this case
from (15) for k is even

< I U i  ^  \  =  < L x \ L X —  11 L XL X kO } W { j j t k L x; L xj e) (19)

which has been indicated before (u ) formula 30).

§ 4. E xp lic it expressions for the correlation function for gamma
radiation in  two special cases. For the use of numerical evaluation we
have applied formula (15) and (16) for y  radiation to the case of two
successive dipole transitions / f -> j \  —  1 -> j i  —  2. The angle de­
pendent functions are expressed in the scalar products of the three
characteristic unit vectors yj, k,, k2. The result is 12)

W ( K  k2, T)) -  9 \N 0(Ü) /„(ƒ,) F 0(k ,k2) +  N 2{jt) f2(jt)  F 2(kIk2Y]) +

+  N 4Üï) h if i)  F 4(k,k2Tr])]. (20)
The following abbreviations are used:

T"o(k]k2) = 3ö [13 -(- a2], (21a)

-F2(k,k2ï]) =  —  ^[4 —  6 af —  6a| —  3aaxa2 +  a2], (21è)
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E _F4(k[k2Y)) =  -| [1 — 5a2 — 5a2 +  35a2 af — 20aa1a2 -f- 2a2], (21c)

a =  (k ,.k 2), a, =  (k,.Y)), a2 =  (k2.Yj), (22)

N k(j) -  2** j \ 2 j  -  *) !/(2/)! (A is even). (23)

Explicit expressions for the orientation param eters ƒ*(ƒ) for k =  0,
1, 2, 3, 4 have been given before (ref. 5) section 2). The function

k2, i\) given by (20) is normalized to

f  TT(k„ k2, y)) dQ, di?2 =  (8^)2. (24)

We have also applied formulae (15) and (16) to the case of two
quadrupole transitions j f ->■ — 2 j4 — 4. The result is 12)

W(k „  k2, yi) =  25 [N0(ü) f0(u) G0(k,k2) +  N2(u) f2{jt) G2(k, k2Y)) +

+  Ni(ii) Uii) G4(k i k2 Y]) +  Nb(ü) /6(/t) G6(ktk2Y)) +
+  N6(n) fe(n) G8(k1k2Y))]. (25)

The functions Gk are defined by

^ 0(^ 1̂ )  =  315 [48 +  6a2 +  2a4], (26a)

G2(k]k2Y)) =  2gj [96 — 144a2 — 144af T  36aa,a2 +  18a2a2 -j-

+  18a2af — 24a2 -)- 24u3ala2 — 8a4], (26 b)

G4(k,k2Y)) =  2~ [— 201 +  1005a2 +  1005af — 1225a{ — 1225af +

+  315a2a2 — 540aa]a2 +  420aa,a2 T  42000^1 +

+ 1 08a2— 270a2a2— 270a2af +  630a2a2a2 —360a3a,a2 +  36a4], (26c)

G6(k,k2Y|) =  ~  [— 6 +  63a2 +  63af — 756afaf — 63a4 — 63a2 -f-
-T 693a4af -)- 693a2a2 -f- 504aa[a2— 1008aa3a2—

— 1008aa,af +  1848aafaf — 48a2 -j- 252a2a, +

+  252a2af — 1512a2a2af +  336a3a 1a2 — 16a4], (26 d)

G8(k1k2Yi) = ^ [3  — 54a2 — 5 4 a f+ 1188a2a2+ 99af+ 99af—2574afa2—

— 2574a2a2 +  6435a4a2 — 432aaia2 +  1584aa3a2 +

+  1584aajaf — 6864aa3a | +  24a2 — 216a2a2 —

-  216a2af +  2376a2afaf — 288a3aia2 +  8a4]. (26e)

The a, a, and a2 are again defined by (22). The explicit expressions
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for the orientation parameters fk(j) for k =  6,8 are

h  =  (1 I f )  -  (5/11) (3f  +  3j  -  7) +

+  (1/11)' (5;4 +  10f -  2 0 f  -  25j  .+ 14) %nm \ n-
-  (5/231) ƒ(ƒ +  1) (ƒ -  1) (ƒ +  2) (ƒ -  2) (ƒ +  3)], (27a)

/s = (1//8) [Smrn8«m-(14/15) ( 2 f + 2 j - 9 )  Smrn6«m+(7/39) (6;4+12;3̂ -
—50;2—56/+81) h mm*am—(7/2145) (60/6+ 180;5—690/4-  -1680ƒ3̂ ^

+  1958/2 +  2828; — 9132/7) 2 mw2am +
+  (7/1287);(; +  1) ( ; - l )  (;+2) (ƒ—2) (;+3) ( ;-3 )  (;+4)]. (276)

The correlation function (25) is normalized in the same way (24) as
in the dipole case.

For randomly oriented nuclei (fk =  0 for k — 1,2, . . . )  we obtain
from (20) and (25) the usual correlation functions.

For total orientation both (20) and (25) can be written as

Here W{k,, r\) and TF(k2, yj) are the angular distributions of the
radiations separately. Hence for total orientation there is no direc­
tional correlation in these cases. From the general formula it follows
that no correlation will be left for total orientation if we have a
2Ll-pole and 2^-pole radiation in succession and if

§ 5. A temperature effect in the y—y correlation for 60Co. Oriented
60Co nuclei present a possibility for the application of formula (25)
since they emit after a /1-transition (;0 =  5 =* 4) two successive
y quanta of quadrupole character in the transitions -> ji — 2
-> — 4. As was indicated before (cf. 13) formula 15 and section 3)
the quantities N k(]\) fk(j<), occurring in (25) are related to the corre­
sponding ones before the /?-transition by the relation.

For the initial population of the sublevels (;’0, m0) we assume to have

W(kj, kj, y)) =  W(k„ tq) . PfF(k2, yj). (28)

U it —  L { L2.

N k(ji) fkih) — N k (;0) fkiio)- (29)

a„ntQ

where A is determined by
=  A cosh /? m0, (30)

mo~ ~Jo m0 (31)
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and the parameter /3 by ft =  /.iBjkTig (cf. 5) formula 20). The cobalt
is contained in a tutton salt and due to the crystalline field the
orientation is such that the levels —- m0 and m0 are equally favoured
(this is also expressed by formula (30)). As a consequence only
f k ( jo )  with k even subsist (alignment u )). The values of f k ( j 0) have
been calculated as a function of ft. With (29) the N h( j i )  f k ( j f ) are
derived from the f k{ j 0) . For any direction of k[ and k2 the correlation
function (25) can now be evaluated as a function of ft. However a
complication arises from the existence of two directions of orientation
in the crystal. We specify them by Tj] and t \2 with (y) ,  ■ y]2 ) =  cos 68° 3).
Along each axis half of the nuclei are oriented and we have added
the corresponding correlation functions of the two ensembles of
nuclei in order to obtain the observed correlation. The direction k,

Fig. 1. The correlation  function  WS(P) p lo tted  as a  function  of ft.

is chosen perpendicular to the plane of y)j and rj2 and k2 in the
plane of y), and yj2 with (k, • y j , )  =  cos 20° and (k2 • yj2 ) =  cos 88°. The
correlation function Ws (ft) for this choice of angles is only a function
of ft. The result is shown in fig. 1. Due to the particular choice of
k2 one has Ws((t =  0) =  Ws(ft =  oo); this means that the correla­
tion probabilities for randomly oriented nuclei (ft = 0 ) and for
totally oriented nuclei (ft =  oc) are equal. As can be seen from the
figure, Ws(ft) has a maximum of about 12 % for ft =  0.8. Thus, if a
sufficiently high degree of orientation could be obtained, the correla­
tion probability would first increase and then decrease as the appa­
ratus warmed up during an experiment.
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SOMMAIRE

Lorsqu’on considère un ensemble de noyaux radioactifs dont la
distribution dans 1’espace des directions du spin n’est pas a symétrie
sphérique (orientation nucléaire), on peut s’attendre a des effets
angulaires quant au rayonnemént émis par les noyaux. En premier
lieu la distribution angulaire de la radiation émise ne sera pas iso-
trope; ensuite la radiation elle-même sera (partiellement) polarisée.
Dans le cas de deux radiations en cascade la correlation direction-
nelle sera différente de celle du cas oü 1’orientation du spin nucléaire
est arbitraire. Une discussion théorique des susdites propriétés
géométriques des radiations émises par des noyaux orientés a été
présentée dans cette thèse. Dans toutes nos considérations nous
avons renoncé a étudier les aspects théoriques des methodes par
lesquelles les noyaux sont actuellement orientés.

Dans le chapitre I nous calculons la distribution angulaire et la
polarisation de la radiation émise. Pour traiter ce problème nous
avons supposé que 1’orientation nucléaire a un axe de symetrie ro-
tationnelle. II s’est avéré que le choix des paramètres pour la descrip­
tion de 1’orientation nucléaire et pour la polarisation du rayonne-
ment a une grande importance si 1’on veut aboutir a des formules
qui mettent en évidence les différents aspects physiques du problème.
Pour le cas d’une radiation y dipolaire ou quadrupolaire des formu­
les sont présentées qui permettent un calcul numérique par des
substitutions simples.

Dans le chapitre II nous avons étudié le cas oü la radiation y
observée est précédée d’une transition (3 ou y. L’influence d’une
pareille transition sur la distribution angulaire et la polarisation de la
radiation y est indiquée. Comme cette situation se présente fréquem-
ment dans la pratique, les effets calculés auront une certaine impor­
tance. A titre d’exemple le procédé du calcul de la distribution
angulaire du rayonnement y, tout en tenant compte de la transition
(3 précédante, est indiqué pour des noyaux 60Co orientés. Dans le
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même chapitre nous avons indiqué quelles grandeurs physiques
peuvent être obtenues (au moins en principe) par la mesure du
rayonnement émis par des noyaux orientés.

Dans le chapitre III nous nous sommes libérés de la supposition
que 1’ensemble des noyaux est a symétrie rotationelle (chapitre I).
La distribution angulaire est calculée pour le cas général d’un
rayonnement émis par un ensemble arbitraire.

Utilisant les résultats obtenus du chapitre III nous étudions dans
le chapitre IV la corrélation directionnelle de deux radiations süc-
cessives émises par un ensemble de noyaux orientés en supposant
de nouveau 1’existence d’un axe de symétrie rotationnelle. Dans un
cas particulier de la radiation y dipolaire ou quadrupolaire nous
avons donné des formules explicites qui se prêtent a des calculs
numériques.
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SAMENVATTING

Ihdien men een verzameling van radioactieve kernen beschouwt,
waarbij de verdeling der spinrichtingen in de ruimte niet isotroop is
(gerichte kernen), kan men hoekeffecten verwachten wat betreft de
uitgezonden straling. In de eerste plaats zal de intensiteit van de
kernstraling niet in alle richtingen dezelfde zijn. In de tweede plaats
zal dé straling zelf (gedeeltelijk) gepolariseerd zijn. Voor het geval er
twee stralingen in cascade worden uitgezonden zal bovendien de
richtingscorrelatie tussen deze twee afwijken van de correlatie die
geldt voor niet gerichte kernen.

In dit proefschrift wordt een theoretische behandeling gegeven
van bovéngenoemde geometrische eigenschappen van de straling
(speciaal y-straling) van gerichte kernen. De theoretische aspecten
van de experimentele methoden om kernen te richten worden buiten
beschouwing gelaten.

In hoofdstuk I wordt de hoekverdeling en polarisatie berekend van
de uitgezonden kernstraling. In dit hoofdstuk wordt verondersteld,
dat de kernen zodanig zijn geörienteerd, dat er een as van rotatie-
symmetrie bestaat. Het blijkt, dat de keuze der parameters voor de
beschrijving van de oriëntatie der kernen en de polarisatie der stra­
ling van groot belang is voor het verkrijgen van formules, die over­
zichtelijk de verschillende physische kanten van het probleem weer­
geven. Hieraan zijn twee afzonderlijke paragraphen gewijd. Voor
y-dipool- en quadrupoojstraling worden formules gegeven, die ge­
schikt zijn voor numerieke berekeningen.

In hoofdstuk II wordt het geval bestudeerd waarbij een (3- of
y-overgang voorafgaat aan de waargenomen y-straling, hetgeen
practisch altijd de werkelijke situatie zal zijn. Als voorbeeld wordt
voor gerichte 60Co kernen ((3-overgang gevolgd door twee y-over-
gangen) aangegeven hoe de berekening van de hoekverdeling der
y-straling kan geschieden. Aan het einde van dit hoofdstuk worden
een aantal belangrijke physische grootheden genoemd, die in prin-



cipe uit de meting van de straling van gerichte kernen te verkrijgen
zijn.

In hoofdstuk III wordt de veronderstelling, dat er een as van
rotatiesymmetrie bestaat (hoofdstuk I) opgegeven en voor een wille­
keurige verzameling kernen de hoekverdeling van de uitgezonden
straling berekend.

Met behulp van de resultaten van hoofdstuk III wordt in hoofd­
stuk IV de richtingscorrelatie berekend van twee successieve stra­
lingen, uitgezonden door geörienteerde kernen, waarbij weer cylin-
dersymmetrie verondersteld wordt. Voor het geval van y-dipool- en
quadrupoolstraling worden formules gegeven, die geschikt zijn voor
numerieke berekeningen.



STELLINGEN

I

De numerieke berekening van de hoekverdeling van de y -straling,
uitgezonden door gerichte 58Co-kernen, laat zien dat het ook experi­
menteel tot de mogelijkheden moet worden gerekend om hieruit
inlichtingen te verkrijgen omtrent het karakter van de (3 -overgang.

J. A. M. Cox, S. R. de G root and Chr. D. H artogh,
Physica 19 (1953) 1119.

II

De door Thirion gevolgde methode van berekening van de («, y) of
(p , y) hoekcorrelatie bij (d, n y) respectievelijk (d, p y) kernreacties
bevat een principiële fout. Hierdoor is de door Thirion gegeven in­
terpretatie van zijn experimenten alleen juist als de deutonen zonder
baanimpulsmoment worden ingevangen.

J. Thirion, Thèse, S trasbourg, 1951, Ann. Phys. 8
(1953) 489.

HI
Bij de interpretatie van de hoekverdeling van neutronen of pro­

tonen in (d, p) respectievelijk (d, n) ^kernreacties, waarbij zowel een
strippingproces mogelijk is ’als de vorming van eeii tussenkern, is er
geen reden om interferentie tussen dezé twee processen uit te sluiten.

C. D. Sw artz and J. S. P ru itt, rep. Johns H opkins
U niversity  AEC C ontract No. AT (30-1) 825,
1953.

IV

De door Van der Merwe berekende kemstralen zijn ongeveer
tweemaal zo groot als de waarden, die uit andere beschouwingen
worden gevonden. De experimentele gegevens zijn dientengevolge
aangepast met waarden van de parameters, die physisch weinig
bevredigend zijn.

J. H. van  der Merwe, Thesis, Leiden, 1952.

V

De beschouwingen van Poppema geven de situatie, wat betreft de
circulaire polarisatie van de y -straling, uitgezonden door gerichte
kernen en het meten hiervan, niet geheel juist weer.

O. J. Poppem a, Thesis, Groningen, 1953.
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VI

De door Van Dranen geponeerde hypothese over het kritisch punt
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