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CHAPTER I

GENERAL INTRODUCTION

The first process of photosynthesis is the absorption of a light quan
tum by one of the pigment molecules, such as chlorophyll a, present in
photosynthetic organisms. The major pigment is chlorophyll a (in the case
of plants and algae) or bacteriochlorophyll (in the case of photosynthetic
bacteria). A small fraction of the total number of pigment molecules present
has the ability to convert excitation energy into chemical energy. There is
ample evidence (see Duysens (1964) for a review on the primary processes
of photosynthesis) that after the light quantum has been absorbed the excita
tion energy is transferred between pigment molecules until it is trapped by
a photochemical active center, a so called reaction center. In this center
the primary redox reaction of photosynthesis takes place.

A model containing one trap in the center of a regular array of ener
gy transferring molecules has been treated in several ways. Pearlstein
(1966) used a diffusion equation and represented the trap by a suitable bound
ary condition. Mean trapping times can be obtained out of such an approach.
Knox (1968) used a set of master equations to consider the same problem.
"Random walk" equations can be used if it is supposed that the energy mi
gration can be considered to be a process in which the excitation hops from
one molecule to another.

For large systems containing many traps, Sanders, Ruygrok and
Ten Bosch (1970) were able to give an analytic expression between trapping
probability and trap concentration. The system was supposed to be periodic
with a unit cell which contained one (100% trapping) trap in its center. They
used "random walk" equations to describe the system.

The problem of energy migration in a large homogeneous system in
which several traps are imbedded was considered again in chapter II of this
thesis. Approximate relations between the trapping or fluorescence proba
bility and the concentration of trapping centers could be derived. To that
end the mean values of trapping or fluorescence probabilities over all pos
sible systems with different trap distributions but with the same trap con
centration were taken. The results were compared with the existing heuristic
and intuitive approaches of Vredenberg and Duysens (1963) and Joliot (1964).

If the predictions of theoretical models, provided these are treated
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rather exactly, are compared with the results of fluorescence yield mea
surements, it is possible to obtain information on the structure and func
tioning of the excitation transferring part of the photo synthetic system.

The trapping of light energy in the photochemical active centers of
photo synthetic purple bacteria is accompanied by a number of changes in the
absorption spectra of these bacteria. One of these changes is a decrease in
absorption around 870 nm accompanied by an increase in absorption around
1250 nm (the wavelength depends on the species that is used). The same
changes can be brought about by oxidation with ferricyanide.

In chapter III the hypothesis is tested which states that the afore men
tioned absorption changes are due to the disappearance of an electron from
the 7T-electron system of the bacteriochlorophyll molecule. This was pro
posed earlier on account of evidence from ESR spectroscopy (consult the
chapter in question for references).

Semi-empirical 7r-electron calculations of the MO-SCF-CI type were
carried out on bacteriochlorophyll and its mono-cation. We were able to ex
plain the afore mentioned absorption changes with the results of these cal
culations.

A problem of more general biochemical nature is that of the kinetics
of metabolic processes occurring catalysed by enzymes. Often the kinetic
equations which are used to describe the behaviour of multi-enzyme systems
are not solvable numerically, not even with the aid of large computers. This
is caused by the "stiffness" of the set of these coupled differential equations.
This difficulty can be avoided if the so called steady-state approximation is
used.

Although the steady-state approximation was used for the first time in
1925 by Briggs and Haldane, the question concerning the range of validity of
the steady-state approximation still gives rise to new papers in this field.

In chapter IV this problem is considered for a general biochemical
system. The study is an improvement of the work of Vergonet and Berendsen
(1970) which is closely related to ours.

Chapter V gives an elaboration of the theory of chapter IV on the
simplest enzymatic reaction as described by the Michaelis-Menten kinetic
equations. A more detailed analysis of the relation between the steady-state
approximation and the exact solution is possible for this system.

The different chapters are written as papers for scientific journals.
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CHAPTER II

A MATHEMATICAL ANALYSIS OF THE RELATION BETWEEN
(BACTERIO)CHLOROPHYLL FLUORESCENCE YIELD AND THE

CONCENTRATION OF REACTION CENTER TRAPS IN
PHOTOSYNTHESIS

H.A. OTTEN

Biophysical Laboratory of the State University, P. O. Box 556, Leiden, The Netherlands.

Summary -  A random walk approach is used to discuss the relation between

fluorescence yield and the concentration of reaction center traps.

For the matrix model as used for bacteria, nan-negligible deviations are found

from the Vredenberg-Duysens relation. An approximately linear relationship between

the reciprocal of the fluorescence yield and the trap concentration however remains.

For the unit model as used for system 2, the deviation from Joliot's relation is

small. The assumptions of the unit model are however discutable. An alternative

matrix model is presented.

1. I NTRODUCTION

Excitation spectra of the fluorescence of chlorophyll a in algae and
of bacteriochlorophyll in purple bacteria prove that light energy absorbed
by various pigments such as chlorophyll b, phycobilins, and carotenoids is
transferred to the lowest excited singlet state of chlorophyll a and bacterio
chlorophyll respectively (Duysens, 1964). The excitation energy is during
the life time of excitation transferred over many hundreds of (bacterioj-
chlorophyll molecules until it arrives at a photochemical reactive (bacterio)-
chlorophyll molecule P.

First the photo synthetic system in purple bacteria will be discussed.
The reactive bacteriochlorophyll molecule P (when excited) is able to trans
fer an electron to an acceptor X, which forms a complex with P. Because
this reaction occurs rapidly compared to the transfer of energy between the
bacteriochlorophyll molecules, PX reacts as a trap for the excitation energy.
The primary reaction i s :PX+ hv---- > P X. P+ and X- may react with a
secondary electron donor or acceptor, which gives rise to the states P X

12



or PX . The complex PX in one of its various states is called a reaction
center. The long wavelength absorption band of P disappears when P is con
verted into the form P , a reaction which can be followed by absorption dif
ference spectrophotometry. Under experimental conditions under which X
presumably remains, because of a rapid reoxidation in state X, it is found
that the formation of P is associated with an increase of the fluorescence
yield of bacteriochlorophyll; this is explained by the hypothesis that P+, in
contrast with P, does not trap the excitation energy.

In algae appreciable large changes have been observed in the fluores
cence yield of chlorophyll a„, the chlorophyll of the oxygen evolving sys
tem 2 (Duysens & Sweers, 1963).

A reaction center PQ has been postulated to explain these changes
under "normal" conditions of illumination. P+ is rapidly reduced, and no
absorption changes due to the transition P ----->P are observed. An increase
in fluorescence occurs upon the transition P O ----►PQ”.

The number of reaction centers in the active state PQ can be measured
by measuring the amount of oxygen produced in a very short saturating light
flash. For ease of discussion we use the following definition of "photosyn
thetic unit" (Duysens. 1967). The unit consists of a reaction center and
those bacteriochlorophyll molecules that have a higher probability of trans
ferring energy to this reaction center than to another one, when all centers
are in the trapping state. Two models of units may be distinguished.
1. Separate units.. The individual units are at such a large distance from

each other that no energy transfer can occur between them.
2. Energy transferring units. Excitation energy may be transferred between

units when the units are not separated or only slightly so.
In the case of identical separate units the fluorescence yield is a lin

early increasing function of the concentration of reaction centers in the
non-trapping ("closed") state: if T is the fraction of units in the trapping
("open") state, ^  and the fluorescence yields of the units in the non
trapping and trapping state respectively, then the total fluorescence yield <t>
is equal to:

<t> = ( l-T ^ j+ T V j = (l-T )(^ -> p 2) +v>2

which is indeed a linearly increasing function of (1-T).
Neither in purple bacteria (Vredenberg & Duysens, 1963) nor in algae

13



(Jo lio t, 1964) the fluo rescence y ield is  found to be a lin e a r  function of the

concentra tion  of the closed reac tio n  c e n te rs . A pparently , energy  tra n s fe r
o cc u rs  between units . The re la tionsh ip  derived  depends upon the assum ed
m odel fo r  th is  energy  tra n s fe r  and the assum ptions o r  approxim ations made
in the calculation .

In th is paper the e a r l ie r  m odels and calcu lations given by Jo lio t and
Duysens w ill be extended and im proved and th e ir  re la tionsh ip  c la rified , in
the hope that in the fu ture it  w ill be possib le to obtain m ore insigh t in the
energy  tra n s fe r  and o th e r  functional re la tio n sh ip s betw een the photo synthetic

units .

2. R E L A T I O N S  B E T W E E N  F L U O R E S C E N C E  Y I E L D

A N D  T R A P  C O N C E N T R A T I O N

2 .1 . The model o f  Vredenberg and Duysens o f  bacteria

E xperim en ta lly  an approxim ately  lin e a r  re la tion  between the rec ip ro c a l

of the fluo rescence y ield and the concentra tion  of trapping m olecu les has
been found (V redenberg  & Duysens. 1963; Sybesm a & V redenberg , 1963;

Clayton, 1966).
It is  possib le  to co n stru c t a sim ple model to explain these m e a su re 

m ents. T here  a re  two. a t f i r s t  sight d iffe ren t, approaches.

a . Approach I

In th is  approach (V redenberg & Duysens, 1963) the light em itting  sy s
tem  is  supposed to be a hom ogeneous m ore o r  le s s  reg u la r  la ttice  of
bac te rioch lo rophy ll (Bchl) m olecu les in which the reaction  c e n te rs  (R .C .)
a re  situated  (M atrix  m odel). The active R. C . ’s function a s  tra p s  fo r  in 
com ing exc ita tion  energy . A fter an excita tion  has been trapped the R. C.  is
tem p o ra ry  blocked in the form  P + (see Introduction) fo r  new ex c ita tio n s.

L ight incident on the la ttice  (Fig. 1) w ill be absorbed  by the bulk
♦

m olecu les (the m olecu les which a re  not a R . C . )  a t  a ra te  d [B  ] / dt = kl;
[B*] re p re se n ts  the concentra tion  of excited  bulk m olecu les, I m eans the

in tensity  of the incom ing light and k is  a ra te  constant. It is  assum ed  that
the suspension has only a negligible absorp tion . Deexcitation can take place
by f lu o rescen ce , in te rn a l conversion  and trapping. We will define the f ra c -
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Fig . 1.

A regu lar la t t ic e  as used in the m atrix  m odel of b ac te r ia .
•  represents a reac tio n  c en te r in  the trapping sta te .

tlon of tra p s  T a s  the num ber of tra p s  devided by the to ta l num ber of m ol
ecu les  of the la ttice . Then the postulated ra te  equation reads:

d [B*l /d t  = kl -  (k. + kf) IB*] -  kt fB*) T (1)

with k . . kj. and k  ̂ ra te  constan ts of deexcitation  by in te rna l conversion ,
fluorescence and trapping  resp ec tiv e ly . In the s te ad y -s ta te  d [B  ] /d t  = 0
holds. The fluo rescence y ield P f . defined a s  k , IB J /k l ,  is  then given by

P f = kf (ki + kf + ktT )~1 (2)

T his re la tion  fu rn ish es the lin e a r  re la tionsh ip  between P ^  and T .

b. Approach II

In th is approach (Duysens, 1967) the excita tion  tra n s fe r  to the reac tio n

ce n te rs  is  d escribed  as  a p ro ce ss  in which the excita tion  hops from  m ole

cule to m olecule until it rea ch es  a R .C . The hom ogeneous la ttice  of Bchl
m olecu les with som e tra p s  am ong them se rv e s  again as  a p ic tu re . If an
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excitation reaches a trap , it will be trapped with a 100% efficiency. It is
fu rther supposed that the probability of tran sfe r among bulk molecules is
the same as the probability of tran sfe r from a bulk molecule to a trap . A
trap  will have the same absorption spectrum  as a bulk m olecule. If we call
the probability that an absorbed light quantum leaves the system  as fluores
cence P j, this quantity satisfies (Duysens, 1967)

P f = (1 - T ) p f + (1 -  T)ph P j (3)

with T the concentration of traps as defined in approach I, pf the probability
of leaving a bulk molecule as fluorescence, p^ the probability that the ex
citation hops to a neighbouring molecule and P^ the probability that an ex
citation which has been absorbed in the bulk and which has made one jump
finally leaves the unit as  fluorescence. If it is  supposed that Pf w P i , then

(1 -  T)pf
p ----------------- (4)

l - p h ( l - T )

For bacteria  0.03 (Duysens, 1952; Nishimura, 1962; Clayton, 1963).
Therefore T can be neglected in the num erator (not in the denominator,
because p «  1). Then an expression which is  analogous to (2) has been ob

tained .

2 .2 . The model o f  Joliot o f  system 2

The relation between fluorescence yield and concentration of R . C . ' s
in the trapping state of system 2 has been m easured by Joliot and Joliot
(1964). It is  assum ed that there ex ists a linear relation between the concen
tration of traps and the amount of oxygen deliberated from a short saturating
flash of light. In this case no linear relation between the reciprocal of the
fluorescence yield and the concentration of traps is observed. To explain
the observed resu lts , Joliot assum ed the following model: The system is
supposed to be composed out of units each containing just one R.C. (Fig. 2).
A R.C. can be in the trap p in g -o r in the non-trapping state. If the R.C. of
a unit is in its  trapping state, each light quantum absorbed in that unit
will be trapped by the R.C.  with 100% efficiency and no fluorescence will
occur. If the R.C.  is  in its non-trapping state, an absorbed quantum can

16
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F ig . 2.

A regu lar la t t ic e  as used in  the m odel w ith  units o f system  2 . ------- represents bound
aries betw een units; •  represents a reac tio n  c en te r in  the  trapp ing  sta te ; ffi represents
a reac tio n  cen ter in  the n o n -trapp ing  sta te .

reach another unit with probability p^. We will define p̂  as the probability
of a quantum absorbed by a non-trapping unit to leave this unit as fluores
cence; T will be the number of trapping units divided by the total number
of units.

Joliot used a relative cumbersome summing procedure to obtain the
relation between fluorescence yield and the concentration of trapping units.
The same result can be obtained using Duysens' simple procedure which
leads again to equation (4).

The simple procedure can also be used for more complicated systems.
An example, which has been used by Wraight (1972), is given in appendix A.

3. EQUIVALENCE OF APPROACH I AND II

In this section we will prove the mathematical equivalence of approach I
and approach II and show the connection between the parameters used. Be
cause the arguments used in the model of Joliot are the same as used in
2.1.b,we will restrict ourselves to the model of Vredenberg and Duysens.
We will start to repeat once more the assumptions of the model:
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1. The system is represented by a homogeneous lattice of Bchl molecules.
2. The R .C .'s  are in the trapping or non-trapping state. The R .C .'s  in the

non-trapping state are for simplicity supposed to be equal to a bulk mol
ecule.

3. The R .C .'s  in the trapping state (the traps) will trap incoming excitation
energy with 100% efficiency.

4. Energy transfer between bulk molecules will be equally probable as trans
fer from a bulk molecule to a trap.

5. The absorption spectrum of a bulk molecule and a trap are the same.
The situation is visualized in Fig. 1. The trap concentration is again
defined as in 2.1.

a) Let us suppose kl to give the quantity of light absorbed per unit of
time by the system; I represents the intensity of the incident light, k is a
constant. A fraction kl (1 - T) of this is absorbed by bulk molecules and can
give rise to fluorescence. If we correct formula (1) with the factor (1 - T),
it will read:

d [B*] /dt = kl(l - T) - (k. + kf) [B*] - kt [B*] T (5)

Starting from this equation, we will turn to description II.
Let us define P^(T), P. (T) and P^(T) as the probabilities of a light

quantum absorbed by the system at a trap concentration T to reach a trap,
disappear by internal conversion or leave the system as fluorescence res
pectively. Then P. (T) - T gives the probability of a quantum initially caught
in the set of bulk molecules to reach a trap. Under steady-state conditions
we obtain:

k l P. -  k. {B*J (6a)

kl Pf = kf [B*] (6b)

kl (Pt - T) = ktT [B*] (6c)

Under steady-state conditions equation (5) gives

kl (1 -  T) = (kj + kf + ktT) [ B*] (7)

18



which describes the balance between the number of incoming and outgoing
♦

quanta per unit of time in the set of bulk molecules. If [B ] is eliminated
from equations (6) and (7) and if we define p., p̂  and p, as:

pi = ki(kj +kf +ktf  . Pf = kf(ki +kf + kt)"1’ ph = kt(ki +kf + kt)_1 (8)

we obtain:

P, (1 - T)
P. = ----1------------ .

1 - P j ^ l - T ) Pf
Pf (l - T)

1 “ Pjj (1 “ T ) ' Pt
T

1 - P h ( l - T )

or finally:

(9a)

(9b)

(9c)

Pj(T) = (1 - T)Pj + (1 - T)ph P.(T)

Pf(T) = (1 - T)pf + (1 - T)ph Pf (T)

Pt(T) = T + (1 - T)phPt (T)

b) We will now start from equations (9) and turn to a kinetical de
scription. To that end we either should introduce a time dependent random
walk description or make some assumptions. Here we will assume the val
idness of equations (6a) and (6b) under steady-state conditions, with k. and
kj. as defined by relations (8). This assumption seems plausible. Equivalently
the trapping process of an excitation starting from the set of bulk molecules

1 * ».should be given by a term k  ̂ [TB ] in which [ TB ] denotes the concentra
tion of excited trap neighbours. We will show that the approximation which
is inherent to equation (9c) is equivalent to writing the trapping term as a

*
product like k̂  T [ B ] .

The balance between the total number of incoming and outgoing quanta
per second can be written as:

k l = k l (Pj + Pf) + k I P t

= (kj + kf) [B ] + k I P t (10)

This gives

[ bY  = k l ( l  - Pt) / (k j+kf) (11)
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We are looking for the probability of an excitation which has been caught in
the set of bulk molecules to reach a trap. As follows from equation (9c),
this probability is given by (1 - T)p, Pt (T). The number of quanta A that
will reach a trap per unit of time is then given by A = k l( l  - T) p^ Pt (T).
With equations (9c) and (11) this gives:

We have shown the equivalence of approach I and II. The essence of
both descriptions is expressed by (9) or (10). Starting from a random walk
approach, we will now determine the conditions on which (10) is based.

Again the system is defined as in section 3. We will use the following
notation:
0  -  set of bulk molecules, = set of traps,

= probability of an excitation which is originally located on molecule a,
to leave the system as fluorescence,

Pab = Probabllity an excitation to go from a to b in one jump,
pf = probability of an excitation to leave a bulk molecule as fluorescence.

All total probabilities are denoted by capital P 's; all one-jump probabilities
by small type p's.
If it is further noted that:

A = k l (1 -T )p h Pt (T)

= [B*] (kt + kf) (1 - T)phPt / ( l  - P t)

= (k1 + kf)ph [B*] T / ( l - p h)

With kj defined from relations (8), this leads to:

A = kt [B*] T ( 12)

4. RANDOM WALK DESCRIPTION

if a ë ^ 1

if a e ^

p. if a e  0

0 if a €  S '
( 13)

the following relations can be inferred:

20



( 14 )Paf paf + ^ pab Pbfb

in which the summation extends over all lattice points.
For a given trap distribution the probability matrix p is  a known quantity.
Then the linear equations (14) are solvable, giving P ^.

The mean probability Pf of an absorbed light quantum to give rise to
1 -1fluorescence is  given by Pj = N 2  P „ f, N being the number of molecule;

E
of the lattice. If use is made of equations (14) and (13), this gives:

We will now suppose the traps to be distributed at random over the
lattice. This condition may be satisfied in the model of Joliot because each
unit can be trapping or non-trapping. In the model of Vredenberg and Duysens
the traps are distributed at random over the R .C .'s . Whether the R .C .'s
are distributed at random over the lattice is  questionable.

Each value of P„ depends on the trap distribution of the system S
which has been chosen. We will take the mean over all systems with a given
trap concentration. This mean value will be denoted by a bar. The total num
ber of systems with a given trap concentration will be denoted by N . We
then obtain:

Pf = N '1 2  p afa

Z (Paf + 2  P,ab bf‘

(1 -  T)pf + N ab *bf (15)

(1 -  T)pf + NT1 2  N '1 ab *bfs a, b

( l - T ) P f  + N"1 2  (Pa b Pbf)
a, b

(16)

To obtain formula (10) we have to make the following assumption:

pab Pbf “ pab ■ Pbf (17)
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In fact the summation should be included. For an infinite system the term
Pab is the same for all a and b (a, b € £8).Therefore (17) may be used
if all boundary effects are neglected. The assumption (17) will be discussed
in the next section. We will further suppose that energy transfer only takes
place between nearest neighbours. In that case p ^ can be written as:

pab ca ph®<ab) if a is not a trap

pab = 0 if a is a trap

6 âb> = 1 if a and b are nearest neighbours;
ber of nearest neighbours of a.
As we supposed the system to be large, ca =
written as:

5, , ,  = 0 otherwise, c = num-<ab) ’ a

c = constant. Then p ^ can be

pab = 0-1 ph 6<ab> t1 - T> (19)

Combination of (16), (17) and (19) gives

Pf = (1 - T)Pf + N-1 S o"1 ph (1 - T) 5(ab> Pbf
a, d

= (1 - T)pf + (1 - T)ph Pf (20 )

With this we have obtained the relation on which the models of Joliot and
Vredenberg and Duysens are based. It depends on the validity of relation(17).

5. AVERAGING OVER TRAP DISTRIBUTIONS

In this section we will consider the quantity p ^ P ^  in detail. Systems
with the same trap concentration differ in their distribution of traps. We will
classify the systems into four groups:

1) All systems S, with a 4 (a is not a trap) and b e ^  (b is a trap).
Then p ^  = 0 holds, because P^j = 0. The number of these systems is
given by Ns = T (1 - T) Ng.

2) All systems Sg with a e  and b 4 S7 Then pa^ P ^  = 0, because
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Pab = 0. The number Ng^ of these system s is given by Ng^ = T (1 -  T) Ng.

3) All system s Sg with a e  T and b e ^ T  Then p b Pbf = 0 because
Pab = 0 and P y  = 0. The number of these system s is  given by Ns = T^Ng.

4) All system s with a £  and b £  S 7  Then pab Pbf 4  0 and the num
b e r of system s is  given by Ng = (1 -  T) Ns _

When use is  made of (18), Pa b Pbf can be w ritten as:

N-1s 2  (pab Pbf)s
-1N8 2 <pa b Pbf>

S4
-1 i  -1

c ]ph 5<ab> Ns (21 )

Further

P. , = N"1 y  P.bf s ^  h

N s ' *  Pbf
S2+S4

(22)

If we combine (19), (21) and (22), we obtain

p ^ ^ - d - T ^ ^ N ; 1 S Pbf
S2+S4

c ph 5(ab> Ns 2 Pb f " c T p h 6<ab)Ns 2  Pb f +
s4 s2+s4

+ c" l p h V b ) ^ 1 2  Pbf
S2

-1 -1
pa b Pb f ' °  ph 5<ab> Ns (T 2  Pbf 2  Pbf> (23)

S2+S4

With some manipulations. (23) can finally be transform ed into
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*"ab Pbf (24)---  ----  -1 2 —(4) —(2)
P ab -Pbf + C Ph T (1 - T> (Pb f Pbf)

w ith = N"^ y  P and P  , = , n " '  y  pw un ^bf in 2j  ±-fef ana in i  * b f
4 s4 2 s2

The averaging process is represented in Fig. 3.

0 O O O 0 O O O • O O O O O

0 O O O O • O O O O O O O O

0 O O O O O O O O O O O O •

0 • O O 0 O O O O O O O O O

0 O O
b
O O O O O O

a b
O 0 O

0 O O O O O O O • O O O O O

0 O O O • O O O O O • O O O

3.
a

- m - ( 4)

b

(2)
Representation of the averaging process of and a t fixed T. P ^  and
are obtained by taking the mean value of P^f over all possible trap distributions out
side the indicated squares of Fig. a and Fig. b respectively.

We have already supposed the system to be large in order to be able
to neglect boundary effects. Increase of the number of traps by one will
have a negligible influence on the T value. It is then possible to take simul
taneously the same trap distribution outside the indicated squares in Fig. 3
and compare the values of p j^  and p /y .  This gives

P (4)
bf + P. P $bf ba af (25a)

?ba = Pba + ?  Pbk Pk a + 21 1 kr k2
P.. P. 1 P. +-bkf kjk2 k2a (25b)

The quantity Pba equals the sum of the probabilities to reach a for the first
time in 1, 2, 3, ..................  jumps, when starting from b.

We will write (24) like
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pab ^bf p ab ' bf + ^ab (26)

If use Is made of (25) an upper and lower bound of A ^ can be obtained.

-11) Because p, = c p. , we can write

P(4)>  P(2) + c ' V  P(4)*bf ^  ^bf 0 ph af (27)

—2 2 2 —  (4 )For A ^  this implies: A ^  >  c ph 6<ab) T (1 - T) Pa f .

-(4) -(4)To estimate the magnitude of A ^ , we use P ^  *  P ^  (which is true for an
infinite system).

Because P, „, we will find:bf bf

> c - 1p. T ( l - T )  p .  . P,a b ' bf (28)

2) Pba <  A , if Aq represents the largest value of P. (T). This
maximum value of Pba equals the probability of an excitation to be trapped
when it starts from b and if there are no other traps in the lattice except
one at position a. It is possible to determine the value of Aq when the value
of pb is given. To that end we use the exact solution of the random walk
problem as can be given for the periodic lattice with the traps in the centers
of the unit cells (Sanders, Ruygrok & Ten Bosch, 1971). An is given by the
probability to reach a trap from a neighbour in the limitting case T -*■ 0.
The value of Aq can be obtained by extrapolation from the values obtained
for finite T. In the model of Joliot a value between 0.5 and 0.6 has been
given to p^. Taking p^ = 0.55 we obtain Xq = 0.1537 for the square lattice.
In the case of bacteria with p. = 0.988 (see section 7) we obtain XQ = 0.5259.
Some other p. - X» combinations for the square lattice are given in the table
below.

ph X0 ph *0

0.988 0.53 0.9999 0.72
0.992 0 . 55 0.99999 0 .85
0.996 0 .59 1 .0 1 .0
0.9992 0 .6 6
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The following inequality can now be given:

+ X,

and from this follows

(29 )

-1  2 - . / 4 \
Aa b < c P h 6<ab>T <1 - T > X0 P l t  <30>

Consider P,~:M

pb f  = n ; 1 2  p b f
V S4

_1 - ( 2) -1  -<4 )= N N P i,/ + N N P. ,s„ s  b f s .  s bf2 4

= T (1 -  T) p j j  + (1 -  T)2 p J J  (31)

Therefore

Pbf >  (1 - T)2 p j j

If we again make the approximation
we will find:

(32)

and if (32) is used into (30),

A a b ^  X0 T Pab Pbf (33)

If the inequalities (28) and (33) are combined, we obtain

c ' 1 Ph T (1 -  T) <  Aab /(Pab • Pbf) <  X0 T

With this inequality relation we are able to discuss relation (17). As
can be seen from equation (26), the maximum and minimum deviation of
equation (17) are given by the maximum and minimum value of A . / (p  b . P^f) ■
Below these upper and lower bounds are given for some T-values and with
p^ fixed (the p^-value determines Xq).
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i Matrix model with pb = 0.988

T = 0 T = 0.015 T = 0.03

(Aab/ ( Pab- Pb f»max
100% 0 0.788 1.577

(Aab/ ( Pab- Pb f»  . •min
100% 0 0.036 0.072

ii Units model with p. = 0.55

T = 0 T = 0.25 T = 0. 50 T = 0.75 T = 1.0

(Aab ^ (pab - Pb f^max
100% 0 3.84 7.68 11.53 15. 37

^ab ^ ^P ab ' Pbf)Jmin
100% 0 2.58 3.44 2.58 0

As shown now, relation (17) itse lf may be considered to be a good
approximation for the model of Vredenberg and Duysens. It rem ains to show
that it may be inserted into (16). To that end we will rew rite (16):

P , -  ,1 -  T IP , * N-> £  Ph,  * N-1 ( j ^ P M -  5t b , p bf)

* ' 1 ?lTLPI *(»-T)Pbf | . H - 1 £ A „ .
a ,b

o r

{(! " Ph) + Ph T} P f = (1 -  T )pf + N"1 2  A . (34)
a ,b

Inequality (28) with T <  1 gives:

N_1 a^b Aab > C ’ lp h T N ’ 1 ^  Pab Pbf c_1PhT Pf <35>

In the model of Vredenberg and Duysens p, has a value in the neighbourhood
of 0.99 (see section 8). That means that the left hand side of (34) is  of the
same o rd e r of magnitude as the term  N-1 2  A . on the right hand side.

a ,b
Therefore, the insertion of (17) into expression (16) is  not justified.

In the case of Jo lio t's  model the term  N-1 2  A K in (34) is  less
-1 -  -  a ,b  _

than X0 T N  2 pab . Pbf which equals XQ T (1 -  T) ph Pf . The factor T ( l - T )
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has its largest value at T = 0. 5. If we take p, = 0. 5 and = 0.15 it follows
— 1 ^that the term N 2 A . is less than 2. 5% from the term at the left hand

a ,b  40
side in (34). Therefore in the case of Joliot's model the use of - (17) into (16)
turns out to be a good approximation while (17) itself may be less well sat
isfied.

6. I M P R O V E D  P f (T) R E L A T I O N

As shown in the last section, relation (20) is not a good approximation
for the model of Vredenberg and Duysens. We will now replace (20) by a
better one. To that end (16) and (24) are combined giving:

_  _  _i 2 - 1  —(4) —(2)
P f = ( l - T ) P f M l - T ) P h P f + c ph T ( l - T ) N  2 b 5<ab> ( P y - P { , / )

(36)

We further use (25a). The quantity P. satisfies Pfea >  ph/c . We may ex
pect the value X = p ./c  contain the largest part of P^a for not too small
T values. In the approximation P. as P j/c  we will find

_  _  _i 2 —(4)
P f = < l - T ) p f + ( l - T ) p h P f + c ph T ( l - T ) X  2  S( a b ) P af (37)

SL, D

If we use Pa4j «  p £ | , combination of (25a) and (31) gives P*^ expressed in

\ f :

= t( l  -  T) (1 -  XT)] -1 Pbf (38)

After substitution into (37) this gives:

P f = (1 -  T )p f + (1 -  T) Ph P f +Xph T (1 -  T ) ( l  -^XT)"1 P f  (39)

or, if we solve for P^:

______________(1 - T )Pf____________

f i”- j^(i -  *r) - xphT (1 - T) (1 - x f f1
(40)

This expression gives a lower bound for Pf as a function of T (upper bound
for P j as a function of T).
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The approximation P, «  X = p ,/c  is too crude for T-values close to
zero. In the limiting case of T -*• 0, will equal the value X» as dis
cussed in section 5. If this value is substituted into (40) we will obtain the
upper bound of P^ as a function of T.

An approximate T-dependence of X has been obtained, which looks like

X(T) = X0 -  (X0 - ph/c) U " Ph+ ph (1 “ Pl / C)}T

1 - ph + ph<1 - P h / c >T
(41)

The derivation of this relation is given in Appendix B. In section 8 the curve
obtained for the matrix model with this expression for X will be compared
with Pj-values as obtained for the periodic lattice.

7. A SIMPLE RULE TO OBTAIN A FIRST I MPROVEMENT ON
THE FLUORESCENCE YIELD OF THE MATRIX MODEL

We will give a simple rule to derive a first improvement on the fluo
rescence yield (P )̂ for the matrix model, which is also easily interpreted.

We will start to write the P^(T) relation like:

Pf (T) = (1 - T)pf + (1  ̂T)PjjPj (42)

Pj would be equal to P , if after one jumping time the probability distribu
tion of the excitation would have remained homogeneous. The neighbours of
the reaction centers however have only c-1 neighbours themselves to obtain
the excitation from, while other bulk molecules have c. That means that
after a time equal to the jumping time the probability to find the excitation
on a particular neighbour of a reaction center will be smaller than to find
it on a particular other bulk molecule. This effect causes Pj to be different
from Pj,.

The probability distribution would have remained homogeneous if from
the reaction centers excitation could have flown out with the probability p^.
If we imagine this amount to be supplied to the neighbours of the reaction
center, the probability of all excitation then present in the system to give
fluorescence equals P^. With this supply the total probability to find the
excitation in the system after one jump equals p^ instead of (1 - T) p. . That
means an increase of p^T, which is situated on the neighbours of the reac-
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tion centers. If we call the mean value of the probability to give fluores
cence of an excitation located on a neighbour of a reaction center P , , we
can write:

Pf (T) -  (1 -  T) pf + Ph Pf -  PhTP^ (43)

For the matrix model with T small most molecules are far from a
reaction center. The Pf value is therefore mostly determined by these mol
ecules. In the zero order approximation in T we obtain

P f *  Pf Pjj P f (44a)

P f <* Pf + Ph (c - l)P f/c (44b)

For an excitation which is localized on a neighbour of a reaction center only
(c - 1) ways are open to remain a probability to give fluorescence. For a
bulk molecule there are c. This difference causes the factor (c - 1)/c  in
(44b). Subtraction of the second equation from the first leads to:
p“ = pf -  Pjj P f/c . So we finally obtain the approximate expression:

Pf = (1 - T)pf + ph Pf - PhT (Pf - PhPf/c)

= (1 - T)pf + ph (l -  T)Pf + (p J/c )T P f (45)

This equals the improved relation (40) (with X = p^/c) except for the factor
(1 -  T ) / ( l  - XT) in the right hand term. For the matrix model with T <  1
this factor only plays a role in the next order in T. In it is also the con
tribution from the averaging process over all kinds of systems.

A still better result can be obtained. If P t denotes a mean value of
the probability of an excitation to reach a trap when it starts initially from
the neighbour of the trap, we can approximate Pf as:

Pf ~ Pf - Pn t Pf (46)

In words: p“ equals the difference between the fluorescence probability if
the trapping neighbour is not present and the amount which will be inter
cepted by the trap if it is present. The quantity Pnt corresponds to X . If
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(46) is inserted into (43) we obtain relation (40) except for the factor
(1 - T)/(1  - XT). This factor can be obtained too, if (43) is written as:

Pf (T) = (1 - T)pf + ph (l - T)Pf + phT(Pf - P“)

If in this equation the mean value over all possible trap distributions is
taken, it can be shown that the result is the same as is expressed by (36).

8. NUMERICAL RESULTS

a. The bacterial system. The experimental ratio between maximum
and minimum fluorescence is approximately 3 (Vredenberg & Duysens, 1963;
Clayton, 1966). Using this ratio, (40) with X = p ./c  gives a relation between
Ph and the number of nearest neighbours c. This relation is given in Fig. 4.

1.000

0.996

0.992

0.988

■ ..........................I ■ ■0.984

Fig. 4.

Relation between the number of nearest neighbours c  and the jump probability
from formula (40) with \  = ph/ c  and a maximum to minimum fluorescence equal to 3.

The maximum value of T is taken to be 0.03. We will consider a two di
mensional lattice with c equal to 4. This corresponds to a p.-value of__1 h
0. 9880. The upper and lower bound of Pf as a function of T as obtained
from (40) with X = p^/c and X = Xq respectively, are given in Fig. 5.
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. . .  i . . .  i . . .  i . . .  i . . .  i . . .  i . . .  i . ■
0 8 16 24

T (x 103)

Fig. 5.
Reciprocal of fluorescence yield Pf as a function of the concentration T of reaction
centers in the trapping state for the matrix model of bacteria with p^ = 0.988.
The maximum Pr value is taken as unit of Pf. 1 = relation as given by Vredenberg
& Duysens. 2 = upper bound of Pr” as is obtained from (40) with X = p^/c.
3 = lower bound of P̂  as is obtained from (40) with X * Xq. O = value as ob
tained from the exact solution of the periodic lattice with the trap located in the
center of the unit cell. 4 = relation as obtained from (40) with X given by (41).

The formula as given by Vredenberg and Duysens is also plotted in this fig
ure. Its maximum deviation from the upper bound equals 16%. We have also
given some values as obtained from the exact solution of the periodic lattice
with the trap located in the center of the unit cell. Finally, P^ as a func
tion of T is given, using (40), with X given by (41).

b. Photosystem 2. In Fig. 6 we have compared formula (40) and the
expression as given by Joliot. As ph and c values we have chosen 0. 55 and 4
respectively. The parameter X in (40) has been given its minimum value
p /c  ^0.1375) as well as its maximum value XQ (0.1537). This lower and
upper bound of coincide within the linewidth of the plotter. Therefore
this curve can be considered to give the exact solution of the model of Joliot.
Joliot's curve does not deviate more than 3% from it.
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1.00

0.75

0.50

0.25

0.00
0.00 0.25 0.50 0.75 1.00

Fig. 6.

Relation between the fluorescence yield Pj (in units of p^Z(l-p^) as a function of the con
centration T of units in the trapping state for system 2. 1 ,2  = upper and lower bound of
Pj from (40) with p^ = 0. 55 and C — 4. 3 = relation as given by Joliot.

Matrix model of system 2 compared with the units m odel of Joliot. Pt (T) = trapping
probability, T = concentration of traps (trapping units). •  = point calculated  from the
matrix model. These points are obtained from the exact solution of the periodic la ttice  with
ph = 9992 and a maximum T-value equal to 1 /2 8 9 .-------- curve obtained from Joliot1 s
m odel with p^ = 0. 5. This curve has been normalized such that i t  coincides a t T = T
with the point calculated from the periodic la ttice  with T = 1/289.
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c. In Fig. 7 we compared Joliot's expression for the trapping proba
bility as a function of the concentration of active reaction centers, with values
obtained from the matrix model. For the matrix model we used values as
obtained from the periodic lattice. The curvature of the Pt (T) curve depends
on the p.-value chosen. In the figure Joliot's expression with pfa = 0.6 is
compared with values of the matrix model with p, = 0.9992. The maximum
T-value in the matrix model is taken to be 1/289. The ratio of maximum
to minimum fluorescence then equals 3.2.

Fig. 8 shows the curvature of Pt (T) curves for some different
p.-values.

0.9996

0.9992

0.9988

0.9980

0.9970
0.9960

Curvature of trapping probability (P.) versus trap concentration (T) curves for different
jump probabilities (Pu)«

9. DISCUSSION

The random walk approach is in our opinion the most exact way to
obtain a relation between fluorescence yield and the concentration of trapping
centers in a lattice of excitation transferring molecules, since it is most
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directly related to the physical situation. Other approaches which make use
of the kinetic consideration (section 2 .1 .a) or probability arguments (sec
tion 2.1.b) are more or less intuitive. We showed the mathematical equiva
lence of these "kinetic" and "probability" approaches. However, the random
walk model gives results different from the kinetic or probability approach.
The deviations were appreciable when a matrix model was used in which
the reaction centers are imbedded in a regular matrix of pigment molecules.
They were only small when the Joliot model was used which consists of
units which either trap the energy in their reaction center if this one is
open (trapping) or transfer the energy with a certain probability if the reac
tion center is closed (non-trapping). Although the models are mathematically
the same, the parameter T and especially p^ take one completely different
values. In the Vredenberg-Duysens model 0 <  T <  0.03 and p. = 0.988
while in the Joliot model 0 < T <  1 and a p^-value between 0.5 and 0.6 is
used. It is however doubtful whether application of the random walk theory
or any other theory to the whole units instead of to the individual molecules
is permissible, even if the units would be partly separate.

In our treatment it is assumed that the traps are situated at random
in the lattice. This condition may be satisfied in the model of Joliot, be
cause each unit can be trapping or non-trapping. True, trapping units which
have non-trapping units as neighbours have a larger probability to become
non-trapping than other units. This causes a clustering of non-trapping
units, which is called the "llot" effect by Lavorel and Joliot (1972). In the
steady-state we expect this effect to cancel out. For the bacterial system
the traps may be situated at random. However, it seems more likely that
the reaction centers are fixed and rather homogeneously distributed. It may
be expected that the traps are located at random over these fixed centers.

The random walk approach gives an upper and lower bound to Pj
(see Fig. 5). At T = 0 the exact curve will start tangent to the lower bound,
while for increasing T-values it will tend towards the upper bound. For the
matrix model an expression showing this curvature has been obtained. The
periodic lattice, the case in which the traps are not distributed at random,
also shows such a curvature. It seems to be somewhat larger in this last
case. For the bacterial systems further experiments are needed to show it.

For small T-values the results of the random walk theory could be
obtained with a simple rule. For more complicated systems this simple rule
(section 7) may be used as a first starting point if random walk theory be-
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comes less manageable.
In order to déscribe Joliot's data, we used instead of Joliot's model

the matrix model with parameters 0 <  T <  1/289 and p, = 0.9992. The
trapping probability as a function of the concentration of traps was calcu
lated for some T-values using the exact solution of the periodic lattice. The
results are compared with those of Joliot's model (Fig. 7) and give a satis
factory correspondence. Thus the matrix model, provided random walk cal
culations are used, can explain Joliot's data.
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APPENDI X A

AN EXTENSION OF J O L I O T ' s  MODEL

An extension of Joliot's model has been used by Wraight (1972). In
his paper a quantum in a trapping unit is assumed to have a probability to
leave the unit as fluorescence or to jump to a neighbouring unit. Let us call
these probabilities pi and p' resp. and otherwise remain the same defini-f h
tions as used earlier. If we use Duysens simple procedure for this more
complicated system, P, can be found from the following relation, which is
easily interpreted:

Pf (T) = ( l - T J P j  + T p J + a - T J P j j P j  + Tp^Pj (Al)

This leads to:

(1 - T) pf + T pi
Pf 7 ----------------1---------—  <A *>

l - p h ( l - T ) - p { T

This is the same expression as would be obtained for a matrix model in
which a quantum absorbed in a trap has a probability p̂  to leave it as
fluorescence and a probability p^ to jump to a neighbouring molecule.

To discuss the validness of (A 2) we will start again from the random
walk equations. These will read (see section 4 for definitions):

P b f = Pf + 2  PbaPaf if b e  &
a (A3)

Pbf = pf + £ PbaPaf It b ea

From this follows:

p f =  *'11 pbf
D

= (1 ~ T)Pf + TPf + N_1 *  PbaP af (A 4>a,b

If we take the mean value over all systems with a given trap concentration
and suppose Pab Pfaf = Pab - pb f - we obtain (Al).
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Let us consider the foregoing relation more closely:

Pba = c" l p h 6<ba>

Pba = C' lp i‘ 6<ba>

from which we obtain:

if b e  £8

if bG S '
(A 5)

V  = - T>c ' l p h S<ba> + T c ' l p h 6(ba) (A 6)

If we define system s S j, Sg, Sg and as in section 5, p b P.  ̂ can be
w ritten as;

.-1
pab Pbf = Ns 2  pa b Pbf

81’s2 ’
S3’S4

and

N"1 Z c"1 p. 6. . . P. t  + N"1 Z c"1 p' 5, P. fs *n <ab> bf s ^  Hi <ab) bf
8l - 84 S2 ’S3

pab Pbf = {(1 - T ) c - l p h « (ab> N ;1 Z Pbf
8r 82 ’
83 -84

Combining these equations gives:

pabPbf = pab ‘ Pbf + c 6<ab> (ph " ph) T (1 T){ }
1 _ II

?bf " Pbf (A 7)

with

I
P. , = (N + N ) -1 Z PK,bf x s . bf1 4 s- , sA1 4

—  -1Pwf = (N + N ) Z PK,
bf S2 V  s2 , s 3 bf

(A 8)

Because for a large system  one trap  more will not influence the trap con
centration significantly, we may consider the same trap  distribution outside a
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for (S1 + S4) as well as (S2 + Sg) simultaneously. In that case Pfaf and
can be compared:

n n
Pbf U + Pba Paf

I I (A 9)

Pbf " M + Pba Paf

M= probability of an excitation originally on b to give fluorescence, while
it does not pass o r  reach a.
Pjj = total probability of an excitation originally on b to reach a in one,
two, . . . . .  steps.

Taking the mean of (A4) now gives:

\l - Ph + T (ph -  p^)} P f = (I -  T )pf + Tp} + A (A10)

with

A = N-1 aZb C l  6<ab> (Ph -P h )T (1 - T) Pba(Pl r IpIaf) <A11>

If, as in the m atrix  model, p^ = 1 and T <  1, A is of the same o rd e r of
magnitude as the left hand side ^of equation (A 10) and may not be neglected.
Only in the exceptional casé P  ̂ -  P&f < 1 neglectance of A will be a l
lowed.

In the unit model p. «  0. 5. If we define f as f = P , / p ,h fm ax f min
the following inequality holds

I
A < (p h ' ,ph)T (1  ‘ T) X 2 p afa

< (ph ~ p|i)T (1 - T )  X f P f

with X a value between the minimum and maximum of P,ba
The term  T (1 -  T) only plays a role for interm ediate T-values. It obtains
its maximum value for T = ^. With f «  3 and X < 0 .1 5 , A will be a t least
a factor 0.075 sm aller a t  T  * J than the left hand side of (A 10), while it
may be expected that the true factor is s till some tim es sm aller. Therefore
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for the unit model expression (A 2) appears to be justified mathematically.
Whether the assumptions concerning the transfer between units are a correct
description of the physical situation is doubtful.

AP PENDI X B

DERIVATION OF AN APPROXIMATE FORMULA FOR X .

In this appendix we will give a derivation of an approximate expres
sion for the dependence on the trap concentration of the parameter X. This
parameter was used in equation (40). It was defined from the relation

P, P ^ba af

Consider the periodic lattice with a trap at position 0 and a number
of other traps located anywhere in the lattice, except at position 1. Posi
tion 1 will be a neighbour of the trap at position 0. Because X «  Pba, we
are allowed to consider the T-dependence of P^q . The number of traps be
Nt  and the number of lattice points N. If one more trap is placed into the
lattice, say at position i. the following relation holds:

p 10(Nt + l) = p io (Nt> - P11 (Nt + pi0 <nt > (B 1]

First of all we will take the mean value over all possible trap distributions
over all lattice points except the positions 0, 1 and i. If the mean value of
the product is approximated by the product of the mean values, which for
the matrix model seems to be justified, we obtain:

p io (Nt +1} = pio <nt> - p ii (Nt + X) pio (Nt> (B2)

The success of section 7 for small T-values implies that the position of an
excitation does not matter much as far as its fluorescence probability is
concerned, unless it is a neighbour of a trap.
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An equivalent reasoning as used for equation (44b) then gives:

P li *  Ph NT Pt <NT> <®3)

P ' being the mean trapping probability for an excitation starting from the
set of bulk molecules. It is supposed in this equation that NT > 1 and
T < 1.

To obtain an expression for PJ()(NT) we will argue as follows: P (1)
denotes the trapping probability of an excitation starting at position 1 with
the trap located at position 0 and if there are no other traps in the lattice.
It equals If NT - 1 other traps are located at arbitrary positions, P1 (1)
satisfies:

PlO*1* = P10<NT> + p ij Pj0^^ <B4)

The summation extends over all trap positions, except the one at position 0.
With the arguments mentioned above, this relation can be approximated by:

*0 *  P10 + Pi0 ^  j P lj

If we take the mean value over all trap distributions outside position 1 and 0,
this leads to (N_ > 1):

X0 *  P 10<NT > + P i0<1) C"1 < ° - 1)PhPi <B 5 >

Further P (1) satisfies:

Pi0 ^  = Pi0 *NT̂  + Pij N̂T̂  Pj 0 ^  (B 6)

This gives with the foregoing approximations:

Pi0 (1> *  Pi0 <nt > + Pi0 <X> Pij <nT)
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o r, when taking again the mean value:

P i0 (1) *  PI0 (NT> + P i0 <l > P t (NT> <B 7>

Combination of (B 5) and (B7) gives:

: " t v ,ati} n o U w ® *‘ü i
P iO(NT> *  C[(C " 1)Ph Pt ] <1 " P t )(X0 “ P 10(NT)) (B8)

This equation and (B 3) can be substituted into (B2). If AP^ is defined as
A Pj- = P j q (N,j, + 1) -  P j-(N ,p) (in which the mean value over a ll positions i
can be included), we will get:

A P io  = -N”1 (1 -  P[ (T )) (X0 -  P 10) (B 9)

The trap  concentration is defined as T = N_/N. This implies AT = AN—/N.
With AN,p = 1, it gives AT = l/N . An expression for p |  can be obtained
from equation (40). When X= Pj./C *s inserted, we obtain:

,, = Ph<1 - ph/ c ) T

1 l - P h + Ph ( l - P h/ c ) T
( B I O )

A factor 1 -  T has been neglected in the num erator of this formula.
Now i t 's  possible to turn equation (B9) into a differential equation

in T:

d P 10 = _ _1_ t1 ~ P ^  <XQ ~ p iq )

d T T 1 -  ph + ph (1 -  Pjj/te) T

Integration gives:

AT
P 10<T > = X0 ” " 7  n  n /  \T

1 " ph ph ^  " ph/c )T

(B 11)

(B 12)
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Yet at T -  0.14 the function T / {1 -  p^ + pk (l - p^/c) T} deviates less than
8% from it 's  maximum value l /{ p h (l - ph/c)} . If we suppose our deriva
tion to be valid on a range of T-values till about 0.14, the constant A may
be supposed to have a value such, that in (B 12) P1() = p /c  at T = 1. This
gives A = (A0 -  Pjj/c) (1 - p^ + p^(l -  p^/c)). When this is inserted into
(B12), we obtain:

P 10<T> “> xo " <X0~  Ph/ c >
{ 1 - P h + P h ( 1 - P h/C» T

1 - P h + Ph <1 - P h /C>T
(B 13)

The formula is not valid if p^ = 1. This restriction has its origin in the
arguments used in the transition from (B6) to (B7). There the e rro r  made
in tiie approximation ^  P.. (NT) «  p[ should be negligible compared to
1 -  P't . This is not tile case if p = l.

It is interesting to see how the method works when applied to the
total trapping probability. If Pk t(NT) denotes the total trapping probability
of an excitation starting from the bulk molecule k and if a next trap is lo
calized at position i, the following relation holds:

Pkt (Nt  + X> = Pkt <nt > + Pki <nt  + x> -  P ki <nt  + x) p it <NT> <B 14)

We will take the mean value over all possible trap distributions outside i,
approximate the mean value of the product by the product of the mean
values and use

pkt<NT> = p it<NT> = p ; (B 15)

If further the mean value over all possible positions i is taken and P^ is
written as (N ,̂ + 1) 1 Pt (NT + 1), we will obtain (NT >  1):

dT
= P't (1 - P't) t "1 (B 16)
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Integration and insertion of the boundary condition P | = Ph at T -► 1 gives:

p. Tp ' i  h_____ (B17)
1 l - p h < l - T )

This equals the Vredenberg-Duysens relation for an excitation starting from
the set of bulk molecules. This should also be expected.
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C H A P T E R  III

ABSORPTION CHANGES IN THE REACTION CENTER
OF PHOTOSYNTHETIC BACTERIA AND tt-ELECTRON
CALCULATIONS ON BACTERIOCHLOROPHYLL, ITS

MONO CATION AND ANION
H. A. OTTEN

Biophysical Laboratory of the University o f Leiden, Leiden, The Netherlands

(Received^ November 1970; in revised form 18 March 1971)

Abstract-rr-Electron calculations o f the M O -SC F-C I type in the PPP approximations are
carried out for the tetra pyrrole ring o f the bacteriochlorophyll molecule, its mono cation and
anion.

According to the calculations the formation of the positive ion will be accompanied by the
disappearance o f the longest wavelength absorption band o f the neutral system and the appear
ance o f a new band near 1200 nm. Absorption changes of the same kind are found in the re
action center of photosynthetic bacteria upon illumination, supporting the hypothesis that the
primary reaction is an expulsion of an electron from the 7r-electron system of the reaction
center bacteriochlorophyll.

IN T R O D U C T IO N

I n  p u r p l e  bacteria light energy absorbed by the bulk of the bacteriochlorophyll, the
analog of the chlorophyll of green plants, is transferred to a special photochemically
active bacteriochlorophyll molecule, discovered by Duysens[l], This molecule is
called a reaction center. Reaction centers are present in a concentration of the order
of one percent of the total bacteriochlorophyll. The location of the longest wavelength
absorption band of the reaction center of different species of these bacteria varies
somewhat. The reaction center is called P890, P870 etc. according to their wave
length. Upon illumination the reaction center changes its absorption. This light-induced
spectral change is furthered by oxidizing conditions. The same change can be brought
about in extracts from purple bacteria by adding ferricyanide. ESR measurements [2,3]
now suggest the formation of the positive ion of the P870 bacteriochlorophyll molecule
during the light reaction.

The spectral changes in bacteria upon illumination are complex (Fig. I , lower curve)
and have only partly been identified. Some of the changes are mentioned here:

(1) Bleaching of the longest wavelength absorption band. (2) Appearance of a new
absorption band at 1250 nm. (3) Blue shift of the bands situated at 800 and 590 nm.
(4) Changes caused by cytochrome oxidation. (5) In some bacteria small shifts of the
absorption bands of the bulk of the pigment system.

The spectral changes in the i.r. region are the most interesting from our point of
view. They have been attributed to the oxidative bleaching of the reaction center
molecule together with a shift of the absorption band of a bacteriochlorophyll absorb
ing at 800 nm[4, 5], photodissociation of a dimer [6] and to the oxidation together with
a decoupling of a trimer[7]. Thus far it was not clear whether the appearance of the
band at 1250 nm was caused by the oxidation of P870.

The first successful description of the spectra of neutral porphyrins was given by
Gouterman[8], By assuming a degeneracy of the two top filled orbitals obtained from
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Wavelength, nm

Fig. I. Absorption and difference spectra of chromatophores from blue-green mutant R.
spheroides (after Clayton [4]). Upper curve: absorption spectrum of a dry chromatophore film.
Lower curve: spectrum of reversible light-induced absorbancy changes in the same film. (Light

minus darkness).

a Hiickel theory, he was able to interpret qualitatively the spectra of most porphyrins
and their reduced forms with a four orbital model. SCF-CI calculations with Weiss
and Kobayashi [9] some years later confirmed his ideas and gave a very nice account
of many porphyrin spectra.

Following their work, we performed a SCF-CI calculation of the Pariser—Parr-
Pople type for the tetra pyrrole ring of the neutral bacteriochlorophyll molecule, its
mono cation and anion. Our calculations indicate that the formation of the positive
bacteriochlorophyll ion should lead to bleaching of the i.r. band and the appearance of a
band near 1250 nm.

METHODS
Because of the great resemblance between the absorption spectrum of bacterio

chlorophyll and other reduced porphyrins [10], it, is assumed that it is due to the
77-electrons of the common skeleton. Figure 2 gives the structure of the bacteriochloro
phyll molecule. .

If. as for the neutral system, the doublet ground state of the ion is represented by a
single determinant of one-electron functions, the variational principle does not give
SCF equations with a single SCF operator, as for the closed shell. Roothaan however
showed how to construct a single SCF operator! 11].

After solving the SCF equations an extensive configuration interaction was per
formed. Figure 3 gives the path of conjugation and the coordinates of the model.

Geometry. We used the values obtained by Webb and Fleischer [ 12] for the geometry
of porphin. Geometrical changes as induced by the reduction of the two pyrrole rings
were not accounted for.

The Mu-atom. The effect of the Mg-atom is two-fold. Firstly it supplies two elec
trons to the ring system, making it a system of 20 conjugated atoms with, for the
neutral system, 22 7r-electrons. Secondly, it makes the four-nitrogen atoms equivalent
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CjoHsg-O-CO-aVChl;

Fig. 2. Structure of bacteriochlorophyII.

X

Fig. 3. Coordinates and path of conjugation of the model.

This we took into account by averaging the pyrrole and the pyridine nitrogen parameter
values.

Parameter choice. Our choice of parameters for both the neutral molecule and the
positive and negative ions is the same as that used by Weiss el al.[9], Table I gives the
parameter values for valence state ionization potentials (IT,), resonance integrals (/3U)
and repulsion integrals (yu).

Computer programs. Programs for closed and open shell calculations were originally
written by Dr. W. Th. A. M. v.d. Lugt and Dr. J. J. C. Mulder. For the present calcula
tion the symmetry of the model was built in, in order to perform an extensive Cl with
as many as 179 configurations. The calculations were executed on the IBM 360/50
computer at the Centraal Rekeninstituut of the University of Leiden.
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Table I. Parameter values in eV. N  is the mean value of
pyrrole and pyridine nitrogen parameters; 5 means the
overlap integral between 2pt atomic orbitals; yu means the
repulsion integral if i i* j\ yH and yu are taken in eV, the

distance in A [ 14].

Valence state
ionisation

potential W,
Resonance
integrals /3U

Repulsion
integrals yu

=  -11-22 0 O =

Wf) = — 20-04

S yn «  10-60

y « r -  13*31
14-4

28-8 _
+  /*u

y«+VK

Z j /1
S (1-39 A)

RESULTS
Neutral molecule. Table 2 and Fig. 9 give the results of a calculation in which all

99 singly excited configurations participated in the configuration interaction (Cl).
In agreement with Gouterman’s four orbital model [8], the essence of the results

can be interpreted in terms of electron transitions between the two orbitals 10, 11 and
the orbitals 12,13 (Fig. 4). The coefficients of these orbitals are shown in Fig. 5.

Table 2. Results of a 7r-electron calculation on the neutral bacterio-
chlorophyll molecule.

Symmetry allowed transitions Symetry
------------------------------------------------  forbidden

Excitation energy Oscillator Polarization transitions
eV cm-1 nm strength direction eV cm"1 nm

1-54 12431 804 0-56 v  0 3 3-12 25139 398
1-96 15828 632 004 X 3-75 30217 331
3-24 26103 383 0-08 X 3-84 30963 323
3-72 29982 334 2-24 X 4-10 33091 302
3-87 31189 321 2-07 y

- M.0. 13 (C I)

5 2

M.0. 12 (C2)

-M.0.' 11 ( b2)

M.0. 10 (bl)

Fig. 4. Four level diagram for the infrared and soret bands. The X- and Y polarized excitations
are combinations in the way shown in Table 3. Level assignments are those of Gouterman|81.
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0 0 6
-014

- 0 - 4

0-34
013 013

M.0. 10

0-33 -0-33
-0 0 7

- 0 - 9
\ o o o  0 -0 0^

r———J - 0 I4
006 019 0-32 0-00

0-34 -0 -07

M .0 . II

- 0-22  - 0-22
- 0-21

0*30

- 0 -221 -0-26-0-26 i -0-30

0-22 0-22

M .0 . 12

0-22

- 0-22

-0-33 0-33

0-00
-0 1 3

- 0 - 3
0-00

- 0-20

M .0 . 13

Fig. 5. Orbital coefficients o f neutral bacteriochlorophyll.

The band calculated at 383 nm is not reported in the literature. It may perhaps be
hidden in the soret absorption band or shifted towards the u.v. by solvent interaction.
Figure 6 gives the calculated electron density distribution in the ground state; Table 3
gives the coefficients after C l and the next highest coefficient.

Positive and negative ions. Table 4 and Fig. 9 give the results o f a calculation for
the positive ion. A total of 179 configurations was considered, namely: the ground
state, 10 configurations arising by excitation from one of the doubly occupied orbitals
to the singly occupied orbital. 8 configurations arising by excitation from the singly
occupied orbital to one of the unoccupied orbitals (except the highest one), 160 con
figurations arising by excitation from one of the doubly occupied orbitals to one of the
unoccupied orbitals (except the highest one), each with two spin functions.

Only the two transitions o f lowest energy allow a simple interpretation. For the
transition at 1189 nm the configuration and next highest coefficient are: 0-92 (11 —► 12)
and 0-25 and for the transition at 1085 nm; 0-95 (10—> 11) and 0-23. MO coefficients of
these orbitals are given in Fig. 7.

0-93 0-93

0-940-94

0-93 0-93

Eig. ft. Electron density distribution in the ground state of neutral bacteriochlorophyll.
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Table 3. Coefficients after configuration interaction for the
neutral system.

Excitation
wavelength Next highest

in nm Configurations coefficient

804 0-92 (11 12)+ 0-35 (1 0 -*  13) 0-09
632 0-79 (1 0 -*  12) -0 -57  (11 —► 13) 0 14
383 0-92 (8 -»  12) 0-32
334 0-59 (10—> 12) +0-74 (11 13) 0-29
321 -0 -3 6 (1 1 -*  12)+0-91 (10—» 13) 0 12

398 0-98 (9 - *  12) 0-10
331 0-87 (7 -*  12) +  0-43 (11 -► 14) 0 21
323 -0 -38  (7 ->  12) +  0-88 (11 - *  14) 017
302 0-93 (6 ->  12) 0-24

014 0-14
0-34

0 0 7 0 0 7
- 0-17

^ > - 0 - 2 2 -0 2 2 ^
- 0-17

0 0 7

034 0-34014 014

M .0. 10

0-06 -0 0 6

- 0-32 0-32
- 0-17

0-00 0-00-

- 0-32

-0 0 6 0 0 6
- 0-33 0-33

M.0. II

0*17

- 0-17

- 0-19

0-20
^ > 0-00  0 -0 0 ^

- 0-33 0-33
- 0-18

0-00 - 0-24

- 0-29
r_ - . - - j - o .2o
-027

- 0 - 13* _ .0-24 0-00
/ \ 0-19 0-18

M.0. 12 M.0. 13

Fig. 7. Orbital coefficients o f the positive ion o f bacteriochlorophyll.

0-84
0-97

0-97 0-840-84

0-81 0-81

0-97

0-97

Fig. 8. Electron density distribution in the ground state o f the positive ion o f bacteriochlorophyll.
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Table 4. Results o f a w-electron calculation on the positive ion o f bacterio-
chlorophyll. Oscillator strengths less than 0-005 are indicated by 0-00.

Symmetry allowed transitions Symmetry forbidden
transitions

excitation energy
eV cm"1 nm

Excitation energy
eV cm-1 nm

Oscillator
strength

Polarization
direction

1-04 8408 1189 0-08 y 1-14 9210 1085
1-66 13425 745 0-01 X 2 11 17051 587
1-76 14180 705 0-00 X 2-85 22989 435
2-18 17552 570 0-02 X 2-89 23302 429
2-67 21571 463 0-03 y 3-43 27668 361
3-38 27244 367 0-33 X 4-05 32691 306
3-64 29382 340 0-00 X 4-05 32695 306
3-80 30622 326 1-47 X

3-82 30789 325 1-04 y
3-96 31915 313 0-01 y

Table 5. Results o f a 7r-electron calculation on
chlorophyll.

the negative ion o f bacterio-

Symmetry allowed transitions Symmetry forbidden
transitions

Excitation energy Oscillator Polarization excitation energy
eV cm"‘ nm strength direction eV c m '1 nm

1-04 8414 1189 0-19 y M 2 9061 1104
1-38 11161 8% 0-03 X 2-54 20465 488
1-57 12669 789 0-01 X 3-04 24512 408
2-28 18413 543 0-03 y 3-05 24576 407
3-10 24979 400 0-02 X 3-34 26941 371
3-71 29886 335 1-23 y 3-72 30005 333
3-73 30097 332 0-84 X 3-92 31620 316
3-75 30220 331 0-67 X

3-85 31043 322 0-12 y
4 06 32720 306 0-17 X

Figure 8 gives the electron density distribution in the ground state of the positive
ion before C l. The coefficient of this state after C l is 0-97 and the next highest co
efficient is 0-14. Therefore, the values given in Fig. 8 are a good approximation for the
ground state of the positive ion as obtained after C l.

An analogous calculation was performed for the negative ion. The results are given
in Table 5.

C O N C L U S IO N S

Gouterman’s calculations and the results for the neutral molecule show that the
use of the PPP theory for this kind of systems is warranted.

Because we performed an extensive C l, we may accept the results for the ions to
be a good approximation of their spectra, at least for the lowest transitions. The
bleaching of the bands at 804 and 632 nm, together with the appearance of two weak
transitions in between, is in accordance with the effect of one-electron oxidation of
bacteriochlorophyll in methanol as measured by Fuhrhop and Mauzera!l[l 5).
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'0-56 N«utrol »y»ttm

Fig. 9. Spectrum of bacteriochlorophyll in methanol (after Goedheer! 13J). The calculated
transitions with corresponding oscillator strength of the neutral system and positive ion in the

indicated rows. Oscillator strengths less than 0-005 are indicated by 0-00.

Therefore, the photobleaching of the i.r. band of the reaction center bacterio
chlorophyll as well as the appearance of the new absorption band at 1250 nm is
explained by the formation of the mono cation. The observed weaker bands at 980
and 1140nm may perhaps be interpreted as vibrational satellites of the 1250 nm
excitation.

A model of the reaction center as suggested by Beugeling[6] is not supported by
our calculation. His model implies the existence of an absorption band of the positive
ion at about 800 nm with nearly the same oscillator strength as the 804 nm band of the
neutral system. Our calculation does not give evidence for this.
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C H A P T E R  IV

AN EXTENSION OF THE STEADY-STATE APPROXIMATION OF
THE KINETICS OF ENZYME CONTAINING SYSTEMS*

H.A. OTIEN and L.N.M. DUYSENS

Biophysical Laboratory of the State University, P.O. Box 556, Leiden, The Netherlands.

Summary - An extension of the steady-state approximation of multi-enzyme systems

is obtained, which can also be applied when enzyme concentrations are of the same

order of magnitude as substrate concentrations. This extension contains as a first order

approximation the extension given by Vergonet and Berendsen. The mathematical

procedure however is different and avoids difficulties inherent in their theory.

1. INTRODUCTION

For describing the kinetics of biochemical systems, one usually has
to solve one or more coupled differential equations. The relaxation times
belonging to this set of equations (Eigen, 1960) often differ largely. In that
case the solution is difficult to obtain and the set is called stiff (Cooper,
1969). A system showing these features is e.g. glycolysis (Garfinkel and
Hess, 1964).

Numerical integration of this kind of equations demands special
techniques and requires a substantial amount of computer time. To avoid
this difficulty, the steady-state approximation for the components of which the
kinetical equations lead to the smallest relaxation times, is often used. With
in this approximation it is possible to express the concentrations of these
components in the concentrations of the others. In that way the differential
equations leading to the stiffness of the system of coupled rate equations
are eliminated. The remaining equations can be integrated without diffi
culties with the usual numerical methods.

The steady-state approximation for a biochemical system is considered
to be appropriate if the concentrations of the enzymes are small compared
to the concentrations of substrates and products. An attempt to evaluate the
applicability of the steady-state method has been made by Vergonet and
Berendsen (1970). Their work gives an extension of the steady-state method.
♦ r

To be published in the Journal of Theoretical Biology.
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There is no discussion however about the error introduced by their way of
approach.

This article gives an analysis of the steady-state approximation of
multi-enzyme systems. It shows how an extension of the method can be
given. The correction formula as given by Vergonet and Berendsen is con
tained in it as an approximation. Finally a numerical example of the dif
ferent methods is given.

The equations describing the kinetics of systems that contain several
enzymes, will contain as variables the substrate and product concentrations
C j(t), (i * 1,2....... n) and the enzyme and enzyme-complex concentrations
Xj(t), (j = 1,2,...., m) A conservation equation holds for each enzyme species.
It states that the sum of the concentrations of the enzyme and its complexes
is a constant. The Cj and x: are supposed to be independent-that means no
conservation equation has been left between the variables chosen. The gen
eral form of the equations which describe the kinetics of the system is sup
posed to be:

The equations (1) are assumed to be linear in the concentrations of enzymes
and enzyme complexes. If written in vector notation, the set of equations (1)
becomes:

in which a dot denotes a time derivative.

The Michaelis-Menten kinetics can be considered as a special case
of (2). This kinetics is characterized by the following reaction scheme

2. KINETICS OF MULTI- ENZYME SYSTEMS

dt ci( t)= M*j(c cn) ( i -  1,cn)xj + mi(c

. md „ v
( 1 )

d t X j ( t ) = k = l Ajk(C‘ ......,Cn)xk + aj ( c ......... - cn> ü =  1....... ’ m)

c = M x + m
x = Ax + a

(2a)
(2b)
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( 3)
k, k2

S+ E ^= ± E S  — >E+ P
k.,

S = substrate, P = product, E = enzyme and ES = enzyme - substrate complex.
With c = [S ], x = £E] , xQ = [EJ + [ES] = constant and [P] + [S] + [ES] =
constant, the equations describing the kinetics of (3) are:

c = - (k ,c + k .,)x + k _ ,x 0
x -  -(k ,c+  k2 + k_,)x + (k2 + k_, )x„

If we define: M= -(k ,c+  k .,) , m = k_, x0, A = -(k,c + k2 + k .,)  and a = (k2 + k .,)  x0,

equations (4) can be w ritten as

c = M x + m
(5)

x = Ax + a

This is a special case of (2) in which c , x, m, a, M and A are  sca la r

functions.

3. S T E A D Y - S T A T E  A P P R O X I M A T I O N

The steady-state solution (cs(t), xs( t)> of (2) is obtained by setting in
equation (2b) x equal to zero and then integrating the resulting equations.

6s * M xs + m (®a)
0 = Axs + a

Equations (6b) form a set of algebraic equations from which xs can be solved

as an expression in cs.

Xs •  -A'1 a

This expression is  substituted into (6a) to give a set of differential equations
which only contain the unknown functions cf(t), (i = 1..... .. n). This set can be
integrated num erically using the given initial conditions cs(0)=c(0). Substitution
of the solution cs(t) into (7) gives xs(t) as a function of time.

The initial conditions c(0) and x(0) must be given to determ ine the
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solution of (2). In the case of equations (6) only the initial condition cs(0) = c(0)
can be used. Therefore the steady-state approximation only selects that
special approximate solution of (2) for which x(0)=-A’' (0)a(0).

4. EXTENSION OF THE STEADY-STATE APPROXIMATION

We now make an extension of the steady-state approximation. To that
end we eliminate x from (2a) with (2b). The new set of equations equivalent
to (2a) and (2b) reads:

c = -M A'1 a + m + M A"1 x (8a)
x = -A*1 a + A"1 x (8b)

If we put x = 0 the steady-state equations are obtained. However, x is not
equal to zero but a function which differs little from zero. We may expect
that setting x equal to the time derivative of the steady-state expression,
i.e . x=dxs(c)/dt, is a better approximation than setting x= 0.
If we express x in components we obtain:

d , m
*> * '  dt~( 2dt j*l

Afjaj)

m
E

k= 1
8

9ck
m

( 2
j=l

A-'apck

If we define the matrix Ts as

T*u ( 2  A-j aj) (9)

x can be written as

x = Ts c

We substitute this expression into (8a) and rewrite c in quantities which
depend exclusively on c :
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c = ( 1 - M A'1 T V  (- M A"1 a + m) ( 10)

This system of equations can be integrated num erically with initial conditions
c(0). Let us call the solution C i( t) .  To find x ,(t) we can use the relation
x ^ t)  = xs(cl) in which c ,(t)  is substituted.

If the system is started  with initial concentrations c(0) and x(0), usual
ly a fast relaxation phenomenon will f irs t occur (see the m athem atical ana
lysis fu rther on). A m easure of the relaxation tim es is given by the re c i
procals of the eigenvalues of A at t = 0 .  Good resu lts  of the given method
may be expected if one takes as initial conditions c(0) values as m easured
o r  as estim ated a fte r the relaxation has died out.

A more thorough discussion of the steady-state approximation and its
extension will be given in section 5. It is not necessary  to study this sec
tion before proceeding to section 6 on num erical resu lts .

5. M A T H E M A T I C A L  A N A L Y S I S

A. STEADY-STATE APPROXIMATION

To gain insight into the steady-state solution, we will consider equa
tions (2) more closely. In the general solution of (2), (c(t), x(t)}, we will
write x(t) as  a sum of a particu lar solution xP(c) which depends exclusively
on c, and a complementary solution f(t):

x(t)*= xP(c) + $(t) (11)

In the case of the Michaelis-Menten kinetics such a splitting of x(t) has been
given by Wong (Wong, 1965) and has been discussed by Otten (Otten, 1973).
It can be shown (see appendix A) that if xP(c) is chosen as an a rb itra ry
solution of the se t of partial differential equations:

2  ~ ~  {(MxP)j + mj}= (AxP)j + aj , (i = 1 , . . . .  , m) ( 12 )

and if the m atrix  T is defined as
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(13)x f ( 0

equations (2) can be replaced by:

c= MxP(c) + m + Mt (14a)
f=(A-TM){ (14b)

In these equations x^fc) is supposed to be a known function of the components
of c; the matrix A-TM depends exclusively on c; t  is determined by the
choice of x"(c).

Criteria under which the steady-state approximation gives a good de
scription of the kinetics as defined by (2), can now be formulated.

a. Equation (7) of the steady-state approximation furnishes an expres
sion xs = k(c), with

k(c) = - A* (c) a (c) (15)

The function k(c) has to be considered as an approximate solution of (12).
For that to be true the left-hand side of (12) with xP(c)=k(c) has to be
small compared to the terms on the right-hand side.

b. For the steady-state solution to be able to describe the kinetic
problem, the term in (14a) (and |  in (11)) has to be negligible. Two
possibilities can be considered.(i) The function £ decreases rapidly and the
change in c during this time is negligible. This is the case if the largest
relaxation time of the set (14b) is small compared to times in which sub
strate and product concentrations change noticeable. A measure of these
relaxation times is given by the reciprocals of the eigenvalues of the matrix
A-TM at time zero. Let us call the largest one i .  The change in Cj during
this interval starting from t = 0 is given by:

6cj(0): S My (0) Xj (0) r  + mj (0) '

<  t ( 2 IMy(0) | x? + |nij(U)|)
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Xj , represents the total enzyme concentration belonging to x:, that means
the sum of the concentration of the enzyme and its complexes. If now

r(£|M^(OHx? + |nt}(0)|)<Cj f (i« I , , n) (16)

holds, then (  disappears fast enough to be negligible in (14a). Then because
of the short duration of this relaxation phenomenon we can disregard {  in
equation (11) as well. If we are interested in this relaxation term , { can
be found by means of (14b) after the steady-state solution cs(t) has been sub
stituted. (ii) The function (  decreases rapidly but the change in c during this
time is significant. Then a steady-state calculation has to be started with a
c(0) - value which has been measured after the relaxation phenomenon has
ceased.

B. EXTENDED METHOD

Consider again equations (11), (12), (14a) and (14b). We now try to
find a solution of (12) which is better than the steady-state solution. To that
end we firs t define Tjj as Tjj * dxP/Jcj. Then (12) becomes:

T(MxP+m) = AxP + a

This set of partial differential equations can be transformed as follows

MA"1 T (MxP + m) = MxP + MA'1 a

(1 - MA"1 T) MxP = - MA"1 a + MA"1 T m

or

MxP = - ( 1 - M A'1 T)M M A'1 a + (1 -M A'1 T)-' {(MA'1 T-l) + 1}m

Since M is not a square matrix, use is made of the identity (M~M)"'M~M = 1,
in which M~ is the transposed matrix of M. This gives:
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XP= -(M ~M )‘1M~(1 -MAMT )'‘ MA"1 a + (M ~M )'1 M~ {(1-MA'‘T)"*-1} m (IV)

The following approximations of (17) and successively (14a) can be given if
we assume that the relaxation phenomenon £ is negligible or already died
out:

1 zero order in MA“'T:
xP(c) = - A"1 a
c = - MA"1 a + m

This equals the steady-state method;

0
2 first order in MA"‘T and Ty w Ty = - (A ''a)j

XP(c) = - A"' a - A"1 Ts M A"1 a + A'1 Tsm
c * - M A"1 a + m + MA"‘TS (-MA"'a + m)

This equals the method of Vergonet and Berendsen (see appendix B);

3 Tij *  Tij
XP(C) = . (M~M)-‘ M~(1-MA’1TS)'1 MA'*a +(M~M)M M~ {(l-MA''Ts)-'-l}m
c= (l-MA-1! 8)"1 (-MA*1 a + m)

This equals the present method.

After integration of the differential equations of c the relation x(c) = -A"1a
will be sufficiently accurate to find x(t).

6. NUMERI CAL RESULTS

We carried out, using the extended steady-state method as discussed
in section 4 and more thoroughly in section 5, a numerical calculation by
means of a PDP-9 computer for the Michaelis-Menten kinetics according to
equations (4). The relaxation phenomenon is supposed to have died out and
the steady-state value is chosen as the initial condition for the enzyme con
centration.

If initial concentrations c(0) and x(0) not related by the steady-state
condition x(0) = xs(c(0)) occur, a good estimate of the concentrations imme
diately after the relaxation phenomenon has died out can be obtained in this
case. Because we will choose k2 ^  k, and k2"^k., we may say that during
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the relaxation phase the equilibrium of the firs t reaction, S + E ** ES, rapidly
becomes established. The changes Ax in x and Ac in c during this period are ap
proximately equal, Ax = Ac, and satisfy (c(0) + Ac) (x(0) + Ax)/(x0- x(0) - Ax) = k-,/ k,
From these equations the value of Ax and Ac follow.

In order to make an exact numerical calculation feasible, the choice
of param eters was such that the system is weakly stiff. The following values
were given to the param eters: k, = 10, k_, = 10, k2 = 0.1, c(0) = 1 and x„ = 1.
In Fig. 1 the results have been plotted by a Calcomb-plotter connected to
the computer. The exact solution is compared with the one obtained with the
steady-state method, the method of Vergonet and Berendsen and the proposed
method. In all approximate methods we calculated the enzyme concentration
from x(c)«-A"‘a.

o.so

Fig. 1.

Calculation of the M ichaelis-M enten kinetics. Parameter values are given in the text.
E and S are enzyme and substrate concentrations respectively. Without index: exact;
with index S: calculated by the steady-state method; with index V: calculated  by the
method of Vergonet and Berendsen; with index C: present method.

The calculation shows that even for large total enzyme concentration
the proposed method gives good results.
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7. D IS C U S S IO N

Fig. 1 shows that fo r  la rg e  enzym e concentra tion  the convential s teady-
sta te  m ethod a s  w ell a s  the m ethod of V ergonet and B erendsen  yield a so lu
tion which dev ia tes substan tia lly  from  the exac t solution. O ur method gives
a solution which dev ia tes le s s  than the linewidth of the p lo tte r . (The devia

tions in the su b stra te  concen tra tion  a re  everyw here le s s  than 0 .0 6 % .) The
exam ple suggests that the m ethod can give b e t te r  re su lts  than may be in
fe r re d  from  the m athem atical an a ly s is . A m easu re  of the ap p ro p ria ten ess  of

the solution can be obtained by substitu ting  i t  back in the o rig in a l equations.
F rom  the m athem atical an a ly s is  we have seen  that the problem  caused

by the s tiffn ess  of equations (2) can be bypassed if functions xP(c) and f  (t)

can be found such tha t ( (t) d e sc r ib e s  a  fa s t d isappearing  relaxation  phenom

enon and x(t) *  xP(c) + £(t). Then it  is  possib le  to rep lace  the equations which

cause the s tiffn ess  o f the problem  by a lgeb ra ic  equations x = xP(c). The func

tions xP(c) have to be approxim ate solu tions of (12) o r  the equivalent equa
tions (17). The s te ad y -s ta te  approxim ation can be regarded  a s  the ze ro  o rd e r

approxim ation in MA"‘T. B ecause T depends on the unknown function xP(c) i t
is  not possib le to give h igher o rd e r  approxim ations of (17). Y et to be able
to find an im provem ent of the ze ro  o rd e r  approxim ation, we substitu ted  the
ze ro  o rd e r  solution into the right-hand side of (17) (T *  Ts). T his leads to

equation (10). In p rin c ip le  th is  p ro c e ss  could be repeated .
A sufficien t condition to obtain a sa tis fac to ry  ze ro  o rd e r  solution of

(17) is  given by M A‘TS<1. As is  shown in o u r  exam ple th is  condition is  not

n e c essa ry  to obtain  good re su lts  w ith the p re se n t method.
The re laxation  tim es a t  t  = 0 of equation (14b) w ere needed in o rd e r

to be able to d isc u ss  the relaxation  phenomenon describ ed  by { (t). If M A"1 T < 1 ,
we a lso  have A -T M * A . Then the relaxation  tim es can be determ ined  from

the re c ip ro c a ls  o f the eigenvalues of A a t t = 0 .
M oreover with the given an a ly sis  a b e tte r  understanding of the w ork

of V ergonet and B erendsen  (1970) is  obtained. T h e ir  model decouples in a
ce rta in  sense  the d iffe ren tia l equations of enzym es on the one hand and

su b s tra te s  and products on the o th e r  by introducing piecew ise constant

su b stra te  and product concen tra tions. From  a theo re tica l point of view the

low er bound of the tim e in te rva l of num erical in teg ration , which is needed

in th e ir  theory , is su sp ic ious. A b e t te r  approach is given in the above

trea tm en t.
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A P P E N D I X  A

The equations of the kinetics of the enzyme system  read:

c= Mx + m (A1)
x = Ax + a

We will w rite the general solution x(t) as:

x(t)= x P (c )+ t(t)  <A 2)

xP (c) will be a particu lar solution of the se t of partial differential equations

£ —-  {(MxP): + m:}= (Axp)j + a j , ( i - 1 , . . . . , m) (A3)
j=l 1 J

We have to substitute (A 2) into (A l) to determ ine the equation fo r{(t):

_  3x? . ,
2 — — {(M xP): + (M (•): + m:}+ J j = (A xP)j + (A(f)j + aj, ( i= 1, ••••» m)
j-i aci J

This gives, because of (A3)

m n ^xf  . m

If we define the m atrix  T with Tik = 3xP/i)ck

, m)

we finally obtain

(A -T M )t (A 4)

64



A P P E N D IX  B

We will prove the equivalence of the method of Vergonet and Berendsen
and the improvement on the steady-state method as implied by:

<5=-MA"' a+m  +MA‘1Ts(-MA", a+m ) (Bl)

Let us consider the Euler method for the numerical integration of (B 1) and
let us take an integration interval At. If we neglect the last term the in
crease in c during an interval At will be given by:

Ac= c At= (-MA‘'a+  m)At (B2)

The last term in (B 1) will give a correction 6c to this. Following the work
of Vergonet and Berendsen, we define Ax as

Ax = xs(c + Ac) - xs(c) (B 3)

This means:

Ax: = xf(c+ Ac) -x?(c)«  I  ^  Ac:
1 j-I. dCj 1

« - ?  é :  (A' ' a>i Ac.
j=l 9cj 1

A x«Ts Ac

The correction term 8c then reads
5c » MA‘‘Ts (-MA''a+m)At
*M A'TsAc= MA'1 Ax

This result is the same as obtained by Vergonet and Berendsen.
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CHAPTER V

SOME REMARKS ON THE MICHAELIS-MENTEN KINETIC EQUATIONS*.

H.A. OTTEN

Biophysical Laboratory of the State University, P. O. Box 556, Leiden, The Netherlands.

Abstract - A number of properties of the Michaelis-Menten kinetic equations are

derived. To that end the enzyme concentration as a function of time is written as a

sum of two terms. The first one, f, is chosen such that it depends exclusively on

the concentration of the substrate. The second term, f , turns out to be given by a

decreasing exponential and describes the transient phase. It is not given by the solu

tion of the homogeneous part of the kinetic equation of the enzyme, as has been

supposed by Wong. An asymptotic series expansion of f is obtained of which

the first term equals the steady-state expression of the enzyme concentration.

I NTRODUCTI ON

The MIchaells-Menten kinetic equations [1] give a good description of
chemical reactions in which, under the catalytic influence of an enzyme, a
substrate is transformed into a product. It is not possible to give an ana
lytical solution of the corresponding non-linear differential equations. There
fore one often uses the steady-state approximation for theoretical consider
ations.

The steady-state approximation [2] is considered to be appropriate in
those cases in which the enzyme concentration is small compared to the
substrate concentration. It does not describe however the transient phase.
This transient phase has to be described separately.

It has always been a difficult problem to give the connection between
the exact solution of the Michaelis-Menten equations and the steady-state
approximation.

Recent attempts to elucidate this connection were made by Wong [3)
and Heineken, Tsuchiya and Aris [4],  In the work of Wong the enzyme con-

* To be published is  the journal of Mathematical Biosciences.
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centration as a function of time has been written as a sum of two terms.
The first one was supposed under certain conditions to be approximated by
the steady-state solution. He assumed the second term to be given by the
solution of the homogeneous part of the differential equation which describes
the enzyme concentration. This last assumption is however at fault. In the
work of Heineken et al. the exact solution is approximated by fitting to
gether asymptotic expansions for small and large time values.

In this paper we will show that the solution for the enzyme concentra
tion can be built up of a decreasing exponential jj which depends on the ini
tial condition and a special solution f which is independent of the initial
enzyme concentration. An asymptotic series expansion of the function f is
given which contains as lowest order term the steady-state expression.

The Michaelis-Menten kinetics is characterized by the following reac
tion scheme:

with S = substrate, E = enzyme, ES = enzyme - substrate complex and P =
product. If we put s = [S], e = [E] , eQ = [E] + [ES] = constant, and if
we denote a time derivative with a dot, the corresponding rate equations
are:

The mathematics will become more convenient if we define the dimension
less variables:

MI CHAELI S - MENTEN KI NETI CS

S+ E ,____ E+P
k-,

( 1 )

s = - (k, s + k_, )e + k_, e0
é = - (k, s + k2 + k., )e + (k2 + k_, )e„

(2a)
(2b)

s' = (k ,s+  k2 + k .,) /k , e0, e' = e/e0, r  = k, e0 t (3)

If expressed in these new variables, the rate equations become:

ds' /d r = - (s' - a )e ' + 0
de' /d r = - s'e' + 7

(4a)
(4b)
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with

« - k2/k, e0, 0 = k . , /k ,e0> 7=  a + 0 (5)

The steady-state approximation (ŝ t), e^(r)} of (4) is obtained if in
equation (4b) de'/d7 is set equal to zero and if the resulting equations

ds' /dr = - (s'-a)e' + 0 (6a)
0 = - s' e' +7 (6b)

are solved. Equation (6b) is an algebraic equation from which e' as a func-
a

tion of s' is found:

ea " W  (7)

This expression is substituted into (6a) to give a differential equation which
only contains the unknown function s'(r). Integration gives s^(t) which finally
is substituted into (7) to give as a function of 7 .

The initial conditions s'(0) and e'(0) are necessary to determine the
solution of (4). In the case of equations (6) only the initial condition s'(0)
can be used. Therefore, the steady-state approximation only selects that
special approximate solution of (4) for which e'(0) = -y/s'(0).

THE GENERAL SOLUTION

In the general solution {s'(7) ,e'(r)} of (4), e'(T) will be written as a
sum of a particular solution f(s'), which depends exclusively on s ', and a
complementary solution £ (t).

e' (r)= f(s'>+ £(7) (8)

If (8) is substituted into (4) and if we suppose the function f(s') to be chosen
as a solution of

{(s’- a ) f -0} df/ds' *> s'f -7 (9)

the following equation for £ (r) is found:
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d£/dr = - { s '-(s '-a )d f/d s '} £ ( 10)

F rom  th is  we obtain a closed exp ressio n  fo r £ (r):

£(t ) = Aexp [- /{s ' - (s '-a)df/ds'}  dr]
0

( H )

with A a constan t to be determ ined  from  the in itia l conditions s '(0) and e'(0).
A pparently £ (r) is  not given by the solution of the homogeneous p a r t of (4b)

a s  w as supposed by Wong [ 3 j .  T h is s tem s from  the coupling between s ' and

F o r the tran s ien t solution £(r) to decay with tim e, it is  n ec essa ry  that

s '- ( s '- a ) d f /d s '> 0 . If f (s ')  can be chosen such that df/ds' < 0  th is  condition is
ce rta in ly  sa tisfied . In the next section  such a choice w ill be m ade.

In th is section  we w ill show tha t the function f(s ')  can be chosen such
tha t d f/d s '< o  fo r a ll possib le values of s '. Then, the tra n s ie n t phase, a s
given by (11) decays in tim e. We f i r s t  tran sfo rm  equation (9) into the form :

1) The ex trem a  of the function f (s ')  a re  found in those points a t which

df/ds’ = 0. Then two possib le situations have to be considered .

i) ( s '-a )  f - /J = oo T h is im plies e i th e r  s' = °° o r  f = °° o r  both s '= 00 and f = °°-
Npne of these p o ssib ilitie s  sa tis f ie s : if only s'-*00 then df/ds'-*-1; if only

f-»°° then d f /d s '-* s '/ ( s '- a )# 0 ; if both s'-* 00 and f-*°° then df/ds'-* 1.
ii) s ' f - 7 = 0.  T his possib ility  cannot be ru led  out. T h ere fo re , the ex trem e
of f(s ')  a re  found in those points w here f(s ')  in te rse c ts  the function b /s '.

The second deriva tive  d1 2f/ds' 2 in those points, is  m ost ea sily  found with
(9). If use is  made of the definitions of a , fi and 7  (equation (5)) th is leads

to:

d2f/d s '2 = y l {(7 - fS)s - ay}=  (k2 + k_, )k, e0/k , k2s > 0  (13)

From  th is  it follows that f (s ' )  p o sse sse s  m inim a only. Then the re  cannot be

T H E  T R A N S I E N T  P H A S E

(s'- a)f-/3
( 12)
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more than one minimum.
2) We will introduce a new variable defined as f = 1/s'. If we trans

form (9) to this variable, we will find the differential equation in J:

- f J { 0 -« f) f -« } d f /d f= f-7 f  (14)

We will try a solution which in a sufficiently small neighbourhood of f = 0
can be written as:

f(f)« Z d n fn (15)n=0

The corresponding recurrence relations are:

d0 = 0
di -  y
d, - 0 n-2 n-1
dn = ^(n - 2)dn_2 + a ^ , mdmdn-m.2 - 2 mdmdn.m.] , n > 3  (16)

111 1 m=l

The series obtained in this way has to be considered as an asymptotic ex
pansion [ 5].

3) Now we suppose f(s') to be chosen as the special solution of (9)
for which (15) together with (16) forms the asymptotic expansion. Then in a
sufficiently small neighbourhood of f = 0 , df/df ~ y. If expressed in s' this
gives df/ds' ~-y /s '2.

Consider the functions f,(s')= PKs'-a) and f2(s')=7/s'. These two functions
are sketched in Fig. 1.
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Fig. 1 .

Schematic drawing of the functions f ; = 0 / (s' - a) , f2 -  7/ s '  and the particular solution
f(s').

The minimum value of s' is  given by s^in = ( ( k ,  s + k 2 + k . ,  ) / k ,  e0)min = 7. The
functions f, and f2 coincide for this value of s' and have the value 1. As fol
lows from (12) and Fig. 1, a negative value of df/ds' implies that f(s') lies
between f, and f2.
As shown in 2), df/ds'<0 if s' is sufficiently large. That means, if s'-»°°,
f(s') is situated between f, and f2 and approaches zero with a negative slope.
Let us look at f(s') for smaller values of s '. It can not intersect the function
fi (s') because to that end df/ds' would have to become -00 at the point of
intersection (equation (12)). It also cannot intersect the function f2 (s') be
cause at the point of intersection f(s') should have a minimum. Therefore
the function f(s') lies between f, and f2 and has a negative slope for all
s'-values in the interval ŝ njn< s '< ° ° .  At s' = srnin » coincides with f, and
f2 and possesses the value 1.

THE A S Y M P T O T I C  A P P R O X I M A T I O N

As we have shown in the last section, the solution of (4) for the en
zyme concentration can be written in the form (8) with £ a decreasing func-
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tion in time and dependent on the initial concentration and f(s') the function
as discussed above. If f is small ( f 1), a stepwise approximation of f is
obtained from the asymptotic series as defined in (15) and (16). Using the
definition of f , the condition 1 implies kie0/(k, s+ k2 + k ^ l ^ l . This con
dition is certainly satisfied if e0/s<\ ,  that means the ratio of the total en
zyme concentration to -the substrate concentration should be small. Equations
(4) can now be replaced by

ds'/dr = - (s' -a)e' + (3

e' = Aexp [-ƒ {s'-(s'-a)df/ds'}dT] + f(s’)
o

3 4f(s')= y/s'-cry/s' + cty2/s' + ....

(17a)

(17b)

(17c)

If the time is large enough that the exponential in (17b) may be neglected,
we will get for the lowest order approximation:

ds'/dr= -7(s'-«)/s' + 0 (18a)
e' -  y/s' (18b)

This equals the steady-state approximation and leads to the Michaelis-Menten
kinetic law ds/dt = -k2e0s/(K+s), with K the Michaelis-Menten constant,
K = ( k2 + k .,)/k ,. This also corresponds to the zero-order approximation of
the "outer solution" of Heineken et al. T4], The next order approximation
will be given by:

ds'/dr = -(s'-a) (y/s'-ay/s'  ) + 0 (19a)
e' = y/s'-ay/s'  (19b)

Equation (19a) has to be considered as an improvement on the Michaelis-
Menten kinetic law.

For small time values the exponential in (17b) cannot be neglected. If
we take as a first approximation to s' the value s '(0) at t = 0, we obtain a
corresponding first approximation to e' given by e '~ 7/ s ' (0) + Aexp(-s'(0)T).
This equals the zero-order term of the "inner solution" as given by Heineken
et al. The lowest order approximation of (17b) equals the solution as given
by Wong if the second term in the exponential is neglected.
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DISCUSSION

We have shown how the solution of the Michaelis-Menten kinetic equa
tions can be written as a sum of two terms. The first one consists of a
decreasing exponential £ and depends on the initial concentration of the en
zyme. The second one, f(s'), does not depend on the initial condition. That
means, that, irrespective of the initial condition, the enzyme concentration
tends to a given functional relation with the substrate concentration. If the
ratio f = e 0/(s + K) is small, an asymptotic expansion of the function f can
be used. The lowest order term of this series equals the steady-state ex
pression.

In the given approach the connection between the steady-state solution
and the exact solution of the kinetic equations is much easier obtained than
in the work of Heineken et al. It has moreover the advantage of connecting
at once the transient and steady-state phase.
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S U M M A R Y

In th is th e s is  the re su lts  of som e theo re tica l stud ies on photosynthesis
a re  d escrib ed .

A model of the p ro ce ss  of excita tion  m igra tion  in the pigm ent system
of photo synthetic o rg an ism s is  given in ch ap te r II. In the model it is ' sup
posed tha t the p ro c e ss  of energy  m igra tion  can be describ ed  a s  a p ro ce ss
in which the energy  of an absorbed  light quantum hops from  one pigm ent
m olecule to ano ther until it is  trapped  by a  photochem ical active ce n te r. A
hom ogeneous la ttice  of m olecu les in which a num ber of tra p s  a re  imbedded
w as used a s  a s ta rtin g  point. The tra p s  a re  thought to be d is trib u ted  a t

random . "Random w alk" equations of the system  have been used to obtain

the m ean fluo rescence  probability  o f a ligh t quantum captured  in the system
as a function of the concentra tion  of tra p s . Using the obtained re s u lts ,  it

is  possib le  to d isc u ss  the approxim ations which a re  inheren t to the le s s  de

ta iled  an a ly sis  of the m igration  p ro c e ss  a s  given by V redenberg  and Duysens

fo r b a c te r ia  and in the case  of system  2 by Jo lio t. F o r the "un its m odel"

of Jo lio t an a lte rn a tiv e  "m atrix  m odel" has been given.

The re su lts  of jr-e lec tro n  ca lcu la tions on both the neu tra l b a c te r io -

chlorophyll m olecule and on the m ono-cation , that is  form ed if one e lec tron

d isa p p ea rs  from  the 7r-electron sy stem , a re  given in ch ap te r III. The c a l

cu lations a re  of the M O-SCF-CI type. The ca lcu lations indicate that if the
light reaction  tu rn s the neu tra l bac terioch lo rophy ll into the afore m entioned

m ono-cation, the bac terioch lo rophy ll absorp tion  band with the longest wave
length w ill d isap p ea r, attended with the appearance of a new band around
1200 nm. T his is  in conform ity with the observed , light-induced, absorption
changes in photosynthetic b a c te ria . T h ere fo re , the hypothesis (as has been
made on evidence from  ESR m easu rem en ts) which s ta te s  that the p rim ary
reaction  c o n s is ts  of the expulsion of an e lec tro n  from  the jr-e lec tro n  system
of the reaction  ce n te r  chlorophyll, is  supported by the ca lcu lations.

The re la tion  betw een the s tead y -s ta te  approxim ation and the exact so 
lution of the kinetic equations of a system  of enzym e-cata lysed  reac tio n s is
studied in ch ap te r IV. An ex tension of the s tead y -s ta te  method is  obtained

and its  validity  d iscussed .
Finally  an application  of the theory  d iscussed  in the foregoing chap ter

on the kinetic equations of the M ichaelis-M enten reaction  is  given in chap

te r  V. A m ore thorough an a ly sis  of the re la tion  between the stead y -sta te
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approximation and the exact solution is possible because of the relative
simplicity of this system. The method that is used leads to a representa
tion of this relation which is simpler than the ones that have been used up to
the present.

In each chapter a short summary of its contents is given.

75



SAME NVATTING

In dit proefschrift wordt het resultaat weergegeven van enige theore
tische onderzoekingen op het gebied van de fotosynthese.

In hoofdstuk II wordt een model behandeld voor het proces van exci
tatie migratie in het pigmentsysteem van fotosynthetische organismen. Er
wordt in het model verondersteld dat het migratie proces beschreven kan
worden als een proces waarbij de energie van een ingevangen lichtquant van
pigmentmolecuul naar pigmentmolecuuL springt tot het in een fotochemisch
actief centrum gevangen wordt. Als uitgangspunt dient een homogeen rooster
van moleculen waarin een aantal vangcentra willekeurig verdeeld voorkomen.
Met behulp van de "random walk" vergelijkingen voor een dergelijk systeem
wordt de gemiddelde fluorescentie kans voor een ingevangen lichtquant behan
deld als functie van de concentratie waarin de vangcentra voorkomen. De
benaderingen die inherent zijn aan de minder gedetailleerd opgezette behan
deling van het migratie proces, zoals voor bacteriën gegeven is door Vre-
denberg en Duysens en voor systeem 2 door Joliot, worden besproken. Te
vens wordt voor het "units model" van systeem 2 een alternatief "matrix
model" gegeven.

In hoofdstuk III worden de resultaten weergegeven van 7r-electron be
rekeningen aan zowel het neutrale bacteriochlorofyl molecuul als aan het
éénwaardige cation, dat ontstaat wanneer één electron uit het ff-electro nen
systeem wordt verwijderd. De berekeningen zijn van het semi-empirische
MO-SCF-CI type. Volgens de berekeningen zou een lichtreactie waarbij het
neutrale bacteriochlorofyl door electron overdracht getransformeerd wordt
in het genoemde éénwaardige cation, een verdwijning van de langstgolvige
bacteriochlorofyl absorptieband teweeg brengen, alsmede het verschijnen
van een nieuwe band in de buurt van 1200 nm. Dit is in overeenstemming
met de waargenomen, door licht geïnduceerde, absorptie veranderingen in
fotosynthetische bacteriën. De berekeningen steunen daarom de reeds op
grond van ESR-metingen gemaakte hypothese dat de primaire reactie be
staat uit het onttrekken van een electron aan het ff-electro nen systeem van
het reactiecentrum chlorofyl.

In hoofdstuk IV wordt de relatie bestudeerd tussen de "steady-state
benadering" en de exacte oplossing van de kinetiek vergelijkingen voor een
stelsel van door enzymen gekatalyseerde reacties. Er wordt een uitbreiding
van de steady-state methode gegeven en een discussie van de geldigheid ervan.
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In hoofdstuk V tenslotte wordt de theorie zoals beschreven in het voor
afgaande hoofdstuk toegepast op de kinetiek vergelijkingen van de Michaelis-
Menten reactie. Door de relatieve eenvoud van dit systeem is een verder
gaande analyse van de relatie tussen steady-state benadering en exacte op
lossing mogelijk. Met de gevolgde procedure kan de genoemde relatie een
voudiger worden voorgesteld dan tot op heden mogelijk was.

Elk afzonderlijk hoofdstuk bevat een korte samenvatting in het Engels.
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STELLINGEN

I
De wijze waarop Paillotin een halfwaardetijd afleidt voor het conversie

proces ZT*Q Z+TQ in reactiecentra van systeem 2 is onjuist.
Paillotin, G ., J. Theor. Biol. 36, 223 (1972).

n
Het door Sauer et al. voorgestelde trim eer-m odel te r verklaring van

het CD-spectrum van reactiecentrum preparaten van R. spheroïdes leidt,
indien toegepast op het absorptiespectrum, tot moeilijkheden.

Sauer, K ., Dratz, E. A. & Coyne, L ., Proc. Natl. Acad. Sci. US. 61, 17 (1968).

m
E r zijn aanwijzingen dat zowel het absorptiespectrum als het in de voor

gaande stelling genoemde CD-spectrum van reactiecentrum preparaten van
R. spheroïdes te begrijpen zijn m .b.v . een tri-m oleculair systeem, be
staande uit twee identieke bacteriochlorofyl moleculen met een absorptieband
in de buurt van 800 nm en één bacteriochlorofyl molecuul met een absorp
tieband in de omgeving van 870 nm.

IV
De door Norris et al. op grond van ESR metingen getrokken conclusie

dat het vrije electron in het geoxideerde reactiecentrum van systeem 1 ge-
delokaliseerd is over twee chlorofyl moleculen, is aanvechtbaar.

Norris, J.R. Uphaus, R. A ., Crespi, H.L. & Katz, J . J . , Proc. Natl. Acad. Sci. US 68
625 (1971). —’



V
De door Clayton gegeven uitbreiding van het matrix model voor de ex-

citatie-migratie in het pigmentsysteem van fotosynthetische bacteriën is,
gezien de resultaten van hoofdstuk II van dit proefschrift, vooralsnog weinig
zinvol.

Clayton, R. K. , J. Theor. Biol. 14, 173 (1967).

VI
De door Lavorel gegeven uitbreiding van de diffusievergelijking met een

wrijvingsterm ter verkrijging van een betere correspondentie tussen theore
tische en experimentele uitspraken over de fluorescentie kans van een door
systeem 2 ingevangen lichtquant, is uit de lucht gegrepen.

Lavorel, J . ,J .  Chem. Phys.. 47 , 2235 (1967).
Lavorel, J . , In: Abstracts of the Seventh International Congress of Biochemistry, Tokyo,
1967.

vn
De toenemende populariteit in Westerse landen van Oosterse rustgevende

technieken, zoals yoga en transcendente meditatie, doet ten onrechte het
vermoeden rijzen dat er niet een gelijkwaardige Westerse methode bestaat.

Schultz, J. H ., Das autogene Training, Georg Thieme Verlag, Stuttgart 1964, l i e  druk.

vm
Het verdient aanbeveling om de weinig gelukkig gekozen benaming van

de getallen tussen 10 en 100, zoals reeds tot in negentienhonderddrieënze-
ventig in gebruik is, nog in tiennegenhonderdzeventigdrie (1973) te herzien.

IX
Het zou van naastenliefde getuigen wanneer ten behoeve van de niet bij

belvaste medemens aan bijbeluitgaven een trefwoordenregister werd toege
voegd.

H.A. Otten Leiden, 2 mei 1973
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