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Teneinde te voldoen aan het verlangen van de Faculteit der
Wis- en Natuurkunde volgt hieronder een kort overzicht van mijn
academische studie.

Na het beëindigen van mijn gymnasiale opleiding in 1942, ving
ik in 1945 aan met de studie in de Wis- en Natuurkunde te Leiden.
In 1948 legde ik het candidaatsexamen, letter A, af. Na een on
derbreking van twee jaar, door gebracht in militaire dienst, her
vatte ik in 1950 de studie en legde in 1953 het doctoraalexamen in
de experimentele natuurkunde af. De tentamina werden mij afge
nomen door Dr J. Korringa en Prof.Dr J. Droste. In 1951 kwam ik
bij de groep van Prof.Dr A. F. van Itterbeek en sedert dat tijdstip
heb ik, in samenwerking achtereenvolgens met Drs W. Limburg,
Drs A.W. Wijnhoven, Drs H.van Ee en Drs R. David, gewerkt aan
het ontwikkelen van een apparatuur geschikt om de absorptie van
geluid te meten. In 1954 kwam ik in dienst van de stichting FOM.

In 1957 kwam Prof. E.W.Guptill van Dalhousie University,
Halifax, voor een jaar op het Kamerlingh Onnes laboratorium en
in een bijzonder prettige samenwerking hebben wij de experimen
ten verricht die in dit proefschrift zijn beschreven.

De heer H.Nater wist immer een oplossing voor de mechani
sche problemen; veel hulp kreeg ik van de cryogeentechnicus
Th.Nieboer en van de glasblazer H. Kuipers. De electrotechnicus
F. Juynboll bouwde de in Hoofdstuk Hl beschreven electronische
apparatuur. De „corner reflector", beschreven in Hoofdstuk III,
werd gemaakt door de glasslijper H. van Zanten. Het Engels werd
gecorrigeerd door Dr W. Zimmerman.
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INTRODUCTION

According to the theory of Landau the thermal energy of liquid
helium consists of two kinds of excitations of the liquid: phonons
and rotons. The phonons are quantized sound waves, the rotons
can be described as being in a way the smallest possible vortex
rings.

If one knows the energy of an excitation as a function of its
momentum then, as is known, the thermodynamical functions for
helium n  can be calculated.

For a phonon this relation is simply E=cp where c is the velo
city of ordinary sound. This velocity has been measured exten
sively. It has the rather low value of about 240 m /s, and below
1.0°K there is little variation.

Phonons and rotons can be thought of as particles, that is to
say - with a slight expenditure of extra energy and by a proper
combination of running waves with definite amplitude and phase
relationships - the excitations are localized and the thermal dis
turbances of the liquid are confined to a small region in space of
atomic dimensions or, in the case of phonons, of the dimensions
of the wavelength of sound. One has a picture then of a gas of
quasi-particles, which interact only weakly except close to the
\  -point. The interactions do not influence markedly the thermo
dynamical properties of helium n  at the lower temperatures, but
they determine, as in a gas of molecules, the transport proper
ties of the liquid such as its viscosity.

When one looks at the attenuation of sound in pure liquid 4He
one notes that only above 3°K the classical viscous and thermal
conduction losses account for the attenuation found experimental-

In this thesis we restrict ourselves to the temperature region
form 1°K to T^. The theory which explains the observed attenua
tion in this region has been given by Khalatnikov prior to any
measurements below 1.4°K. His prediction that the attenuation
should increase by a factor of 20 or more when the temperature
is lowered has been confirmed by the experiments of Chase. The
origin of the high attenuation is a peculiar one. The number of
excitations per volume element has to vary with the period of the
soundwave. Otherwise the sound is propagated under conditions
far from equilibrium and losses occur. Khalatnikov has shown
that it takes a finite time to produce or annihilate excitations.
This relaxation time varies strongly with temperature and when
it becomes comparable with the period of the sound wave a large
relaxation loss results.
. -tothe present work we experimented with mixtures of 3He and
He of low He concentration and studied the effect of the 3He im-
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purity on the attenuation of sound in the above temperature region.

Before describing the experiments we give a brief outline of
Khalatnikov's theory, in Chapter n. This, however, can not be
done without a general knowledge of the theory of helium n  to
which we pay attention in Chapter I. In Chapter in and IV then
follows a description of the experiments. A discussion of the re
sults is given in the last Chapter.
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C h a p t e r  I

T HE ORE TI CAL  CONSIDERATIONS

This Chapter is meant as an introduction to the theory of Kha~
latnikov and is devoted to a sketch of the general theory for he
lium n.

In section 1 we review the theory of F. London briefly. As is
known this theory led to the concept of the two fluid model bv
Tisza.

In section 2 we outline the excitation theory of Landau. His in
terpretation of the two fluid model differs thoroughly from that as
proposed by Tisza. At the same time we introduce Feynman’s
calculations for the energy of an excitation as a function of its
momentum because these calculations clarify the picture a great
deal and give the necessary theoretical support to the original
hypotheses of Landau. These hypotheses were quite ad hoc as
sumptions and seemed not to pay any tribute to F. London’s idea
about the importance of the type of statistics for the problem of
helium H.

Attention is paid in section 3 to the theory of Landau and Kha-
latnikov for the transport properties of helium H, especiaUy to
the interactions between the elementary excitations and to the
phonon mean free path length.

We will not speak about rotating helium II, nor about the fric
tion between normal and superfluid.

1. The early theory of F. London and Tisza's two fluid model

As is known, helium stays liquid under its own vapour pressure
down to the absolute zero of temperature. It can be solidified only
by applying a pressure of about 25 atm. F. London x>, after obser
vations by Simon , pointed out that this results from the role the
quantum mechanical zero-point energy plays in liquid helium. We
give his explanation here to stress the fact that helium is a liquid
with ample spacing between the atoms.

Because of the small mass of a helium atom the zero-point
kinetic energy is large, and since this energy decreases with in
creasing volume it acts as if there is a strong repulsive force be
tween the atoms. On the other hand the attractive forces are only
weak and therefore the minimum in total energy occurs for a vol
ume which is about three times as large as is calculated classi
cally.

The result is that not all the atoms are on sites of minimum
potential energy. The structure of condensed helium is not crys
talline.
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Consistent with this picture no difference in structure is found

between helium I (above 2.17i)K) and helium H (below 2.17°K),
each possessing a x-ray diffraction pattern t^ ic a l of an ordinary-  jares?
probability per cm3 of finding an atom at r 2 if it is known that one
is at n ,  ha rk  distinct maximum at a wave number of about 2 A
which corresponds to a nearest neighbour distance of 3.16 A.

Though helium is not crystalline, the liquid must have a high
degree of order in an other sense. Many experiments indicate
that between 2.2 and 1°K, liquid helium looses almost all the en
tropy characteristic of the ordinary liquid state .

In 1938 F. London1-5) proposed that the transition, at T \, of
liquid helium into a state with "superfluid" properties might be
understood from the degeneracy phenomenon in a perfect Bose-
Einstein gas, viz. below the critical temperature, Tc, a finite
fraction of the atoms "condenses" into the state of lowest momen
tum and energv. The degeneracy phenomenon, in reality, is mo
dified by the interatomic forces, and one must take into account
the obvious fact that the transition occurs in a liquid. However,
London argued, liquid helium has gas-like properties, for instan
ce the viscosity coefficient increases with temperature as in a
gas. Since the interatomic distances in helium are large, the
passage of a helium atom from one place to another is not hinder
ed bv interlocking force fields as in a liquid of higher density.

Not much attention had been paid to the Bose-Einstein degene
racy, partly because all other gases are condensed well above
they condensation temperature. For a gas of helium atoms.
Tr »  3OK, ,The specific heat of the ideal Bose-Einstein gas shows the em-
brvo of the observed X-peak. From 0°K to Tc the specific heat
£ 1  £  temperature as T * .  T)üs Is tar different from the
experimental facts but it is not surprising that the ideal Bose-
Einstein gas theory - which takes into account only single particle
excitations and neglects all collective excitations which spring
from the interaction between the atoms - is too rough an approxi-

maMany attempts have been made, after the promising proposi
tion of F. London, to modify the excited levels of the particles in
a Bose-Einstein gas, aiming at a better fit of the calculated ther
modynamical quantities with the experimental data.

London's idea that liquid helium, in spite of the strong inter
action between the atoms, should show s o m e in
the Bose-Einstein degeneracy proved especially fruitful in in
spiring T isza6) to develop the so-called two fluid theory for liquid
helium n. The idea that some of the atoms are condensed’ and
have zero momentum and energy led him to divide the mass of the
fluid into two parts:

P = Pn + Ps ( 1 , D
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Tisza thus postulated that helium n, on a macroscopic scale,
should be composed of two mutually interpenetrating fluids. One,
the superfluid, should contain all the condensed atoms. The total
contribution of the condensed atoms to the density is ps; the normal
fluid consists of the excited, moving atoms with total density pn.
From theoretical considerations Tisza inferred a zero entropy
for the superfluid *. The viscosity of the superfluid is supposed to
be zero as well.

With the help of the above assumptions the "super" heat con
ductivity of helium n  can be explained. In the presence of a tem
perature gradient the number of normal atoms has a gradient as
well (at 0°K all atoms are "condensed") and there will be a flow
of normal atoms or fluid against grad T. To keep the total density
constant, the superfluid will flow opposite to the normal fluid.
The normal fluid carries the heat, and thus by internal convec
tion helium n  has a high thermal conductivity.

Both fluids then, in general, may have their own velocity field
and the total momentum density is supposed to be:

j- “ P iiïn  +  P s&  (1, 2)
In Tisza's theory the flow of the superfluid is a purely mecha

nical and reversible process and in first approximation the two
fluids exert no frictional forces on each other.

The two fluid theory has been developed without any further
reference to the degeneracy in a gas of bosons. H. London 2 * * * * * 8)„
Gorter ) arid de Groot, Jansen and Mazur 9> laid the termodyna-
mical foundations for and generalized the two fluid theory. We
will not speak about the different assumptions one can make for
the relation between the entropy and the normal fluid density (both
functions of p and T). This relation follows unambiguously from
Landau's theory.

2. Landau's excitation theory. The calculations of Feynman

In 1941, Landau 10> gave quite another version of the two fluid
model. According to his theory, the thermal energy of the liquid
does not consist of single particle excitations but, principally,
of collective excitations of the liquid as a whole. The division into
"condensed" or "normal" atoms and "superfluid" atoms is not
made.

In an attempt to find the stationary energy levels Landau pro
ceeded by quantizing hydrodynamics directly. He came to the con
clusion that in any liquid the states of potential (rot y = 0) motion
arid those of vortex (rot y f  0) motion are separated by an energy
gap, A . As Feynman u ) has shown this conclusion is definitely not

London called the superfluid “virtually one quantum state" and thus denied it any entropy.
make this assumption; he suggested that the superfluid might have entropy

and that there should be an entropy of mixing then as well. In Landau's excitation theory the
entropy of the. super fluid is zero per force.
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true in general, but depends on the type of statistics. For a liquid
obeying Bose statistics, like 4He, it does apply.

It is equally important that every weakly excited state of liquid
He II, for temperatures not too close to the temperature of the
lambda-transition: 2.17°K, can be considered as an aggregate of
a number of elementary excitations, which belong to one of two
groups:

phonons, with dependence of energy on momentum
E = cp (I* 3)

and
rotons for which* with an accuracy up to terms of the second

order in their momentum, the relation
E = A + (p-p0)2/2|J. (1,4)

is valid. A is the energy gap or the minimum roton energy, p is
the effective roton mass. That the minimum occurs at a non-zero
momentum, p0, was a third hypothesis inferred from Peshkov s
second sound measurements.

Landau thought the rotons to be quantized vortex motions of the
liquid. Calculations of Feynman and Cohen 13) have corroborated
this view. The phonons are quantized sound excitations • '■
They are the eigenvalues of the Hamiltonian for the liquid in irro-
tational movement when terms of third and higher order in the
phonon creation and annihilation operators are neglected.

From the experimental values for the specific heat it follows
that A/k is large, about 9°K, and liquid helium at temperatures up
to a few tenths of a degree below T^ is indeed weakly excited.
Thus the interaction energy of the excitations can be neglected.
The assembly of excitations can be thought of as a gas of Bose
"particles". Their total number is not specified but has to be
found from the condition that the liquid is in thermal equilibrium.
Minimizing the entropy under the condition that the total energy
is constant gives for the distribution function n(p):

n = [exp(E/kT)-l]-1 (1,5)

where n is the number of excitations per volume element of phase

SP3\Viththis distribution function and the energy versus momentum
spectrum (1, 3 and 4) the thermodynamical functions for helium
II can be calculated. A good fit with the experimental data was
obtained with the roton A, p0 andp as adjustable parameters.

We give the equilibrium number densities of phonons, Nph, and
rotons, Nr, here:

Nph = | n 1 ^ !  dp = (48u/5) (kT/hc)3 * 2 1019T3 cm '3 (1,6)

Nr = 2p02(2u)3/!(pkT)1/2exp(-A/kT)/h3“ 5.1 l(PT 1/2exp(-A/kT) cm'3
(1,7)
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The theory of Landau seemed rather dubious. Especially the

nature of rotons was far from understood. The positive energy
gap, A, was an assumption under which Landau proved the exis
tence of superfluid flow. Suppose that the liquid at 0°K is in po
tential motion with a flow velocity, ys, relative to the walls of a
vessel. If the liquid is slowed down by friction with the wall this
implies the transformation of mechanical flow energy into heat.
According to Landau, in the liquid an excitation has to be created
by interaction with the wall. The liquid gets a total momentum p
du6 to the excitation. By a Galilean transformation the energy
of an excitation relative to a fixed coordinate system is

E = E(£) + £ .y s (1,8)

where E(d) depends on £  according to (1,3) or (1,4). From the
condition E < 0 and the energy spectrum for E(p) it follows that
vs must exceed a certain velocity before an excitation can be
created or friction occurs.

The situation has been clarified by the work of Feynman 15>
who developed an atomic theory for liquid helium. He made it
acceptable indeed that the phonons are the only low lying energy
st^®s, °f Uj© liquid. This appears to be a consequence of the
validity for 4He of Bose-Einstein statistics.

We review here briefly the calculations of Feynman 16> of the
energy of an excitation. He finds the approximate energy levels
of the liquid with the help of the variational principle and thus
chooses a trial wave function, ¥ . He writes ¥  as

¥ = F $  (1,9)

wherf  ® is the ground state wave function for the liquid and F has
s l̂U 1° he specified. The function ¥ depends on the 3N coordinates
ot all the atoms or is a function of the configuration (ri r2

£“>•’ ) of the atoms- The properties of $ we know qualitatively
It is a symmetric function (Bose statistics) with respect to the
coordinates of all the N atoms. Its amplitude is zero if somewhere
in the liquid two atoms overlap and its amplitude is high for anv
density1̂ 00 whicl1 on a micr°scopic scale has a nearly uniform

why"116 reader is referred ^  the original article 16> to appreciate
¥ = Z ffo )  $ (1, 10)

^here f(c) is a function of the position of an atom and the sum
extends over all the N atoms, is a reasonable trial function. The

k11.:1, 10' ori11gmally was meant to describe those states
orthogonal to the phonon states (large scale

density fluctuations) and to the ground state $. It turns out, how
ever that the ultimate form of ¥ (see below (1,12)) is an exact
limlMn^thp0^ 0/ thefPh°ni°in states and> in general, gives an upperlimit for the energy for all wave vectors k.
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The application of the variational principle leads to the equa

tion
E ƒ p(n-E2 ) f(r2) d^2 = - (h2/2m) v2 f(Ei) (1,11)

Here p(£i-&) is  the two-atom probability function which can be
calculated from neutron scattering data >

The solution of (1,11) is:
f(r) = exp(i k r) ^

7  = 2 exp(i k Ei) $i
and the energy E(g) of an excitation is

E(p) = h2k2/2m  S(k) = p2/2m  S(k) (1,13)

where S(k), the structure factor, is  the Fourier transform of p(r):

S(k) = ƒ  exp(i k r) p(r) d3!  U»14)

S(k) has a distinct maximum for k *  2A'1, thus a minimum in the
energy spectrum is found. However, since 7  (1,10) is a bad trial
function for the states of higher energy, this minimum lies much

hig^  M I m S — * collective motion,

a is the nearest neighbour distance. But for smaller wave num
bers, because of the correlation in position implied by the ground
state wave function $, the motion of one atom implies the motion
of othersBy a combination of plane waves we can make wave packets or
localized excitations, with a slight expenditure of extra energy
depending on the dimensions of the packet. The approximate wave
function for a localized excitation is

W = E g(&) exp(i k Ei) $ (1,15)

where g(r) is some kind of Gaussian which peaks at a place r0 in

theFurthermore it can be shown that if F = 2 exp(i k Ei) $ gives
one excitation with energy E(k), then

(1,16)F = I exp(i k^i) ? exp(i k^j) ®

represents a state with energy E(ki) + E(k2) + terms of the order
l/V  where V is  the volume. F does not change if we interchange
k( and k2 so the "particles” behave like Bose particles which
interact only weakly and may be created or destroyed.

On a suggestion of Cohen and Feynman 17) the excitation spec-
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trum of helium n was measured by Yarnell et al. 18). They meas
ured the change in energy and momentum of a neutron when scat
tered inelastically by liquid helium. The predominant process is
the creation of a single roton. The results are given in figure 1.

Fig. 1: The energy versus momentum spectrum of liquid helium, at a temperature of 1 .1°K.
From the experiments of Yarnell et al. 18).

The shape of the excitation curve does not alter much with tem
perature except that the sound velocity which determines the slope
of the phonon branch and the roton minimum energy A (decreasing
with increasing temperature) vary a bit. Cowan and Bendt 19>
have used the experimental data of Yarnell et al. in computing
thermodynamical functions for helium II. The agreement with the
experimental values for the specific heat, the density of the nor
mal fluid and the second sound velocity is, in general, excellent.
Below 0.7ok there is a deviation of the "experimental values" for
c2 from the calculated ones but Gorter 2°) has pointed out that at
the lowest temperatures mean free path effects in the rather rari-
fied phonon gas must become appreciable so that the concept of a
second sound wave is no longer well defined.

Landau's hypothesis for the energy versus momentum relation
for the excitations has thus been fully confirmed.

The picture of the "particles" comprising the thermal energy
of the liquid offers a simple explanation of the two fluid model.
Landau took the decisive step of assigning the inertial mass of
the phonon and roton field to the "normal fluid". One must re 
member, however, that an excitation as such is a disturbance in
the fluid and has no mass of its own. The normal density, p* is
not the average of some quantity which can be assigned to the in
dividual atoms. It appears to have meaning only for the whole
group of excitations in, or nearly in, thermal equilibrium i®-!®)
If one supposes that the "gas" of excitations can  drift relative
to the background fluid, then it is not difficult to calculate the
normal fluid density.

Landau showed that the energy of an excitation when the fluid
moves as a whole with velocity ys is E = E(p) + gys (1, 8) (see also

where E(ja) is the energy of the excitation in the fluid at rest.
The equilibrium distribution function for the excitations when the
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gas of excitations moves as a whole with velocity yn is:

n = [exp(E-gyn)/kT -l]*1 = [exp (E(|)) + £(ys-Vn))/kT -l]*1

From this it can be seen that the excitations direct themselves.
They become '’polarized", their momenta p on the average point
ing in the direction of yn-Ys. There results a macroscopic mo
mentum due to the polarization of the local disturbances in the
fluid and this momentum can be shown to be proportional with
Yn-Ys, the proportionality factor being pn. The flow of the un
disturbed fluid contributes pys to the momentum density, thus in
total

i =  Pn(X n-¥s) +  PÏS ( 1 ,1 8 )

which is formally equal to (1, 2) if one puts ps = P - Pn-

Feynman and Cohen 13> have given a detailed picture of a roton
by choosing a better trial function. It can be shown that (1,12)
represents a state with a total momentum £ or that the vector sum
of all the velocities of the particles, due to an excitation, is equal
to p/m, where m is the mass of a 4He atom. Such a unidirectional
velocity field does not conserve mass. Therefore another trial
function is used which ensures the necessary backflow. The ener
gy of an excitation (1,11) contains a negative correction term
then and the fit with the experimental A becomes much better:
Atheor = 11.5°K whereas AexP = 8.58°K.

We can say that a localized roton induces a velocity field in
the whole liquid. Feynman and Cohen describe the roton classic
ally as the smallest possible vortex ring with diameter of the or
der of the atomic spacing. The atoms can slip through only one
after the other. They return outside the ring with a low velocity.
Figure 2 shows this schematically.

Quantum mechanical effects are the cause of important differ
ences with this classical picture.
a) The wave vector can not be smaller than 2k/ a since if the pat
tern is shifted by one atomic distance, a, the wave function, being
symmetric, must have returned to its original value, b) To loca
lize a disturbance as described classically a small extra energy
is required. The lowest value for the energy of a roton results if
it is in quantum mechanical sense "everywhere" in the liquid,
c) The vortex ring does not drift. This is because it has its smal
lest possible size. There is no force which tries to contract it.
Classically this force is balanced by the forward motion of the
ring 13>.
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3 ex

Fig. 2. The motion of the atoms in a roton.
After Feynman 11).

3. The interaction between the elementary excitations. Phonon
mean free path length

The transport coefficients of helium n are determined by the
net transport of momentum or energy by rotons and phonons in
the case of a macroscopic gradient. The viscosity coefficient n
has been analyzed in detail by Landau and Khalatnikov 21) ’the
coefficient of thermal conductivity, x, by Khalatnikov 22>. ’Both
coefficients rise steeply with decreasing temperature. This is
because the number of rotons, as given by (1, 7), is diminishing
rapidly when the temperature is lowered and consequently the
phonon mean free path length is rapidly becoming longer.

The viscosity coefficient has been measured in several ways
There is fair agreement with the theoretical values when the ex
perimental value was obtained either with the rotating viscometer
or by the surface damping of second sound. The damping of an
oscillating disk, however, gives experimental values which be
come too high at the lower temperatures. But in this case the
product p„Ti is measured and since pn is very small spurious
damping affects the value ofT) greatly.

The coefficient of thermal conductivity, x, is mainly respons
ible for the dissipation of energy in a second soundwave. It has
been measured indirectly by subtracting from the observed at
tenuation the contributions of other types of attenuation. We note
that m the case of a temperature gradient in helium n  heat flows
reversibly - for nottoo high velocities of the two components - bv
convection, the excitations having a mean group velocity yn dif-

r̂om zero. This type of conduction is not given by x’ The
coefficient H relates a temperature gradient in the gas of excita
tions to a diffusion of thermal energy due to collisions between
the excitations. Thus x denotes a "normal” thermal conductivity.

As in gas kinetic theory, Landau and Khalatnikov proceed from
and rotons111 equation» one for each of excitations: phonons

3n/at + i  3n/3r + g Bn/ag = J(n) n = h(r, g, t) (1, 19)
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where J(n) is the collision integral. For the distribution function,
n, they write in the usual way

n = n0 + 6n (1,20)

where n0 is the local equilibrium distribution function and 6n, for
a small macroscopic gradient, is a small deviation. After inser
tion of n0 (dependent on the local macroscopic velocity or tempe
rature) the left-hand side of (1,19) becomes proportional to the
gradient du/dz (in the calculation of r\) or grad T . The collision
integral is proportional to 6n. From (1,19) then follows 6n as a
function of the macroscopic gradient and q or m can be evaluated.

The foundation for the calculation of J(n) was laid by Landau
and Khalatnikov in their first paper, on the differential effective
cross sections for collisions between the elementary excitations.
The cross sections follow from the quantum mechanical transition
probability for the transition from a state with two excitations,
say 1 and 2, to a final state with excitations 3 and 4 - the laws of
conservation of energy and momentum being fulfilled. The time
proportional transition probabilities are in turn proportional to
IH1 af I2 where H' is the perturbing or interaction energy and H'af
denotes the matrix element between the initial, A, and final, F,
state. The interaction energy between two elementary excitations
is known only roughly. We review the assumptions of Landau and
Khalatnikov for these interaction energies,
a) Phonon-phonon interaction. The 4-phonon process
The perturbing energy, in principle, is known. The Hamiltonian
of the liquid, Hop, for irrotational flow, is developed into powers
of the phonon creation (p*) and annihilation (p£) operators:

Hop = Ho + H' = Ho + V3 + V4 (1, 21)

The phonons are solutions of Ho which equals

H0 = (c2/p0) X (Pgp* + P£ P£) = 2(n£ + 1/2) cp (1, 22)
where npis the number of phonons with momentum g. The inter
action energy, H', is of the third or higher order m the phonon
operators. , 1L

Difficulties arise with the 4-phonon process when the phonons
collide at a small angle. The mean contribution to H'af comes
from V3 in the second approximation of the perturbation theory:

Y1 (V3)Ai(V3)iF
ffAF “ jJj EA-Ei

(1,23)

where i means an intermediary state. When the angle between the
colliding phonons goes to zero, for some intermediary states the
denominator E A-Ei becomes zero as well?/ the energy of a pho
non depends linearly on its momentum: E=cp.
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Landau and Khalatnikov^ to avoid tliG divergence of the matrix
element ITaf , write

E = c (p -y p 3) (1,24)
where y is a "dispersion" parameter. With (1,24) they express
the fact that the energy curve (fig. 1) bends over towards the roton
minimum. The value of y they infer from experimental data for
the roton A, p0 and n and for the velocity of sound. In this wav it
is found that * J

Y ^  2.8 1037g'2cm '2s 2 (1,25)
It is safe to say, however, despite the uncertainty concerning

the exact value of y, that the differential effective cross section
for phonon-phonon collisions has a sharp maximum when the col
liding phonons move nearly parallel. This in turn leads to a rapid
exchange of energy between phonons moving in the same direction.

The time tPh which characterizes the attainment of energy
equilibrium in the phonon gas is determined mainly by the above
small angle scattering and is equal to 21)

1/tph « 105 T7 x (x + 6)3 x = pc/kT (1,26)
where x is the energy, in units of kT, of those phonons which
originally were not present in equilibrium number.

The key assumption of Landau and Khalatnikov in calculating
the Phonon part of the kinetic coefficients, which they afterwards
justify is that the time tph is much smaller than the time which
characterizes the viscosity or the thermal conductivity (see be-

o .^connection with the 4 phonon process we note that Landau
and Khalatnikov say that the 3 phonon process is impossible
^ c e  the laws conservation of energy and momentum have to
be luliilled. In this process two parallel phonons combine to form
one movmg in the same direction (c.f. H. A . Kramers 24>). Indeed
if the dispersion parameter Y is introduced, the 3 phonon process’

h) Roton-voton iïitcYoc tion. The 4-yoton pvoccss
4. V?e iaicraction energy between tworotons nothing was known

at the time Landau and Khalatnikov wrote their article. Thev as
sumed a 6-function interaction:

V int — Vo 6 (r 1-1:2) (1,27)

* This value of y  is of no consequence for the phonon specific heat for instance We calculated
r  from the maximum in the energy curve 18) and found y  ~  7.1 103T g-2cm-2s2.
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Thus the rotons are treated as "hard spheres". As in a gas
where the viscosity coefficient is  independent of pressure, the
roton part of the viscosity, due to roton-roton collisions, is in
dependent of the roton number density, i .e .  of temperature. From
experimental data for r\ a value of

is found for the roton-roton interaction energy.
Cohen and Feynman 17> have calculated the roton interaction

resulting from the following process: a roton with momentum Ei
emits a virtual phonon p which in turn is  absorbed by a roton £ 2  •
They have found indeed a 6-function interaction and the value of
Vo comes close to (1,28). However, they are led to a velocity
dependent interaction as well. This part of the roton-roton inter
action may be small because the mean group velocity of rotons is
small. One may well imagine that it is quite probable that the in
teraction between rotons depends on the angle between their mo
menta as well.

c) Phonon-roton interaction. Scattering of a phonon by a roton
The roton is treated as a particle in the velocity, y, and den

sity, p, fields which extend over the whole liquid volume and
which are a consequence of the presence of the phonon.

Firstly, the velocity field y  results in an interaction energy
_p. y where P is the momentum of the roton.

Secondly, the roton parameters depend on density, and the
density fluctuations in the sound field cause a contribution to the
interaction energy of

The assumption has been made that P-p0. Khalatnikov shows that
the term with BA/Bp can be neglectedif ( l/p c2) (3 A/Bp)2<0 2 A/Bp2.

Thus for the scattering of a phonon by a roton the values of
9A/ap, BPo/BP and Bp/ap and of the second derivative B2A/BP2
have to be calculated from experimental data. As we will see in
Chapter II, these derivatives enter into the final expression for
the attenuation of sound in liquid helium as well.

From the dependence on pressure of the velocity of ordinary
sound (Atkins and Stasior 25)) the phonon part of the thermal ex
pansion coefficient, aPh, can be calculated. Subtracting aph from
the experimental value of ct (Atkins and Edwards ) one gets ftr,
the roton part of the expansion coefficient which is related to the
roton part of the entropy by a r= -p 3ar/Bp.

Atkins and Edwards, after some calculation, get

V0 — 1.1 10'38 erg cm3 (1, 28)

, -  « -  2
BP H ] P' (1,29)

(p/A) 3A/3P = -0.57
(p/2p) 3p/3p + (2p/po) BPo/BP = -0.38 (1, 30)



The dependence on pressure of the velocity of second sound
(Peshkov and Zinovieva 27)), together with a, gives 28>

(P/Po) dpo/dp = +0.26 —» (p / i ) dp/dp = -1 .8  (1, 31)

These values deviate considerably from those given by Khalatni-
kov in his review article 22); he gives (p/p0) dp0/dp ^  1/3 and
(p/p) 3p/3p=:0. The influence of the values of these derivatives
on the scattering cross section for the scattering of a phonon by a
roton can not be neglected. They appear as well in the final ex
pressions for the attenuation of ordinary and second sound. We
think that the values of Atkins 28) are to be preferred since
Khalatnikov made use of less accurate data for auj/ap ancfa .

Finally, the derivative d2A/dp2 can be calculated approximately
from the temperature dependence of the velocity of ordinary
sound. J

Khalatnikov finds 22>
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(p2/A) d2A/dp2^  -5 (1,32)

The total interaction energy between a phonon and a roton
becomes “ ):

Vim = - I (E l + VE) + | |  p' + I  [ 0  + 1  (SL)2] P'2 (1,33)

With this interaction energy, the differential effective cross sec-
tiQn for the scattering of a phonon by a roton through an angle <|>
is obtained. It is proved that the scattering of a phonon by a roton
is analogous to the scattering of a light by a heavy particle. The
reason is  that the momentum of a roton is much larger than the
momentum of a phonon.

We do not relate here the results of Landau and Khalatnikov
for the kinetic coefficients; roughly, as has been remarked al
ready, they rise steeply with decreasing temperature.

We must pay attention, however, to the mean free path lengths
because if the mean free path length of an excitation becomes
comparable with the wavelength of sound the macroscopic hydro-
dynamic equations, which govern the propagation of sound, are
no longer valid. Generally, the mean free path length of the exci-
tations becomes longer with decreasing temperature.

For rotons the situation is  clear. They are "heavy" particles
and are scattered by rotons only. If we take their interaction
energy to be (1,27) with V0 given by (1 28), the roton mean free
path length is

l rot = 1-65 10'9 exp(A/kT) cm (1} 34)

At 1°K, with A/k -  9°K, lmt =^10'5 cm. The wavelength
MHz sound is X sound —2 10" cm. At 1®K the number of
is about half the number of phonons (from 1,6 and 1,7).

of 10
rotons
Below
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1°K the number of rotons is rapidly decreasing. So we need not
be concerned about the roton mean free path length becoming too
lcir ge •

For phonons, however, the situation is complicated. It is even
difficult, if not impossible, to formulate the problem.

Landau and Khalatnikov define a mean free path length by cal
culating a relaxation time in a situation when in some respect the
gas of phonons is  out of quasi-equilibrium in the sense defined
below. This time, xrei , is multiplied - supposing that the colli
sion time is of the same order of magnitude - with the group ve
locity of the phonons, i .e .  with the velocity of sound. Thus, in
general:

lph  — ^  rel • C (1, 35)

One relaxation time we know already (1, 26). It characterizes the
attainment of energy equilibrium  in the gas of phonons and is gov
erned by small-angle phonon-phonon scattering. So, when the
phonons run nearly parallel

lph=  tph-c (small angle phonon-phonon scattering)

~ 2  10'VT7x (x+6)3 cm x = pc/kT (1, 36)

Landau and Khalatnikov calculate a second relaxation time
which characterizes the viscosity. At t = 0 there is supposed to
be a deviation from the distribution n = n0 + 6n (1,20) that is to
say 6n does not have its stationary value pertaining to the velocity
gradient present. The relaxation time determines how fast, by
phonon-phonon and phonon-roton collisions, the stationary distri
bution is reached. This time, call it x^, is  governed by large-
angle phonon scattering. Small-angle scattering does not contri
bute to the transport of momentum. Thus a second mean free
path length is defined by 21)

h x . c (large angle phonon-roton and phonon-phonon scattering)
** (1> 37)

Still another relaxation time is obtained by studying how fast
a deviation of (1, 20) relaxes in the case of a macroscopic tempe-
rature gradient. And the phonon m6<in free pa.th length which
characterizes the thermal conductivity becomes 22>:

^  = xw. c (phonon-roton scattering) (1, 38)

Khalatnikov shows that a pure phonon gas has no thermal conduc
tivity the coefficient Hph is zero. This consideration implies
that l l  is related to phonon-roton scattering only. The mean free
path length characterizing the viscosity, U, above 0.9°K, is de
termined mainly by phonon-roton scattering as well, and the re
sult is  that ln and lw do not differ much at temperatures above
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0.9°K. Below 0.9°K, however, since 1* is still determined by
phonon-roton scattering only, while 1-rj is decreased by phonon-
phonon scattering, it follows that 1̂  1M.

When we compare the different mean free path lengths, we
have to keep in mind that lph (1, 34) depends strongly on the ener
gy of the phonons. For an average energy, however, of EPh/NPh
-  3 kT, where Eph is the total phonon energy per cm3 and NPh
their total number, x in equation (1, 26) equals 3 at all tempera
tures, and lph depends on temperature as T '4 * * 7. At a temperature
of 0.2°K (orders of magnitude): l ph ~ 10, 1̂  ^2000, 1H~1015 cm.
And at 1.0°K: lphsi 10-4, 1t) ~ 1k cm.

We make two comments on these theoretical values. Firstly
the phonon mean free path length is decreased by 3He impurities
(c.f. Kramers 29)). Secondly, the concept of these mean free
path lengths has to be modified when we consider phonon or roton
creation and annihilation processes.

Phonons and rotons may be created or annihilated. Below 0.9°K
the average time between inelastic collisions is smaller than the
average time between elastic collisions 22-23) . One only in so

.collisi°ns 7S an elastic one. We may as well as for elastic
collisions define a phonon mean free path length for inelastic col
lisions :

li = Tj. c (inelastic collisions) (1, 39)
At what temperature is "the" phonon mean free path length

comparable with the wavelength of sound? At a frequency of 10
MHz X sounds 2.4 x 10' 3 cm. Above 0.9°K 1, >>1^=;^ 22.23), I t
does not make sense to take lPh as determining free path length
because lph is restricted to the phonons moving parallel. We have
found that at 1.0 K l^ ^ lO ' 3 * cm. The conclusion is that it is not
safe to proceed from the macroscopic hydrodynamic equations
- which we will give in the next section - in describing the propa
gation of sound for temperatures lower than about 1.0°K.

4. The equations for macroscopic motion

The macroscopic thermohydrodynamic equations for the two
fluids have been derived, in the following form, by Landau 10 *> .
They are, if we neglect dissipative effects:

3p/3t + divj = 0

aS/at + div Svn = 0

3ji/B t + E ?nik/3xk = 0, n ik = p6ik + PnVk(n)v j(n) + PsVk(s) Vi<s>

B ïs /a t  = - grad [® + vs2/2 - (Pn/2p)(yn-y s)2] (1,40)
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S is  the entropy per cm3, <£ is  the thermodynamic potential per
gram . The total differential of $ is  d$= (l/p ) dp - a dT where a
is  the entropy per gram.

Neglecting quadratic te rm s in (1,40) the equations for the pro
pagation of sound of sm all amplitude become:

3p/3t + Pndiv Yn + ps div Ys = 0

3j/Bt + vp = o

BS/3t + S div Yn = 0
(1,41)

BYs/Bt + V5> = 0

After elimination of Yn and ys:

32p/3t2 = Ap

B^/Bt2 = (S/pn)(A p - ftA®)
(1,42)

Khalatnikov chooses as independent variables p and S. The devia
tions from  the average values, p' and S’ , are  taken proportional
to exp [i(cot-kx)]. The velocity of sound u =u)/k.

The velocities of ordinary (ui) and of second (un) sound follow
from the determ inental equation:

u2 -(Bp/Bp)s (Bp/BS)p =Q (

u2 - PS(BÏ’/Bp)s (pn/s )u 2 + p, (B$/bS)p

The term  with (Bp/BS)p is sm all since the coefficient of expansion,
an, of helium II is very sm all and (3p/3S)p = Tap/ c vXT-
Thus the solutions are:

u? = (Bp/Bp)s + (Bp/BS)p S/p -  (Bp/Bp)0
(1  ̂44)

4 =  (PsS/pn)[(3p/BS)p/p - (B®/BS)p] = (ps./pn)o2(3TAo)p

The coupling between the two kinds of sound is  negligible 1-30>.
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C h a p t e r  II

ORDINARY SOUND IN PURE 4HE

The velocity and the attenuation of ordinary sound in helium n
have been measured by many authors. The first section of this
chapter is devoted to a review of the experimental results. In the
next section we outline the theory of Khalatnikov for the attenua
tion of both types of sound in helium n, which is valid, as will be
shown, between 1.0 and 2.0°K. Finally we make some remarks
on his theory.

1. Experimental results
The velocity, c, of ordinary sound in liquid helium has been

measured by means of the interferometric method by Findlay et
al. x). Later, van Itterbeek and Forrez 2>, with the same method,
obtained more accurate data. Their results are reproduced in
figure 1.

Fig. 1. The velocity of sound in liquid T ie , according to van Itterbeek and Forrez ^).

The dispersion of sound, which theoretically is small, has not
yet been detected.

The attenuation has been measured, with the help of the pulse
method, in the frequency range from 1 MHz to 15 MHz3"10 ).
Figure 2 shows the results for a frequency of 12 MHz. The part
of the curve below the lambda-point is drawn from the experi
mental data of Chase 5) and Whitney 8) .
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Fig.2. The attenuation of 12 MHz sound, from the measurements of Pellam and
Squire 3), Chase ö»10) and Whitney 8).

Above T\ only a few data are available 3), and they are for a fre
quency of 15 MHz. In drawing fig. 2 the assumption has been made
for temperatures above T\ that the attenuation is proportional to
the frequency squared.

Recently, Chase 10) studied the propagation of sound close to
the X-point with a high degree of accuracy. The frequency used
was 1 MHz.

A large and narrow maximum in the attenuation occurs at about
8 x 10' °K below T\. The velocity of sound goes through a mint
mum of 218 m /s at a temperature of 2 x 10'4 °K below T\.

The data of Chase are in fairly good agreement with a theory
proposed by Khalatnikov XI). There is a relaxation time connect
ed with the attainment of the equilibrium value of a certain para
meter which characterizes the degree of asymmetry in the helium
n  phase (Cf. also Kronig, Thellung and Woldringh 42)).

This relaxation phenomenon can not explain the high attenua
tion of sound just above the X-point, since there is no superfluid
left. Indeed, in the region from I \  to about 3°K the attenuation of
sound is higher than can be explained classically by viscous and
thermal conduction losses. Pippard 13) has developed a theory
for the excess attenuation in the temperature region above Tx bv
assuming that statistical temperature fluctuations in the liquid
entaü the possibüity of small inclusions of He II in the matrix of
bulk liquid which is He I. Pippard calculates that a significant
fraction of the liquid consists of He H. The mechanism which
causes the attenuation is as follows: on compression the inclu
sions decrease in temperature while the matrix of He I increases
H1 temperature since the expansion coefficient changes sign at
. X- There is an irreversible flow of heat from the matrix to the
inclusions and sound energy is dissipated.
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2. The theory of Khalatnikov

After the measurements of Pellam and Squire 3) on the attenu
ation of ordinary sound in liquid helium, which extended down to
1.4°K, Khalatnikov 14) produced a theory for both types of sound
in helium II. For ordinary sound, in particular, he predicted a
maximum in the attenuation somewhere around 1.0°K. This maxi
mum was actually found by Chase 5> and others. We will sketch
this theory and in section 3 compare it with the theory for the
attenuation of sound in diatomic gases due to the relaxation of the
internal, vibrational and rotational, degrees of freedom of the
molecules (cf. Kneser 15>).

The theory of Khalatnikov does not apply at temperatures close
to the lambda-point, since there we can no longer speak of a gas
of weakly interacting excitations. Furthermore, Khalatnikov pro
ceeds from hydrodynamical equations. Below 1°K the phonon
mean free path length becomes comparable with the wavelength of
10 MHz sound, and thus the applicability of the theory of Khalat
nikov is limited to temperatures between 1°K and 2°K. For sec
ond sound the region of validity extends downwards to tempera
tures of about 0.7°K.

Khalatnikov concludes from the experimental values for the
attenuation 3> which are higher than the classical Stokes-Kirchhoff
values:

2pc3 ( | n +  ( Y - 1 ) - ) *cp
0)2 4

2pc3
in He II, (2, 1)

local equilibrium but which are slow relative to the period of the
sound wave. From Chapter I, section 3, it follows that energy
equilibrium is attained rapidly. By elastic collisions the excita
tions distribute themselves over the different energy levels in a
time which is very short when compared with the period of the
sound wave. In fact, the time tPh from equation (1,26) which
characterizes the attainment of energy equilibrium in the phonon
gas, and the roton collision time (compare 1, 34) are extremely
small relative to the time, v-n, which characterizes the phonon
part of the viscosity coefficient.

The equilibrium numbers of phonons and rotons per cm3 de
pend on pressure (or, in the case of second sound, on tempera
ture), and Khalatnikov assumes that the slow rate of production
of excitations is responsible for the observed excess attenuation.

* Here ai is the angular frequency, p the density and c the velocity of sound; v  is the viscosity-
coefficient and K thé coefficient of thermal conductivity which determines the irreversible
flow of heat in the presence of a temperature gradient. With the experimental data of Zino
vieva 16) for x and v ,  of Atkins and Edwards 17) for y  = cp/cy and of Kramers et al. for Cp
16) it turns out that the losses due to thermal conduction can be neglected at temperatures
above 1°K.
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To account for the fact that the phonon and roton number den

sities do not have their equilibrium values (1, 6 and 7) a chemical
potential, pr or pph, is introduced and the distribution function
(1,7) becomes

n = [exp(E-p)/kT -l]"1 (2,2)

Here the chemical potentials are to be taken per particle.
When the gas of excitations is out of equilibrium, as far as the
number of particles is concerned, the chemical potentials have a
non-zero value. The supposition is that the deviation from ther
modynamic equilibrium is not too large to prevent the use of the
well-known thermodynamical identities.

The rate of production of excitations is characterized by cer
tain kinetic coefficients, y , and when the chemical potentials are
small the following equations express the fact that in a volume
element the number of excitations changes not only by flow but by
production as well:

Nph div(N phY n) — Y phr Mr “ Y phph Pph

Nr + div(NtVn) — -Yrr P r + Y rph Pph
(2,3)

These two equations, together with the hydrodynamic equations
(1,41) describe the propagation of sound in helium n  when the
slow production of excitations is taken into account. Viscous and
thermal conduction losses are omitted for the moment. After
elimination of yn and ys there results:

p = Ap

S = (S/pn)(Ap - psA$)
(2,4)

Nr - (Nr0/S) 3S/3t = -  YrrPr +  YrphPph

Nph ” (Npho/S) dS/'dt — Yphr Pr ” YphphPph

Apart from p' and S', the deviations from the average density and
entropy, the chemical potentials now vary like exp [i(u>t-kx)l. The
pressure and the thermodynamical potential per gram, $ , depend
on two more variables, | i r and pph. Formally, the velocity of
ordinary sound is as in (1,44)

Uj = (3p/dp)s + (Bp/3S)pS/p (2, 5)

But now

Op/ bp)s -  (3PA>P)s^r,p h + (3P /^ ) ( W a p ) s  + (3p/^ph)(3Pph/3P)s
(2, 6)

(3p/BS)p = (3p/3S)Q̂ r^ ph + (3p/3lir)(3|i /BS)p + (Bp/3pph)(3|ipi/3S)p
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Here Op/Bp)g^i>|Aph is  about equal to t a /V f e  ^  and
[(3p/3p)s+(3p/BS)pS/p]|ar_ ^ i_0 is  the value of uf for very low-
frequency sound.
The derivatives of the chemical potentials, 3pr/3p, 3pr/aS,. . .  ,
follow from (2,4) through which the values of pr andpPh are re
lated to the excess density and entropy in the sound wave:

(ifo 3Nr/Bpr+yrr )pr - YrphPph = -iw[p’3Nr/^p+S' 3Nr/3S-S' (Nr/S)]
(2,7)

- YPhr Mr "*■ (b )3 N ph /3 p ph+YphPh) Pph = -i^ p ^ B N p ^ /sp + S  3N ph / 3 S - S  (N ph/8)]

The equations (2,7) determine 3pr/Bp, 3pr/3 S , . . .  as a function
of frequency.

Finally, the derivatives 3p/B(ir and Bp/dPph are obtained as
follows: tiie thermodynamical identity

dE = TdS + $dp + |iph dNph + pr dNr (2,8)

expresses that the energy per cm3, E, when the gasT of excita
tions is slightly out of thermodynamic equilibrium, is a function
of the chemical potentials per particle, pr and pPh. In equilibrium
|j.r = |j, h= 0. The non-equilibrium pressure is obtained by differ
entiating the total energy with respect to the volume, V, keeping
the total entropy; SV, mass: pV and number of particles: NV con
stant. Thus:

P = 3(EV)
3V

= -E+TS-H$p+NphPph+ NrPr =

= -(E -Nphpph-Nr pr) + TS+<£p (2,9)

The differential of the function E-NPhPph - Nr|ir = e is from (2,8)

de = TdS + $dp - Nphdp.ph - Nrdpr (2,10)

Differentiating p = -e  + TS + $p with respect to p.Ph or pr we get
from (2,10):

(3p/3P-ph)p g = — 3e/Bpph 8 3T/3 Pph + P̂ /̂̂ 'P'ph”

= Nph - (3Npi]/3S)p - p(^Nph/Bp)g p (2,11)

(3p/BPr)p g = Nr - (3Nr/3S)p p - p(3Nt/Bp)g ^

The derivatives, again, are taken for pr = p.ph = 0. To calculate
them, they are expressed as functions of p ana T.
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We do not relate Khalatnikov's calculations in more detail.
Before giving his result for the attenuation, we explain which
processes are mainly responsible for the production of excita
tions.

a) The 5 phonon process
In the 5 phonon process the inelastic collision of 2 phonons re 

sults in 3 phonons. The interaction energy is given by the terms
V3 , V4 , . .  in the Hamiltonian for potential flow (1,21). It proves
too difficult to calculate the differential effective cross section
for this process. The probability for the creation of a phonon is
again largest when the colliding phonons move nearly parallel.
However, it is possible to calculate the temperature dependence
of the kinetic coefficient, rpj,, in the equation:

Nph = phM'ph (2,12)
which determines the change in the total number of phonons per
cm3 as a result of the 5 phonon process when the chemical poten
tial of the phonons, |iph, is not zero. It turns out that:

r ph = a T11 (2,13)
where a is a temperature independent coefficient which can be
found from experimental data on the attenuation of ordinary sound.

Khalatnikov neglects the production processes between rotons.
These are highly improbable indeed. Because of the law of con
servation of energy for the 3 roton process the condition
(Pi-Po)V2n 1 A and for the 5 roton process the condition
(Pi-Po)2/2|i + (P2-Po)V2p 1 A must be fulfilled. The number of
rotons which have such a high energy is very small.

b) Transformation of a phonon into a roton or vice versa
When two rotons collide one of them can be transformed into a

phonon. The momentum of a phonon is always smaller than the
momentum of a roton (Chapter I, figure 1). The law of conserva
tion of momentum implies that the above process can take place
only if the rotons collide at large angle. Moreover, the phonon
must have a high energy. Of the interaction between a roton and a
phonon of high energy nothing is known. Khalatnikov assumes that
a high-energy phonon differs from a roton only by its smaller
momentum and that thé interaction energy, as in (1, 27), is given
by

V = V06(Ci-r2) (2,14)
The coefficient r PhR relates the change in Nph and Nr, due to

the above process, to the chemical potentials:
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Nph = -TphR (Pph~Mr) (2> 15)

Ni = - F phR ( P-r - Vlpl)

The tem perature dependence of r PhR is found to be:

rphR = b exp(-2A/kT) (2,16)

Again, b is  tem perature independent and has to be calculated from
experim ental data.

Certainly, it is doubtful whether the interaction is  given by
(2,14) but even fo r another interaction the coefficient rPhR will
probably turn out to be proportional to Nr2, and the tem perature
dependence of TphR will be dominated by the tem perature depen
dence of the roton number density; i .e .  r PhR will vary like
exp(-2A/kT). The' coefficients r  are  related  to the coefficients Y
(2, 3) in a simple way.

At a tem perature of 1.8°K the production processes are much
faster than the density changes in the sound wave. But when the
tem perature is  lowered the actual number of excitations more
and more falls out of phase with the number for Mt = Pph=0. A high
relaxation loss resu lts. (See figure 2.)

Two relaxation tim es, 0 Ph for the 5 phonon process and 0 PhR
for the transform ation of a roton into a phonon, are defined by
Khalatnikov. Above 0.9°K they are  numerically of the same order
of magnitude as the time which characterizes the phonon viscosity
or the phonon therm al conductivity (1,37 and 1, 38).

For low frequencies, defined by the conditions:

u)6ph« 1, w0phl«  1 (2,17)

the excess attenuation for ordinary sound is shown to be

t t l . i e l . U)2 r 1 ( Bp i 3 p  ) 2 + - ^ - ( — ) 2 1
2pC 3 ^TphWr ^Mph g F PhR ^p h p jS

(2, 18)

The num erical values of the derivatives 3p/ap.r and Bp/3pPh can
be calculated when one knows the dependence on pressure  of the
param eters of the energy curve; i .e .  when one knows

H  ! p ■+ ¥o i ? andA H  (see chapter x* section 3)-
And thus from  the experim ental values of aj at two tem pera

tures the coefficients a and b in the kinetic coefficients r can be
determined (Arkhipov 29)). One finds, using the attenuation data
of Chase 5), the following values:

a = 1.2 1043 s cm-5deg-11, b = 1.3 105°cm 3 s deg (2,19)

We checked that the tem perature variation of the roton para-
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meters (Yarnell et a l . , ref. 1 ,18) does not influence the values of
a and b appreciably.

Though there exists considerable uncertainty concerning the
values of the derivatives of the roton paremeters on the pressure,
there still is fairly good agreement between the theoretical values
for the attenuation given by (2,18) and the experimental values of
Chase ö>. We note that the assumption is  made that the total at
tenuation is simply the sum of viscous losses (an = (üj2/2pc3)4r)/3)
and relaxation losses. This is probably justified, since the v is 
cous losses are relatively small.

Knowing the coefficients r , the attenuation of second sound due
to the relaxation of the number densities can be calculated. It
turns out that the loss due to the relaxing number density of the
excitations is only a fraction of the total attenuation and that the
loss ocjĵ  due to thermal conductivity, is  by far the most important
one. Therefore, the value of h is obtained rather accurately
from measurements of the second sound attenuation.

In a formal way one can introduce into the hydrodynamic equa
tions (1,40) four coefficients of second viscosity, apart from the
coefficient of shear viscosity and the coefficient of thermal con
ductivity 14'2°). Khalatnikov showed that a certain combination
of the second viscosity coefficients, C i ,  is equal to the expression
between square brackets in (2,18). Thus the total attenuation of
sound, at low frequencies (2,17) and from about 1.0°K to 2.0°K
is ’

0) *  /4 _  V

2pc? 3̂ 11 + ^ (2 , 20)

3. Remarks on the theory of Khalatnikov

The equations for the time rate of change of N (2,3) are ma
croscopic equations. We have seen already, in Chapter I, that at
temperatures above 1.0°K the mean free path length of the excita
tions is much smaller than the wavelength of sound normally used.
But we must make sure as well that the spatial extension of the
excitations is not too large, otherwise we can not locate them
well enough relative to the wavelength of sound.

A small extra energy is  needed to localize an excitation. This
extra energy should not be more than a fraction of the energy of a
non-localized excitation.

We infer from the wave function for a localized excitation (1 15)
together with the energy spectrum (1,13) as well as from the un
certainty relation Ax Apx > h/2rt, where we take Ax as the spatial
extension, d, of an excitation, that d must be about ten times the
central wavelength, h/p0, of a wave packet in order to keep the
excess energy within 1% of the energy of the non-localized excita
tion. Naturally, this gives only the order of magnitude of d. Thus
rotons extend over about 10 times the atomic spacing and dr ^
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3xlO*7 cm. Phonons have on the average an extension of about 10
times the wavelength of thermal sound. Thus at 1°K; dPh is ap
proximately equal to 10-5 cm.

The conclusion is that we need not to be afraid of the excita
tions not being well enough localized, except for very high experi
mental sound frequencies or at extremely low temperatures. The
values for d imply, however, that the excitations "overlap" each
other since, for instance, at 1.0°K there are about 3 x 1019 of
them per cm3. However, the collision probability is small and on
the average the quasi-particles run through 100 or 1000 others
before "colliding”.

From the theory of Khalatnikov we know that in helium II me
chanical sound energy is transformed into heat since the produc
tion of excitations is a slow process. The integral over one per
iod, -4 pdV, which gives the loss of mechanical energy per
period, must be positive. This reminds us of the picture Kneser
is) gave for the relaxation losses in a gas of polyatomic mole
cules.

When the gas is compressed the translational energy of the
molecules is increased almost instantaneously, and all the com-
pressional energy goes into the translational energy of the mole
cules. It takes some time or many collisions before the energy is
redistributed over all the degrees of freedom of the molecules,
i.e . over the vibrational and rotational modes as well. The result
is that the pressure overshoots its equilibrium value and during
each cycle a net work is done on the gas. Schematically this is
indicated in figure 3.

Fig. 3. Schematic representation of the energy
loss in a sound wave in a gas of polyatomic
molecules after Kneser 16). p=pressure, V=
volume, t=time. The representative point
follows the trajectory in the p-V plane as in
dicated by the arrows.

We suspect that in helium II the situation is an analogous one.
Let us take the case of rotons first. Initially, the change in roton
number density is simply:

6Ntii„ = - N r ^  (2,21)

The change in equilibrium number density is:

dN r.eq  = ( |^ ) p dT + ( f f^ d p  (2, 22)

The first term can be neglected since the propagation of ordinary



sound in helium n  is almost isothermal. From (1,7) the deriva
tive (BNt/ap)T is equal to
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where Xt is the isothermal compressibility. The expression in
square brackets is positive and at 1.5°K equal to 8/3 when one
uses the values for the derivatives given by Atkins 21) or equal to
3 when one uses the values given by Khalatnikov 14>. Thus

<l^-T)dP = -*TNr g c2p ^  (2,24)

with Xt = 10‘8 cm2/dyne we get

dNt,eq-  -1.7 Nr ^  (2,25)

Comparing (2,21) and (2,25) we see that on compression initially
Nr is less than Nr with pr=0. Thus, according to (2, 2), the chem
ical potential per roton is negative.

From experimental values for the derivatives with respect to
the pressure, of the roton parameters and of the velocity of or
dinary sound, it follows that

(3p/3pr)p>s < 0 and (3p/3p.ph)p s > 0 (2,26)
Thus, on compression, the excess pressure, p-peq due to the
relaxing of the roton number density is positive:

6P = | 2-Ht > 0  (2,27)

For phonons an analogous calculation can be made. The phonon
number density NPh is, according to (1,6), proportional to (T/c)3
where c is the velocity of sound. Neglecting the temperature
changes in an ordinary sound wave, we see that the equilibrium
number density decreases on compression. Since initially the
number density is increased on compression, the phonon chemical
potential, pph, is positive. With Bp/3pph > 0 this again leads to a
too high non-equilibrium pressure on compression.

In this way we understand the relaxation attenuation of ordinary
sound in helium II qualitatively.
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C h a p t e r  III

THE TECHNIQUE OF THE PULSE METHOD

In this chapter the pulse technique for measuring the attenua
tion of sound in liquids or solids is described. In section 1 we
sketch the general aspect. In sections 2 and 3 some acoustic and
in section 4 some electronic problems are considered in detail.

1. The general aspect of the pulse method 1,2>3)

A pulse generator, with a repetition frequency of about 1000 Hz,
triggers a r.f.  oscillator, and thus short radio frequency pulses
of 1 to 50 ^s duration are fed to a quartz crystal (see fig. 1).

variable
attenuator

amplifier

oscilloscope
delayed
r.f. pulse

pulsed
rf.osclllator

pulse
generator

Fig. 1. Block diagram

The pulsed r.f.  oscillator is tuned to the fundamental resonance
frequency of the crystal or to an odd harmonic. In order to pro
duce longitudinal sound, the quartz is cut perpendicular to the
X-axis, and its thickness, t, is half a wavelength. Thus:

t = ^long/2fres (3, 1)
where c is the velocity of longitudinal sound in quartz. The crystal
transforms part of the electrical energy into sound energy, and a
short sound pulse travels through the liquid to the receiving crys
tal which in turn delivers to an amplifier a r .f.  electrical signal.
After amplification and detection the signals and some higher or
der reflections are displayed on an oscilloscope.

In order to determine the attenuation one varies the distance
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between the two crystals and observes the change in amplitude of
the signals received.

Experimentally, the range of frequencies from 1 to about 200
MHz has been covered 3). Generally, the accuracy in the attenua
tion which can be obtained is about 2% 3).

Instead of two separate crystals, a reflector and one crystal,
as transmitter and receiver, can be used. Mostly one uses piezo
electric quartz crystals. We will see that it is sometimes advis
able to use another piezoelectric or electrostrictive material,
like barium titanate.

2. Some acoustical details

a) The attenuation as a function of frequency. The sound pulse has
a finite extension, say N wavelengths, and thus is composed of a
band of frequencies, the spread in the frequency being

Av =: v/2N (3,2)

Because the attenuation is a function of frequency, the pulse must
have greater than a definite length for a given accuracy in the
attenuation. Suppose that a is proportional to v2, then the general
expression

Aa/a = (Av)2(l/a) B2a/av2 (Pellam and Galt 2)) (3,3)

becomes Aa/a = l/2N 2 (3,4)

Thus if the sound pulse is 10 wavelengths long, the accuracy in
the attenuation is about 1%. In practice there is another reason
why one does not use too short wave trains. Pulses which are too
short are not transmitted by the crystal faithfully, and they have
no flat top even though the r.f.  driving voltage may have a perfect
square envelope and be delivered by a source with zero internal
impedance. The reason for this is that the mechanical Q of the
crystal prevents a rapid increase of the sound amplitude.

The Q of a quartz crystal, loaded at both sides by a medium of
acoustic impedance Zi, is, according to Huntington, Emslie and
Hughes 4) equal to

Q = (jan/8ZJ [2(2Z02-Zi2/4)]1/2 (3, 5)

Here n is the order of the harmonic and Z0 is the acoustic impe
dance of quartz. Z is equal to the ratio of excess pressure to
particle velocity in the sound wave and equals

Z = pc (3, 6)

where P is the density and c the velocity of sound in the medium.
For water Z0-Zi and the Q for the first harmonic is about 8.
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If at time t=0 an electrical voltage sin 2irvt is applied to the crys
tal, then the pressure amplitude in the liquid rises with time as
l-expt-itvt/Qmech)- Thus in Q/n periods the final value of the
pressure amplitude is reached within a fraction 1/e. Since the
height of the received signal on the scope can be measured with
an accuracy of 1%, the duration of the pulse for a "flat top" must
be at least 5 times Q/n periods. Thus in water the pulse must
contain more than 10 periods. It is safe to use wave trains of 20
wavelengths. In liquid helium the mechanical Q is much higher
and pulses of longer duration are to be preferred.

b) Diffraction effects. Because of the finite size of the transducer
the sound beam spreads, and one has to investigate the influence
of diffraction losses on the measured attenuation. The diffraction
pattern is known from the theory of the diffraction of light. We
suppose that the whole surface of a circular crystal vibrates in
phase and with equal amplitude. Even if these conditions are not
fulfilled, the diffraction pattern will be qualitatively the same as
for a crystal vibrating like a piston. The sound field can be di
vided approximately into two regions: the Fresnel region extend
ing the distance z=R2/x from the transmitting crystal — where R
is the radius of the crystal and X the wavelength of sound in the
liquid — and the Fraunhofer region, further away. In the Fresnel
region there is practically no spreading of the beam, through the
pressure amplitude oscillates both across the beam as well along
the axis. The farthest minimum along the axis occurs at a dist
ance from the crystal of about R2/4X.

Pinkerton has shown experimentally that for z<R2/2X, if the
receiving crystal or the reflector is of the same size as the
transmitting crystal, no corrections have to be made for diffrac
tion effects. Calculations of Bass on the averaged intensity as
a function of distance have shown that indeed a negligible correc
tion should be applied. The correction amounts to only about 1.3
db over the whole length z=R2/2X. In liquid helium X for 10 MHz
sound is about 2 .4xl0 '3cm, and from a crystal with radius 1 cm
the Fresnel region extends about 400 cm away. Thus R2/2X equals
200 cm and a loss of (1.3/200) db/cm is negligible.

For large z, in the Fraunhofer region, the pressure amplitude
along the axis falls like 1/z2. The size of the receiving crystal
must be small, and a correction for beam spreading must be
made >. In the Fraunhofer region a circular crystal, as trans
mitter or as receiver, has a directional pattern as shown in
figure 2.

c. Parallelism of transmitter and receiver
It is clear that as near a perfect parallelism as possible be

tween the transmitting and the receiving crystal must be achieved.
In the Fraunhofer region we may infer from figure 2 the mag

nitude of the angle , 0 , for which the radiated energy has decreas
ed by 3 db with respect to the energy which is radiated in the di
rection normal to the circular aperture. This angle equals
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9=0.51X /D  (3,7)

where D is the diameter of the aperture. When the crystal is used
as a receiver in this direction too the power sensitivity has de
creased by 3 db or the amplitude sensitivity by 30%. If the re 
ceiving crystal is not set perpendicular to the incident beam of
sound an apparent loss results. The accuracy of setting needed
depends on the value of the attenuation one wishes to measure and
on the order of the reflection one receives. In addition to this
condition of parallelism, in the Fraunhofer region, the receiving
crystal must be placed accurately on the axis since there is beam
spreading.

Fig. 2. Diffraction pattern of a circular trans
ducer, of diameter D, in the Fraunhofer
region, u = ItD sinB/A; p(u) is the nor
malised power radiated in the direction
designated by u.

Assuming in the Fresnel region a parallel beam, the criterion
for parallelism is the same as in the Fraunhofer region.

Thus, in general, the wavelength of sound determines the ac
curacy of setting needed. The variation in distance between points
on the circumference of the two crystals, or of the crystal and the
reflector, should be a small fraction, say l/50th, of the wave
length of sound. Thus, for 10 MHz sound in liquid helium, this
variation must be within 0.5 p.. Chase (Chpt.n. ref. 5) achieved
this by hanging the reflector from three wires attached to micro
meter screws. Another possibility is to have as reflector a piston
sliding in a brass cylinder. (See also ref. 3).

In connection with the difficulty of achieving almost perfect
parallelism, we mention here a solution which always ensures
"parallelism" between the reflector and the transmitting crystal.
Figure 3 shows the special shape of the reflector.

The reflector is made of fused quartz in four parts: the body in
the shape of a rectangular pyramide with a cylindrical hole along
its axis, and the three side-pieces. The interfaces between the
pieces were made optically flat and adhered without any kind of
glue. A sound beam incident along the arrow reflects on the three
side pieces and returns parallel to the direction of incidence.



Fig. 3. The corner reflector. Only one of the
sidepieces (before assembly) is drawn.

The device was meant to measure the attenuation of sound in
liquid helium well above 10 MHz. However, the attenuation then is
excessively high and one should have to decrease the path length
in the liquid by projecting a rod of fused quartz -  which material
has a low acoustic loss — into the corner reflector. At one side
the rod should be in acoustical contact with the transducing ele
ment. However, even if this could be done, mean free path effects
(see Chpt.n, section 3) would limit the value of the results.

At room temperature the problem of setting the reflector can
be solved rather more simply than in experiments with liquid
helium where a sturdy mechanical construction is not well feas
ible. Thus Andreae, Lamb et al. have succeeded in measuring
attenuations up to a frequency of 200 MHz; the wavelength of sound
in a "normal" liquid at that frequency is about 6p.

V

3. The decay of a crystal vibrating in liquid helium

The low acoustic impedance of a crystal vibrating in liquid
helium results in a high mechanical Q and thus serious difficulties
arise when one uses one and the same crystal for transmitting
and for receiving the sound. After having been excited by the
electrical signal from the pulsed r .f . oscillator the crystal vi
brates acoustically for a very long time and one gets interference
between the vibrations still present and the first and even the
second reflection. In this section we will describe two different
ways in which we tried to suppress the long tail of acoustical vi
brations. We were led to use barium titanate, an electrostrictive
material, as transducer in liquid helium (c.f. Andreae et al. 3) ).
The experiments, which are described in the next Chapter, were
done with a cylinder of barium titanate which was first used for
measurements in solid argon by Guptill et al. 9).

Our experience was that, with an applied voltage of a few volts,
the received signals were of the order of millivolts if the attenua
tion was small. So the ringing amplitude of the crystal must have
decreased to a fraction of a millivolt, that is to about 10 5 of the
original amplitude, before the crystal is ready to receive a sound
pulse. In Q /tc periods the amplitude decreases to l/e . With a Q of
150 the recovery time of the crystal is then about 55 ps. (Nume
rical values are calculated for a frequency of 10 MHz). Suppose



44

the distance between crystal and reflector is 2 cm. Then it takes
170 ps for a sound pulse to travel forth and back and no harm is
done by the ringing of the crystal. We note here that theoretically
the Q of a quartz crystal loaded at both sides by liquid helium is
about 280. The clamping of the crystal, however, lowers the Q
markedly. Therefore, in the above calculation, we used the ex
perimental value for the Q of the crystal.

In the case of a high attenuation, for instance 2 cm-1, the
separation between crystal and reflector can not be as large as
2 cm, and interference results. The velocity need only depend
very little on temperature to cause a drastic change in the shape
and amplitude of the signal. For a phase change of n of the on
coming signal the velocity need only change by 0.1%, if the dis
tance travelled is 1 cm. Chase was misled by this effect and
thought that the varying signal strength as a function of tempera
ture meant that there were two maxima in the attenuation instead
of one. Whitney, with the electronic set-up of Chase, used two
crystals instead of one to eliminate interference effects. Figure
2, Chapter n , for the attenuation of 12 MHz sound in liquid helium
is drawn near 1°K according to the data of Whitney. There is only
one broad maximum.

It is worthwhile, at this point, asking whether it is possible
to lower the mechanical Q of a crystal. There are, theoretically,
two ways in which this can be done: mechanically or electrically.
Of these electrical damping is the more alluring possibility. We
must explain first why the obvious method of damping the crystal
mechanically is cumbersome at liquid helium temperatures.

a) Mechanical damping. In order to lower the Q of a crystal me
chanically the crystal must be coupled acoustically to a solid.
The Q is lowered then to about 1. It is not possible to use a thin
layer of liquid helium itself to achieve this coupling. The trans
mission coefficient 6) for sound from the crystal to the solid
through liquid helium is too small since the contrast between the
acoustical impedances of liquid helium and a solid is too large.
A rough calculation shows that the layer of liquid helium should
be much thinner than 230 A, an impossible demand.

Several types of highly viscous liquids are in use to couple the
transducer to a solid. We used Dow Corning Fluid with a viscosity
of 25000poise at room temperature. This fluid "freezes" at liquid
air temperature, and the difference in contraction below that tem
perature is small. However, one has to cool down slowly exerting
all the time a fairly high pressure to prevent the formation of too
many cracks, which ruin the acoustical contact. The solid backing
must be rather large compared with the dimensions of the cryo
stat.
b) Electrical damping. Technically it is not easy to damp a crystal
mechanically at liquid helium temperatures. It might be possible
to drain enough energy from the vibrating crystal in electrical
form dissipating it simply in a resistance.
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The electro-mechanical circuit, close to resonance, for an
X-cut crystal, loaded on one side by a medium of acoustical
impedance pc per cm2, is shown in figure 4a.

cM
>-m

^O C

Fig. 4a. Electromechanical circuit of a piezoelectric
transducer, loaded on one side.

The values of the different elements are given by: 7>

C0 = eLC A/4rct

CM = 2t/ix2AY0(l-k2)
(3, 8) *

I'M = Atpq /2

Roc = pcA $ = Delc A/4n;t = DC0
Co is the electrostatical capacitance, measured at zero fre 

quency and for the crystal clamped (LC means "longitudinally
clamped"). D is the appropriate piezoelectric constant which re 
lates surface charge density to stress. Cm is equal to 2 /tc2 times
the static compliance of the crystal. Lm is half the mass of the
crystal, and R ac is the acoustic impedance of the load; k is the
so-called electro-mechanical coupling coefficient. It can be shown
that the square of k represents the percentage of the total elec
trical energy, applied to the crystal that is, at zero frequency,
stored in mechanical form.

From figure 4b we read
k2 = CxAQc + C0) *  Cx/Co (3,10)

since Cx «Co for all piezoelectric crystals.

1 TO 2 i

cj_
C«

L,

Fig. 4b. Equivalent electrical circuit.

* Here A = area, t = thickness and pq = density of quartz. Yo is Young's modulus. The values
of the electrical, mechanical and piezoelectric coefficients are, for quartz vibrating along
the X- or thickness axis:

£1-0=4.55, Y0 = 8.42X1011, pq -2 .6 5 , D =14.3xl04 (3,9)

in c.g .s. electrostatical units. The coupling coefficient k = 0.0096. To get the value of Lx
in henries one has to multiply by 9xloH.
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If we transform CM, LM and Racto the left side in the usual
way (the transforming ratio is not dimensionless), we obtain the
equivalent circuit of figure 4b which is more commonly known.
We will need the representation of figure 4a, however, to illu
strate the difference between barium titanate and quartz.

The mechanical Q of the crystal is  u Lm/R^  or to Lx/Rx. Thus
the damping can be increased by a resistance in series with Rx.
The series branch, however, cannot be influenced. But we can
tune out the electrostatic capacitance Co by Lei as shown in fig
ure 5. The tuning coil has its own losses which are shown as Rei.
The quality factor of the coil, Qei, must be high since then Rei
has a large value, and the series acoustical branch is damped
heavily.

Suppose we wish to bring down the Q mech from 150 to the
value of Q for a crystal vibrating in a "normal" liquid. In wat r
Q =; 8.

We have to tune out with Lei the capacitance CQ plus the capa
citance of the r.f., leads from the pulsed oscillator to the crystal:
50 pF is a conservative figure for the total capacitance. Cyrogenic
demands make it difficult to make the capacitance smaller than
this.

Let us take a crystal of 1 cm2 surface and of thickness 0.028 cm
(fres = 10 MHz). We calculate from (3, 8):

Lei must resonate with 50 pF at the same frequency, thus L ei =
Lx/32x 50 0.45 nH). The Q of the circuit must be about8:
toLj/Rei 8. Therefore the Qei of the coil must be at least

This is an impractically high Q. In addition, the crystal is vibrat
ing in spurious modes as well as in the fundamental. Especially
since it is excited by a r.f.  pulse which contains a narrow band of
frequencies. The equivalent circuit for the crystal is not of the
simple form of figure 4b. The conclusion is  that it is extremely
difficult to damp a quartz crystal electrically.

It might be possible, however, to succeed with electrical
damping, if one uses as transducer another piezoelectric mate
rial. If Lx has a small value then, for the same Q =coLx/Rei, Rei
need not be so high. Perhaps even mistuning could be tolerated

Fig. 5. The tuning of C0 by Lei.

Lx ^ 7.5 mH/cm2, Cx =: (1/32) pF/cm 2 (3,11)

Q e i = R e l /h )L e i
(1/8) ojL

(i)Lx)/32x50 (3,12)



47

or in other words: the spurious modes might be damped as well
by one single coil if the condition for Qei is not so stringent. Let
us look then for crystals with a much smaller Lx. The mechanical
inductance, L m, being half the mass, is about the same for all
crystals. Lx, however, is equal to LM/4<£2 where $oo De<x> kVe
since

k = D V(e/4u Y0) (3,13)
Most naturally-grown piezoelectric materials have a coupling
coefficient between 10 and 20% and an e of about 3. We therefore
looked for a synthetic material with a high $>. Barium titanate is
such a material. It is electrostrictive, and equations can be set
up for it which are analogous to the piezoelectric ones. Its elec
tromechanical coupling-coefficient k is about 0.25 and at room
temperature: e =; 1500 8>. At a temperature of 2°K the value of e
has decreased to about 90 1<J) . Thus, roughly, we gain in $ a
factor of 10 and in Lx a factor of 100. Therefore the Qei of the
tuning coil need only be 2.

According to these ideas we tried a barium titanate disk as
transducer and indeed got better results. There was much less
interference and the shape of the signals, received in pure 4 * * *He,
was much better.

Nevertheless, we are not certain whether the better shape of
the signals was due to electrical damping as described. The disk
probably had more than one resonance frequency. Normal com
mercial barium titanate is a sintered material which has to be
polarized electrically above the "Curie" temperature and then
cooled down in an electric field in order to give it its useful prop
erties as a transducer. The polarization in the sintered material
must be far from homogeneous, and we estimate 8> that in fact
only about 10% of the domains were oriented in the direction of
the applied electric field. Hence there must result a whole band
of "resonance" frequencies. It may be, however, that barium
titanate has high internal losses at liquid helium temperatures
(see also Andreae et al. 3)).

With the barium titanate cylinder described in Chapter IV we
obtained a very good shape for the signals from the 5th reflection
on.

4. Electronics

In the actual set-up a delayed calibration r .f . pulse was gene
rated as well as the signal pulse. After having passed the variable
attenuator the delayed pulse entered the amplifier at about the
same signal strength as the sound signals received from the
crystal. Both signals were amplified and in this way a possible
non-linearity or variation with time of the amplification did not
influence the accuracy of the attenuation measurements. By vary
ing .the strength of the r.f.  calibration pulse with the help of the



variable attenuator its height on.the oscilloscope was made equal,
within ± 1 db, to the heighth of the received sound signal. In the
range of 1 db we interpolated linearly. The error made in inter
polating linearly is less than l/50 db, which is negligible. The
delay of the calibration pulse could be varied and the delayed r .f .
pulse could be set alongside each of the successive sound reflec
tions.

We will describe the different parts of the electronic set-up
briefly (figure 1).

The pulse generator was a Hewlett Packard type 212A. The
variable attenuator was a Rohde and Schwarz with a maximum
attenuation of 100 db in steps of 1 db and a frequency range from
DC to 300 MHz.

Below we will give a description of the pulsed r .f .  osciUator,
the delay and the amplifier. Throughout the remainder of this
section we will refer frequently to volumes 18 and 19 of the
Massachusetts Institute of Technology Radiation Laboratory
Series: (MIT, Volume, Chpt-Section).

a) Pulsed r. f .  oscillator. (MIT, 19, 4-13 and 14). (See figure 6).

48

+ 250 V

ncgotivc
pulse in

tOn r.f. pulse
out

to  crystol

I O O O 'R i r.f> choke

EF95

Fig.6. Pulse r .f . oscillator.

The oscillator is of the "ringing circuit" type, and its frequency
is determined by L and C. Most of the time tube Vi conducts, and
its low output impedance, l/S , prevents oscillation. When a nega
tive rectangular pulse is fed to the grid of Vi the damping is re
moved and the current, I, flowing through L starts the oscillations
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immediately, the initial voltage amplitude being IwL. The ampli
tude of oscillation should decay with exp(-cot/2Q). However, just
enough energy is fed to the LC circuit through Ri by the oscillator
tube, V2, to keep the amplitude constant. As soon as Vi starts to
conduct again the oscillations are damped abruptly. R2 is a simple
amplitude control.

A positive pulse is applied to the anode of the output cathode
follower during the time the r.f.  pulse comes at its grid. This is
done by inverting the negative pulse which is fed into the pulsed
r.f.  oscillator. The purpose of gating the output tube is to pre
sent to the crystal a high impedance immediately after having
excited it. Should the tube V3 stay conducting after having trans
mitted the r.f.  signal to the crystal, then its low output impe
dance, l/S , should shunt Lei. And as we have seen in section 3,
to prevent a long acoustic recovery time of the crystal, the Qei
of the tuning inductance, Lei, should be high.

b) Delay. See figure 7. The same negative pulse which gates the
pulsed r.f.  oscillator triggers the time delay. Thus, the mono
stable multivibrator tube ECC91 (MIT, 19, 5) is  triggered into its
unstable position, and a positive gate of duration 4000 ps appears
at the anode of the tube half which initially was on. This gate is
fed to the suppressor grid of the Miller sweep generator tube,
6AS6. A negative going linear voltage is generated (MIT, 19,5-15),
and the voltage at the anode of the 6AS6 drops about 250 V in
2500 ps. Thus the incoming pulse can be delayed to a maximum
of 2500 ps. The negative going voltage is fed through a cathode
follower, ECC83 a, and then compared, in the ECC83 b, with a
reference voltage set by R. When the two voltages become equal,
a negative step is produced at the anode of the ECC83b. The EF80
is  part of a regenerative loop to speed up the transition of the
ECC83 b, (MIT, 19, 9-13).

Via a cathode follower, EC92, this step — which is delayed
with respect to the incoming pulse, the delay being a function of
the reference voltage — triggers a monostable multivibrator,
ECC85. The stable position of the multivibrator is  with the right
half of the ECC85 on.

A positive pulse, of about 20 ps duration, is generated at the
anode of the right half.

This pulse gates the 6AS6 time selector (MIT, 19,10-3). Most
of the time the current in the 6AS6 goes to the screen only, the
suppressor voltage being about 10V negative with respect to the
cathode. The continuous r. f .  signal (from the General Radio type
805 C signal generator) does not appear at the anode. When the
positive gate arrives at g3, the current switches from screen to
anode and a r.f.  pulse appears at the output. This r.f.  pulse is of
the same frequency as the sound and is  fed together with the re
ceived signals to the amplifier.

The delay offers a simple method to measure the frequency of
the sound signal. One first tunes the pulsed r. f .  oscillator (fig. 6),
maximum height and a good shape of the received sound signals
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Fig. 7. The delay

being the criterion. The delay is set to such a time that one of
the sound reflections and the r.f.  calibration pulse coincide. The
height of the calibrator pulse is made equal to the height of the
sound reflection in question. The two signals beat. The General
Radio signal generator, which determines the frequency of the
calibrator pulse, is tuned to give zero beat. The amplitudes of
the two signals add or subtract. There is no stable phase rela-
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tionship and one sees the height of the interference signal change
from zero to double the amplitude of a single signal. The fre
quency of the General Radio signal generator in this position gives
the freqiency of the generated sound.

c) The amplifier (See figure 8). (MIT, 18, 4 and 5).
The amplifier is of the synchronous double-tuned type, con

sisting of a broad-band preamplifier, mixer, i.f. amplifier, de
tection and output stage.

The preamplifier, ECC88 and E180F, is centered at 7 MHz
and has a voltage gain of about 100 at a bandwidth of 8 MHz.
For calculating the values of the inductances and resistances in
the double-tuned circuits the tables in section 5-5 of MIT, 18 are
used.

The input is a so-called grounded-cathode grounded-grid cas-
code stage (MIT, 18, Chpt. 13, Minimal Noise Circuits) which has
a low noise figure (MIT, 18, Chpt. 12: Amplifier Sensitivity) i f
there is the proper mismatch between the source conductance and
the input conductance of the first stage (MIT, 18, 13-6). However
the source conductance, i.e . the conductance of the receiving
crystal, is difficult to measure. Therefore we restricted our
selves to tuning out the capacitance of the source and associated
leads by a variable inductance (not shown).

In the ECH81 the signal is mixed with the c.w. signal of the
local oscillator, for which we used a Rohde and Schwartz tvoe
SMLM.

The intermediate frequency amplifier is centered at 27 MHz
and has an over-all bandwidth of 0.6 MHz. Thus r .f . pulses of
about 2 ps minimum duration are reproduced fairly well (MIT, 18
13-1). The double tuned interstage circuits are calculated with
the help of the theory given in MIT, 18,5. The circuits are in
ductance-coupled to get an amplifier with a short recovery time.
Should they be capacitance-coupled then, during a strong signal
the interstage coupling capacitances should be charged by grid
conduction. These fairly large coupling capacitances should need
a too long time to discharge themselves through the grid leak-
resistances.

The coupling is slightly less than transitional (or critical which
in the case of equal Q’s is the same as transitional) to prevent a
doubly-humped bandpass characteristic (MIT, 18, 5-3).

The iEB91 detector and the output stage are conventional (as
is the whole amplifier). We could vary the gain of the amplifier
enough simply by varying the local oscillator voltage fed to the
mixing tube.

The r .f . calibration pulse was fed into the amplifier at the
second stage, the assumption having been made that the first
stage amplifies linearly over a range of a few mV, the maximum
strength of the signals.

The over-all voltage gain of the amplifier was about 20, 000.
The resistances of 10 Q in the grid circuits prevented anv D a-

rasitic oscillations.
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C h a p t e r  IV

THE EXP ERIMENT

In the first section the barium titanate cylinder and its imper
fections are described. Section 2 is devoted to the method of
measuring the attenuation of sound with the cylinder and to the
correction we had to apply to the apparent attenuation. It will be
come clear that the method is suitable only if the attenuation in
another liquid, of about the same acoustic impedance as the
liquid under test, is known. In section 3 the results are given for
four 3He-4He mixtures, of 3He concentration 0.5, 1, 3 and 11%.

1. The barium titanate cylinder
There is a change in structure for barium titanate at about

120°C. Above this temperature the structure is cubic (see fig. 1)
the titanium atom on the average being in the center of the cell.

f \

• + •
•

•

1 /
o  barium  •  oxygen+ titanium Fig. 1. The structure of barium titanate

above 120°C.

Below 120°C the titanium atom is locked into one of six possible
positions of minimum potential energy. Each of the positions is
slightly away from the center of the oxygen atoms, and the struc
ture changes from cubic to tetragonal. The field of the resulting
electric dipole results in the adjacent cells in a preference for
one of the six positions of minimum potential energy and domains
of electrical polarization are formed. In the direction of polari
zation the cell-dimension changes from 4.0 A to 4.026 A and nor
mal to it the dimensions shrink to 3.86 A *>. The dielectric con
stant of polycrystalline barium titanate, e, has a value, at 120°C,
of about 6000. Above 120°C it falls off following a Curie law.
Below 120°C the value of e drops to 1500 at room temperature
and at the temperature of liquid helium e amounts to about 90 .

In addition to the transition from a cubic to a tetragonal struc
ture, there are two more changes in structure, at 10°C and at
-80°C. Below -80°C the structure of barium titanate is trigonal,
and the titanium nucleus spends equal times in three of the six
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positions of minimum energy which lie on mutually perpendicular
axes, and very little time in the other three 1).

We used polycrystalline sintered barium titanate in the shape
of a hollow cylinder. After silvering the inside and the outside,
the cylinder was given a remanent polarization in the radial di
rection by heating it in an oil bath above 120°C and then cooling it
in an electric field. We never applied a polarization field of more
than 8 kV/cm for fear of breaking the 1 mm thick cylinder. When
there are small defects, the internal stresses can easily become
too high when the temperature is lowered through the Curie point.

When a small a. c. field is applied to the polarized cylinder,
its thickness varies with the same frequency. Probably some
domains grow at the expense of others, this being accompanied
by a change in dimension.

The dielectric relaxation losses in barium titanate are rather
high. Thus the transducer has a low internal mechanical Q which
is exactly what we needed (Chpt. HI, section 3).

Guptill and Hoyt 3) used a barium titanate cylinder, shown in
figure 2, to measure the velocity of sound in solid argon.

Fig.2. The barium titanate cylinder for measuring
the velocity. After GuptiU et al. 3).

One half of the cylinder was used as transmitter; the other half
detected the resonances set up in the liquid cylinder. The outer
silvering was split in two electrodes by scratching the silver
away along two diametrically opposed lines. In practice the re 
ceiving and transmitting halves were separated by narrow addi
tional electrodes (four scratches in total) which were earthed.
These served to prevent too large a direct acoustical and elec
trical pick-up.

The influence of the cylinder on the resonance frequencies of
the liquid cylinder can be neglected since resonances in the
liquid are set up far from a resonance frequency of the barium
titanate cylinder itself. This separation of frequencies is possible
since the electromechanical coupling coefficient for barium tita
nate is high and the internal Q is low. Moreover, in liquid 4He —
or in a 3He-4He mixture (Lim et al. 4) ) — the acoustic impedance
is much smaller than the acoustic impedance of barium titanate.
Thus the radial velocity of the liquid at the boundary is zero, and
the condition for the resonance frequencies, according to Lord
Rayleigh 5), is:

J n(kr) = 0 (4,1)
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assuming for the moment an infinitely long cylinder. The prime
means differentiation with respect to the argument, k is the wave
vector and r  is the radius of the cylinder. The asymptotic form
of the function «Fn (kr) is a damped trigonometric function:

J n(kr) —► ± \ l ( 2/rckr) sin(kr-^) n even
as Kr —» oo (4,2)

.^ (k r )—► ± ^(2/ukr) cos(kr-^) n odd

Thus, for neither odd or even, resonances occur at frequencies'
separated by a frequency difference, Av, which equals Av= c/2r,
c being the velocity of sound in the liquid. The even resonances
lie midway between the uneven ones.

We used, in liquid helium, a cylinder of inner diameter ~ 1 cm;
c/2r was about 23 kHz, and the resonances lay about 11.5 kHz
apart. Thus at 2 MHz we excited in the liquid about the 175th res
onance. We determined the diameter of the cylinder accurately
by measuring the resonance frequencies (with the help of a Ber
keley counter) and using the data of van Itterbeek and Forrez 6)
for the velocity of sound in liquid helium. We found 2r=0.987 cm
± 0.2%, the accuracy being limited mainly by the accuracy in the
velocity data.

The cylinder was cut with a diamond cutting tool on a slowly
turning lathe. Only the regularity of the inner dimensions and the
finish of the inner surface are of paramount importance. We took
off a few microns of material each cut. For the finishing cuts the
cutting depth was not reset any more, and the cutting tool went
back and forth across the rotating cylinder some twenty times, the
disappearing of a high-pitched scratching noise being the sign
that no more material was being taken off. The cylinder was
silvered chemically. It was important to clean it very thoroughly
(simply by scrubbing it with water and soap for a quarter of an
hour).

Experimentally we found that the resonances split up into two
or more peaks instead of one single resonance: the smaller the
wavelength the more peaks we observed. In liquid air, around
2 MHz, we found a maximum difference in frequency between the
peaks of one resonance of 1900 Hz. Secondly, we found that the
even resonances did not lie midway between the uneven resonan
ces.

A simple explanation for the splitting up of a resonance is that
the cylinder is slightly conical or barrel-shaped, the broadest
part coming into resonance at the lower frequency. From the dif
ference in frequency between the peaks of a certain resonance we
concluded that the effective radius varied by about 8 micron. As
has been said we interpreted this as the maximum variation in
diameter in going from top to bottom.

One might think, that a resonance is split because the column
of liquid brought intp vibration has a finite length whereas the
condition (4,1) is for an infinite cylinder. One can easily calcu-
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late the splitting — following Lord Rayleigh (loc. cit. section 340) —
assuming that the liquid is free to move in the radial direction at
a distance from the bottom of the can (see fig. 6) equal to the pe
netration depth, X . For a viscous wave: X = lyrcvp). In liquid
helium, at 1.5°K and for a frequency of 2 MHz, the penetration
depth is about equal to 10"5 cm. We calculated that the relative
shift in resonance frequency from the zeroth order harmonic in
the axial direction to the second harmonic in the axial direction
was only about 10"4. Higher order axial harmonics were unlikely
to be excited. The splitting, at 2 MHz, did not depend on the
velocity of sound which should have been the case. Moreover, the
geometrical conditions for resonance in the axial direction are as
severe as in the radial direction and presumably were not fulfil
led.

The fact that the even resonances did not lie midway between
the uneven resonances taught us that the cross-section of the
cylinder was not circular, but, presumably, slightly elliptical.

There is an important difference between the "Jo" and the "Jj"
modes of resonance. We note here that there was only a slight
probability of exciting other modes than the J0 and the Ji ones.
In the Jo-mode the velocity field does not depend on the angle 0 ,
— which measures the direction in a plane perpendicular to the
axis — and thus the effective diameter of the cylinder is some
average over all the directions 0 . Let the effective radius for the
Jo-mode be r0. The difference in frequency between successive
resonances, Av0, then equals c/2r0. For the Jj-mode the velocity
potential Y:

¥ = A cos0 Ji(kr) (4, 3)

depends on the angle 0. Since there was a preferred direction for
the nodal line in the Ji mode, the effective radius, ri, for the Ji-
mode was not equal to the effective radius for the J0-mode. The
difference in frequency between the successive Ji resonances,
Avi, is  c /2ri.

It is clear thatAvi = Ar0(l+6/r), where 6 = r0-ri is the differ
ence in effective radius. We will see that ó /r  was small, and,
within the measuring accuracy, Avi was equal to Av» However,
the effect of a slight difference in effective radius over many
resonances is to shift the frequencies of one type of resonance
(say the even ones) relative to those of the other type (the uneven
ones). Let the difference between the frequency of an even reso
nance and the frequency midway between the two adjacent uneven
resonances be e. It is  easy to show that:

e/Av = 2 ( r / X )  6/r (4,4)

Measuring around 2 MHz in liquid air we found: Av = 88.64 kHz
and e = 250 Hz. Thus 6/r was about 1.4x1 O'4 (the velocity of sound
in liquid air is about 900 m /s).

We concluded that the cross-section of the cylinder was slight-
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2. Measurement of the attenuation with the barium titanate cylin
der
If one remembers that the attenuation in liquid helium is rather

small, it may be seen from the foregoing that it was impossible
to measure the attenuation in pure 4He directly by observing the
half width of a resonance, Av. The half width is related to the
volume attenuation by the relationship

Q
^res
Av

7t
aX (4,5)

a being the amplitude attenuation coefficient. At 1.5°K, for in
stance, a/u)2=6xl0"17 cm-1s 2 7>. Thus Q e£ 6xl010/v . The broade
ning of a resonance peak due to the non-perfect geometry must be
much smaller than the real width. Thus for v = 10 MHz, 6/r should
be much smaller than(5/3)xl0'4, whereas in reality 6 /r =;1.4xl0-4
(see above).

Besides the condition of an almost perfect geometry, there
are two more reasons why it is difficult to measure the attenua
tion directly from observing the Q of a resonance. F irst of all,
the frequency of the generator must be stable. If one requires that
during the measurement the drift in signal generator frequency
should be less than 1/10 of the resonance width, then for v =10
MHz the relative frequency drift should be less than l/(6xl04).
(All figures quoted are for a temperature of 1.5°Kand a frequency
of 10 MHz). Secondly, the bath temperature should be very con
stant, since the velocity, and thus the resonance frequency, are
functions of temperature. Again, if one requires that the shift in
resonance frequency should be less than 10% of the resonance
width, the drift in temperature should be less than 5 millidegree.

Both these stability conditions could be met, but if one works
with pulsed rather than with continuous sound, the problems to be
solved become much more simple. The condition for frequency
stability is replaced byóv /v = |  6a/a < 1/20, (supposing a °o v2)
and the second condition by 6T < 0.03°K.

Naturally, if one wishes to determine the attenuation from the
decay of successive sound reflections, the geometrical conditions
are as severe as in the case of continuous waves. However, there
is a simple way of camouflaging the non-perfect geometry of the
barium titanate cylinder by using only a small section of the cy
linder as receiver.

The effect of a receiver of smaller dimensions can be explain
ed qualitatively by looking at the analogous case of plane circular
* After completion of the measurements, in the Central Workshop of the "Technische Hoge

school" at Delft a cylinder was lapped which was out of round by not more than 0.1 yi and
conical by 0 .5yi. After polarization this cylinder was 5 y  out of round! Therefore it is almost
certain that on polarization the cylinder changes of shape drastically.
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r e ce iv er s . From  the diffraction pattern (fig. 2, Chapter in) one
may infer that the angle of incidence for which the receiver  sen 
sitiv ity  has decreased  by, say, 30% is  in verse ly  proportional to
the diam eter of the rece iv er . It fo llow s that for the sam e angle of
incidence the apparent lo ss  is  sm aller  for a sm aller  rece iv er .

iiiiiiiiliiiniiii.
number of reflect ion Fig. 3. Sketch of the reflections re

ceived in liquid air.

In liquid a ir , with a fu ll half of the cylinder as rece iver  (fig. 2),
we got, at a frequency of 7 MHz, a row of sound p u lses as sketch
ed in figure 3. From  the m inim a, occurring at the 8th, 22th and
52th reflection , we estim ated  the variation in diam eter of the cy 
linder at different points along its  axis to be: 11, 6.5 and 4 p r e 
spectively  (com pare with 8 p in section  1). When we dim inished
the receiv ing  area to a sm all curved square of 4x4 mm the enve
lope changed to the dotted line.

In liquid air we received  a few hundred reflection s the f ir s t
50 of which showed an exponential fa ll-o ff. This experim ental
fact meant that the relative lo ss  at reflection  did not depend on
the number of the reflection  for the f ir s t  50 ones. In liquid helium ,
at 7 MHz, the f ir s t  9, and at 12 MHz the f ir s t  5 reflection s show
ed an exponential fa ll-o ff.

The decay of the su c cess iv e  reflection s we observed w as s t il l
much too fa st. In order to determ ine the correction  which had to
be applied we compared our m easurem ents in liquid 4He with the
data of Chase . We found that our values for the apparent atte
nuation differed an amount, Aa,  from  the values for the true atte
nuation. This correction , Aa, depended slightly  on tem perature.
There are two p o ssib ilit ies  why the correction  could change with
tem perature. The velocity  of sound in the 4He changes with tem 
perature, and secondly the density or the acoustic impedance of
liquid helium  depends on tem perature.

A change in velocity  m eans a change in wavelength, and it is
c lear that for a sm aller  wavelength the angle of incidence is  more
Critical. A change in acoustic impedance m eans that the fraction
of the energy which at each reflection  is  lo st in the barium tita-
nate changes. We w ill argue that the variation of A a with tem pera
ture was alm ost en tirely  due to the changing velocity .

When sound travelling in a medium of acoustic impedance
fa lls  at right angles on a slab of acoustic impedance P2 C2 and
thickness t, the coefficien t of reflection  is  given by a form ula due
to Lord Rayleigh 8>:
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R = (m9- l)2/[4m2 ctg2 + (m2+l)2l
A2

(4,6)

Here m=pio/p2 C2 . This means that the energy reflection coeffi
cient, R, is zero when t = (n + \ )  X2 . And, indeed, we were excit
ing the barium titanate in its 3rd or 5th thickness harmonic. From
(4, 6) it may be seen, however, that the condition for unity trans
mission is extremely sharp when m « 1. For the boundary be
tween liquid helium and a solid m a .0.003. And thus the relative
change in frequency need only be 2xl0"2 in order that R?i 0.99.
Or for a given frequency the variation in thickness of the slab
need only be the same small relative amount to get an almost
total reflection.

The thickness of the cylinder was about 1 mm, and a variation
of 10 p was quite probable. In addition, the pulsed r.f .  signals
were frequency-modulated by at least 1%. We concluded that most
of the energy, probably even more than 99%, was reflected back,
and that even the relatively large change in acoustic impedance
for the liquid helium (about 10% from 1.0°K to the lambda-tempe
rature) did not effect the correction by more than an insignificant
fraction of a percent.

Therefore, the correction that we had to apply to the apparent
attenuation changed with temperature only because it was a func
tion of the changing velocity. The wavelength of the sound de
creased with increasing temperature, and the non-perfect geo
metry caused a larger apparent attenuation for a smaller wave
length or a higher temperature.

Fig. 4. The correction. Act, as a function of frequency for a
sound velocity of 237 m/s.

We determined the correction in pure 4He at three different
frequencies. The results are shown in f ig .4, for a velocity of
237 m /s. We note that for a frequency of 22 MHz the wavelength
of sound is about 10 p, comparable with the variation in diameter
of the cylinder.

We reasoned that a change in velocity, at constant frequency,
was equivalent, as far as the correction is concerned, to a change
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in frequency, at constant velocity, since the correction was de
termined only by the ratio of wavelength to variation in diameter
of the cylinder. Thus we said that (Ac/c)v as a function of tempe
rature had the same influence on the correction as (Av/v)c, where
we put Ac/c = Av/v. We calculated Ac/c for pure 4He from the
data of van Itterbeek and Forrez B\  and then the correction for
different temperatures could be read from the graph of fig. 4. In
this way the correction at different temperatures could be deter
mined in pure 4He and also in the 3He-4He mixtures used since
the velocity of sound in a 3.4% 3He mixture was known from meas
urements of Lim, Hollis-Hallett and Guptill 4). The velocity of
sound in the 0.5, 1.1 and 3% mixtures was obtained by interpola
tion. The results for the correction as a function of temperature
are shown in figure 5.

•lO  T - 15 2 0  °K

Fig. 5. The correction, ha, as a function of temperature
for the mixtures used.

Cryogenics. Figure 6 shows a drawing of the apparatus as it was
mounted in the cryostat.
The barium titanate cylinder fitted in the brass can with a clear
ance of 0.1 mm. For insulating the electrodes thin paper was
shoved between the cylinder and the container. Electrical contact
to the electrodes was made by small phosphor bronze springs
which were soldered to wires. These wires were pushed through
hollow Philips glass beads and afterwards the glass beads were
soldered tight. The electrical leads from the transmitter consist
ed simply of a pair of twisted wires. The lead to the amplifier
went inside a german silver tube to prevent excessive electrical



62

pick-up. Most measurements were done well above the noise level
of the amplifier.

Fig. 6. On the tight: the baiium titanate cylinder;
1 - transmitting half, 2 - receiver, 3 - scratch to
separate the transmitter half from part 4 - which
is earthed.
On the left: the assembled apparatus; 1 - brass
can, 2 - glass head, 3 - barium titanate cylinder,
4 - indium "O" ring, 5 - filling capacillary, 6-
liquid, 7 - phosphor bronze springs.

It was important to cool the glass beads slowly; otherwise
cracks developed. An indium ”0" ring secured a tight seal be
tween the can and the lid. A small shoulder on the container pre
vented the indium from flowing between the cylinder and the con
tainer and thus from shortcircuiting the transducer. The filling
capillary (stainless steel) had an inner diameter of 3/4 mm.

Condensing the mixture into the container was done in the nor
mal way with the help of a Toepler pump. The apparent attenua
tion measured depended slightly on the height of the liquid level
inside the cylinder; therefore the Toepler volume was calibrated
and the same amount of gas was condensed for each run.

The cryostat itself was connected to an Edwards booster pump,
type 9B3, which was backed by an Edwards prevacuum pump,
type 1S450A. The pumping connection to the cryostat was as short
as possible. A wide elbow, 30 cm. in diameter, on top of the
booster, narrowed down into a horizontal stub, 8 cm in diameter,
The booster could be closed off with a valve seating against the
end of the elbow where it connected with the stub. The stub was
connected by means of a rubber sleeve to another stub of the same
diameter which projected from the cryostat head. Temperatures
of the bath below 1.1°K could be regulated simply by positioning
the valve.

The bath temperature was measured with the help of a carbon
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resistor soldered to the container. For calibrating the resistor
we used at different temperature regions a mercury manometer,
an oil manometer and a Me Leod-gauge. The Me Leod-gauge was
connected to the cryostat head by means of glass tubing.

3. Results

A- typical plot of the relative amplitude of successive sound
reflections is shown in figure 7.

Fig. 7. Plot of the relative amplitude of the reflections
at 7.26 MHz in 4ne.

In drawing the straight lines, the slope of which determined the
apparent attenuation, we used at different temperatures the same
sequence of reflections, that is to say at 7.26 MHz we used the
4th to 9th reflection and at 12.1 MHz we used the 2nd to 5th re
flection.

The concentration of the mixtures followed from their X-tempe
rature together with the value for the shift in X-temperature of
1.49°K per mole 3He as given by Wansink 10X We assumed that
the X-temperature coincided with the temperature for which the
attenuation was largest (c.f. Sydoriak and Roberts 9>). In this
way we obtained for the concentration of the mixtures used: 11 ±
0,3%, 3.0 ±0,1% and 1.1 ±0.1%. The 0.5% mixture was obtained
by diluting the 1.1% mixture.
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The results for the true attenuation are given in tables 1 and 2.
They are shown in figures 8 and 9.

Table 1
Frequency: 7.26 MHz

0.59h 3He 1.1% 3% 11%

T(°K) a(cm -1) T a T a T a

0.900
0.906
0.944
0.973
1.040
1.104
1.214
1.295
1.424
1.52
1.60
1.71
1.80

0.543
0.540
0.477
0.434
0.345
0.273
0.191
0.147
0.107
0.084
0.069
0.056
0.053

0.87
0.88
0.905
0.923
0.930
0.943
0.984
1.026
1.075
1.130
1.145
1.30
1.44
1.52
1.60
1.91
1.94
2.00

0.399
0.379
0.378
0.350
0.339
0.325
0.313
0.283
0.249
0.206
0.194
0.195
0.106
0.082
0.069
0.039
0.038
0.042

0.88
0.94
1.006
1.095
1.205
1.304
1.40
1.605
1.707
1.785
1.89

0.178
0.174
0.150
0.113
0.107
0.090
0.060
0.050
0.048
0.040
0.032

0.89
1.02
1.105
1.124
1.185
1.40
1.50
1.61
1.85
1.945
1.990

0.058
0.053
0.053
0.052
0.049
0.046
0.039
0.038
0.032
0.045
0.123

Table 2
Frequency: 12.1 MHz

0.5 3He 1.1% 3%

T(°K) o^cm"1) T a T a

1.013
1.06
1.106
1.153
1.214
1.25
1.262
1.30
1.35
1.40
1.50
1.60
1.70
1.80

0.967
0.833
0.709
0.563
0.468
0.407
0.381
0.334
0.274
0.221
0.173
0.119
0.092
0.080

0.88
0.90
0.95
1.075
1.145
1.25
1.50
1.70
1.99

0.915
0.873
0.780
0.588
0.495
0.379
0.173
0.108
0.111

0.875
0.90
0.95
1.00
1.10
1.20
1.255
1.31
1.397
1.50
1.60
1.62
1.705
1.852
1.95

0.466
0.446
0.394
0.378
0.317
0.277
0.229
0.231
0.157
0.157
0.140
0.112
0.104
0.094
0.103
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a O °lo
O 0.5o/o
o 1.1 o/o
A 3 %
V 11 %

1.0 t  1.2 14 1.6 1.8 2.CPK

Fig. 8. The attenuation in the mixtures for a frequency
of 7.26 MHz.

□ 0°/o
O 0.5% )
O 1 .1 %
A 3 0/0

Fig. 9. The attenuation in the mixtures for a frequency
of 12.1 MHz.

In extrapolating the curve for the attenuation at 12.1 MHz in the
0.5% mixture, the measurements at the lowest temperatures —
around 0.9°K — have been neglected.
Since there the attenuation was large we could observe only the
first reflection and severe interference made the results doubtful.
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From the attenuation at 7.26 MHz (figure 8) we calculated the
attenuation to be expected at 12.1 MHz assuming that the attenua
tion is proportional to the frequency squared. The directly ob
served values at 12.1 MHz (figure 9; lie consistently lower than
the calculated ones. The difference amounts to about 10% for the
1.1 and 3% mixtures —in the temperature region from 0.9°K to
1.4°K — and to about 15% for the 0.5% mixture.

There are several reasons which may explain this difference
between the calculated and the directly observed values at 12.1
MHz. The frequencies we used differed from those of Chase 7) *.
Thus we started by calculating the values for the attenuation in
pure 4He by using Chase's date at 6.0 and 11.8 MHz, again sup
posing that in 4He the attenuation is proportional to v2 at not too
low temperatures (T > 1.1°K). We estimate that 4% of the above
difference might be explained by the uncertainty in the values for
a in pure 4He.

Secondly, at the lowest temperatures the correction, Aa, for
both frequencies used — 7.26 and 12.1 MHz —, amounted to at least
20% of the true attenuation. For a temperature of 1.4°K the cor
rection was about equal to the true attenuation. Therefore an e r
ror in the determination of the correction easily caused a signifi
cant error in the true attenuation.

In view of what has been said we conclude that there are no
signs that the attenuation of sound in the 3He-4He mixtures stud
ied does not depend on frequency as v2 in the frequency and tem
perature range studied. In fact the agreement between the meas
urements at two different frequencies is rather satisfying.

We calculated a reduced value for the attenuation by the for
mula

and plotted the average value of ared as a function of concentra
tion for different temperatures. The results are shown in figure
10.

Harding and Wilks n > have reported measurements of a red-
Their data are indicated in figure 10 by circles. There is fair
agreement with our data.

In Chapter V we discuss the measurements.

* Chase 7) gave 12.1 MHz as the value of his highest frequency. Whitney, who used the same
crystal, later stated (ref.8,-Chpt.Ill) that the resonance frequency of the crystal in reality
was 11.8 MHz.
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Fig. 10. Plot of the reduced attenuation, a re£| = (2pc^/n)2)a as a function of the ^He
concentration for different temperatures, x denotes the molar concentration.
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C h a p t e r  V

DISCUSSION

We shall calculate the coefficient of second viscosity, C, in
mixtures of 3He and 4He by subtracting from the experimental
values for the reduced attenuation — shown in figure 10, Chapter
IV — the contributions to the attenuation which result from visco
sity, heat conductivity and diffusion. Thus:

C = (2pc3/io2) ft exp - 4t)/3 - -l)n/cp - aD>red (5,1)

By old we denote the attenuation in a sound wave due to diffusion.
Before deriving the expression for old we shall speak about the
energy spectrum of the dissolved 3He particles.

1. Energy spectrum of the dissolved 3He particles

Apart from phonons and rotons in a dilute 3He-4He mixture
there are excitations which are due to the presence of the 3He
atoms. For the energy spectrum of the translational motion of
the dissolved particles, Pomeranchuk has proposed two logical
possibilities:

E = E0 + p2/2m’S (5, 2a)

or

E = E0 + (p-po)2/2m ? (5, 2b)
where £ is the momentum connected with the motion and m* is an
effective mass. The 3He particles do not take part in the motion
of the superfluid (Landau and Pomeranchuk 2\  Taconis et al. 3))
but rather contribute to the normal fluid density pn. For not too
high concentrations

Pn = Pno "*■ Pni (5 , 3 )

where pn0 is the normal density due to the inertia of phonons and
rotons, and pni is the contribution of the 3He excitations.

In dilute solutions and for temperatures above 0.2°K the dis
solved 3He particles obey classical statistics (Pomeranchuk U).
The energy spectrum (5, 2a) gives for pni:

P *Pni = —  Hlo Xnu 3 (5,4a)
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where x is  the molar 3He concentration and nu is  the mass of a
4He atom; x = N3/(N 3+N4). The energy spectrum (5, 2b) leads to

pni « ( f ^ )  (5,4b)

which means that Pni should be inversely proportional to tempe
rature.

The most direct way of measuring pni is with the torsion pen
dulum technique. Thus it was shown experimentally by Berezniak
and Esel' so n 4) (see also Pellam 5)) that p ni is independent of
temperature in the region from 1.5 to 1.9°K. They found that

m* — 3m3 (5, 5)

The value of p ni can also be determined by measuring the second
sound velocity in mixtures 6,7,8). The value of the effective mass
obtained in this way is not quite independent of temperature but in
any case does not decrease with increasing temperature. There
fore the energy spectrum (5,2b) is certainly not the correct one.
We shall use for m* the value of Berezniak and Esel'son.

2. Diffusion, viscosity and heat conductivity losses

a) Diffusion losses. We shall derive the expression for diffusion
losses by proceeding from the hydrodynamic equations for ^ e  -
4He mixtures. We follow Khalatnikov 9) who has derived these
equations taking into account dissipative effects. In their exact
form the hydrodynamic equations are very unwieldy. For sound
of small amplitude we can neglect all terms quadratic in the ve
locities, y n and y s , and in the gradients of pressure, p, tempe
rature, T, and the mass concentration, c. c is defined by

c = N3m3/(N3m 3+ N4III4) (5,6)

In deriving aD we shall neglect the terms in the hydrodynamic
equations due to first and second viscosity and to heat conductivi
ty. We make a few other introductory remarks.

The thermodynamic identity for the energy of a 3He - 4He mix
ture per cm3, E, in a system of reference moving with the velo-r
city of the superfluid, Ys, can be written as:

dE = TdS +$>dp + Zdc + (yn-Ys)d£ (5,7)

Here S is  the entropy per cm3, p the density and $ the thermody
namic potential per gram of the mixture. Z is a potential for
changing the concentration c of the mixture and can be expressed
in terms of the chemical potentials per gram of the added par
ticles, p3, and of the solvent, p.4. Khalatnikov showed that

Z/P = P3“ M4 (5,8)
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The vector p is the momentum per cm3 of the normal fluid, again
relative to the superfluid velocity &:

E = Pn(ïh-Xs) (5,9)

The total momentum per cm3 in a fixed coordinate system, j,
equals:

1 = PYs + E (5,10)
The two components do not mix perfectly — in the sense of the

mixing of perfect gases —(c.f. Wansink 10>). We therefore pro
ceed from the general expression for the chemical potentials in
weak solutions (see Landau and Lifshitz n ) ) which are

H4 *  M4o -  x

pa = ¥(p, T) + ^  In x
(5,11)

For perfect mixing Y(p, T) equals (i3o, the chemical potential in
pure^He *.

For future use we shall need the derivatives of Z/p. From
(5,7) follows:

d$ = i  dp -odT + j dc + (yn-ys)dg (5,12)

where a is the entropy per gram. Thus:

9(Z/p) B(Z/p) _ B(l/p) /c „ x
dT " ■ ac’ ap " ac Ló)

The derivative a(Z/p)/ac follows from (5, 8) and (5,11):

a(Z/p) _ kT
ac m3c (5,14)

With the simplifications mentioned above the hydrodynamic
equations take the form:

* Khalatnikov assumes perfect mixing and makes a mistake by writing c instead of x. For weak
solutions the formula of Pomexanchuk 1) for the velocity of second sound and the van * t Hoff
law for the osmotic pressure do not contain the function x(p, T) since¥(p, T) can be neglected
with respect to In x. With the specific heat it  is otherwise, however, since there (5,11) is
differentiated twice with respect to temperature and the term with In x drops out leaving
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p + div i  = O

| j +vp=0

|r(pc) + pc div ïn = - div g
„  Z (5,15)

+ v ( i - f  c) = 0

S + S div ïn = [ £  ( f )p 0 - V  h  <?>P.TI div S
The vector g denotes the diffusion flow of the added particles.
Thus:

g =-pD(vc + ^ V T + ^ f v p )  (5,16)

where D is  the coefficient of diffusion and kTD is the coefficient
of thermal diffusion. The quantity kpD is called the coefficient of
barodiffusion.

The thermal diffusion ratio, kT, has been calculated by Kha-
latnikov and Zharkov 12>. The ratio k T is always smaller than
the concentration c and it can be shown that the terms in (5,15)
containing kT can be neglected.

For the barodiffusion ratio, kp, Khalatnikov 9) derived the ex
pression:

kp = è<z/pT>
3= (Z/pT)

(5,17)

In ordinary sound the barodiffusion term in g cannot be ne
glected. It can be shown that in an ordinary soundwave

Ï E , p = : f i l _ ï ! ____
P P C* i  (Z/p)

VC (5,18)

where ux is the velocity of ordinary sound. In deriving (5,18) we
neglected temperature fluctuations * and dissipative effects.

For temperatures below 1.2°K and for concentrations between
about 1 and 10%: p ^ /p ,  &. pni/p  and thus from (5,4a) and (5,5):
P n/ PS — 3c. From (5,14) and after insertion of numerical values
(5,18) becomes

^ -v p -  ^  vc (5,19)

* The expansion coefficient in mixtures below is small (Ptukha 13)). Thus the ratio of the
specific heats is almost 1 and ordinary sound is propagated almost isothermally.
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Thus in ordinary sound the barodiffusion term  in the diffusion
flow g is  overwhelmingly large and we neglect the term  vc. The
hydrodynamic equations, after elimination of yn and v*, become

p =Ap

Pn Ö
ft Ö oAT + CA (|) - Psg

c
c — + Da p vc o

3 Z\ . •
5T p*Ap

(5, 20)

where the dash means differentiation with respect to tim e. Using
the relation 3(Z/p)/3T = Bo / bc from (5,13) and denoting

o - c |2  by

-d t I  by a <5>21>

D_ _ by b,
co p

the equations (5,20) can be rew ritten

p = Ap

+ + (5,22)

C  Q

We choose as independent variables p, T and c and put the devia
tions from  their average values proportional to exp[i(u)t-kx)]. In
the usual way there resu lts  a determ inantal equation fo r the velo
city, u, of a sound wave in which now dissipative effects due to
diffusion have been taken into account. In that equation we neglect
term s with 3p/3T and we split the determinant in two term s.
There resu lts:

|P u 2 -  1
3P 0 2 £ u2

B C

0 c 22.L bt - a +

c 3 C

p ^ B p
—  u2 - aP ^  bT 0

fa 3g u2
f t  a B e

kT
m 3
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+ “ £ u2

0 0 1

cab Bo 0
c w u - 0  u 2

Pn_ _ _ _ _ _  O Ai 30 „ _ Pn 3CT „2
PsO ft a  BT u ’  c p sa 3c u "

kT
m3

= O

(5,23)

The first determinant, when put equal to zero, gives the veloci
ties of first and second sound, ui0 and un0, when no dissipative
effects are taken into account. Since u2no«  Ui0 the solutions of
that determinantal equation:

i £  1 °  Pniu 4_ u2 r£i , 2/^T /7 r \ . kTCv Ps ,C 3P\2\i .
bp  I T  Ps u ° uo Lp  ̂ ( c + — ) + a f  (1 + pf (p 3c) )] +

+ ^ ^ ( B T / B a ) + ^ C] | E j  = 0

are, to a good approximation, equal to 9) :

u 2 _ /3P\ r-i . Ps ( c  Bps2,
UIo ~ 'S p 'c .T  I1 +  P ^ ( P W  J

kT-i/ri + — (-I J /L  Dn '0  JuL m.

(5, 24)

(5,25)

The velocity of second sound, uIl0, in mixtures was first derived
by Pomeranchuk

To solve equation (5, 23) for the velocity of ordinary sound, but
now including diffusion losses, we put:

u 21 U IO red ,D (5,26)

where a red d  is the diffusion reduced attenuation. We neglect
terms quadratic in a2 and make use of the equation (5,24) for pl0.
After some calculation we get the equation for ared.D

BT ^7“ted*D + p H  [ft It  “to c(f  + b ) - c b t i 3 ]  = 0 (5,27)

From (5,21):

c ( | + b) = D and c b a  a  = D ^  o 2 (5, 28)

Thus:
* L £ ?  , Bp n  k p rPnBa
BT Ps ared-D + p  Be D n toTP lPs BT - 02] (5,29)
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The term  (Pn/p ^ a / i T  ui0 is an order of magnitude larger than
a2. Therefore:

t t r e d .D --- P ^  D — Uj0 (5, 30)

We drop the subscript o in ul0. From  (5,17), (5,13) and (5,14)
finally:

« re d .D ^ f  ( f ) 2- 3U| (5,31)

The derivative Bp / b c  can be calculated from  the measurem ents of
Ptukha 1S*: Bp/3c =i0.4 p.

The coefficient of diffusion, D, was m easured by Beenakker et
al. 14> in mixtures of molar concentration 0.6 to 2.8 10'4 . The
diffusion coefficient has been calculated theoretically by Zharkov
and Khalatnikov 15> and Khalatnikov and Zhatkov 12> . They have
shown that for concentrations below 10 -2, and tem peratures above
1.2°K, the diffusion coefficient equals

D = (5,32)

where t ir is of the order of the average collision time between
rotons and impurity atoms. From  Dexp (Beenakker et a l.)  Kha
latnikov and Zharkov calculated a value for tir and from this a
value for the interaction energy between a roton and a 3He atom.
However, they did not use the co rrec t value of Dexp (see re fe r
ence 14). Therefore their final expression which they obtained
for D, valid for all concentrations and tem peratures above 0.6°K,
is changed slightly in the num erical factor. Dtheor then becomes:

Dtheor = 4.8 10-6 exp(A/kT) (pnQ/Prif  c .g .s .  (5,33)

where A is  the roton minimum energy.
With decreasing tem perature D r ise s  exponentially as long as

P n i«  Pno or as long as the 3He atoms are  scattered mainly by
rotons. When pni becomes comparable with pn0 the value of D
goes through a maximum.

With the spin echo technique the diffusion coefficient was m eas
ured in a 2% mixture by Garwin and Reich 16) . Their values are
a factor 4 to 8 sm aller than the theoretical values (5,33) in the
tem perature region from  1.3 to 1.6°K. They have reported, how
ever, that there are  indications for clustering of the 3He atom s.

There are  not enough m easurem ents of D for an accurate cal
culation of the diffusion losses. We used the theoretical values of
D to estim ate the losses due to diffusion:

a,„.D« 2  10'6c e* P (^ T) (5, 34)
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The estimated values of a red,Dat two temperatures, 0 .9 °  and
1.4°K, are given in table I, from which it maybe seen that the
diffusion losses are small.

Table I

Estimated values for a red,Dx 106

3 He concentration (x) 0.9°K 1.4°K

0.5% 11 3
1.1 7 5
3 2.5 5

11 0.7 3

b) Viscosity losses. The reduced attenuation equals 4r)/3. There
do not seem to be reliable measurements of the viscosity coeffi
cient of 3He - 4He mixtures. Wansink 10) determined n in a flow
experiment using an annular slit of 0.33 p width. His method de
pends on the existence of an osmotic pressure and hence cannot
be used for pure 4He, which makes it difficult to judge the relia
bility of his results. In pure 4He in narrow slits a too small value
for r) is found. Dash and Taylor 17) obtained values for q using
the torsion pendulum technique in mixtures of about 4.7 and 11%.
Their value for q in pure 4He at 1.3°K, however, lies a factor of
2 higher than the values obtained from the surface damping of
second sound or with the help of the rotating viscometer.

Zharkov 18) has given theoretical values for q in mixtures at
temperatures above 0.6°K and mass concentrations, c, below
1%.

We estimate that in a mixture of 1.1% molar concentration
from 0.9 to 1.4°K the reduced viscosity attenuation amounts to
about 7% of the total reduced attenuation. In a 11% mixture this
relative contribution may be 10%.

We note here that by adding a small amount of 3He to He H the
mean free path length of the 4He excitations is decreased strong
ly. We assume that the mean free path length of the phonons in
our mixtures even at 0.9OK was much smaller than the wavelength
of 10 MHz sound (see Chapter II). This meant that the average
collision time was much smaller than the period of the experi
mentally generated sound and that the viscous attenuation in the
mixtures was equal to ((jj2/2pc3)4q/3 over the whole temperature
region studied.

c) Heat conductivity losses. The reduced attenuation due to heat
conductivity equals (y - l)n /c p which can be written as

. T u? a3
(Y-1)h/ cp = ----- h (5,35)

cp
where ap denotes the expansion coefficient at constant pressure.
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Theoretical values for n have been given by Khalarnikov and Zhar
kov 12>. We shall estimate the contribution of heat conductivity to
ared in two extreme cases:

1) 11% mixture, T * 1.4°K.
We put dp si aSat . From Ptukha s measurements 13) we calculate
<Xp=: -4.5 10‘3 c .g .s . Kapadnis 19> has measured the specific heat
of a 7% mixture. Extrapolating his data we find cp ~ csat 1.1 107
erg/gm °K. From reference 12, the thermal conductivity h is
less than 104 c. g. s. Thus we find:
(y-1)k/ cd < lO'1* c .g .s . which is negligible compared with the
total reduced attenuation of about 10"4 (figure 10, Chapter IV).

2) 0.5% mixture, T = 0.9°K.
Here the values, of an and cp are not known, the coefficient h is
of the order 3 x 104. A rough estimate shows that a considerable
fraction, 10% or more, of the total attenuation might be due to
heat conductivity losses.

3. Conclusion

We estimate that in the mixtures studied the added contribu
tions of viscosity, heat conductivity and diffusion amount to not
more than 20% of the total observed attenuation at all tempera
tures from 0.9 to 1.4°K. The remaining 80% must be considered
as relaxation losses. From our measurements, however, it is
obvious that these relaxation losses are strongly diminished by
the addition of 3He to He II. It is natural to suppose that the 3He
atoms strongly influence the relaxation times connected with the
creation or annihilation of phonons and rotons and that the relaxa
tion times in mixtures are much shorter than in pure 4He.

In Khalatnikov's theory the number of 4He excitations can be
changed in inelastic collisions between phonons (5 phononcprocess)
or between phonons and rotons (phonon-roton process). We com
puted the relative contribution to the attenuation of ordinary sound
in pure 4He due either to the slowness of the 5-phonon process or
to the slowness of the phonon-roton process. The results are
tabulated in table II.

Table H

Contribution to the reduced attenuation (pure 4He)

T(°K) PhPh term (pP) PhR term (pP)

1.2 470 80
1.4 150 50
1.6 50 30

From table n  it may be seen that in pure 4He the PhPh term
increases rapidly with decreasing temperature and that it be
comes the most important term. Wé therefore suppose that in a
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mixture, through the presence of 3He atoms, the probability of
creating or annihilating phonons is enlarged greatly.

In a mixture there are several new processes possible which
cannot occur in pure 4He and in which the number of phonons is
changed. And if we knew how the probability of occurrence of
those inelastic processes depends on temperature and 3He con
centration, then it might be possible to give a quantitative expla
nation of the observed influence of 3He on the attenuation.

But first we must be sure thatthe energy spectrum from which
we start is  the correct one.

As is known, the Pomeranchuk type 3He excitations:

E = E0 + (p2)/2m* (5 ,2 a)

give a contribution to the specific heat of (3/2) N3k, and this is
too small a value to account for the observed increase in the
specific heat of a mixture relative to pure 4He (Kapadnis 19>
Dokoupil 21)).

Khalatnikov and Zharkov12) have calculated the interaction
energy between rotons and 3He excitations. The number of rotons
per cm3 depends on temperature, and thus there is a contribution
to the specific heat of a mixture. From their calculations it fol
lows that the interaction energy per cm3 between rotons and 3He
excitations equals:

Vint = NjjNiVjt (5, 36)

where N3 and Nr are the numbers of 3He atoms and rotons per
cm3, respectively. The interaction energy between a roton and a
^ e  excitation follows from the experimental data on the coeffi
cient of diffusion (Beenakker et al. 44)). Khalatnikov and Zharkov
give for the value of Vir :

Vu 8xl0 "38 erg cm3 (5, 37)

The contribution to the specific heat, due to the temperature-
dependent interaction energy (5, 36) is equal to:

N3 Vir Nr ci N ^  Nr Vir (5, 38)

which amounts, at 1.1°K in a 1% mixture, to only about 0.7xl04
erg/g °K whereas the observed increase in specific heat equals
about 1.8xl05 erg/g  ok (Kapadnis 19)).

It does not seem probable that the3He excitations have such
a relatively large interaction with phonons that in this way the
difference in specific heat between a mixture and pure 4He could
be explained. Khalatnikov and Zharkov 12) make rather vague
assumptions for the interaction between a phonon and a 3He exci
tation. We will not relate them here.

Thus the energy spectrum of the 3He excitations together with
the 4He phonons and rotons does not seem to describe the thermal



properties of a mixture correctly, even not if one takes into ac
count possible interactions between the excitations. In fact, when
the interaction becomes too strong, it becomes impossible to de
scribe the liquid as an aggregate of elementary excitations.

Qualitatively, the concept of a phonon being a pure 4He excita
tion seems to be rather hazardous for mixtures of not very low
concentration. We have seen in Chapter II that phonons, being
collective excitations, extend over a region in space of many
atomic dimensions. If the 3He atoms are evenly distributed in the
mixture — which might not be the case — then there are many 3He
atoms included in the volume ” occupied” by a phonon.

It is not difficult to imagine processes in which the number of
phonons changes by one. For instance a 3 phonon process becomes
possible in which a phonon collides with a 3He excitation giving
rise, after the collision, to two phonons. Or when two 3He exci
tations collide, a phonon may be emitted (Khalatnikov and Zhar
kov 12>).

However, as we have said, a calculation of the temperature-
dependence of the scattering cross-sections for one of these pro
cesses is extremely uncertain as long as one proceeds from an
energy spectrum which does not agree with thermal data.

78

R e f e r e n c e s :
1. Pomeranchuk, I ., Zh. eksper. teor. Fiz. 19 (1949) 42.
2. Landau, L. and Pomeranchuk, I., Doklady 22 (1949) 165.
3. Taconis, K.W., Beenakker, J. J. M., Nier, A.O.C. and Al

drich, L.T.,  Physica 15 (1949) 733 Leiden, Comm. 279a.
4. Berezniak, N.G. and Esel'son, B.N., Doklady 111 (1956) 322.

Sovj.Phys.Dokl. 1(1956) 645. Sovj.Phys. JETP 4 (1957) 766L.
5. Pellam, J .R.,  Phys. Rev. 99 (1955) 1327L.
6. Lynton, E.A. and Fair bank, H.A., Phys. Rev. 19.(1950) 735,

§0 (1950) 1043. Proc. Int. Conf. Low Temp. Phys. Oxford Un.
(1951) 88.

7. King, J. C. and Fairbank, H.A., Phys. Rev. 91 (1953) 489, 93
(1954) 21.

8. Khalatnikov, I.M., Doklady 29 (1951) 57.
9. Khalatnikov, I.M., Zh. eksper. teor.Fiz. 23 (1952) 265.

Review article in Usp.Fiz.Nauk 60.(1957) 69. Translation by
M. E. Priestley.

10. Wansink, D.H.N., Thesis, Leiden (1957).
11. Landau, L.D. and Lifshitz, E.M., "Statistical Physics",

Pergamon (1958) Chapter IX.
12. Khalatnikov, I.M. and Zharkov, V.N., Zh.eksper.teor.Fiz.

32 (1957) 1108. Sovj. Phys. JETP 5 (1957) 905.
13. Ptukha, T .P . ,  Zh. eksper. teor. Fiz. 34 (1958) 33.

Sovj. Phys. JETP 1 (1958) 22.
14. Beenakker, J. J .M . , Taconis, K.W., Lynton, E.A., Dokoupil,

Z. and van Soest, G ., Physica 18 (1953) 433, Leiden, Comm.



79

289a. For the co rrect value of D see: Beenakker, J. J. M. and
Taconis, K .W ., P rogr. Low Temp. P h y s., V ol.I, Chpt.VI.

15. Zharkov, V .N ., and Khalatnikov, I .M ., Doklady 93 (1953)
1007.

16. Garwin, R. L. and Reich, H .A ., Kam. Onn. Conf. Low Temp.
Phys. (1958) Contr.pap. no .9.

17. Dash, J. G. and Taylor, R .D ., Phys.Rev. 122 (1957) 1228.
18. Zharkov, V .N ., Z h .ek sp er.teo r.F iz . 33 (1957) 929.

Sovj. Phys. JETP 6 (1958) 714.
19. Kapadnis .D .  G ., Thesis, Leiden (1956).
20. Guptill, E .W ., van Ierse 1, A .M .R . and David, R ., Physica,

to be published.
21. Dokoupil, Z ., vanSoest, G ., Wansink, D .H .N . and Kapadnis,

D .G ., Physica 20 (1954) 1181; Leiden, Comm. 298a.



80

s a m e n v a t t i n g

In dit proefschrift worden de resultaten beschreven van metin
gen over de absorptie van geluid in mengsels van ^He en maximaal
11% 3He. Het temperatuur gebied, waarin de absorptie werd ge
meten, strekte zich uit van 0.9 tot 2.0°K. In zuiver 4He neemt in
dat temperatuurgebied de absorptie van geluid sterk toe wanneer
de temperatuur lager wordt en rond 1°K treedt een maximum in
de absorptie op.

Een verklaring voor dit verschijnsel werd gegeven door Kha-
latnikov. Hij toonde aan dat grote verliezen optreden ten gevolge
van een relaxatieverschijnsel, hetwelk hierin bestaat dat de om
zetting van normaal in superfluide helium — wat in de geluidsgolf
geschiedt omdat de hoeveelheid normaal helium van de dichtheid
afhangt — traag verloopt met betrekking tot de periode van het
geluid. Khalatnikov slaagde erin de afhankelijkheid van de tempe
ratuur van de met deze omzetting verbonden relaxatietijden uit te
rekenen. Daarbij ging hij uit van de theorie van Landau voor Hen,
die zegt dat de thermische energie van He H opgevat dient te wor
den als een som van energieën van elementaire excitaties, pho-
nonen en rotonen genaamd. Khalatnikov rekende de waarschijn
lijkheid uit voor inelastische botsingsprocessen tussen phononen
en rotonen waarbij hun aantal met één verandert.

Het was te verwachten dat de toevoeging van een weinig 3He
aan He H de genoemde relaxatietijden sterk zou verkorten. Wij
bepaalden de afhankelijkheid van de absorptie van de concentratie
van het 3He in het mengsel. In het algemeen neemt de absorptie
af bij toevoeging van 3He.

Het lijkt ons toe dat het moeilijk zal zijn de theorie van Khalat
nikov uit te breiden tot mengsels van 3He en4He. De thermische
energie van een mengsel is misschien niet op zulk een eenvoudige
wijze te beschrijven als die van zuiver 4He in de theorie van
Landau. Pomeranchuk heeft weliswaar een voorstel gedaan voor
de afhankelijkheid van de translatorische energie van een 3He
atoom, in een mengsel,van de impuls, maar deze excitaties leve
ren een te kleine bijdrage tot de soortelijke warmte om de expe
rimenteel gevonden soortelijke warmte te kunnen verklaren. De
interacties in een mengsel tussen de phononen en rotonen ener
zijds, en de 3He excitaties anderzijds, spelen waarschijnlijk een
grote rol.



STE LLINGEN

1. De interpretatie die Dransfeld, Newell en Wilks geven van de
theorie van Khalatnikov voor de relaxatieabsorptie van geluid
in He II is onjuist. In het bijzonder vatten zij de in de theorie
optredende relaxatietijden verkeerd op.
Dransfeld,K. .Newell,J. A. en Wilks,J . ,  Proc.Roy.Soc. A 243 f19581 500.

2. Uit de resultaten van zijn experimenten met "second sound"
heeft Kramers de gevolgtrekking gemaakt dat, beneden 0.5°K,
de gemiddelde vrije weglengte van phononen kleiner is dan die
welke de viscositeit karakteriseert. Dit resultaat is waar
schijnlijk in overeenstemming met berekeningen van Landau
en Khalatnikov voor de gemiddelde vrije weglengte van phono
nen die onder kleine hoeken botsen.
Kramers,H.C. , Proefschrift, Leiden, 1955.

_ Landau, L.D. en Khalatnikov,!. M. , Zh.eksper. teor.Fiz. 19 (1949) 637.-709*

3. De formule voor de snelheid van "second sound" in mengsels
van 3He en 4He kan worden afgeleid uitgaande van de veronder
stelling dat het 3He met het normale fluidum meebeweegt,
maar zonder gebruik te maken van het excitatiespectrum van
Pome ranc huk.
Pomeranchuk, I. la. , Zh.eksper. teór. Fiz. 19 (194y)-42.

4. Ondanks het feit dat de menging van 3He en 4He verre van
ideaal is, is het niet verwonderlijk dat de wet van van 't  Hoff,
voor de osmotische druk van 3He-4He mengsels, met zo grote
nauwkeurigheid op blijft gaan tot vrij hoge "̂ He concentraties.
Wansink.D.H.N. , Proefschrift, Leiden, 1957, Hoofdstuk II.
Landaul, L. D. en Lifshitz,E. M. , "Statistical Physics" , Hoofdstuk IX.

5. Bij het maken van dunne laagjes dienen meer voorzorgen in
acht te worden genomen dan tot dusverre is geschied.

6. De numerieke uitwerking door Bolton en Wild van de door hen
voorgestelde methode, om een galactisch magneetveld te meten
met behulp van de Zeemansplitsing van de 21 cm lijn, is on
juist
Bolton,J.G. enW ild.J.P. , Ap.J. 125 (1957) 296.



7. De mening van Rowlinson dat vloeibare zuurstof gerekend zou
moeten worden tot de niet-samengestelde vloeistoffen is on
juist.
Rowlinson.J.S., Disc. Far. Soc. 15 (1955) 52.
Perrier,A. en Kamerlingh Onnes,H., leiden, Comm. 139d.
Wiersma, E.C. en G orter,C .J., Physica lg  (1932) 316, Comm. Suppl.73c.

8. De verwaarlozing, door Smith en Symons, van het effect van
"ion-pairing" op de overgangsenergie Emax behorend bij de
eerste electronenabsorptiebandvan het J"-ion in oplossing, is
onvoldoende gemotiveerd en waarschijnlijk niet toelaatbaar.
Smyth, M. en Symons, M .C .R ., Trans.Far. Soc. £4(1958) 338.

9. Vinen heeft het ontstaan, de groei en de afbraak van wervels
in het superfluide helium bestudeerd. Uit zijn experimenten
volgt niet dat het ontstaan van wervels een gevolg zou zijn
van een relatieve snelheid tussen de twee fluida.
Vinen, W.F. , Proc.Roy.Soc., A 240 (1957) 114, 128; A 242 (1957) 493; A 243 (1957) 400.

10. Om een gunstige signaal-ruis verhouding te bereiken is het
soms beter in de ingangskring van een middenfrequentver-
sterker de spoel af te stemmen met een schroevendraaier
dan om gebruik te maken van een ferrox-cube kerntje.






