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STELLINGEN

1. Het kriterium, waarmee Friedberg de z.g. kritische temperatuur
van een magnetische faseovergang bepaalt uit een afgeronde asym-
metrische piek in de soortelijke-warmte kurve, is aanvechtbaar.

S.A. Friedberg, Phys.Rev.164(1967)705.

. De bewering van Sykes, Martin en Hunter, dat bij het vlak-gecen-
treerde rooster in het Ising model met spin % de theoretische soor-
telijke-warmte kurve boven het overgangspunt, in het temperatuur-
gebied dat experimenteel toegankelijk is (T>l,OOOlTC), reeds
voldoende nauwkeurig wordt beschreven door de eerste paar ter-
men van de reeks in stijgende machten van J/kT, waarbij J de
exchange constante voorstelt, is onjuist.

M.F.Sykes,J.L.Martin, en D.L.Hunter, Proc.Phys.S0c.91(1967)
673. Dit proefschrift, hoofdstuk I,

. De suggestie van Heller, dat de soortelijke warmte en de spontane
magnetisatie van een magnetisch systeem in eenzelfde tempera-
tuurgebied beneden het overgangspunt (l—T/Tc<€, met b.v.
€<0,1) zou kunnen worden beschreven door een functie van de
vorm P(T)=A(l—'I'/'I'c)cl+ B, heeft geen algemene geldigheid.

P.Heller, Repts.Progr.Phys. 30 dl, 11(1967)791.
Dit proefschrift, hoofdstuk I.

. Het verdient aanbeveling theoretische resultaten voor modellen
die een faseovergang beschrijven, te presenteren in een zodanige
numerieke of gesloten vorm, dat zij getoetst kunnen worden aan
experimentele resultaten over een ruim temperatuurgebied.

. Het is van belang de soortelijke warmte van de dipolaire ferro-
resp. antiferromagneet dysprosium ethylsulfaat en gadolinium tri-
chloride hexahydraat niet alleen te meten als functie van de tem-
peratuur, maar ook als functie van het magnetisch veld.

P.M.Levy, Phys.Rev. 170(1968)595.

D.T.Teaney, B.J.C. van der Hoeven Jr, en J.L.Moruzzi, Phys.
Rev.Letters 20(1968)722.

B.E.Keen, D.P.Landau, B.Schneider en W.P.Wolf, J.Appl.Phys.
37(1966)1120.

. Het ontwerp van een rotatiesymmetrische spoel, die bewikkeld
wordt over een dikte die niet verwaarloosbaar is t.o.v. de straal,
en die over een bepaalde afstand langs de as een homogeen veld
levert, bevat minstens 4 parameters. Zelfs indien slechts één
spoel wordt berekend is het efficienter een tabel te ontwerpen,
waarin slechts 2 parameters worden gevarieerd, en vervolgens de
berekening uit te voeren in een klein, door inspectie gevonden,
4-parameter gebied, dan het probleem met brute-force op te lossen.




¥t

10.

12.

De geringe graad van circulaire polarisatie van gamma-straling
uitgezonden na vangst van gepolariseerde neutronen in 60Co, zo-
als deze is gemeten door Kopecky, Kajfosz en Chalupa, is ver-
moedelijk te wijten aan depolarisatie-verschijnselen in het tref-
plaatje.

J.Kopecky, J.Kajfosz en B.Chalupa, Nuclear Physics 68(1965)
449,

Bij de berekening van de pompwerking van de supergeleidende
dynamo door van Houwelingen en Volger is geen rekening gehou-
den met de wederkerige-inductie term.

D.van Houwelingen en J.Volger, Philips Res.Repts. 23(1968)
249.

Het is interessant de proeven over energie-dissipatie bij de stro-
ming van superfluide helium, zoals deze zijn verricht door van
Alphen e.a. uit te breiden met verdere metingen aan een adiaba-
tisch kanaal, bij welke metingen naast de geproduceerde hoeveel-
heid warmte ook de temperatuurgradient wordt gemeten in de rich-
ting van het kanaal.

W.M.van Alphen, J.F.Olijhoek, R.de Bruyn Ouboter en K.W.
Taconis, Physica 32(1966)1901; R.de Bruyn Ouboter, K.W.
Taconis en W.M.van Alphen, '"Progress in Low Temperature
Physics’!, dl. 5 p.76, red.C.J.Gorter, uitg. ‘North-Holland
Publ.Cy.'.

De bewering van Williams en Davies, dat de fout in de dynamische
bepaling van de astronomische lengte-eenheid, zoals deze bepa-
ling in 1950 door Rabe is gepubliceerd, onverklaard is gebleven,
is onjuist.

E.Rabe, Astron.J.55(1950)112; E.Rabe, Astron.J.72(1967)852.

D.Williams en R.D.Davies, Monthly Notices of the Roy.Astron.
Soc. 140(1968)537.

Bij het uitvaardigen van een wet waarbij een recht wordt verleend,
rust de verplichting op de wetgever middelen te verschaffen, die
uitoefening van dit recht mogelijk maken.

Martin Luther King, '"Chaos or Community’’ p.35, Hodder and
Staughton, London 1968.

Vele moderne woonwijken zijn eerder ontworpen om naar te kijken,
dan om in te wonen.

Godfried Bomans, ''Pieter Bas'’, Prisma-reeks 20% druk (1967),
p.173.
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Introduction and summary

The subject of this thesis is the investigation of magnetic phase
transitions in ionic crystals. From a theoretical point of view, ionic
crystals belong to a relatively simple class of substances, a) because
the interactions occur between localized spins, in contrast to the
interactions between electrons in a metal or to the interactions be-
tween molecules in a liquid-gas transition, and b) because in those
crystals in which exchange interactions predominate, the interaction
is mainly confined to nearest-neighbours, which facilitates the calcu-
lations considerably.

From an experimental point of view, ionic crystals are attractive
for the study of phase transitions, as a large number of magnetic sub-
stances can be prepared. Depending on the crystal structure, the
interactions may occur in a predominantly one-dimensional structure
(refs. 1 and 2; chapter VI dysprosium ethylsulphate), a two-dimensi-
onal structure (chapter III section 5.2, CoCsaBrs; ref. 3), or a three-
dimensional structure (numerous examples, see e.qg. refs. 4 and 5;
CoCs,4Clg in chapter III, and e.q. CuK,Cl1,.2H,0 in chapter V).

The temperatures at which the experiments were performed lie in
the region of 1 Kelvin. Thermal expansion effects in this temperature
region are very small compared to the magnetic interactions, so that
usually the magnetic phase transition is not accompanied by a latent
heat production. Another advantage of performing experiments at very
low temperatures is the small value of the lattice contribution to the
specific heat, which can be easily estimated. The experimental equip-
ment is described in chapter II.

In recent years considerable progress has been made in the theory
of lattice statistics®'7). Accurate numerical predictions for a number
of thermodynamic quantities have been obtained for the Ising s=%
model, both below and above the critical temperature (see also chapter
I section 3.5). The calculations for the Heisenberg model are far more
difficult to perform, so that up to now relatively few predictions have
been made for this model. For the long-range dipolar interaction, both
theoretical and experimental results are scarce, so that much work
remains to be done.

In chapter I a survey is given of phenomenological and microscopic
theories on phase transitions. In particular we have considered the
methods of analysis of finite series, derived e.q. for the susceptibility
and specific heat. By means of a computer program based on the
analysis of series by the ratio-method, we have obtained new closed-
form expressions describing the temperature dependence of the quantity




considered in the whole temperature region above the critical point.
With the help of these closed-form expressions, the experimental
results can be compared with the theory in any desired temperature
region. Chapter I ends with some considerations on the rounding of
the specific heat curve observed in many crystals. Calculations based
on a simple model using a Gaussian distribution of transition points
indicate that the temperature at which the maximum of the specific
heat curve occurs, does not coincide with the transition temperature
in the case the specific heat curve is asymmetric.

In chapter III the measurements of the thermal properties of the
crystals C0C33C15(TN= 0.527K), and CoCssBrs(TN=O.282 K) are
analysed. From paramagnetic resonance and caloric data it is con-
cluded that at very low temperatures C0C53C15 is a fair representative
of the cubic s=% Ising system. The specific heat singularity is ex-
cellently described by the theoretical predictions for the cubic Ising
model, if the transition temperature is chosen in conformity with the
suggestions given in chapter I. The properties of CoCs:’Br5 are well
described by a two-dimensional Ising model. Characteristic features
are the large specific heat above T, which corresponds to an appreci-
able short-range ordering, and a logarithmic temperature dependence
for the specific heat near the transition point.

In chapter IV specific heat measurements are reported for two iso-
morphous copper salts having a positive exchange interaction, viz.
CuK2C14.2HZO(TC=O.88 K) and Cu(NHq)zBr4.2HzO(TC=1.74 K).
Earlier evidence on the first salt indicated that the three-dimensional
s=Y% Heisenberg model was applicables). In this chapter it is shown
that the caloric measurements on Cu(NH4)28r4.2H 20 are welldescribed
by spin-wave theory for temperatures up to 0.5T _, which confirms the
applicability of the b.c.c. Heisenberq model. In the light of recent
calculations on the extent to which the next-nearest neighbour (n.n.n.)
interaction modifies the predictions made for nearest-neighbour (n.n.)
coupling only, the data were reanalysed. For a b.c.c. structure we
derive J2/J1=4O.25i0.1 for the ratio of the n.n.n. to n.n. exchange
coupling, indicating that small n.n.n. interactions are present. The
specific heat singularity was measured for CuK2C14.2H2O as close to
T, as ll—T/Tc|=10_3TC. A logarithmic temperature dependence was
found of equal amplitude for temperatures above and below Tc.

Measurements on the spontaneous magnetization of the Heisenberg
s=% b.c.c. ferromagnet Cu(NH4)zBr4.2HZO, performed in the temper-
ature region 0.05<T/T_<0.997 are reported in chapter V. A small
anisotropy energy persisting even above T_ is observed. In view of
the strong spin-spin correlation it is interpreted in terms of slightly




anisotropic exchange coupling between pairs of copper ions. The ex-
perimental data up to T/TC=O.7 are well described by spin-wave
theory. Recent Green'’s functions calculations fit the data up to T/Tc=
=0.98. Close to the critical temperature, 3.10"‘3<1—T/TC< 10—,
the spontaneous magnetization is described by the relation M(T)/M(0)=
1.33(1 - T/T )% 38, The behaviour of the critical isotherm is de-
scribed by H~YM®, where & has the fairly low value: 3.9.

Finally, in chapter VI specific heat and susceptibility measure-
ments are reported of three dipolar salts. Gadolinium sulphate octo-
hydrate Gd2(804)3.8H 20, and gadolinium trichloride hexahydrate
GdCl3.6H20 become antiferromagnetic at TN=O.182 and 0.185K,
respectively. Dysprosium ethylsulphate, Dy(CZH 5804)3.9H 20, becomes
ferromagnetic at T _=0.115K. The relatively high specific heat of the
first two salts is related to the population of the low-lying crystalline
field doublets. The behaviour of dysprosium ethylsulphate may be
described approximately by a linear-chain interaction. In the three
salts the onset of long-range order is very abrupt, which is illustrated
best by the gadolinium salts. Another remarkable feature of the ex-
perimental result is the hunch closely above the critical temperature,
which may be described by negative terms (in T3 or in higher order
of the inverse temperature) in the series development of the high-
temperature specific heat.

Summarizing, it may be concluded that the extension of the well-
known techniques of calorimetry and magnetization measurements to
temperatures lower than 1 Kelvin has yielded experimental data, which
can be compared directly to numerical results of recent theoretical
work. Such a comparison is fruitful if the magnetic compounds are
carefully chosen with respect to the applicability of theoretical models
of magnetic interactions.
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Chapter I
THEORIES ON PHASE TRANSITIONS AND SOME APPLICATIONS

1 Introduction and classification

An interesting subject of experimental and theoretical physics is
formed by the phenomena of phase transitions. If the temperature or
another suitable thermodynamic parameter is varied, the difference
between the phases often vanishes at a certain critical point, beyond
which only one equilibrium phase exists. The following examples may
be mentioned: 1) the point that terminates the coexistence curve of a
liquid and its vapour characterized by a critical pressure, density and
temperature, p_, po, and T ; 2) the critical temperature of a binary
metallic alloy, above which the components mix homogeneously in
any proportion; 3) the Curie-point of a ferromagnetic crystal above
which the spontaneous magnetization vanishes; 4) the lambda point
of liquid “*He, below which part of the fluid shows superfluidity;
5) the critical point in a superconductor, below which the electrical
resistance vanishes.

If the phases on both sides of a transition point are thermodynamic-
ally stable, the corresponding phase transition car formally be class-
ified by means of the Gibbs free energy func* >n. If e.qg. the first
derivative of this function with respect to one of the usual thermo-
dynamic variables changes discontinuously at the critical point, the
transition is called first-order. The phenomena of boiling and melting
e.qg. are first-order transitions.

A discontinuity in the specific heat, c,, of ‘He at the critical
point, called lambda-point, was observed by Keesom and Keesom!).
In view of this experimental result Ehrenfest?) introduced the class
of second-order transitions, defined by the existence of a discontinu-
ous change of a second derivative of the Gibbs free energy function
at the critical point.

However, more precise measurements, closer to T performed by
Buckingham and Fairbank ?) and Kellers‘”, indicate that the specific
heat of liquid “He close to T, diverges to infinity logarithmically on
both sides, so that one should not speak of a discontinuity in the
specific heat. In view of the temperature resolution experimentally
obtainable, the only transitions that can be classified as a second
order transition are those of a superconductor from the superconducting
or superconducting-mixed state to the normal state.

However, transitions characterized by logarithmic or power-law
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singularities in the behaviour of some thermodynamic variable as a
function of another suitable variable can be classified in the scheme
of Ehrenfest. This has recently been done by Gorter®) for a class of
transitions involving logarithmic sinqularities. The scheme proposed
by Gorter may be extended so that it includes power-law singularities
as well.

In a phase-transition a very large number of particles cooperate.
Macroscopically observable quantities such as pressure and magnet-
ization as a function of the temperature must therefore be derived by
means of statistical mechanics. Since the particles interact, the system
is essentially a many-body system. An exact solution for sucha system
is notoriously difficult, even if the simplest interaction is assumed
and the positions are fixed on a lattice.

Two methods of tackling this problem will be briefly described.
The first method assuming that on each particle a mean field is acting
will be used in various theories, called mean-field theories. In the
second approach a Hamiltonian for the interaction is assumed and the
macroscopic observables are calculated exactly or approximately in
the framework of statistical thermodynamics. Several exact results
have been derived (see section 3.4). These results can furthermore
be used as a check on approximation techniques used for problems
defying an exact solution. Results obtained with the second method
show that the mean-field theories become the more realistic, the
larger the range of interaction®7),

2 Mean field theories

In this section we shall summarily describe the molecular field
theory and Landau’s phenomenological theory of second order phase
transitions. By grouping both theories together we emphasize their
common assumption of the existence of a mean-field acting on the
constituent parts of the system. The theory of Landau in the form
sketched below, however, can be extended by introducing a term de-
scribing the fluctuations. We omit the description of the Van der Waals
theory of condensation because this theory involves the same essential
approximation as the molecular field theory.

2.1 The Weiss molecular field

A coherent qualitatively correct description of the magnetic pro-
perties of a ferromagnetic substance is furnished by the molecular
field model. The essential features are shown in the derivation of
the expression of the magnetization as a function of the temperature,
the internal field and the interaction between the spins.
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Let us consider a system of spins for this purpose, each spin i
having two orientations, denoted by My =+ 1 or —1 respectively, and
an interaction energy -v . Ky My with spin j. If H denotes the applied
field, expressed in units of energy and H1 the field acting on spin i,
we may write

H = ;2:"1

j By +H, (1)

The average magnetization is given by

" Tr p, exp (Bu H)
Trexp (Bu,H)) y

</_11> (2)

The molecular field approximation consists in assuming that the field
acting on each ion is the same. Formula (2) is accordingly simplified
to

) Tr p, exp (,6;11 <H,>)
Trexp (Bu, <H>) '

<,ul> (3)

which takes the simple form

exp (f<H;>) — exp (-~ B <H,>)
<p.> =

' exp(B<H>) + exp (- f <H,>) o

for p, = +1 or —1.
With the help of eq.(1) the molecular field may be denoted by

<H;> =v (0) <> + H.
Using this notation eq.(4) is given by
<pg> =tanh [B(v (0) <> +H)]. (5)

For H =0, a solution <p> = 0 is found for every value of v(0). A non-
trivial solution is only found, if B v(0) > l.In this case a solution is
also formed by — <p>. I B v(0) > 1 the only solution is <p> =0.
The temperature defined by the relation 1/8 (= kT) = v(0) may there-
fore be called the critical temperature.

Other properties such as entropy and specific heat according to
this simple model of ferromagnetism may also be easily derived.




2.2 The Landau theory

An elegant formalism describing the essential features of a second-
order phase transition is given by Landau®). The Gibbs free energy
function, G, containing all macroscopic information is used as a start-
ing point. The central assumption of the theory is, that below the
critical point an order parameter may be defined that is non-zero, but
vanishes at the critical point. Secondly it is assumed that the Gibbs
function near TC may be developed into a double Taylor series of the
order parameter and AT = T — Tc. If furthermore fluctuations are ne-
glected, we may write the Gibbs free energy in the form

G (T,M) = G(T_,0) +c(T)M? +e(TIM* + ..., (6)
where

o(T) =c, +c,AT +c, (AT)? +..., (7)
and

e(T) =e_ +e,AT +e,(AT)? +.... (8)

By symmetry odd powers in M vanish. Noting that

H = g—a) ] andxl= (%:AL)T ‘
we obtain

H=2c(TM +4e(TIM® +..., (9)
and

-1§=zcm +12 e(T)M2 +.... (10)

Since 1/y = 0, if § g and M =0, the coefficient c from eq.(7) equals
zero. Substituting e(T) from eq.(8) into eq.(10) and neglecting terms
of higher order than AT and M? we derive

v 1/2 Cy

ik L (11)
X T-T, +6(eo/cl)M2

According to relation (9), M =0 in zero field, so that (11) reduces to
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the Curie-Weiss law in this case. Below T. and in zero field, eq.(9)
has two thermodynamically stable solutions, namely
MZ o Cl

0 2(—3o

R (12)

Besides, we see from (9) that the critical isotherm has the simple form
~ 3
H = de M<,

It is also an easy matter to calculate the discontinuity in the specific
heat at T. in this model.

3 Microscopic theories

In the first part of the preceding section statistical mechanical
methods have been explicitly used for the calculation of macroscopic
quantities. At the very beginning, however, a drastic simplification
has been made, namely the assumption that fluctuations are absent,
the consequence of which cannot be assessed beforehand. A more
rigorous treatment of the interactions would reveal the nature of the
simplifications involved in the mean-field theory. Up to this time an
exact statistical mechanical derivation of the macroscopic quantities
has only been obtained for a few types of interaction hamiltonians.
As an example we mention the exact solution for the two-dimensional
Ising model in zero field, obtained by Onsager. The specific heat in
this model tends to infinity, if the temperature approaches the critical
temperature. This result is in violent disagreement with the molecular-
field prediction of a finite specific heat below and a zero-specific
heat above the critical temperature.

In the following subsections we shall briefly describe some methods
to obtain approximate predictions of macroscopic quantities. The
approximations will consist in the calculation (and asymptotic ana-
lysis) of only a finite number of terms in a series development for the
quantity investigated.

3.1 The Hamiltonian

The static dipolar interaction between two spins — although best
known theoretically — cannot account for the magnitude of most mag-
netic interactions. Since the range of interaction is infinite and the
directional dependence is quite complicated, this Hamiltonian has
thus far not been considered as a basis for theories on phase tran-
sitions. Recently, however, calculations of the magnetic susceptibil-
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ity at high temperatures have been performed with the use of the
spherical modell?), In this model the interaction energy between the
sites i and j varies in proportion to l/rd“': where r denotes the dis-
tance between the sites i and j, d the dimension of the lattice and o
a positive constant. In this model the exponent, ¥, of the singularity

in the susceptibility near and above T defined by the relation

T T
X g o) ——5)-7 (14)
o 3

takes the molecular-field) value 1 for 0 < o < 3/2, and the values
o(3 — o) for 3/2 < 0 < 2, and 2 for o > 2.

The Hamiltonian that has proved to be most succesful in describing
phenomena related to magnetic ordering, especially in insulators, is

H=—ZJXsi.sj-gyBH§s - (15)

i,
i<j

iz

where J is a constant, s, and s, are spin operators. The summation is

taken over all pairs of nearest-neighbours. This spin-dependent inter-
action is called exchange interaction, since historically, this ex-
pression originates from the direct exchange of two electrons ! 1+12:13,14),
J being the exchange integral. The expression (15) is commonly
called the Heisenberg Hamiltonian.

The observation of the occurrence of exchange interaction between
magnetic ions surrounded by a group of diamagnetic ions led Kramers !%)
to the idea of superexchange. Slaterls), however, pointed out that
generally the derivation of (15) was not valid in solids. For the case
that the electron orbitals are only slightly non-orthogonal, Herring”)
has recently derived (15). Another recent development in the field was
the presentation by Anderson '®) of a new theory of superexchange.
This theory could explain why most exchange interactions were of the
antiferromagnetic type (J < 0).

In view of the theoretical justification of (15) for real solids, a
thorough statistical mechanical derivation of its properties is very
attractive. However, since the spin operators do not commute, the
calculations are rather difficult. If only one component of the spins
in (15) is supposed to interact with that of another spin, a substantial
simplification of the calculations will result, since in this case the
spin operators commute. This Hamiltonian has the form

H==2d 25,8, —angh} s, (16a)
i<j
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and is called after Ising!®). An alternative form of this Hamiltonian,
yielding the same maximum internal energy and magnetization, inde-
pendent of s, for a given value of J! and augH, is

Viisirs q;tBH
$° _:2_ ZS lzsjz p _—S——Eslz = (16b)

i,J
i<j

From the definitions (16a) and (16b) it follows that J’=2Js2. For a
s=% system, therefore, J'=!4J. The Ising interaction might be regarded
as realistic for those cases in which axial spin orientation is strongly
preferred. This phenomenon may occur in a solid, if for example, the
lowest level is twofold degenerate with very anisotropic g values
that favour orientation along an axis (q// >> g_L).

By using the Heisenberg and Ising Hamiltonians, a wealth of results
has been obtained in the last few decades, notably by the London
group29),

An interesting practical extension of (15) is formed by the model
taking account of next-nearest-neighbour interaction. Some results for
three-dimensional lattices have been obtained“), which agree very
well with the experiment?!), Another model of practical interest is
found by a type of interaction intermediate to (15) and (16) which
might be called the anisotropic Heisenberg model. A few results have
recently been obtained??) viz. the variation of the critical temperature,
as a function of the anisotropy parameter and the value of ¥ as a
function of this parameter.

The properties of the models using the Hamiltonians (15) and
especially (16) have furthermore been calculated as a function of the
variation of the parameters spin quantum number23), dimensionclity“)
and coordination number?%), If the dimension or the coordination
number increases, the results approach those of the molecular field
model, as might have been anticipated.

We conclude this section on Hamiltonians and models (which is not
exhaustive) by mentioning the Heisenberg model in the limit of infinite
spin, called the classical Heisenberg model. In the limit of infinite
spin, the spin may be considered as a classical vector of length
[s(s +1)] l/’, so that the calculations are simplified considerably.
Various properties have been derivedzs'ze), some of which will be
more fully analysed in section 3.5.

3.2 Series developments

In this section we shall give an example of the way in which the
partition function, Z e for a canonical ensemble may be expressed in
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the form of a series development in a parameter, which depends on the
temperature region considered. We specialize to the simplest case,
e.g. the Ising model with spin %, the method being quite general. We
shall firstly consider the low-temperature region, in which the devi-
ations from the fully ordered state are small. Secondly we consider
the high-temperature region, in which the exchange energy is small
compared to the thermal energy.

a) Low-temperature expansions

For the Ising model with s =% in zero field, the partition function
may be written in the form

Zy =2Zg(N,N,,N__,N, )exp [K(N,, +N__ =N, )],

(17)

+4

where N is the total number of spins considered, N, ,, N__, N, _, the
number of pairs of spins having spins up, spins down, and spins
antiparallel respectively, K stands for 2J/kT, and g is the combi-
natorial factor counting the numbers N,, N, , N__ that can be
formed in a lattice of N sites and g nearest-neighbours for each site
(the lattice must be closed in itself for this situation to occur). One
easily verifies that the relation

N,, +N,_+N__ =%gN (18)

holds. Expression (17) may now be written in the form

%qN
Zy = 2ZN°:_ _o o(N,N,_) exp [K(% aN — 2N, )],
% qN M
- 2 [exp(4aNK)] 2y o oNN, ) [exp(=2K)] "=, (19)

which may be compactly written as

N

o

Ya
Zy =2 [exp(4aNK)] 5" a (a) 2" (20)

The coefficients Gn(q) contain the information of the lattice and can
be evaluated in principle by counting procedures. The first two non-
zero coefficients in the expansion (20) may be easily evaluated as
1 and N respectively. Each successive term in the calculation is
exact. The approximation made, when using the development, only
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consists in the evaluation of the asymptotic behaviour of the coeffi-
cients.

b) High-temperature expansions

The partition function for an ensemble of N particles with a Hamil-
tonian H may be compactly written in the form

Zy (B) = <exp(— BH)> , (21)

where < > denotes the trace taken with respect to a set of (2s + 1)N
orthonormal states, spanning the space of H, and £ denoting 1/kT. In
the high-temperature limit ZN(;B) can be developed in powers of S
according to

Zy(B) =1 — E<H> +J§—'2 <H?> +... ("l N <H >+ .. : (22)
H r:

where the coefficient of S* will be a polynomial of order r in N. In
order to evaluate <H'>, basically two calculations have to be per-
formed. The first, a combinatorial problem, involves the grouping of
the various contributions according to the type of graph, and counting
the number of independent graphs of each type for the lattice con-
sidered. The second consists in the calculation of the mean value of
the spin operators for the particular type of graph.

In this section we take the Ising model with spin in zero field as
an example. Denoting the spin variables by 0y 9, which take the
values *1, and denoting % B1J by K, the partition function for N part-
icles takes the form

Zy(B) = X"u": i exp(K<5>c’1 o) . (23)

where <ij> denotes a summation over nearest-neighbours i and j.
Since the spin variables commute, we may write the summation as a
product

Zg BY = 2 a4y J}j)exp(K 0,9)). (24)

Noting that the 9, 9; satisfy the relation

(oiaj)z E '(0101)4 =... =1, and (crloj) = (cloj)s = (o, 01)5 =,

'

the exponential may be written in the forin
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exp (Ko, -oj)

K2 2
1 + K01Oj +~2T(aloj) -

cosh K + o, o’sinh K

(cosh K) (1 + 9,9, tanh K), (25)
so that eq.(24) becomes

Zy (B) = 24 o = 11 1 (cosh K)(1 +.0, 0 tanh K). (26)

The product may be expanded”’, so that eq.(26) takes the form

7 (B) =(cosh K)%AIN 5 v, [1+(tanh K) = o, 0 +
n (B 00y = 1 (tan )<“>1j

+(tanh K)2 = S 0,000, +.
i )<u>¥<k1>‘ J k1 1 (27)

where %agN is the total number of nearest-neighbour pairs, and where
the summations are taken over non-identical neighbouring pairs. Equ-
ation (27) may be written compactly in the form

2 (B) = [2(cosh )49V £ b_(tanh K), (28)

where the coefficients b, which denote the combinatorial factors
defined by eq.(27), contain the information of the lattice structure.

3.3 The analysis of finite series

The series derived by the methods indicated in the previous sec-
tions are necessarily truncated, as the labour involved in deriving
each successive term roughly increases exponentially fast.

Within the radius ot convergence an (infinite) power series

where z denotes a complex variable, is bounded. The power series
diverges for certain z on the radius of convergence, called singular
points. The singular point lying closest to the origin is called dominant
sinqular point, z . In general the physical domain of z is the positive
real axis. The serles may now be devided into two classes:
1) that in which z_ lies on the positive real axis. This case will
occur, if all a 's are positive. This class of functions can be
simply cnalysed by the ratio-method (see below).
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2) that in which z, can be written as 2 roexp(i 90), with T, real
and positive, and 90 real and unequal to zero. A series belonging
to this class cannot be analysed by the ratio method, since the
magnitudes and signs of the coefficients are quite irreqular. The
Padé-approximant method, to be discussed in section 3.3.2, how-
ever, is suited for this class of series. Moreover, weaker singular-
ities (lying farther from the origin) on the positive real axis can
also be analysed. The only drawback of this method is that rigorous
knowledge of the convergence of the Padé-approximants to the
function F(z)is not complete 28),

3.3.1 The ratio-method

This method of determining the critical point and singular behav-
iour near the critical point stems from the following considerations.
Let F(z) be a function of the form

F(z) = A(z)(1 — pz)— (1*9) (29)

where A(z) is a smoothly varying function of z for z near 2.~ =1/p,
and g > — 1. The order, A, of the singularity of F(z) for z =2 ., de-
fined by

A =lin [InF(z) , (30)
z=z__In (1 — uz)

has the value A = —(1+q). If A(z) is a function that diverges logarith-
mically to some power a # 0, for z N 1/u, according to

Ate) = Ll < w1 (31)

the order of the singularity of F(z) has still the value — (1+q) accord-
ing to the definition (30).

For |zl<[zC! the function F(z)/A(z) may be developed around z
according to the binomial expansion

igz; =1 +(1 +q) puz +£_1*33(72*Q)#222 Ll +g)(23+!q)(3 +q) e R e

which may equivalently be noted as

P2) 25 o 48 (33)
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From egs.(32) and (33) it is easy to see that the ratio of successive
coefficients, to be denoted as p , is given by

po==b— = (1+Qpu. (34)
n a n

n—1

If the plot of M, as a function of 1/n is linear for large n, we can
obtain u =1/z_ from the intersection of this line with the axis 1/n =0,
while the slope yields us the value of g. This procedure is commonly
called the ratio-method.

In the limit n - a factor A(z) of the form shown in eq.(31) does
not alter the convergence. Even for n in the order of 10, however,
such a factor may alter the behaviour of the ;tn's significantly, espe-
cially, if (1 +q) > 0. In this case even a slowly varying function of
the temperature, like A(z) = z%, influences the p,'s appreciably.
Most of the series of section 3.5.2, however, have 1 +g>>0, so that
the convergence may be determined from the available number of terms,
even if slowly varying functions of temperature, A(z), are considered.

3.3.2 The Padé-approximant method

Expansions having a dominunt singularity off the real axis can be
analytically continued by means of Padé-cpproximcnts3°'3” beyond
the circle of convergence up to the physical singularity on the real
axis. Therefore, this method can also be used for the analysis of
finite series in those cases, where the ratio-method fails.

We are interested in the series of the form

2*---+ann+.-.' (35)

F(x) =1 *a,x +a, X

of which only the first n coefficients are known. Let us consider the
ratio of polynomials P(x)/Q(x)

P(x) . 1 FAIX F ..+ a.NxN (36)
Q(x) LB X+ +,3DxD 3

For N +D =k <n, the coefficients @, ...., @ and ,31, eeess By are
uniquely determined by the requirement that the series expansion of
(36) shall coincide with (35) for the first k coefficients. Relation (36)
is called [D,N] Padé-approximant to the function F(x). For N +D <n
the coefficients Ay eeres T ,61, 'BD' are determined by equating
like powers of x in the following equations:
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F(x).Q(x) — P(x) = O(xN *P *1), (37)

The Padé-approximant is particularly suitable for the represent-
ation of functions, whose only singularities are simple poles. These
can be located as the D zeros of Q(x). If we expect the singularity of
F(x) to be of the type

F(x) ~ A/(x — x )P, (38)

where ~ stands for: asymptotically proportional to, and p and X, are
positive constants, the logarithmic derivative of F(x),

(d/dx)In F(x) ~ -p/(x=x_), (39)

will have a simple pole at X with residue —p. By the following pro-
cedure the value of A may be determined. If p is known, the Padé-
approximants to

[F) P ~ AVP/(x—x ), (40)

having a simple pole at X will yield us both X and A.

Summarizing, the Padé-approximant method consists of inspecting
the convergence of the tabulated values of the critical quantities
found by means of the successive approximants [D,N](with D +N <n)

to the function F(x) =1 + ; a x*,
i=1

3.4 Check of the finite series analysis

The results obtained by applying the methods given in sections
3.3.1 and 3.3.2 to the high-temperature series found by (3.2) may be
checked in several ways. Many numerical results show that the results
obtained by both procedures are consistent28¢3!). In this section we
shall restrict ourselves to two special examples.

a) A comparison with some exact results. »In the Ising model Kramers
and Wannier®?) derived the exact value of the transition temperature
for a quadratic lattice, namely

ve =tanh (J/kT_) =v2 — 1 =0.4142135 ...

A second exact result for this lattice, viz. ¥ = 7/4 may be obtained
by applying an exact argument?®) to Onsagers result?), By forming
the [7,7] Padé-approximant to the susceptibility series for the qua-
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dratic Iattice33), Baker®!) obtained the values v, = 0.4142106 and

v =1.7496, respectively.
For the triangular lattice the transition temperature in the Ising
model has been derived by Houtappel“) and has the value

1/v, = 3.73205 .

On using the ratio-method, Domb and Sykesa3) obtained the value

3.731 % 0.002. This agrees remarkably well with the exact value.

b) A comparison of critical temperatures derived from series for two
physical quantities

An internal check of the procedures used can be found in certain
cases. We mention the determination of J/kT_ for the spin-4 Ising
model in three dimensions. Baker®?) has cpphed the Padé-approx-
imant technique to the susceptibility series>3) and the series for the
spontaneous magnetization”'ao) for the three cubic lattices. Ex-
pressing the critical temperature by the parameter u_ = exp(—4J'/ch),
the results for both series, uZ and ug’, as given by the highest approx-
imants available, are:

f.c.c. :uX =0.664658, u? =0.6637;
b.c.c. : uX =0.53266 , uZ =0.5316;
gieta. i ug‘ =0.41194 , uZ’ =0,4109.

One may notice that the results agree within a few parts of 103, 1t
may further be mentioned that the most precise results, viz. those
obtained for u‘, cqree within the quoted error with the results found
by Domb and Sykes 33) ysing the ratio-method.

3.5 Some numerical results on the specific heat, the susceptibility
and the spontaneous magnetization

In the sections 3.5.1 and 3.5.2 we shall present some new results
obtained from finite series given in the literature, by a method related

to the ratio-method. The idea®) is the following. Let us assume that
the series
2 i nt+l
F(x)=.§aix +a 4 X e (41)

of which only the first n coefficients are known, has an asymptotic
behaviour described by

F(x) ~ A(l —pux)"%, (42)
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where a is a positive constant. If @ and u = l/xc are known, the
function (1 —ux)™% can be expanded (see eq.(32)) in powers of x
according to

M8

(1—px)~%= 3 B x% (43)

i=

o

The constant A from eq.(42) can easily be obtained approximately by
forming the ratio’s A1 = 01/'81 for the last few known terms of the
series (41). The function F(x) can now be represented over the whole
interval 0 < x < 1/u by the following closed expression:

Fix) =A0l-u0=% 3 (a,—AB)x!, (4da)
or equivalently by

FES) = AL=3)7%+ 2 (c,~AdJE), (44b)
where ¢, zai(xc)i and d, = ﬁi(xc)i. (44c)

It is convenient to introduce the notation
Z (c —Ad,) =C_ . (44d)

A plot of F'(x/xc) versus (I —x/xc) on a logarithmic scale yields the
value a only, if Co is small compared to the first right-hand term of
(44b), for the temperature region (region of x) considered.

In the case of the specific heat of the three-dimensional Ising
model with s =), the expression (44b) is given by

T
c/R =1.1(1_—T£)-'/8_1.2, (45)

for x ~ 1/p. One may notice that the second right-hand term is not
small compared to the first one. This will be the case for the specific
heat, calculated according to any model, because the terms a, and a,
are zero, whereas ,60 and ﬁl are non-zero (see the first two terms on
the right-hand side of (32). It is clear that in this case the asymptotic
behaviour cannot be deduced from the usually made logarithmic plot
of ¢/R vs. (1 —TC/T), where l—TC/T ST =%

The asymptotic behaviour (42) of the susceptibility however, may
be easily observed experimentally, since in relation (44b) the second
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right-hand term is small compared to the first right-hand term. One may
see this from the following considerations: a) that the susceptibility
series is calculated in the form of a correction to the Curie law, so
that a, and a, do not vanish, and b) that the exponent a is large (> 1),
so that the contribution of the first right-hand term of eq. (44b) is large,
even for 1 - T/T_=0.01!

3.5.1 Specific heat

a) the Ising model -s=%- f.c.c. and s.c. lattices. For the f.c.c. lattice

lattice we have calculated the values of ¢/R, given by the expressionas)
c/R=1.091(1—-t)"1/® _ 1 _1/8t — 0.0142t% — 0.0032t3
— 0.0001t* + 0.0005t> + 0.0002t®, (46)

where t = TC/T, for the temperature region 104 <1 —~t<0.6.

ln

0.01

Fig. 1. The curves represent specitic heat values, c/R, for the
s.c. and f.c.c. Ising s=Y% lattice, plotted versus (1-T./T) on a
logarithmic scale. The upper lying drawn curve gives the result
for the s.c., lattice, calculated from eq. (47). The lower lying
drawn curve, representing the result for the f.c.c. lattice, is
calculated from eq. (46). The other curves represent several
approximations to (46), see the text.

The results are shown by the lowest of the two drawn curves in
fig. 1. The dashed line represents the asymptotic behaviour of the first
term of the right-hand side of eq.(46) only. The dotted curve is ob-
tained by inserting t = 1 in all but the first right-hand terms of (46).
The dash-dotted curve is calculated by the use of the finite series (41)
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for n = 12. From inspection of the curves we may notice a) that the
asymptotic behaviour is not even approximately reached in the temper-
ature region that can be covered experimentally, b) that the specific
heat curve experimentally observable (1—t<10™%), can only be
described accurately by the 12 term series (41) for the fairly high
temperature region 1 —t>0.2, and c) that the dotted curve describes
the full temperature dependence (46) quite well for 0 <1 —t <0.05.

The highest of the two drawn curves, representing the specific
hea;sc))f the s.c. lattice, has been calculated by means of the express-
ion

c/R =1.2337(1 —t%)~1/8 _ 1.2337 — 0.0068t2 — 0.0070 t* + 0.0029 t®

+0.0001 t® — 0.0001 19, (47)

The asymptotic behaviour for the s.c. lattice is similar to that of the
f.c.c. lattice.

b) planar classical spin model, f.c.c. lattice. The specific heat series
of a model of classical spins constrained to lie in a plane (planar
model), containing 7 non-zero term537), have been analysed by two
methods. The first method was described in 3.5, and results in the
asymptotic expression

c/R =11.64(1-1)"°0°3 _ 12.06. (48)

It is clear that the asymptotic behaviour (48) cannot be found from a
logarithmic plot of c¢/R vs. (1 —t) for (1 —t)> 10~4.

However, we may note, that the asymptotic temperature dependence
of eq.(48) is nearly logarithmic. Therefore we extended the method
described in section 3.5 by considering the coefficients obtained from
the expansion of log (1 — ux) in powers of x, analogous to the expansion
(43). The values of A, ci/dl, and Co(see eq.(44))for the planar class-
ical spin model are given in table I. The entries cl/d1 for the last
few terms are nearly constant so that the method appears to be correct.
In fig. 2 the specific heat, calculated from the data of table I for the
whole temperature region above Tc, is plotted versus (1 —TC/T) on a
semilogarithmic scale as a drawn curve. The dashed line represents
the asymptotic behaviour of the series, described by

c/R =-0.380 In(1 -T_/T)-0.469 . (49)
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TABLE 1
Specific heat, c/R, of the f.c.c. planar ‘’classical’’ spin model, derived
from the series of ref. 37. The symbols are defined in sections 3.5 and
3:94 16
x=J/kT ; X.= 0.10367 ; singularity : log.
i ay ,51 ui/,Bx A ci—.ﬂsd1
1 0 9.64600 E+0 0 - 0.38000
2 12 4.65226 E+1 0.25794 - 0.06103
3 96 2.99171 E+2 0.32089 - 0.01970
4 774 2.16435 E+3 0.35761 — 0,00560
5 6240 1.67018 E+4 0.37361 — 0.00128
6 50600 1.34254 E+5 0.37689 — 0.00052
7 418992 1.11004 E+6 0.37746 — 0.00036
8 3543500 9.36883 E+6 0.37822 ¢ — 0.00022
9 30446813 8.03303 E+7 0.37902 0.380 - 0.00011
o:—0.4688

We notice that the asymptotic logarithmic behaviour can be easily
reached experimentally. This result favours the asymptotic represent-
ation (49) to that given by eq.(48).

05

clr

1-TelT

—_— B
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et A S o vl MRS e 1 il e AT R |

Fig. 2. The specific heat, ¢/R, of the f.c.c. planar-, classical-
spin model is plotted versus (1=Tc/T) on a semilogarithmic
scale. The drawn curve represents the closed form result given
by eq. (44b) (see the text), derived from the series (42) of ref. 37.
The dashed line represents the approximation (49).




3.5.2 Susceptibility

The susceptibility series for the three-dimensional cubic lattices
published in the literature have been analysed by the method described
in section 3.5. The models dealt with are: The Heisenberg s = %,
Ising s = %, classical-spin and planar classical-spin models. The
symbols used in the tables are defined in section 3.5. The temper-
ature T is given in units T _. The values for the parameters x_ and a
were taken from the cited publications.

The results of the analysis have been presented in the tables II to
V. We may notice the following two points:

a) The convergence of the ratio’'s Qs/'@1 for large i is very good
(a few parts in a thousand) for nearly all Hamiltonians and lattices
considered. For the s.c. lattice in the Heisenberg model however, the
convergence is somewhat erratic (see table II) but the amplitude may
nevertheless be estimated with an error of only about %2%.

The only amplitudes, A, calculated in the literature viz. those for
the Ising s = % and Heisenberg s = % Hamiltonians, are shown in the
tables II and III for comparison. In table II the values for A, given in
the second row, have been taken from ref. 38. Agreement with our

TABLE 11
Reduced susceptibility, yT/(Curie~-const.), of the cubic Heisenberg s=%
ferromagnets, derived from the series of ref. 38, The symbols are defined
in section 3.5; x=J/kT, a=1.43.
8:Cs b.c.c. f.C.C,
X 0.5962 0.3973 0.2492
1<
i c\l/pi ci—Adi <xi/,B1 Cx——Adi ai/ﬁi Ci—Adi
1 1.25077 0.07260 1.11133 0.03360 1.04560 —0.03633
2 1.22750 0.04779 1.09020 0.00382 1.07227 0.00221
3 1.17350 —0.05264 1.09442 0.01275 1.07507 0.00809
4 1.18449 —0.03411 1.08533 —0.00587 1.07148 0.00105
5 1.23039 0.07262 1.08841 0.00099 1.06936 —0.00390
6 1.20701 0.01797 1,.08756 -0.,00114 1.06933 —0.00428
7 1.17665 —0.06346 1.08852 0.00142 1.07003 | —0.00265
8 1.20495 0.01418 1.08648 —0.00435 1.07054 -0.00130
9 1.22812 0.08437 1.08791 —0.00028 1.07074 -0.00079
10 1.19363 —-0.01993 1.08765 —-0.00109
the present the present the present
1.20 calculation 1.088 calculation 1.071 calculation
A 1.10 ref. 38 1.04 ref, 38 1.07 ref. 38
1.204 ref, 38, 1.092 ref. 38, 1.075 ref. 38,
corrected corrected recalculated
—0.0606 —~0.0484 -0.1089
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values (first row) is only found for the f.c.c. lattice. By inspecting
the calculation of A in ref. 38, the error can be easily located. The
amplitude is calculated from the formula for the reduced susceptibility

o e e R
(x —x) (1-T/T)* ' (50)

c

where the residue R at x = x_ to the function (XT/C)V“, a and x_
are given. In ref. 38, the amplitude for the f.c.c. lattice has indeed
been calculated according to (50). For the s.c. and b.c.c. lattices,
however, the values 1/a have been used, instead of a. Using (50),
the values for the amplitudes (presented in the third row for A in
table II) agree remarkably well with our results for all three lattices.

The two entries for A in table III, cited from ref. 39, have been
calculated by the ratio-method, the other ones by the Padé-approximant
method. As one may notice the agreement in table III between our
results and those cited from the literature is excellent. The amplitudes,
however, as listed in ref. 40 seem to be erroneously quoted from refs.
30 and 31.

TABLE III
Reduced susceptibility, yT/Curie-const.), of the cubic Ising s=)% ferro-
magnets, derived from the series of refs. 33 and 38, The symbols are
defined in section 3.5; x=tanh J/kT; &=1,250.
S.C. b.c.c. oA
X, 0.21815 0.15617 0.10175
i ai/ﬁi Ci—Adi Qi/'Bi Ci_Adi ui/[J1 ci_Adi
1 1.04712 0.03640 0.99949 0.03186 0.97680 0.01013
2 1.01524 —0.00388 0.97123 —0.00390 0.97181 0.00437
3 1.02219 0.00639 0.98006 0.00924 0.97084 0.00325
4 1.01579 —-0.00358 0.97309 —0.00147 0.97024 0.00250
S 1.02033 0.00396 0.97639 0.00406 0.96971 0.00171
6 1.01727 —-0.00128 0.97316 —-0.00149 0.96925 0.00098
7 1.01932 0.00241 0.97491 0.00168 0.96890 0.00038
8 1.01765 —-0.00066 0.97319 —0.00154 0.96863 | —0.00013
9 1.01887 0.00169 0.97430 0.00059
10 1.01787 —0.00027
11 1.01868 0.00139
the present the present the present
1018 calculation 0.974 calculation 0.9687 calculation
A 1.018 ref. 39 0.973+0.001 ref. 39
1.018 ref. 30 0.973 ref, 30 0.9688 ref. 30
0.0246 0.0650 0.0545
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The close agreement between our values of A and those published
in the literature up to now, combined with the smooth convergence of
the ratios a‘/ﬁi for large i in all series considered, suggest that the
values of A for the classical- and planar classical-Heisenberg models
(tables IV and V) are also correct to a few parts in thousand.

TABLE IV

Reduced susceptibility, ¥ T/(Curie-const.), of the cubic classical Heisen-
berg ferromagnets, derived from the series of ref. 25. The symbols are
defined in section 3.5; x=J/kT.

8.C: b.c.c. fee. e,
X, 0.3475 0.2435 0.1577
a 1.42 1.38 1.38
i ai/’Bi Ci_Adi (*11,/,6i ci--Adi ai/ﬁi Ci_Adi
1 0.97887 0.09638 0.94106 0.08703 0.91420 0.06514
2 0.93707 0,04480 0.89862 0.03387 0.88844 0.03521
3 0.92929 0.03583 0.89523 0.03189 0.87727 0.01900
4 0.91825 0.01570 0.88460 0.01338 0.87167 0.00095
5 0.91691 0.01387 0.88354 0.01207 0.86869 0.00369
6 0.91289 0.00475 0.87945 0.00337 0.86722 0.00052
7 0.91239 0.00370 0.87926 0.00308 0.86669 |—0.00075
8 0.91089 —0.00030 0.87752 |-—-0.00123 0.86679 |—0.00055
9 0.91121 0.00062 0.87773 |[—0.00073
A 0.911 0.878 0.867
C0 0.3044 0.3047 0.2647

TABLE V

Reduced susceptibility, ¥ T/(Curie-const.), of the cubic planar classical
Heisenberg ferromagnets, derived from ref. 37. The symbols are defined in
section 3.5; x=JYkT, @=1,32.

s.cC. DiC. &, f.c.ci
X 0.2265 0.1603 0.10367
i a/B c,~Ad, a/p c,—Ad, a /B c;—Ad,
1 1.03582 0.02863 0.97579 0.05080 0.94820 0.03241
2 1.01477 0.01162 0.94558 0.01302 0.93538 0.01802
3 1.02014 0.01029 0.94968 0.02122 0.93026 0.01132
4 1.01485 0.00154 0.94181 0.00867 0.92764 0.00748
5 1.01809 0.00784 0.94306 0.01163 0.92602 0.00484
6 1.01544 0.00291 0.93951 0.00506 0.92494 0.00290
7 1.01604 0.00430 0.93993 0.00618 0.92418 0.00144
8 1.01404 0.00009 0.93787 0.00190 0.92362 0.00027
A 1.014 0.937 0.9235
Co 0.0427 0.1816 0.1552
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b) The correction series (i.e. the second right-hand term of eq.(44b))
evaluated at Y denoted by Co, is small compared to A, especially
for the Ising and Heisenberg models (see table II and III). Since further-
more a is large, the simple asymptotic relation (42) describes the
temperature dependence in the large remperature region: 1 — TC/T <0.3
quite well. In other words, the critical behaviour for these models
may be observed at temperatures as high as 1.3 T = and it can be
measured accurately in the temperature region 10 2 <1 -t<10=1,
Since the values of A may be consideredreliable, the values of CI_A d,
and C_ can be calculated equally reliably. Above T _ the temperature
dependence of the reduced susceptibility can now be easily calculated
by means of eq.(44b). In the temperature region g A b3 1 which
is of interest for critical behaviour, the plot of the precise values of
xT/C vs. I—TC/T hardly departs from the plot of the asymptotic
expression (42). For this reason we have preferred to present some
of the calculated values in the form of a table (table VI). We only
tabulate the results for the three most important models: the classical-
and spin % - Heisenberg models and the Ising s=% model. The values
for temperatures between 4 and 1.01 T, are omitted as they can be
easily calculated from eq. (44b) by subsutuunq C, (given in the
tables II to V) for the second term on the right-hand sxde

In conclusion, we may remark that the method described in section
3.5 to analyse series expected to diverge according to a simple power
law is simple. It has the advantage over the Padé-approximant method
that it is easy to estimate the temperature region in which the behav-
iour is described by the asymptotic temperawure dependence with a
specified accuracy.

3.5.3 The spontaneous magnetization

Using the Ising s=% model, an exact expression for the temper-
ature dependence of the spontaneous magnetization has been deduced
for several two-dimensional lattices*!+42), On approaching T _ the
reduced spontaneous magnetization for the square lattice (s.q.) may
be represented asymptotically by the expression

m(t) > B(l-t2, (51)

where t stands for T/T_, the amplitude B = 1.242 and B =1/8. In the
three-dimensional case one must take recourse to series expansions.
By means of Padé-approximant analysis of long series for the three
cubic lattices, Essam and Fisher??®) concluded that eq.(51) describes

the asymptotic behaviour of m(t) quite well. The value of B is 5/16




TABLE VI

Values of the reduced susceptibillty,’T}(T/C, as a function of 1—t for three models, calculated by eq. (44b) and
the constants from tables II to IV; t= i

xT/C

Heisenberg s=% Ising s=Y% classical Heisenberg

-
|
~

S.C. b.c.c. +Cs «Cu £.6.C

|

881.7 799.4 506.1
454.0 411.7 . . ‘ 266.9
290.4 263.3 . . 173.4
188.4 170.8 . . 114.4
118.4 107.3 . " 73.13
81.90 74.28 i . 51,35
65.35 59.28 . 41.36
42.38 38.46
30,80 27.97
23.97 21,78
18.16 16.51
11.86 10.81
8.67 7.93
6.55 6.01
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for all lattices, and the amplitudes are 1.570 and 1.488 for the s.c.
and f.c.c. lattices respectively.

In order to investigate in which temperature region the behaviour
of the magnetization in the above-mentioned model may be described
by the asymptotic relation(51b) (viz. to an accuracy of say 1%), we
have explicitly calculated the temperature dependence for t < 0.999,
The results for the s.q., s.c. and f.c.c. lattices are shown in fig. 3.
The drawn curve for the s.qg. lattice has been calculated with the
formula given in ref. 51. The values of m(t) for the cubic lattices
have been calculated from the Padé-approximants listed in ref. 53.
The dashed lines represent the asymptotic behaviour given by eq.(51).
We may notice, that the deviation of the asymptotic expression (51)
from the calculated values of the full expression is less than 1%, if
1 -t <10~ 2 for the s.q. lattice, and for the cubic lattices,if 1—-t>3.10~2,
This result indicates that the critical behaviour of this model can be
reached under experimental conditions.

1570
11488

1242

0.2r

015 N 1 il A P i " "
10 2 4681022 4 68107 2 4 681

Fig. 3. The reduced spontaneous magnetization, m(t), of the
Ising s=!4, s.q., s.c. and f.c.c. lattices as a function of 1-T/Te.
The drawn curve for the s.q. lattice is calculated from the formula
given in ref, 41, those for the cubic lattices have been evaluated
with the help of the Padé-approximants listed in ref. 43. The
dashed lines are represented by m(t)= B(l—l)ﬁ, with B=1.242 and

=1/8 for the s.q. lattice. For the s.c. and f.c.c. lattices 5=5/18,
with B=1.570 and 1.488, respectively.
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3.6 Some considerations on the rounding of specific heat curves of
magnetic systems

3.6.1 Imperfections

Specific heat measurements on magnetic systems, performed with
high temperature resolution (AT~ 0.0002 Tc) often reveal a rounding
of the specific heat curve over a temperature interval ranging between
O.OOITc and O.OITC (see refs. 44, 45 and Ch. III). This effect is
commonly attributed to imperfections of physical or chemical origin.
Large regions of imperfections may devide the sample into effectively
many independent structures. This effect may be considered as a size
effect. Another possible cause of the rounding of the specific heat
peak might be formed by a region of stress in the neighbourhood of an
imperfection. A calculation of the variation of the transition point
with stress has been performed in the simple case of the influence of
uniaxial anisotropy on the transition point for a ferromagnet. These
two effects arising from imperfections will be considered quantitatively.

a) Finite size effect. The imperfection may consist in cracks deviding
the sample into small parts containing a relatively small number of
interacting spins. From statistical mechanics it follows that in a
finite system the thermodynamic variables do not exhibit discont-
inuities. In particular the specific heat of such a system has a finite
maximum. For the two dimensional rectangular Ising s = % model
Onsaqerg) has derived the expression

c/R = —0.49451n M (52)

for the specific heat maximum at Tc of an infinitely long strip of width
M spins. For the infinite s.q. lattice the expression has the asymptotic
form

¢/R = —0.4945In |1-T/T_]| (53)

for T near T_. From the relations (52) and (53) it follows that size
effects will occur if

M<T11——t|' (54)

where t = T/T .

Let us consider the specific example that the crackfree regions
are 0.1 mm in diameter and that the spacing of the spins is 7 X. We
then obtain M = 1.5 10+5, so the temperature interval in which size
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effects determine the specific heat is given by |1 —t|< 10~5, How-
ever, measurements performed on the optically and chemically very
pure sample CoClz.GHZO of Skalyo et al.“), which is considered to
represent a s.q. Ising antiferromagnet, show a rounded specific heat
peak for |l —tlcs large as 2.1073,

In the three dimensional Ising s = % model no exact results have
been obtained. Domb"’), however, has obtained the following estimate
for the specific heat maximum

/R =2 [(bM)*~ 1]. (55)

D specifies the dimension, a the power by which the specific heat in
D dimensions diverges, and b is a constant of order unity. Taking
M = 105, and a = 1/8%%) for T>T,_ in three dimensions, we obtain
c/R =175 from eq.(55). This value is about 30 times as high as the
maximum observed for the salt CoCs3Cls, which we consider a fair
representation of the cubic Ising model (Ch. III).

From these results we infer that this size-effect is no plausible
interpretation for the experimentally found rounding of the specific
heat peak.

b) The influence of the domain structure. By the use of a variational
technique, it has recently been pointed out?”) that in a ferromagnet
having uniaxial anisotropy the transition point for spins in a domain,
T , differs from that for spins in a wall, T The proposed

c,domain

c,wall’
expression has the form

- 2K
/Tc,wcll =1 +T (56)

c,domain
where K denotes the uniaxial anisotropy constant and J the exchange
parameter. Let us consider the case that 2K/J = 0.0l1. Even if the
domains are supposed to be very small (0.2 mm length), the ratio of
the numbers of spins present in a wall and in the domains, respectively,
is only 0.05. The resulting spread in T _ predicted by eq.(56) is only
0.0005 'T'C. This spread is about a factor 10 higher than observed, so
that it also fails to account for the experimentally found broadening.

3.6.2 Effect of the volume-dependence of the exchange interaction

As the exchange integral J is strongly dependent on the lattice
parameter, and the energy gain in a phase-transition depends on the
value of the exchange parameter, one may suppose that the thermal
expansion is anomalous in the temperature region close to the phase
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transition. This phenomenon has been observed by several experimental-
ists 48:49) Theoretically, for the Heisenberg model below T Pytteso)
has derived an expression for this anomalous expansion, which is a
linear function of the specific heat of the spin system. Using the
molecular field approximation Bean and Rodbell®!) have derived the
specific heat of a spin system having a volume-dependent exchange
interaction. They derived that the specific heat near T rises steeply,
if the parameter [, describing the volume-dependence J(v)=J(vo)x
[1 +ﬁ(vo~v)/v°)], is increased. If B is larger than a critical value
,BC, the transition changes into a first order transition. The latter
result has also been obtained by Rice52), who has used general thermo-
dynamic arguments.

On the basis of the Ising model, Domb®3) has elegantly derived the
expression

oPy _ (9OP = F“cu-der %)(v 9J(v)/9v)y2
@By = (2B g ~—sten LUy o o 7 @UUBYYT, (5

which may be used to estimate the value of c, required to change the
transition from second order into first order((BP/av)T =0). In eq.(56),
v(aP/av)so“d denotes the reciprocal compressibility for the solid in
the absence of volume-dependent exchange, J(v); the left-hand side
multiplied by v denotes the same quantity for the complete system,
and c, is the specific heat at constant volume. As both E — the
energy gained at T by the ordering process, and the third right-hand
term evaluated at TC are proportional to Tc, the third term outweighs
the second term, independently of T if ¢ is sufficiently large. Let
us consider the specific case of an ionic crystal at very low temper-
atures, with a molar weight of 500 gr. and a molar volume of 250 cc.
Let us assume J(v) to be strongly dependent on volume, J(v) =J(vo)x
(vo/W* T=T_~1K; E_,  =NkT_, c, =10Nk, k denoting the Boltz-
mann constant; and v ( P/‘Bv)so“d=—10ll [cm™2 dyne ], which is
of the order of magnitude observed in the salt KMnF‘354). A fter insertion
of the numerical values in eq.(56) the second right-hand term appears
to be negligible with respect to the third right-hand term. The ex-
pression (56) may now be simplified to

P (V%P)solid 16c T
== § oty (57)

v V=

Substituting the numerical values we obtain
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(g—f)T ~ — 4.10% +2.5 105 [erg/cc?].

We conclude that the system would be unstable if c /R was of the
order 10%. This value is not nearly reached under experimental con-
ditions (IT—TC|> 10—%), This result indicates that near 1 Kelvin
the volume-dependence of the exchange energy has a negligible influence
on the stability of the lattice, and consequently on the sharpening of
the specific heat peak.

3.6.3 Calculation of the rounding of the specific heat peak in the
s.c. Ising s =% model

In spite of the absence of a plausible mechanism to interpret the
rounding of the specific heat peak, it is worthwhile to consider a
simple mathematical model that gives a finite maximum for any sin-
gularly divergent function. In the model it is assumed a) that the
specimen contains regions, R(i), that have slightly different transition
points, Tc(i), centered round T _, and b) that the regions, R(i), have
an abundance, given by a distribution function, d. The specific heat
curve, c(T), in this model may be found from

e{T) = f d(i) ¢ (T, T, (1)). (58)

Hitherto, the only three-dimensional model for which ¢(T) close to
T. has been published, is the Ising s = !% model. In order to perform
the calculation we have chosen the s.c. lattice, since the temperature-
dependence of the specific heat for T close to TC(O.Q < 'T/TC <1) can
be evaluated from ref. 55. We have obtained the simple expression

c(T,T_)/R = —=0.556 In (1 - T/T_) +0.03. (59)

The asymptotic form of c(T,TC) for T>T_, (0.9< TC/T < 1), has been
provided by Sykesss) as

o(T,T /R =1.2337 (1 =(T /T)?)~1/8 — 1.2445. (60)

Eq.(59) obtains for T <Tc(i), while eq.(60) obtains for T > Tc(i). We
have chosen a Gaussian distribution function for d, viz.

exp — (1,-2‘ 5@?2)2
d(i) = : ‘ (61)
i=120 A
S exp — (_1 X step)z
i=—120 3
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where the integer i runs from —120 to 120, F is the half-width in units
'I‘c and step = 0.05 F denotes the partition. The critical temperature
Tc(i) is given by

Tc(i) = T, exp(i x step) . (62)

By using egs.(59),(60),(61) and (62), the specific heat, given by eq.(58)
may be evaluated as a function of the temperature.

T T T T
4

f= 0001
F=0.003 —

F=0.01
fF=002

T/T,
B
04 1 1 A1 1

A L 1 1 1
o9e 098 1.00 102 104

Fig., 4. The specific heat, ¢/R, as a function of T/T. for the
Ising s=% model. The drawn lines represent the theoretical
values (see the text). Specific heat curves of systems having a
Gaussian distribution of transition points of half width 0.001 T,
0,003 T, 0.01 T¢ and 0.02 T, respectively, are represented by
(from top to bottom) the dotted, dashed, chain- and dotted curves.

Fig. 4 shows the s.c. Ising s = % curves ((59), and (60)), and the
curves (58) calculated with F = 0.001 T 0.003 T .o 0.01 T« and 0.02 T
respectively. We may notice firstly that the broadened curves fit
smoothly to the theoretical curves, if ITC—T|> F, and are rounded
for ]TC—- 2 ) |< F. Secondly fig. 4 shows that the maximum of ¢(T) does
not occur at TC, but at a temperature T =1 —F for all the curves with
F >0.01 T.- This result is not surprising, as the s.c. Ising s = %
specific heat curve is strongly asymmetric (see the plot of (59) and
(60)). Therefore, the temperature at which the maximum of the broadened
peak occurs, will be shifted by an amount F in the direction of the
region in which c(T) is largest for a fixed value of ]TC—TI. It is
clear that the maximum of the broadened peak will only occur at T_
if the specific heat curve is symmetric with respect to Tc.
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Chapter 11
EXPERIMENTAL APPARATUS AND METHODS

1 Introduction

Temperatures below 1 Kelvin can easily be obtained by the method
of adiabatic demagnetization. In the Kamerlingh Onnes Laboratory,
this method has been investigated and applied by several workers2:3,4.5),
The experimental apparatus, consisting of a ‘He system, a large
electromagnet, a Hartshorn mutual inductance bridge and a simple
detection circuit has been described extensively by the above-mention-
ed authors. Since the measurements of the singularity in the specific
heat, and those of the magnetization as a function of the temperature
and field, necessitate a high temperature resolution, the detection and
recording had to be improved drastically. In the following sections
we shall describe the sample-holder, and the new experimental devices
and methods used.

2 The calorimeter

The apparatus, used for measurements between 0.05 and 2 K, is
shown in fig. 1. The sample, S, is in close thermal contact with the
magnetic thermometer, T, and the eddy current heater, H. The sample-
heater-thermometer system may be cooled via a superconducting thermal
switch, H.S., which forms a link with the chromium-alum cooling salt.
The guard-salt, G, which is demagnetized because it is in the strong
stray-field of the magnet, serves to reduce the heat input to the inner
glass tube.

The sample may consist of one or two slabs (1 to 2 cms large) of
single crystal or of fine powder. Good thermal contact with the heater-
thermometer is realized by Apiezon-N grease. The single crystals are
tied by thin cotton threads to brass-plates. Powdered samples were
mixed with grease. Thermal contact with the calorimeter is establish-
ed by a brush of about 100 enamelled copper wires of 0.3 mm diameter.
As in most cases the coefficients of thermal expansion of the brass
plates and crystals are different, fairly hard crystals are apt to crack
on cooling. In this case, the thermal conduction below 0.25 K may
become very poor and heat capacity measurements become difficult.
Therefore, below this temperature, most experiments have been per-
formed on powdered crystals. Typical quantities used were: half a
gram of powder for T <% TC, 10 grams of single crystal or powder for
0.8<T/T_<1.4, and about 4 grams of single crystal for T>1.4T .




“ig. 1. Apparatus for measuring heat capacity between 0.03 and
2 K.

chromium alum cooling salt T magnetic thermometer

n Q

heat switch

2}

sample H.
H heater, copper ring S guard salt (Cr-alum)

T.S. thermal shield

At temperatures above 0.8 K the heat capacity of the grease becomes
disturbingly large (325'1'3 ergs Kz/qr.s)),so that single crystals are
to be preferred. However, the bounds indicated depend somewhat on
the value of T,

The heater is made of a copper ring of 12 mm diameter, in which
eddy currents are generated by a coil wound on the outer glass tube.
The inhomogeneity of the field is less than 0.2% for a distance of
I cm along the axis of the coil. The heat generated by the coil per
sec and per unit current depends on the frequency used. The advantage
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of this heater over a resistor clearly lies a) in the absence of leads
that would introduce an additional heat leak, and would increase the
heat capacity of the empty calorimeter, and b) the simplicity of con-
struction. A disadvantage is the necessity for calibration, which is
discussed in section 5.

The thermal switch is formed by a few lead or tin wires of 0.1 mm
diameter and 1 cm length. Tin was chosen for the measurements in the
lowest temperature region. Since the critical field for tin (Hcs 300 Qe)
is lower than that for lead (H_=8000e), the stray field at the sample
position, caused by the magnet used for operating the switch, is lower
for tin than for lead. The external field is formed either by a Nb-coil
in the *He bath or by an electromagnet outside the cryostat.

The cooling salt®) consists of about 10 disks of single crystal of
chromium-potassium-alum with a diameter of 20 mm and a thickness of
5 mm. The crystals are glued to brass plates, which are tightly screwed
to a copper rod of 3 mm diameter. After demagnetizationonly 10 minutes
were needed for precooling most specimens. If no switch is used a
run of measurements can last three hours. Since at temperatures above
0.15°K the time needed to take one specific heat point does not exceed
S minutes, at least 30 points can be taken. The observed rounding
(see Ch. III fig. 4, Ch. VI fig. 5) of the peak in the specific heat facil-
itates the measurement, so that the character of the singularity can
be determined in one run.

3 Temperature measurements and requlation

a) The magnetic thermometer. The specific heat data have been
obtained by magnetic thermometers. At temperatures much higher than
the transition temperature x'‘/x’<<1, so that y_, forthwith denoted
as ¥, may be set equal to y'. In this temperature region the temper-
ature-dependence of the susceptibility of a normal paramagnetic sub-
stance obeys the Curie-Weiss law

¥ = C/T", (1)
with

T =T-6. (2)

In these formulae, C and T" denote the Curie-constant and the Curie-
Weiss temperature respectively. Since for cerium magnesium nitrate
(Ce,Mg4(NO,), ,.24H,0,CMN) € is smaller than 2mK?), and as the
specific heat above about 0.1 K is very small, this salt has been
used as a thermometer for nearly all experiments. The difference
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between T" and T may be neglected for temperatures above 0.15 K.
Doping of the CMN with a few per cent of Cu?* ions reduces the spin-
lattice relaxation time of the Ce-spins to about one fourth!®), Such
Cuztdoped crystals have been used for nearly all the experiments.

A thermometer that is aboutten times as sensitive as CMN is cobalt-
cesium-tutton-salt (CoCsZ(SO4)2.6H20, called CoCs-sulphate). The
g value in the K3 direction®’ of this salt is about 5.5'9), Since & in
the K3 direction is only 0.03K10), the CoCs-salt may be useful as a
thermometer. We have used it for the determination of the character of
most sinqularities. For the CoCs-tutton-salt we have determined the
magnetic contribution to the heat capacity per gram to be about 1000
times as high as that of CMN, so that CoCs-sulphate cannot generally
be used as a thermometer. The large thermal relaxation time found
below about 0.3 K puts another limit to the applicability of this thermo-
meter.

b) The bridge circuit. The real and imaginary parts, x' and x'’, of
the dynamic susceptibility N ™ x'—1ix"", have been determined by
means of a Hartshorn!!) mutual inductance bridge that has been mod-
ified by several workers!Z/1) A set-up, showing the essential parts,
and including recent improvements in the detection and recording
system, is drawn in fig. 2. The sample, S, is placed in one of the two

/
’ N — L}
|
pr-Ms s.
\x/ @ OscC. Scope
A S ]
1
pr-M; s
L tock=<1n recorder
R 220 Hz
r r I
! 2 det
P~ B
/7)77 L4 stabilizer :
osc - A J
Fig. 2. Schematic diagram of the Hartshorn bridge and detection
system,
Ml mutual inductance formed by the coil system
M2 variable mutual induction
S sample

R, Tty network for compensation of 4.c. losses in Ml'
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(oppositely wound) secondary coils forming a mutual inductance, M
with the primary coil. The voltage of the secondary of M, can be re-
solved into two components, one of which is in-phase with the voltage
of the secondary of the variable mutual inductance, M,, the other
differing 7/2 radians from that of the former. The first component can
therefore be compensated by setting M, =M,, the second by tapping a
suitable voltage from a resistive network (rl,rZ,R) carrying the primary
current. The two components can be visualized independently by phase-
sensitive detection and displaying the two components on an oscillo-
graph.

If Mo denotes the value of Ml in the absence of a specimen, and if
R, ¢ stands for r,1,/(r, +1,+R), then the dynamic susceptibility, x_,
is found from: X' = (M,—-M_)/q (3), and y'' = Re“/a;q (4), where M,
denotes the value of Ml in units of 3.100(*0.003)uH. M, and g can
be derived from a plot of M, vs. 1/T. The frequency used was 220 Hz,
which enabled us to maintain a fast response (=1 sec), while using a
high Q-factor (=300), without undue heating the calorimeter by eddy
currents. If the Hartshorn bridge is replaced by an a.c. Wheatstone
bridge, a resistive thermometer can be used. Resistive thermometry
has been used in the magnetization experiment on Cu(NH4)ZBr4.2H?_O
(Ch. V).

c) The stabilizer. In chapter V measurements will be reported on
the magnetic isotherms of the salt Cu(NH4)zBr4.2H 2O. Especially near
tke critical point (Tc= 1.74 K), the temperature had to be kept con-
stant within a few tenths of a millidegree. A stabilizer was built!?3)
for this purpose. Using this equipment, a short-term (=5 min) temper-
ature stability of 10~° K was achieved at 1.75 K.

2xBCz N 2xAC128 2xAC128 2xASZ18
—P -29V
P
to power
2k supply

sallr
A - frn K
det 10k "
)% ) Bk2 {
200
2y l\—¢ to heoter

:'—OC‘—«# 6V,200 mA
2x7 []ua[‘] EIJ
sW

pov

Fig. 3. Diagram of the unit used for the temperature stabilization.
The input d.c, voltage varying between 40.5 to —0.5V is derived
from the detector., The maximum output current is 200 mA, the
voltage being 6V.

TI e

-7




47

The principle of operation is straightforward. In a heater resistor
(near the specimen) heat is produced by a current that is proportional
to the off-balance d.c. voltage (of the proper sign), derived from the
detector. Fig. 3 shows the diagram. The signal, VAB varies between
—0.5V and +0.5V. The commutator, C, chooses the proper sign. The
first stage (2x BC211) serves to transform the impedance. The second
stage (2x AC128) amplifies the signal to about 6 V. The final two
stages (2x AC128, and 2x ASZ18) amplify the current, available for
heating, to 200 mA, the maximum voltage still being 6 V. If VAB >0,
a current runs through the heater; if Vaip <0, no current passes the
heater.

A variable a.c. current proportional to the available d.c. current
may in some cases be welcome for temperature requlation, because
no leads are needed in the former method. Such an a.c. current can be
easily obtained, if the varying d.c. current is used to light an electric
bulb. The light of this bulb may very the resistance of a photosensit-
ive resistor. If this resistor is placed in a circuit containing the heat-
ing coil and an oscillator, a.c. heating can be used for temperature
stabilization. This device can be used for any isothermal measurement
performed in a apparatus that makes use of adiabatic demagnetization,
e.g. for susceptibility measurements near a critical point below 1 K.

4 The heating circuit

Fig. 4 shows the heating circuit. The current through the heating
coil, H.C., also runs through a standard resistor of 10.00 Ohms, which

| marker

kiock
stondard
HC ¢ resistor
AC —=-DC
convertor
osc 2 10 20
350 Hz
digital
voltmeter
T

Fig, 4. The diagram of the heating circuit and block-diagram of
the measuring system. H.C. denotes the heating coil.
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is doubly wound in order to reduce the self-inductance. The a.c. volt-
age across this resistor is converted to a d.c. voltage by means of a
Solartron a.c.-d.c converter (LM 1219). This d.c. voltage is displayed
on a Solartron digital voltmeter (4 digits, type LM 1520). The primary
oscillator, denoted as osc. 1, operating at 290 Hz, only produces a
current through H.C., if the switch is in position B. The relay switch,
activated by the manual switch, closes the heating circuit of osc. 1
and starts the mechanical clock (Jaquet, type 309d) nearly simultane-
ously (error about 1 msec). The reading accuracy is a hundredth of a
second. The over-all inaccuracy is about 0.02 sec, which has been
checked by means of a 100 kHz oscillator and an electronic counter.
If the variable resistor of 15 Ohms matches the impedance of the heat-
ing coil plus standard resistor, and if the switch is in position A, the
current can be adjusted before the heating period is started.

The secondary oscillator, osc. 2, operating at 350 Hz, maintains
a constant current through H.C., which serves to compensate the heat
leak through the switch. If we use this procedure, the temperature range
of operation of the thermal switch is considerably extended.

S Errors and calibration

The main source of random errors lies in the inaccuracy of the
temperature determination. The noise level of the amplifier is 10~7v
across an input impedance of 100 kOhms, corresponding in our coil
system to 0.2% of the signal of 1 gr. of cerium magnesium nitrate at
1 K. The noise level of the whole bridge circuit, however, is much
larger in most cases. This level depends e.g. on vibrations of the
thermometer with respect to the coil, sudden temperature changes
caused by gas leak, and noise originating from fluctuations in the
mains power supply. The maximum quantity of crystal that can be
mounted is about 12 grams. It may consist of three slabs of 0.5x1.5x2.5cm?.
In the case of a low noise level such a quantity of material gives a
temperature resolution, which can be described as fractional and
amounts to 5.10~% for cerium magnesium nitrate and 5.10—° for cobalt
cesium sulphate. For a cobalt cesium thermometer this corresponds
e.g. to an error of 5% in the specific heat for points taken over an
interval of 0.5.10—3 K at 0.5K. Fortunately, the highest accuracy
obtainable was sufficient to determine the character of the singular-
ities in the specific heat of CoCs:;Cl5 (Ty =0.527 K, see Ch.III), and
of CuK2Cl4.2H 2O (Tc=0.88 K, see Ch. IV). For temperatures below
0.3 K, a thermometer with a higher temperature resolution might provide
us with a better analysis of the specific heat singularities namely
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for GdCl3.6H20 with Tn =0.185 K. Outside the peak region, however,
a smaller amount of thermometer crystal has to be used, as in this
case the heat capacity of the thermometer becomes important. General-
ly at temperatures below 0.1 K for cerium magnesium nitrate, and
below 0.5 K for cobalt cesium sulphate, the magnetic contribution
becomes large. At temperatures above 0.8 K the contribution of the
lattice to the specific heat becomes important. Therefore we have to
deduce the size and type of thermometer from a preliminary experiment.

A second source of errors is the inaccuracy of the extrapolations
of the temperature curves before and after the heating, which strongly
depend on the thermal relaxation time of the specimen, and on the
heat leak. At temperatures below 0.15 K and above 0.6 K these errors
may become the most important ones. Random errors, arising from
inaccuracies of the clock and the measurement of the current, are
negligible as they amount to less than 0.5%.

Finally, a systematic error may be introduced by the calibration
of the eddy current heater. As a calibration, the heat capacity of 100 mg
of Tb metal was measured in the temperature region between 0.1 and
0.4 K, where the heat capacity of the empty calorimeter is smallest.
This measurement was compared with the measurement of Van Kempen
l.“), the accuracy of the latter being a few percent. The entropy
change per gramion calculated from the measurements of the magnetic
specific heat of e.g. the salts gadoliniumsulphate octohydrate and
gadoliniumtrichloride hexahydrate (see Ch. VI) amounted to 98,5% and
103% of RIn(2s+l), respectively. The deviation of the experimental
values from the theoretical value is compatible with the quoted accur-
acy of the calibration of the heater. A recent measurement of the
specific heat of Tb metal by Anderson e.o.lS), differs a few percent
from those reported by Van Kempen, the points at 0.05 K lying a few
percent higher and the points above 0.15 K lying somewhat lower.
On the average, in the region between 0.1 and 0.3 K, the curve of
Van Kempen lies 2 to 3 percent higher than that of Anderson. However
the agreement within the error of calibration of the entropy yield in
the above-mentioned salts with the theoretically expected values
indicates that the calibration was correct. Since we have used Tb
metal from the same lump as Van Kempen, the small discrepancy be-
tween the results of Van Kempen and Anderson might be attributed to
different heat capacities of the samples, due to differences in purity.
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Chapter III

SPECIFIC HEAT SINGULARITIES OF THE ISING
ANTIFERROMAGNETS CoCsgClg AND CoCsgBry

1 Introduction

CoCs Cls and CoCs Br are attractive for studying thermodynamic
and magnetic 1) propernes for the following reasons:

1. the crystallographic structure is knownZ?:3) to be relatively simple
and shows that all Co ions are equivalent. When the tetragonal
structure is simplified in one detail concerning Cs ions, one may
view the Co ions as being arranged in a simple Bravais lattice,
which is a slightly elongated cube.

2. electron paramagnetic resonance data4+®®) show in both salts that
the Co ion has, as far as its lowest doublet is concerned, a very
anisotropic g-value and consequently these salts are probably fair
examples for the Ising model. In this case one has effective spin
%2 and a uniaxial g-tensor.

3. these compounds are chemically stable and single crystals can be
grown relatively easily.

When it was reported by Van Stupele” that these compounds obey
Curie’s law at temperatures as low as a few Kelvin we initiated an
investigation on the properties of these salts below 1K3). In view of
the interest in the properties of the three-dimensional Ising modelg),
we studied in particular the critical behaviour of these salts in the
vicinity of the transition point. Since the Ising model provides a relat-
ively large amount of numerically accurate predictions!®’ on thermo-
dynamic quantities, like the short-range ordering entropy and energy,
it is interesting to apply this model to various substances. In this
chapter we will be mainly concerned with the heat capacity, energy
and entropy of CoCs Cl and CoCs Br Experimental results on the
magnetlc properties of these crystcls have been described by Mess et
al.! , which will be used extensively throughout this chapter.

2 Crystal structure and electron paramagnetic resonance data

The crystal structure of CoCs C15 has been determined by Powell
et al.2) and in more detail by Flgg1s et al.?). The dimensions of the
tetragonal unit cell are at room temperature 9.219 +0.005 R in the a
and b directions and 14.554 +0.007 R along the c axis; the unit cell
contains four molecules of CoCs Cl and this corresponds to a density
of 3.411 at room temperature.
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Fig. 1. Crystal structure unit cell of CoCs3C15

The chlorine tetrahedra at position A and B are rotated around
the ¢ axis with respect to each other. Plane II differs from plane
IV by a mirror reflection. The parallelepiped indicated by thick
lines is the simple Co-Bravais lattice mentioned in the text.

Ve = 7,277 & a=09.219 R Yay2 = 6.52 &

One may divide the unit cell into two halves (fig.1) by a plane
parallel to the ab axes (III in fig.1). The halves are equal except for
a rotation of the CoCl4 group and mirror reflection of Cle_1 groups.
Since the Cs ions will probably not participate significantly in the
exchange interaction between Co ions we will henceforth consider the
parallelepiped, indicated in fig. 1, as the simple Bravais lattice for
the Co ions. The positions of all Co ions can be obtained from trans-
lational operations of this Bravais lattice which has the dimensions
Yav2 =6.519 & and c/2 =7.277 & and contains one CoCs3Cl5 molecule.
This Bravais parallelepiped, therefore, is not very different from a
cube and for our discussion we will regard the Co ion as having six
nearest Co neighbours in a simple cubic (s.c.) environment. It may be
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noted that the immediate surroundings of the Co ion consists of a tetra-
hedron of chlorine ions, having predominantly cubic symmetry. The
structure of the CoCs3Br5 is isomorphous to that of the chloride, while

the unit cell dimensions are a=9.619 +0.003% and ¢ =15.163 £0.003 %,
which gives %av2 =6.801R and ¢/2=7.582R at room temperature and

a specific density of 4.06.

E.P.R. measurements®) on both C0C53C15 and CoCs Br5 were ob-
tained at 77K and, using pulsed fields, also at 4KS®); Temperature
variation did not yield any significant change in the results of measure-
ments on the constants in the spin-hamiltonian, which implies the
absence of a phase transition to a lower symmetry when cooling the
crystals. The spin-hamiltonian for the Co ion (S’ =g-) is given by the
expression:

1 /
H=D {(s,)? S0} 4 g BH_S, +9,A(H, S, +H S1) +
ASLI, + B(SLI, +8,1). (1)

From the results it can be deduced that the fourfold degeneracy of
the 4A2 ground state!!) of the Co ion in a cubic field is removed by a
tetragonal distortion due to a small elongation of the chlorine tetra-
hedron along the ¢ axis. Further, it is found that the S’z - ig- doublet
is lowest, where z coincides with the crystalline ¢ axis for all ions,
both in the chloride and in the bromide.

The experimental values for the constants of the spin-hamiltonian
are given in table 18:12) From the values of D(for instance 2D/k =
—12.4K in the chloride) we conclude that at temperatures of about 1 K

TABLE 1
=1 o e S
Dlem™!] T, gy Al10™%em™1] [B[10™%cm™!]
CoCs,Cl, | —4.30£1% 2.40%1% 2.30t1% | 23.6+0.42 10,0%0.4
CoCs ,Br, | ~5.3422% 2.42 2.32 32.0£0.6 21.7+1.8

one deals practically exclusively with the 8% = +3 doublet; henceforth
we will assign an effective spin S =%, g//=7.29 and q_L=O to this
doublet,

The fact that the ground doublet is fairly accurately described by
S'z =i%- wave functions (implying gy =0) is also corroborated by ob-
servations on S’ =3 -.S'z=—'/z transitions. Such transitions were ob-

served if the*e;ternal field made a small angle with the ¢ axis, but
vanished for H// c.
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The occurrence of q_L=O in combination with uniaxial symmetry for
all (equivalent) Co ions makes these salts very interesting for low
temperature investigations. Anticipating that exchange interactions
are small compared to the energy difference, A =2D, between the two
doublets, we may consider the exchange to be confined to the z-com-
ponents of the spin. Denoting the maximum and minimum energies for a
pair of interacting spins by +J' and -J' 10), the Hamiltonian for this
system takes the form

g _% iijsfsjz (S =%). (2)
1<

If the exchange interaction energy were much larger than A, we would
consider a Heisenberg hamiltonian e.q.

N

‘ (3)

1.4
1<j

H =—I*‘2JSi.Sj for S
This gives the relation J =§-J'.

3 Experiment

The experimental arrangement is described in Chapter II, section 2.

The crystals used for the preliminary measurements were drawn from
the melt. Those used for the more precise measurements have been
obtained from an aqueous solution of CoCl2 and CoBr2 respectively,
with an excess of moles CsCl.

A single crystal of CoCs3C15 mounted between brass plates is
liable to fracture on cooling, which deteriorates the thermal contact.
Therefore, we have preferred to measure the specific heat singularity
on a powdered sample. The sizes of the crystals are estimated to be
of the order of 0.1 mm.

4 Results

The specific heat, Cqqn of purely magnetic origin, is plotted for
C0C53C15 in fig. 2a and for CoCsaBrs in fig.3. It is seen that sharp
lambda type anomalies occur at TN=O.52Kfor the chloride and at
Ty= 0.28 K for the bromide. While the maxima in the two curves are
approximately equal, the forms of the curves differ appreciably. In
order to obtain Cmaqn and to deduce values for the entropy, S, and
energy, E, a few corrections and approximations have to be applied.
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Fig. 2a. Heat capacity Cmuqn of CoC33C15 in joules/mole K

versus temperature T.
Fig. 2b. Curve of fig, 2a plotted on a linear C-scale and includ-
ing the Schottky anomaly (dotted) due to doublet 2D/k=—12.4K.
The T3-contribution of the lattice is given by the difference of
the dashed and the dotted curves,

a. At temperatures above 1K, particularly for the chloride, contri-
butions to the specific heat of the next higher doublet (at 12.4K) and
also of the lattice have to be subtracted. These contributions were
determined in a calorimetric experiment”) between 1.5K and 7K, and
were found to amount to 5% at 1K and are insignificant for our data
below 1K (fig.2b).

The results in the chloride at about 1 K must be considered to be
relatively imprecise, due partly to inaccuracy in our measurements and
also to the applied corrections. It is therefore appropriate to compare
these results with the b/T? heat capacity at temperatures between
1.3 and 4K determined by means of adiabatic susceptibility measure-
ments at high frequencies (as mentioned in ref.l. A value of b =0.163
joule K/mole is found for the chloride and we will use this value for
extrapolation of Cm<1qn starting at T =1.1K. This portion of C
contributes only 1% to the total entropy.

b. A possible contribution to the heat capacity may arise from
hyperfine structure (h.f.s.) interaction at low temperatures. This con-
tribution, Chfs/mole, can be calculated in the magnetically ordered
state according to

magn

2
Cphe/R = 211+1) 24— (4)

4k 21?2

hfs
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Fig. 3. Heat capacity cmaqn of CoCs3Br5 in joules/mole K
versus temperature T,

where A/kis 0.0034K in the chloride. Thisleads to C, ; /mole = 1.13T°2
mJ/K and may therefore be neglected except at the very lowest temper-
atures where, however, nuclear spin-lattice relaxation times may be-
come very long.

c. Evidence for lack of temperature equilibrium between lattice and
electron spin system is found at the far end of the low temperature side
of the peak in both salts, particularly in the bromide. Thus the lowest
two isolated points in the curve of fig. 2a have to be considered
as relatively inaccurate. Hence we have extrapolated the curve for
the chloride downwards starting at T =0.23K with the aid of a mole-
cular field approximation for the specific heat. For this purpose we
find that the specific heat at T =0.23K would require a molecular
field, Hm, at this temperature of about 2500 Oe. On the basis of this
value of H ~we calculate for the entropy yield below T =0.24K a
value of 0.018 R.

Using the above extrapolations we find for the total entropy yield
in the chloride AS =0.698 R, compared to Rln2 =0.693R. A similar
procedure may be applied to the bromide. Here the T~ 2-dependence at
the high temperature side of the peak is much more clearly establish-
ed. Further, at the low temperature side the specific heat has been
measured to low values, so that contributions from the extrapolated
portions of the curve are small. We find for AS in the bromide 0.678 R,
which is 2% less than Rln 2, and this has probably to be attributed to
the mentioned lack of spin-lattice equilibrium.




4.1 The determination of TN

From the calculations for rounding the specific heat curve in a
model which assumes a Gaussian distribution of transition points, as
given in Ch. I section 3.6.3, it follows that the maximum of a rounded
curve may only be identified with the transition point, if the curve
near T _ is symmetric with respect to T — Y

For the bromide this condition is almost fulfilled so that we may
identify the transition point, TN, with the temperature at which the
specific heat curve attains a maximum.
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Fig. 4. The logarithm of the specific heat, Cmagn/R, for
CoCs3Clsg is plotted as a function of T/TN. TN=0.527 K accord-
ing to the arguments given in the text. Curve | represents the
theoretical result for the s.c, Ising s=% lattice (ref. 20) for
T < TpN. Curve II: idem for T > Ty (ref. 21). Curve III: the the-
oretical curve for T < Ty calculated for a Gaussian distribution
of transition points, with halfwidth F=0,014 TN (see Ch. I sec-
tion 3.6.3. Curve IV: idem for T > TN.

For the chloride the specific heat curve is strongly asymmetric
(fig.4), so that the maximum is shifted towards a lower temperature.
The critical temperature may nevertheless be located fairly precisely
by the following considerations. As far as the ground doublet is con-
cerned, this salt may be expected ‘o behave according to the Ising
model (q// >>qy). If in first approximation Ty is chosen as the temper-
ature at which the specific heat attains a maximum (Tmml =0.523K),
an evaluation of the critical parameters (as defined in table II) indicates
that the ordering is three-dimensional. As mentioned in Ch. I section
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TABLE 11
Thermodynamic C0053C15 CoCs3Br5 Ising Ising Ising Ising
quantity exp exp S.C. b.c.c. s.square triang.
(Sw—Sc)/R 0.106 0.357 0.133 0.107 0.387 0.363
(SC —So)/R 0.593 0.321 0.560 0.586 0.306 0.330
(Sm—-Sc)/R In2 0.153 0.515 0.192 0.155 0.557 0.526
—E(_/RTN 0.173 0.51 0.218 0.169 0.623 0.549
(Ec —-Eo)/HTN 0.459 0.27 0.447 0.460 0.275 0.258
Etot/RTN 0.632 0.78 0.665 0.629 0.881 0.874
—Ec/Etot 0.272 0.65 0.328 0.269 0.706 0.666
Thermodynamic quantities (entropy S and energy E related to short-range order
above the critical point TN, and to long-range order below TN' The theoretical
predictions have been taken from ref. 10.

3.6.3, the simple cubic lattice is the only lattice for which explicit
formulae describing the critical behaviour of the specific heat are
available. As the critical behaviour does not depend sensitively on
the specific structure in a given dimension“), a calculation of the
rounding for the s.c. lattice may be supposed to represent the essential
features of the ordering in three-dimensional Ising s =) systems. By
using the formulae and the method of computation given in Ch. I sec-
tion 3.6.3, we obtain the result that is presented for T <Ty by the
drawn curve III in fig. 4, and above Ty by curve IV. We have used a
Gaussian distribution of transition temperatures with a half-width of
0.014 Ty, giving the same maximum as the experimental curve. As one
may notice from fig.4, the overall temperature dependence is fairly
well described by the assumed model.

It is clear that the maxima of the curves do not coincide with the
critical temperature, but are shifted about 0.7 to 1% towards the low-
temperature side. However, the calculated curve is slightly broader
than the experimental curve, hence T, is not yet fixed accurately.
Therefore, in a second approximation we have determined TN more
precisely (at 0.527 £0.001K), by assuming that the high-temperature
side of the experimental curve coincides with the prediction15 for
the b.c.c. curve for T > 1.04 T . The use of the b.c.c. model is justi-
fied since the values of the critical parameters, (given in table II),
obtained with Ty =0.527 K, strongly suggest that the properties of
CoCs3Cls may be described by a statistical model of 8 effective
nearest neighbours in three dimensions.




4.2 The critical behaviour

The experimental points may now be represented as a function of
| T/Ty- In fig. 4 the logarithm of the magnetic specific heat Cma n/R
is plotted versus T/TN. The dashed curves I and II represent the
theoretical predictions for the s.c. Ising s =% model mentioned in the
preceeding section. The drawn curves IIl and IV represent the rounded
‘ theoretical curves for T below and above Ty respectively. In figs.5
and 6 the temperature is displayed in the form 1-—(T/TN)’, where
‘ s=+] for T <Ty and s=—1 for T > Ty In fig.5 we have plotted the
| results on a logarithmic scale. The curves I to IV have already been
| introduced in fig.4.
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Fig. 5. Heat capacity, n/R, of CoCs3Clg plotted on a
logarithmic scale vs. l—( /%N)S, with s=41 for T< Ty, and
s==1 for T> TN. Curves | to IV are defined in the caption of
fig., 4. The dotted line V represents the asymptotic behaviour
according to formula (5) for T < Ty, with B=0.9540.05 and @’=
=0.1940.04. The dotted line VI represents the power-law behav-
iour for T > TN with B=0.07040.05 and @=0.50+0.05.

We notice that the theoretical curves III and IV agree fairly well
with the experimental results over the whole temperature region above
and below T . On the low-temperature side, in the limited region
10°% < 1= T/T <10~!, a power law dependence of the form

/R =B(l Ty BT E (5)
T— '

maqn

with B =0.95 £0.05 and & =0.19 £0.04 describes the experimental
results reasonably well. This is shown by the dotted line V in fig.5.
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On the high-temperature side the experimental behaviour in the region
3.10~8 < I—TN/T <10~! may be expressed by a power law (5), with
the constants B =0.070 £0.05, and a =0.50 £0.05. This is shown by
the dotted line VI in fig. 5.

As to the values of the constants B and a for the high-temperature
side, we mention that they are different from those published in prev-
ious analyses of the data!®:17); B =0.042 and @ =0.75. This difference
arises mainly from the choice of T as 0.527K instead of Ty =0.523K
in refs. 16 and 17 (see section 4.1). A difference of minor importance
is formed by the choice of the temperature axis: 1 —TN/T in conform-
ity with formula (5) given in theoretical publications, whereas in refs.
16 and 17 |1 =T/Ty | was used.
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Fig. 6. Heat capacity Cmu /R of CoCs3Clg plotted on a semi-
logarithmic scale vs. "197"1"N)s with s=+1 for T< TN, and
s==—1 for T > TN. Curves I to IV are defined in the caption of
fig. 4. Line V represents the asymptotic behaviour for T< TN
according to formula (6) with A=0.35+0.03 and B=0.64+0.05.

In fig.6 the results are plotted on a semilogarithmic scale. The
temperature dependence on the low temperature side, in the region
10—2 <1=T/Ty< 10~!, is equally well described by a logarithmic
function. This is shown by the relation

Cragn/B=—Aln [1-T/T|+B (6)
with A =0.35 £0.03, and B =0.64 £0.05.
Similarly for the bromide in the region 10~%< 1~ T/T < 10—l
(T:<T ) we observe a behaviour described by the loqanthmlciunctlon
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Fig. 7. Heat capacity of CoCs3Brg plotted on double logarithmic
scales (right-hand side) and on a semilogarithmic scale (left
hand side). A T<TN, @) T)TN. The straight lines correspond to

(T>Ty) C,__. /R=—0.55In|1-T/Ty|-0.83

N) magn

and

C, an/R=—0.441n|1-T/Ty|+0.103

(T< TN) magn

(6) with A=0.4410.02, and B=-0.19%0.01., In the region 10~2%<
1-T/T<10~}, we obtain A=0.55+0.02, and B=—0.80.1.

5 Discussion
Dk COCS3C15
5.1.1 Features of the magnetic ordering

From the data (in table II) on entropy and energy it may be seen that
the experimental results agree fairly well with the Ising s =% model
predictions for a body-centered-cubic structure with coordination
number z =8. However, in view of the crystal structure which closely
resembles a simple cubic lattice (z =6), this result is not likely to
have much significance. Therefore, we adopt z =6 and regard the
tendency of the experimental results towards a higher coordination
number (z =8) as originating from dipolar interactions and possibly
also next-nearest neighbour (n.n.n.) exchange, both of which increase
the effective value of z.

Concerning the Heisenberg model, theoretical values for the thermo-
dynamic quantities of table II are available only to a limited extentl‘”,
but the entropy and energy involved in short range ordering are appreci-
ably larger and do not correspond to our experimental results. The
sharp descent of the specific heat curve at the high temperature side
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of the peak is one of the most remarkable features of the experimental
result. Further, the low value of the critical temperature both in the
chloride and in the bromide suggests that the exchange energy is
small compared to the doublet splitting A =2D. Hence at low temper-
atures the exchange is very anisotropic and this justifies the use of
the Ising model, including equation (2).

Results on susceptibility measurements below 1K, described in
ref. 1, show that Co(353C15 becomes antiferromagnetic, which is further
also found from measurements on the existence of a phase boundary
between the paramagnetic and the ordered region below TN. From z=6
and Ty =0.52K a Curie-Weiss constant is to be expected, for instance
on basis of a molecular field calculation, of at least a few Kelvin.
The experimental result (given in ref. 1) however, is & =—0.24 £0.02K.
Such a low value of & can be explained by assuming that 2 of the 6
nearest neighbours have an exchange coupling of the ferromagnetic
sign. In view of the crystal symmetry, these two ions have to be found
in the direction of the ¢ axis. The most simple model in which the
above arguments are incorporated, consists of two interpenetrating
square sublattices in the ab plane with antiparallel nearest neighbours
and ferromagnetically coupled linear chains along the ¢ axis.

5.1.2 Exchange

The total energy gain in the magnetic ordering process (cf. table II)
equals 0.333R K, from which one derives with the aid of E/R =%zJ'/k
and assuming coordination number z =6 for the number of nearest neigh-
bours in the lattice, that the effective exchange constant J;“/k =0.111K.
In order to obtain the pure exchange constant, defined in eq. (2) the
above result has to be corrected for dipolar coupling. The dipolar
interaction in the fully ordered state can easily be calculated since
qJ_=0. The latter circumstance means that only the z component of the
dipolar field is relevant, which is given by

z
; glJBSi
% 3
i

HZ

ain (1-3cos?6) (7)

i=2 ) 3 i
where 91 is the angle subtended by the z axis and the line connecting
ion i with the origin(i=1). A computer calculation for the nearest
1654 neighbours extending to a radius of 50 R, resulted in a dipolar
field of 5200e, assuming 4 antiparallel n.n. in the ab plane and 2
parallel n.n. along the ¢ axis. This number fluctuates less than 10%
when the number of neighbours is reduced by decreasing the radius
of the surrounding sphere down to 10X in steps of 5R. The arrange-
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ment of the 6 nearest neighbours mentioned above provides an ex-
ceptionnally large contribution of these neighbours to the dipolar
field, namely 870 Oe. As to the ordered state, this dipolar field does
not detract much from the Ising model in our case: because of q,=0 the
dipolar interaction has not only the same formal hamiltonian as the
exchange interaction

i)
H =-‘Sj—d;51'—s55; S jr;ji*qf/#gsfs;(l —3cos?6,)(S=%),  (8)
i 15

but also is mainly confined to n.n. interaction and does not obtain any
significant contributions from distant ions r > 10 R).

The value of J! ¢4 corresponds at T=0 to a molecular field of 2780 Oe.
Subtracting the dipolar.field gives an exchange field of 2260 Oe, which
corresponds to an average exchange constant of

|37k |= 0.0905 or |3/k|=0.0201 K.

Recent results of Van Stapele, Henning, Hardeman and Bongers !8) on
electron-paramagnetic-resonance of exchange coupled Co?* pairs in
Csaanls show that the exchange interaction between n.n. in the ab plane
has the antiferromagnetic sign (J/k =—0.0204 K) and the exchange inter-
action between n.n. along the ¢ axis has the ferromagnetic sign (J/k =
=+0.0154K). These exchange constants, averaged over 6 n.n. give
]Jav/kl=0.0187 K, which is only 7% below our value. The difference
may be due to next-nearest-neighbour-exchange(n.n.n.), dipolar inter-
actions and, to a small extent, to the difference in lattice constants
between the cobalt- and zinc compounds. It seems safe to conclude
that n.n. interactions predominate in the chloride and that we may
neglect n.n.n. interaction except for (n.n.n.) dipolar interaction. The
dipolar field from all but n.n.amounts to —350 Oe at T =0 and decreases
in importance at higher temperatures, e.g. it contributes only about 1%
to the heat capacity at high T.

5.1.3 Singularity

For the critical behaviour of the specific heat it is important in
our case that theoretically the Ising model does not discriminate be-
tween antiferromagnetic and ferromagnetic coupling. Further, in
CoCsaCl5 the magnitude of exchange and dipolar interactions com-
bined happen to be approximately equal for n.n. in the ab plane
and for n.n. along the ¢ axis: taking E.P.R. data in ZnCsaCl5 mention-
ed in section 5.1.2, one calculates
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ex

ye =¥, + 75, = +0.120k K, (9)
and

b _ b ‘ab  _
Job = 32 + J3p = -0.122k K. (10)

where J'" is the exchange constant in (J'/SZ) §,S and J'd1 is the
coupling constant in eq. (8). Hence ‘J":l: IJ“bl and oCs3C15pmay be
considered a fair representation of a simple cubic (i.e. coordination
number 6) Ising system in the study of the specific heat singularity.

For temperatures below the critical temperature, the prediction of
the behaviour of Cmgn as a function of T is imprecisely known be-
cause of the slow convergence of the low-temperature specific-heat
series. The power @ in the divergence of the specific heat (see formula
(5)) is estimated!?) as a’ =0.07 :O'éi. Such a low power law may look
deceptively like a logarithm (see formula (6)), especially in the temper-
ature region, where the constant term B is not negligible with respect
to the first right-hand term of (6). This may be illustrated by the com-
parison of the two different asymptotic relations (curve V in fig. 5,
and curve V in fig. 6) which describe the experimental behaviour
equally well in the same temperature region. This result justifies the
use of the logarithmic temperature dependencezo) for the calculation
of the specific heat near T . Outside the temperature region in which
the specific heat curve is rounded (T/Ty <0.98), the theoretical result
(curve I in figs. 4, 5 and 6) gives a good description of the experiment-
ally observed temperature dependence of the specific heat.

Above Ty the theoretical predictions for the cubic Ising s =%
lattices 21+15) gre very precise. By using results of the form given in
Ch. I section 3.5.1, we have explicitly calculated the Cmaqn/R vs. T
predictions for the temperature region studied (curve II in figs. 4, 5
and 6 for the s.c. lattice). It may be noticed that agreement between
theory and experiment is very good up to the region in which the round-
ing occurs (1 <T/Ty <1.02). The tendency towards a coordination
number 8 viz. a lower specific heat above Ty than for z =6, is evident
from table II and from the figs. 5 and 6.

One may observe from fig. 5 that the Ising model prediction for a
s.c. system in which a spread in transition points is assumed (irre-
spective of the physical origin, see e.g. Ch. I section 3.6) may be
described by a power law with a as large as 0.50 for a large temper-
ature region (0.006 <1—T /T <0.02). Secondly we may remark that
the critical exponent, @ =é—, involved in the singular part of the formula
describing the temperature dependence of the cubic Ising models, will
only be observed in a plot on a logarithmic scale if l—-TN/T is of the




65

order of 10™8, Clearly, however, this region lies outside the experiment-
ally accessible range.

We conclude that it is experimentally found that a three dimensional
Ising system has an extremely sharp peak in the specific heat for
T>Ty and that at the low temperature side probably a logarithmic
dependence predominates. It may be of interest to study further critical
properties in this salt, notably the sublattice magnetization.

5.1.4 Specific heat below Ty

Baker??) has calculated the specific heat curve for temperatures
near TN and also appreciably lower than TN in case of a simple cubic
Ising spin system. From his curve we calculate, taking J'/k =0.12 K
from the previous section, a theoretical curve, which is shown in fig.8.

o Tiry o5 '
’ i AT

Fig. 8. Heat capacity of CoCs3Clg below TN plotted versus
T/TN. The circles denote experimental results. The dotted
curve represents molecular field theory, the drawn curve gives
the result of Baker’s calculation on a simple cubic Ising model.

When the experimental data are plotted on a reduced temperature scale,
T/TN, there is reasonable agreement, at least when contrasted to
molecular field theory. (The use of molecular field theory for extra-
polating to T =0 in section 4 remains a good approximation, since
there the dotted curve was fitted to the experimental points at relative-
ly high T by choosing an appropriate value of the molecular field at
T =0). The experimental result indicates that the heat capacity in this
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three-dimensional Ising system goes to zero even more rapidly than
according to molecular field theory.

The choice of the exchange constant J//k =0.12K implies the
position of TN in the Ising model; in a simple cubic lattice kTN/zJ’ -
=0.752 is predicted, which may be compared to the experimental ratio
0.527/0.720 =0.731. In this comparison only n.n. dipolar interaction
is accounted for, in virtue of the discussion of section 5.1.3. Going
to the other extreme of including all dipolar coupling by taking J'e”=
=0.111 kK, one would obtain kTN/zJ;“=O.795. Since dipolar inter-
actions of distant neighbours become relatively unimportant at high T,
it is not unreasonable that an exchange constant intermediate between
J'/k =0.12K and Jl;/k =0.111K has to be taken in order to arrive at
the experimental T =0.527K with the aid of the theoretical s.c. Ising
model ratio kT /2]’ =0.752.

502 CoCs3Br5
5.2.1 Magnetic structure

From a comparison in table II of the experimental results on energy
and entropy with the Ising-model predictions for various geometrical
structures, one may note that two-dimensional lattices give much
better agreement than three-dimensional lattices. Further it is seen
that the planar triangular lattice (coordination number 6) predictions
fit the data somewhat better than the planar simple square lattice.
Since the crystal structure does not permit triangular spin arrays, the

orl_

02

Fig. 9. Heat capacity of CoCs3Brg (circles are experimental
points) compared to the theoretical curve of Onsager for a two-
dimensional simple square Ising (anti) ferromagnet.
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outcome of the above comparison is suggestive of mainly two-dimen-
sional ordering in a simple square structure, however, with an additional
tendency of the Co-spins to have a somewhat higher coordination
number than z =4.

From phase boundary and susceptibility measurements, described
in ref. 1, one finds that CoCs Rrs becomes antiferromagnetic and
that the Curie-Weiss constant is even much smaller than in the chloride;
further, CoCssqr is found!) to show properties, which agree with
theoretical predlctxons for a two-dimensional Ising model, Therefore
we plotted our heat capacity results on a reduced temperature scale
T/TN, and compared them with the exactly calculated curve of Onsager“)
for a simple square (anti-)ferromagnetic Ising model, as shown in fig.9.
Although there is some disagreement at T > Ty« one may note astriking
similarity between the experimental results and Onsager's curve.

Assuming 4 antiparallel n.n. in the ab plane, one finds that the
dipolar interactions favour a ferromagnetic coupling between the ab
planes (the magnitude of the coupling between adjacent planes amount-
ing to about 90 0e at T =0). Therefore is quite possible that the same
magnetic structure at T =0 occurs.

5.2.2 Exchange

From E/R =0.220K we find Jie/k = =0.073%K if z =6, 0or J. /k =
=0.110K if z =4; both solutions correspond to a molecular fleld of
18200e at T =0. We have to subtract the dipolar field in order to find
the pure exchange field and exchange coupling constant J'. For the
calculation of the dipolar field we take into account:

l. that the g-value of Co?* in the bromide is 1% larger than in the
chloride

2. that the lattice constants a and ¢ are both 4.2% larger than in the
chloride

3. that at T =0 there are 4 antiparallel n.n. in the ab plane and two
parallel n.n. along the ¢ axis.

This yields H = 460 Oe, so that after subtraction of H the resi-
dual exchange flelpd is 1360 Qe, corresponding to an exchanqe constant

J'/k = -0.082K (J/k = -0.018K),

if the coordination number is assumed to be four. Consequently, the
bromide is, in view of the smallness of the ratio J'/D, perfectly aniso-
tropic in conformity with the requirement of the Ising model. Neglecting
for a while dipolar interactions and taking the parameter l/;zJ’e”/k=E/R
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as representing the total exchange interaction for a comparison with
Ty we find

KT /23" ¢ = 0.640.

This ratio is higher than predicted by the simple quadratic or trian-
qular Ising lattices (0.567 and 0.607 respectively), but much lower
than the predicted ratios for three-dimensional cubic lattices. In con-
junction with the broad high temperature curve in Craqn and the
values of Sm—Sc and Em—EC=—EC, it may be concluded that it is
relatively difficult to establish long-range order in this three-dimensional
(almost cubic) spin arrangement. On the other hand, assuming mainly
two-dimensional ordering to start with, the relatively strong dipolar
interactions tend to promote long range order, giving higher Ty than
would otherwise have been obtained for coordination number 4 or even
6 in a planar spin arrangement.

By means of electron-paramagnetic-resonance experiments on ex-
change-coupled pairs of Co ions in a Coztdoped ZnCsaBrs crystallz),
a relatively large ferromagnetic exchange coupling was deduced be-
tween a pair of n.n. ions along the c-axis, viz. J///k =0.0106 K which
is equivalent to J'///k =0.048 K, whereas a smaller exchange coupling
was found between a n.n. pair of ionsin the ab plane, viz. J/k=-0.0049K
or J'/k =0.022K. The Curie-Weiss constant, &, derived from these
exchange constants has the value #0.007K, which compares favour-
ably with the experimental value €=-0.01 +0.02K 1), However, the
agreement may be fortuitous as our value of J;x/k is much larger,
which suggests the presence of next-nearest-neighbour exchange.
Such an explanation would signify that the available interaction energy,
E is shared among more than z =4 neighbours and this in turn will
reduce the heat capacity at relatively high temperature. On the other
hand, taking z =4 and consequently J’' as high as possible in view
of E/R, we find at high T and S=%,

C/R = b/T2=%z(J'/kT)% =0.024/T?,

or b=0.20J K/mole, to be compared to b =0.33-J K/mole in fig.3. Due
to deviation from a 1/T?2 dependence at T=2T_ in the Onsager curve,
the theoretical value should be increased to b =0.25 for a proper com-
parison with the experimental result.

As to the caloric and muqnetic” results, the observed behaviour
closely resembles that predicted for an isotropic two-dimensional
antiferromagnetic Ising net. This result is suggestive of a fairly strong
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coupling in ab planes and a smaller coupling between the succesive
planes. In order to comply with the experimentally found !’ small value
of 6, one has to adopt some n.n.n. interaction.

Another interpretation of the results may be found by introducing a
model that has a fairly strong coupling of a pair of ions along the
¢ axis and a smaller coupling of a pair of ions in the ab plane (|J//|>

[J_Lb This model incorporates the E.P.R. results of Henning et

l 12) 1t lies intermediate between a three dimensional Ising system
(131=13,,) and a linear Ising chain (|J l/ |1, |=0). If the ratio of
the two interaction constants is such that the short-range ordering
equals that found for a square Ising model, it might be supposed that
these two systems will also resemble each other as to other thermo-
dynamic properties, such as the sinqularity of the specific heat curve
and the boundary between the antiferromagnetic and paramagnetic
phasesl)

5.2.3 Singularity

:
] The predominantly two-dimensional kind of the magnetic ordering
suggested by various pieces of experimental evidence may also have
a decisive influence on the character of the heat capacity singularity.
We will compare the experimental results, which in fig.7 are seen to
fit a logarithmic dependence of C wann 20 ]T—TNlappreciably better
than a |T— TN|" relation, to the exact theoretical calculation of
Onsaqerzz)nech . Onsager gives (eq.8.1 loc.cit.) an explicit In IT TN]
dependence of the heat capacity at T= Ty in the form of an asymptotic
formula:

C/R « £,(T) In |T—T| +£,(T), (11)

where f and f, are slowly varying compared to T — TN (but not when
compated to lnﬁT TNI) When evaluated numerically, eq.(11) is found
to deviate by more than 35% at |I —T/TN|—O.I from pure logarithmic
behaviour, both for T <T and T>T N¢ S may also be seen in fig.10.

The exact Onsager solunon on the other hand, agrees numerically
at [1=T/Ty|=0.1 to within 4% (fig.10) with

C/R = -0.49 In |1 - T/T, |-0.29. (12)

We notice that it may be more effective to put theoretical results in the
form of numerical computations versus T/']"N than to rely too heavily
on asymptotic expressions when experimental data are to be compared
to theory.
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Fig. 10. Onsager’s theoretical calculations on the heat capacity
of a two~-dimensional simple square Ising (anti)-ferromagnet plott-
ed versus the logarithm of [l—T/TCl, Tc being the critical
temperature. The upper (T < TC) and lower (T > Tc) curve refer to
an asymptotic approximation containing an explicit In 1—T/TC!
term; the curves in the middle are Onsager’s exact calculations
for T <TC (lower middle) and T > Tc (upper middle) compared to

a straight line (central)

C/R = —0.40In|1 - L] —0.29.
TC

As to our results on CoCs,Br, one may note that the two coeffi-
cients A inthe regions T < Ty and T > T are —0.44 and —0.55respect-
ively, so that the theodretical coefficient lies between the two exper-
imental coefficients. Similarly for A, we obtain the values +0.2 for
T <Ty and —0.8 for T > T, compared to —0.29 of Onsager's solution.

Like in the energy and entropy consideration (5.2.2) one may ascribe
the difference between the experimental coefficients and Onsager’s
theoretical one to deviations from two-dimensionality and coordination
number four, probably due to long range dipolar forces.

Apart from these shortcomings it may be concluded that CoCs3Br5
behaves, grosso modo, as a two-dimensional Ising antiferromagnet.




71

References

MESS,K.W., LAGENDIJK,E., CURTIS,D.A. and HUISKAMP,W.J., Commun.

Kamerlingh Onnes Lab., Leiden No. 354d; Physica 34(1967)126.

2. POWELL ,H.M. and WELLS,A.F., J.chem,Phys, Soc. (1935)359.

3. FIGGIS,B.N., GERLOCH M. and MASON,R. Acta Cryst. 17(1964)506.

4. BOWERS,K.D, and OWEN,J., Rep.Progr.Phys. 18(1955)304.

5. BELIJERS,H.G.,BONGERS,P.F., VAN STAPELE,R.P. and ZIJLSTRA,H

Phys. Letters 12(1964)81,
6. VAN STAPELE,R.P,, BELJERS, H.G,, BONGERS,P.F, and ZIJLSTRA, H.,
J. chem. Phys, 44(1966)3719.

7. VAN STAPELE, R.P., private communication.

8. MIEDEMA,A.R., WIELINGA,R.F. and HUISKAMP,W.J., Phys. Letters
17(1965)87.

9. DOMB,C., Magnetism Vol. IIA ed. G.T.RADO and SUHL, (Acad.Press,

| N.Y. 1965), p.1.

10. DOMB,C. and MIEDEMA, A.R., Progr. low Temp.Phys.IV, ed. C.J. Gorter,
(North Holland Publ. Comp. Amsterdam 1964), p. 296.

11. GRIFFITH,J.S., The theory of transition metal ions, (University Press,
Cambridge, 1961).

12. HENNING,J.C.M., VAN STAPELE,R.P., HARDEMAN,G.E.G. and
BONGERS,P.F., Proc. of the XIVth Colloque Ampeére, Ljubljana, 1966,
session 26, nr, 1, (p. 1204).

13. BOERSTOEL,B.M. has kindly provided us with these results,

14. FISHER,M.E,, Rep. on Progr. in Physics, vol. XXX pt. II (1967)615.

15. SYKES,M.F. has kindly provided us with this result.

16. MIEDEMA,A.R.,, WIELINGA,R.F. and HUISKAMP,W.J., Phys.Letters
17(1965)87. -

17. WIELINGA,R.F., BLOTE,H.W.J., ROEST,J.A. and HUISKAMP,W.J.,
Physica 34(1967)223; Commun, No. 345c¢ from the Kamerlingh Onnes
Laboratorium, LLeiden, Nederland.

18. VAN STAPELE,R.P., HENNING,J.C.M., HARDEMAN,G.E.G. and
BONGERS,P.F., Phys.Rev, 150(1966)310.

19. BAKER,G,A.Jr, and GAUNT,kD.S., Phys.Rev. 155(1967)545.

20. BAKER,G.A.Jr., Phys.Rev, 129(1963)99.

21l. SYKES,M.F., MARTIN,J.L.and HUNTER,D.L., Proc.Phys.Soc., 91(1967)671.

22. ONSAGER,L., Phys.Rev. 65(1944)117.

i




72

Chapter IV

EXPERIMENTAL STUDY OF THE BODY-CENTERED-CUBIC
HEISENBERG FERROMAGNET

1 Introduction

Several years ago measurements on heat capacity and magnetic
properties of CuK2C14.2H20 and Cu(NH4)2.2HZO have been performed
by Miedema et al.!), The zero-field susceptibility in the c axis was
reported to reach the values N~ (N =demagnetizing factor) per cm3,
from which it was concluded that the crystals are ferromagnetic below
the critical temperature.

The heat capacity curves of the two salts were shown te be very
similar and values were reported for Sm—SC, the part of the entropy
removed above T_, and for (Em—E‘.c)/RTc, where E is the magnetic
energy. Using CuRb2C14.2H20 and Cu(NH4)zBr4.2HZO the investig-
ations on this group of ferromagnetic salts were continued for several
reasons. If more heat capacity curves are available which can be
brought to coincidence using a reduced temperature scale, the values
of S, —SC and E,—E will have more weight as representing the pro-
perties of the body-centered-cubic (b.c.c.) Heisenberg ferromagnet. All
kinds of deviations from the ideal model such as a small anisotropy,
the difference between the tetragonal crystal structure and the b.c.c.
structure and the presence of next nearest magnetic neighbours inter-
actions may be expected to be different for different salts. Hence, if
the specific heat curves would coincide, one might conclude that these
deviations are not of practical importance.

Also some information can be obtained as to the dependence of the
magnetic super-exchange on the copper-copper distance and the type
of intervening atoms.

Special attention will be paid to the temperature dependence in the
immediate neighbourhood of Tc. The data in ref.1 were not sufficiently
detailed to perform an analysis and therefore new experiments were
started with a different apparatus.

A detailed comparison as to the prediction of the spin wave theory will
be made for Cu(NH4)2Br4.2H20, chosen partly because of its relative-
ly high transition temperature and also because the hyperfine structure
contribution to the heat capacity is smaller than in the other salts.




2 Crystal structure

The salts of the general formula Cu(M+)2X4.2H20, where M* stands
for K+,NH: or Rb* and X is C1™ or Br—, crystallize in the tetragonal
systemZ). There are two molecules in the unit cell with the copper

7.98 R

@ Cu?* @ H,0 0 Br-

Fig. 1. The unit-cell of Cu(NH4)9Br4.2H20, The ¢ axis is
about 5% longer than the a axis.

ions at the equivalent positions (0,0, 0,) and (%, %, %). Ech copper ion
is surrounded by an approximate octahedron of four chlorine ions and
two water molecules (see figure | and table I for the M* and HZO
positions). The line connecting the water molecules is parallel to the
crystallographic ¢ axis; the chlorine ions lie in the aa plane in a
rhombohedron, the longest diagonal of which points to the [110]
direction for one of the copper ions and to the [110] direction for the
other.

The cell dimensions are somewhat different for the four salts, as
may be seen in table I. One may notice that the structure is only
slightly different from body-centered-cubic. Each copper ion has 8
nearest neighbours and 6 next-nearest-neighbours which are about 15
percent further away. For nearest magnetic ions the super-exchange
interaction may be transferred by means of a chlorine ion and a water
molecule.

For CuKZClq.ZHZO it has been found that the g-values of the copper
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TABLE 1

The unit cell of four copper salts, with the general formula CuM2+ X4.2HZO. The-__}

parameters u, v and w are approximately equal to 0.22, 0.22 and 0.25, respectively

salt CuK2p14.2rI,ZO Cu(NH4)2Cl4.2H20 CuRb2C14.2HZO Cu(NP!4)28r4.2i{ZO

a, (X) 7.45 7.58 7.81 7.98

gl (R) 7.88 7.96 8.00 8.41

positions M* | (0, %, %); (4, 0, %); (0, %, %) (4, O, %)
positions H,0 +(0, 0, w); (%4, %, w+%4)
positions X; | 1(u, u, 0); (u+l4, %—u, bA)

positions X“ +(v, v, 4); +lv+¥s, Ya—v, 0)

ions have axial symmetry around the longest diagonal in the chlorine
rhomhedron (g ay =2.38, g; =2.06), so that the g-value along the c axis
is 2.06 and the g-value in the aa plane is 2.22. This anisotropy has no
direct consequence for the exchange interaction, since it is nearly
completely due to the orbital moments.

For the other three salts no detailed information is available on the
magnetic axes but large differences are unlikely.

3 Experimental method

For details concerning the apparatus and methods used we refer to
chapter II. The specific heat singularity of CuK Cl .2H O was studied
by means of a cobalt-cesium-tutton- -salt thermometer ror the other
measurements cerium-magnesium-nitrate has been used as magnetic
thermometer.

4 Heat capacity results

The heat capacity of the 4 salts is shown in figure 2, the temper-
atures being plotted in units Tc The data on Cu(NH4) 7H O and
CuK Cl .2H O already reported in ref.l, were obtclned for srnqle
crystals of about 0.5 gram, the data on CuRb, Cl,.2H O and
.Cu(HH4) 2H O were obtained on powdered samples (qram size =
=~ 0.1 mm). "Je clso investigated the heat capacity ofa powdered sample
of Cu(NH4)2C1 2D O There was no difference with the hydrated salt,
i.e. the transition temperature was the same within the measuring
accuracy of a few millidegrees.

On the low temperature side a small h.f.s. term («T_Z) has been
subtracted, which becomes only important near T=0.1T_; even at
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as functions of T/Tg.
o CuK2C14
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T=2Tc the contribution of the lattice

small.

It may be seen that one single curve may represent the results for
the 4 salts: the values tabulated (table II) are read from this curve.
The entropy corresponding to the curve of figure 2 equals exactly

4.Zr{2

v Cu(NH4)28r4.2H20;

TC:O.BBK
T _ =0.70K
c
T =1.02K
c
T_=1.74K
c

f four isomorphous copper salts plotted

specific heat is negligibly

RIn 2, the energy is 0.725RT  per mole (E/T_ =6.03 J/mole K).

TABLE I

Specific heat of four ferromagnetic copper salts. At temperatures above

1.5T _the specific heat is described by C (T/T )2-_-0.34 R
c mag c

CPOPOPOOO900
OOONDU D WN =0

ornooooocoouvwowm

T/ T
c

Cmuq T/T mag T/T Cmaq
(J/mole) (J/mole) $ (J/mole)

0.024 0.93 8.00 1.02 6.10
0.071 0.95 8.56 1.03 5.40
0.141 0.97 9.52 1.05 4.60
0.240 0.98 10.15 1.07 4.10
0.54 0.985 10.75 1.10 3.40
1.00 0.990 11.50 1.15 2.92
1.62 0.995 12.50 1.20 2.50
2.51 0.998 14.15 1.30 2.00
3.72 1.002 10.00 1.50 1.35
5.20 1.005 8.40 1.90 0.77
6.08 1.010 7.20

7.40 1.015 6.55
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4.1 The singularity in CuK2C14.2H20

As the specific heat curve is not rounded for |T—Tc|> 10—3Tc, we
may identify the critical temperature with the temperature at which the
maximum in the specific heatoccurs. A plot of Cmaq versus log II—T/TCI
is shown in fig.3. A good fit to the data is obtained by two parallel

20 T T T
J
mole 9K Cuky; Cly. 2H,0
o T<T,
15 - a TO>Te =

o 1 1 L

0 7‘| 10-? o

Te
—_—

Fig. 3. Heat capacity of CuK2C14.2HZO between O.QTC and

].ITC, plotted on a semilogarithmic scale. The lines are re-
SR o +

presented by the formula Cmaq/R‘ A lnll T/TC| B.

lines, which are represented by

Crag/R =—A In [1-T/T | + B, (1)
with A =0.203 and B =0.43 for T<T_ and with A =0.203 and B =-0.05
for T>T.. The formula describes our data for 10—3 < l('I‘ —TC)/TC[<
<101,

In order to see whether the logarithmic formula (1) gives abetter
fit to the experimental data than a formula of the form

Coang = BIL=TAT S0 (2)
we plotted both Cmaq and ‘I—T/TC | on a logarithmic scale in figure 4.
The data can be described by formula (2) in a small region viz. 10-3 <
< II—T/TCI< 102, whereas formula (1) represents the data over two
decades. The lines in fig.4 correspond to @=0.2 for T >'1"c and to
a=0.1 for T<T_.
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Fig. 4, Heat capacity of CuK2C14.2HZO between 0.9 TC and
1.1 T_. Both[T—T_|/T_ and C__
scale. The straight lines correspond to a formula of the form

Cnag=B |1 =T/T 7%

are plotted on a logarithmic

4.2 The exchange constant

One of the results, which can be obtained from the data, is the
magnitude of the exchange constant J compared to the critical temper-
ature TC. Assuming that the magnetic interaction occurs only among
nearest magnetic neighbours the J/kT_ ratio can be obtained from 4
different experimental quantities:

a) B, the Curie-Weiss constant, which is found at relatively high temper-

atures,

b) the constant CmagTz, which describes the specific heat at high
temperatures.

c) the energy gained by the magnetic ordering,

d) the experimental value of Cmqu"a’Z which describes Cmaq versus

T in the very low temperature region (spin waves, Bloch-term).
The following formulae are used:

6 = 2z5(s +1)3/3k (3)
E/R =28%|1/k (4)
CragT /R = 228%(s +1)? J2/3k* (5)

3 3
B, = (T/T )% =568 % 10(IATIT.

o Cmoq
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Data on & and Co T2/R (T>>T ) are only available for CuK Cl
2H O and Cu(NH ) %I .2H O Averaqmg the results we get J/kT =
=0. 340 (from 5/'1"‘5 and J/kT =0.334 (from C aq(T/T )2). Of the four
quantities, the totcl enerqgy 1s obtained with the highest accuracy. The
result quoted in equation (4): E/T_=6.03]/moleK corresponds to
J/kT . =0.364. The value of the coeff1c1ent of the Bloch T¥2 term, as
obtained in the next section, corresponds to J/kTC =0.368. This value
is somewhat higher than that derived in ref.l from the heat capacities
of CuK2C14.2HZO and Cu(NH4)2Cl4.2HZO in the spin wave region.
The difference is due to the fact that in ref.l the exchange constant
was obtained by fitting the Dyson series up to the T4 term to the ex-
perimental curve. This was done in the temperature region where the
Dyson series gives somewhat too small values, so that a too low value
for J was obtained. One may say that the value of J/kT _, derived from
four experimental quantities agree rather well to J/k'I'c =0.35 £0.015.

Recently, by analysis of the high-temperature series for the Heisen-
berg s=% model, Baker et al.?) have derived the critical parameter
J/kT for the cubic lattices. The results are 0.5962, 0.3973, and
0. 2492 for the s.c., b.c.c., and f.c.c. lattices respectively. As one
may notice, our value is close to the theoretical value for the b.c.c.
lattice.

4.3 Comparison with spinwave theory

The data obtained on Cu(NH4)28r4.2H ,O are especially useful for
comparison with spin wave theory, due to the high value of Tc and
the rather low h.f.s. specific heat. The magnetic and nuclear contri-
butions to the specific heat are approximately equal at T =0.03 T,

For an ideal ferromagnet (identical spins, isotropic Heisenberg
exchange interactions among nearest neighbours only) Dyson‘” calcu-
lated that the heat capacity in the spin wave temperature region can
be described by:

nag/R =B (KT/DN¥2 + b (KT/1)Y? + by (kT/N)™Z + by(kT/D* +..7)

The T¥2 term is the original Bloch result and the terms proportional
to T¥2 and T72 gre due to the discreteness of the lattice. The first
term arising from interactions is proportional to T4

For the b.c.c. lattice with spin % the Dyson prediction is:

= -2 = -3
b, =5.68 x 10 b, =6.45 x 10

b, =1.56 x 1072 b, =1.85x 1073
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One may try to determine the first coefficient in the Dyson series
by confining the comparison with experiment to the lowest temperatures.
This is shown in figure 5, where the magnetic specific heat is multi-
plied by (T/TC)—:VZ. The T¥2 term is found by extrapolating the ex-
perimental curve to T =0; the T2 term is found from the derivative at
T=0.

| %

1 T o V— ¥ S S VN

o T/te ©O2 04 o6
——— e

Fig. 5. The specific heat of Cu(NH4)28r4.2HZO in the spin wave
temperature region. The specific heat is plotted as Cmaq(T/Tc)—:VZ
so that the value at T/TC:O gives the coefficient of the first
term of the Dyson series; the tangent at T=0 gives the coefficient
of the second, TS/Z
(ee T—z) has been subtracted.

term. The hyperfine structure contribution

The results are F?»;=O.250, BI=O.21, defining Bo and B, by:
i 3/2 2
Cmaq/R —BO(T/TC) +Bl(T/TC) i (8)

while the asterisk denotes the experimental values. The relation be-
tween B_,B, and b_,b, are b /B_=(J/kT )¥2 and b /B, =(J/kT )¥2
Using J/kTC=O.35 we obtain b;=0.052 and bl=0.015, which may be
compared with Dyson’s (Bloch) values given above.

An alternative method of determining the first two coefficients in
the Dyson series consists of fitting the polynomial (8) to the exper-
imental points in the temperature region below T/TC=O.2, using a
least squares method. This gives

Caq/R =(0.242 £0.005)(T/T )¥2 + (0.32 £ 0.02)(T/T ) ¥2.

mag

If the least squares fit is restricted to the more limited temperature
region T/TC <0.1 (i.e. 11 experimental points) one finds for
= )«
Cu(NH ,) o Br 4-2H ,0:

Crnas/B™ 0.247(T/T_)¥2 + 0.30(T/T ) ¥2.
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Comparing the results of the two procedures (qmphxcal and least
squares fitting) one may see that the accuracy of bl is not better than
25 percent.

For the evaluation of the higher order terms in the Dyson series,
only data obtained at T >0.2T_ can be used since the T¥2 and T¥?2
terms together account for more than 90 percent of the heat capacity
at lower temperatures. As a consequence it is not possible to disting-
uish between a T%2 gnd a T* term. Furthermore, as stated by McCollum
and Callawoys) for EuS, if the temperature is high enough for the T2
and higher order terms to be important, it is likely that the Dyson
series is no longer applicable.

The comparison between the experimental data and linear spin wave
theory may be pursued to higher temperatures if the series expansion
in odd-halve powers is replaced by an integral. This requires the
summation over the Brillouin zone of:

/ T w /kT
C, . /R=20, g LAt P A AT (9)

where

= 43S[{1 - cos %alk_ +k +k,)}+ {1—cos %alk,—k, +k,)}
+ {1-cos %alk, +k, ~k,)} + {1—cos %a(-k, +k +k,)}] , (10)

and a is the lattice constant.

The influence of spin wave interactions may be taken into account
by a procedure described by Bloch® and applied succesfully to MnF
and EuS, and which is called renormalization of the spin wave spec-
trum. The renormalization consists of multiplying W, with a temper-
ature dependent factor:

W, (T) = {1 -A(T)IW, (T = 0), (11)
where
W, /kT
AlTYw ) st T k =L 12
AR RIS ) (12)

This correction amounts to 2% at T/T =0.35, whereas it would have
been 1.5% according to the T4 term in the Dyson series; at T/T =0.6
the correction in C s is about 13%.

The results are shown in figure 6. The series expansion deviates
from the integral for T/T _> 0.25, the difference being about 20 percent
at T/T =0.5. It may be seen that the agreement between integral and
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Fig. 6. Comparison with spin wave theory. The experimental
points are averages for the four copper salts (table I).

Dyson series, formula 7

Integral, formulae 9—12 }calculated with J/ch=0'35

experiment is very good for temperatures up to T/TC=O.5 but one must
keep in mind that the choice of J/ch is rather important. We used
the average value J/ch=O.35, as obtained in the foregoing section.
At higher temperatures the experimental curve rises much faster than
the calculated one; this is not surprising in view of the fact that the
interaction between the spin waves becomes increasingly more import-
ant near the critical temperature.
It is concluded that
1) spin wave theory describes the experimental data quite well up to
T=0.5T, .
2) the integral approaches the experimental data more closely than
does the series expansion.

5 Discussion

We conclude that the 4 copper salts, which were investigated are to a
good approximation representative for the b.c.c. Heisenberg ferro-
magnet with mainly nearest neighbour interactions from the following:
(1) the thermal properties of the four salts are identical, apart from a

constant factor in the temperature;

(2) the susceptibility in the ordered region shows only slight anisotropy.
(3) the values of J, derived from different experimental results and
using formulae which contain J and z in a different way, agree;

(4) the low temperature heat capacity agrees with spin wave theory.

It may be expected that the anisotropy energy and slight deviations
from the b.c.c. structure will not be equal for the four salts investi-
gated. From the coincidence of the specific heat curves for these
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salts we may conclude that these differences are not of practical im-
portance.

As to the influence of next-nearest-neighbour interaction (n.n.n.)
on the critical parameters, several theoretical results have been derived
recently7'8‘g'lo). In order to obtain the value of the exchange coupling
between nearest-neighbours (n.n.), Jl, and the ratio between the n.n.n.
and n.n. exchange parameters, Jz/Jl' we use the formulas (3) to (5)
and the expressions

3, 6/T,

® ; (13)
kT, 4+31,/1,

J
1 . 0.241E g (14)
kT, 4+31,/],
2
J) y2_ 01605 Cppoo(T/T)? (15)
kT, 4+3(3,/3,)?

taken from ref.9. These formulae are derived for the b.c.c. structure.
The quantities E and Cmag(T/Tc)2 are given in Joules per mole. By
substituting the experimental values, 9/'1';1.36, E=6.03 J /mole and
Cmqq(T/Tc)2=2.83 J/mole K into the formulae, we obtain J,/J, =0.2510.1,
and Jl/ch=O.3li0.02. The result JZ/J1=0.25tO.lis supported by
comparing the observed and predicted values of the magnetic energy
yield, (Em—FC)/RTC, and entropy change, (Sm—Sc)/R, in the short-
range ordering process (see table III).

From these results it may be concluded that ferromagnetic next-
nearest-neighbour interactions are present. Their influence on the
specific heat as predicted by spin-wave theory is not large as has

TABLE III

Experimental and theoretical values for the critical parameters (Em_Ec)/HTC
and (Sm—-SC)/R, for the b.c.c. lattice. JZ/JI denotes the ratio of the n.n.n. to

n.n. exchange coupling.

This experiment Theoryg)
a A 0.4
JZ/J1 0 0.2 0.3
- 9 .39
(Eg Ec)/R'T'C 0.392 0.460 0.419 0.404 0.393
(5S¢ —Sc)/ﬂ
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been shown by Wood and Dalton?). This would not be surprising for
the following reason. If e.qg. in formula (14) E is fixed and J /J >0,
J will be reduced, which leads to a lower specific heat, whereas the
n. n n. interaction of positive sign (J /J > 0) increases the specific
heat.

As to the theoretical prediction for the specmc heat singularity
of the s=% Heisenberg model, Baker et al.?) have recently derived
some tentative results for the temperature region above Tc. For the
b.c.c. lattice the relation

Crag/R = (T/T)2[0.971-0.668(1-T /T)%-%°] (16)
was deduced in the range 0.75< T /T < 0.95. If the range of validity
of this relation may be extended up to T, viz. 0.95<T_/T <1, the
singularity has the form of a cusp with c top value of 0 97, and an
infinite slope near T_. This result, however, might be modified when
further computations near Tc become available.

The highest observed value for Cma /R is 1.5, which is obtained
at I—T/Tc=10_3, whereas the theoretlccl value at T=1.001T_ is
only 0.83. At T=1.01T_ the experimental value is 0.88, while the
theoretical one is 0.71. At T=1.04T_ the values are equal, but at
still higher temperatures the expenmental values lie about 10% lower
than the theoretical ones. The latter result is not surprising, since
the theoretical value for the entropy yield above T _, (SW—SC)/R, also
lies about 10% higher than the observed value. However, formula (16)
does not give a proper description of the observed behaviour in the
temperature range 0.95 < TC/T <l.

By comparing the values of T of the four copper salts, some inform-
ation can be obtained on the mechamsm of superexchange. There
seems to be no simple relation to atomic distance, since CuszCl
.2H O has a higher Curie temperature than CuK Cl .2H O while the
axes are 5 percent longer. Replacing C1™ by Br 1ncrecses the ex-
change interaction, again in spite of a larger copper-copper distance.

Looking to the crystal structure, both a chlorine ion and a water
molecule seem to be essential for transferring the exchange interaction.
The importance of the HZO molecule can be derived from the fact that
replacement of H O by NH in Cu(NH ) Cl 2NH reduces the order-
ing temperature by cpprox1mate1y a factor 10 whxle the copper-copper
distance hardly changes. Only the oxygen of the HZO is found to be
important, because the deuterated copper ammonium chloride has the
same transition temperature as the normal salt.




84

References

MIEDEMA,A.R., VAN KEMPEN H. and HUISKAMP ,W.J., Commun, Kamer-
lingh Onnes Lab., Leiden No, 336a; Physica 29(1963)1266.
WYCKOFF,R.W.G., Crystal structures Vol. IIl, Interscience Publishers,
1948 New York.

BAKER,G.A.Jr.,, GILBERT,H.E., EVE,J. and RUSHBROOKE, G.S., Phys.
Rev. 164(1967)800.

DYSON,F.J., Phys.Rev. 102(1956) 1217 and 1230.

McCOLLUM,D.C. and CALLAWAY,l., Phys.Rev.Letters 9(1962) 376;
Phys.Rev. 130 (1963) 1741.

BLOCH M., Phys.Rev.Letters 9(1962)286; J.appl.Phys. 34(1963)1151.
DALTON,N.W, and WOOD,D.W., Phys.Rev. 138A (1965)779.

PIRNIE,K., WOOD,D.W. and EVE,J., Mol.Phys. 11(1966)551.

WOOD,D.W, and DALTON,N.W., Proc.Phys.Soc.(London), 87(1966)755.
LOLY,P.D., J.appl.Phys. 39(1968)11089.




85

Chapter V

THE SPONTANEOUS MAGNETIZATION OF THE B.C.C.
HEISENBERG FERROMAGNET Cu(NH,),Br..2H50.

1 Introduction

The discovery of a number of ferromagnetic insulators in recent
years viz. CrBr, (s=5/2, Tsubokawaral’), EuO (s=7/2, Matthias et al.?)),
EuS (Moruzzi and Teoneya)), EuBr, (Gossard et al.4)), GdCl3(s=7/2,
Wolf et al.s), CuK2C14.2HZO and Cu(NH4)ZBr4.2H20 (s=%, see ch.lV
and refs. 6 and 7), has provided an opportunity for comparing exper-
imental results with statistical theories assuming an interaction be-
tween localized spins, such as the Heisenberg model.

Confining the discussion to temperatures below the critical point,
the majority of the experimental results has been interpreted on the
basis of the spin-wave theory, which applies in general to the lower
values of T/Tc. This has been done for example by Mc Collum and
Callawaya), Gossard et 01.4), L.owg), Miedema et 01.6‘7), Wood and
Dalton}®) and Loly”). With the aid of a cluster theory (Kasteleijn
and Van Kranendonk!?) and Green's functions techniques (Callen and
Callenls), Cooke and GerschH), Liu and Siano!®) theoretical results
up to T=T_ have been obtained and compared with experimental evid-
ence (Callen and Callenle), Heller and Benedek!”’, Eibschiitz etal. 18-

Statistical theories can best be tested for spin }2,since the differ-
ence in theoretical predictions is most pronounced for the lowest value.
Therefore, the above mentioned copper salts are favourable for com-
paring theories with the experiment. Previous experiments on these
salts®7) have shown that a) the interactions between the ions are
nearly isotropic, b) the deviation from the actual b.c.c. structure is
small and of practically no importance for the magnetic properties,
and c) the second-neighbour interaction is small and positive for the
specially investiqatedlo) potassium and ammoniumchlorides. Similarly,
in section 6, a small second-neighbour interaction of positive sign is
deduced for the salt Cu(NH4)2Br4.2H 2O, which influences the theoretical
result obtained for nearest=-neighbour interaction to a small degree
only. As T_ for this salt is 1.74K, a temperature stability of 10-°%K
can easily be achieved, if an ordinary 4He bath is used. For these
reasons we have preferred to perform the magnetization measurements
on this salt.

It will be shown that the experimental result agrees with the Green's
functions calculation in second order, as given by Cooke and Gersch!¥)
over the whole temperature region (0.05< T/T _ <0.99) studied.




2 Experimental method

The measurement of the magnetization consists of measuring the
flux change in a coil system, when varying an external field. The
magnetization can be measured accurately, as has been shown by
Argyle and Pughlg). The difference between their method and ours is,
that in the former the temperature is changed at constant field, while
in our method the field is varied at constant temperature. The accuracy
of the measurement is mainly determined by the stability of the elec-
tronic integrator. Since no detailed investigation near zero temper-
ature was aimed at, we contented ourselves with an accuracy of a
few tenths of a percent.

Fig. la shows the apparatus used for temperatures between 0.101
and 1.05K, to be called series a. The measurements are performed in
high vacuum, in a slightly modified apparatus for adiabatic demag-
netization experiments, as described by Mess et al?®), The sample
consisted of two crystals, forming an approximate ellipsoid with axes
of 11.2, 7.9 and 7.9 mm length. The longest axis of each crystal lies
in the aa plane, this being the plane of highest g-value. The pick-up
coil is made up of two sections wound in opposite directions, each
coil having 5160 turns of 0.07 mm Cu wire. The field is generated by
a Nb coil, which is places in the 4He bath. The field is homogeneous
within 0.5% over a length of 3 cm along the axis of the coil. The temper-
ature is measured by a Speer resistor of 220 Ohms, /2 Watt (see ref.
21), which has been calibrated versus the susceptibility reading of a
cerium-magnesium-nitrate crystal. The resistor is in good thermal
contact with the rod. The resistance is measured by a bridge, which
is operated at 220 Hz. The off-balance voltage of the lock-in amplifier
was recorded. This voltage, which is proportional to the difference
between the temperature of the bath and that corresponding to the
setting of the bridge, is converted to a current through the heater
resistance. This variable heat input serves to stabilize the temper-
ature. The heater in case a consists of a manganin wire of about
1800 Ohms. The heat sink is formed by a Cr-alum cooling salt (see
e.qg. ref. 21). A superconducting coil operates a lead heat-switch into
a thermally conducting state at temperatures below about 0.3K and
into a superconducting state at higher temperatures.

In fig. 2b the construction, used for measurements in the temper-
ature region above 0.95 to 3.40K is shown. The sample, coil system,
and field coil are the same as those used below 1 K. The temperature
is measured by calibrating an enamelled Allen and Bradley resistor
of 0.1 Watt, nominally 32 Ohms, versus the vapour pressure of the “He
bath. At T=1.75K a change in resistance of 0.01 Ohm could be detected
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Fig. 1. a Apparatus for the measurement of magnetization, used
for temperatures between 0.10 and 1.05 K.
b Apparatus in use for temperatures above 0,95 K.

S : sample.

Th : thermometer.

H : heater resistor for stabilization of the temperature.
Su : glass tube support.

C, : search coil.

C_ : compensating coil, consisting of a number of turns
equal to that of C_, but wound in the reverse direc-
tion.

The dimensions are on scale,
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(the resistance at 1.75K being 2600 Ohm), which corresponds to a
temperature change of 2.10-%K.

The stabilization in case a is an order of magnitude lower than in
case b because firstly, the thermal contact between the sample and
the rod is inferior to that between the sample and the bath, secondly,
the heat capacity of the rod is far less than that of the bath, and
thirdly, the Speer resistor is not nearly as sensitive as the Allen and
Bradley, resistor in the temperature range used. Nevertheless, the
temperature stability is very good (see fig. 3'and fig. 5a).

A block-diagram of the experimental set-up is shown in fig. 2. The
magnetization is strictly proportional to the integrated current induced
in the sample coils by changing the field. The integrator has a relax-
ation time of about 10 dayszz), so that a precise reading can easily
be obtained. A more serious source of error is the fact that the inte-
grator senses direct current, so a slow drift of the indicated voltage

thermometer
¥ digital
voltmeter
lock-mn I sample }—»—{muqrolor]—b— ——

amphitier

MAGNETIZATION p—p

4

recorder

Y

recorder

TEMPERATURE
> T ME

stobilised current FIELD & TIME
supply

Fig. 2. The block diagram of the experimental set-up. The gquan-
tities measured are printed in capitals.

arising from the temperature variations in the wires cannot be elimi-
nated during the time needed for completion of a set of measurements.
Assuming the drift to be linear, which was correct in most cases, one
can eliminate this effect, if the field respectively magnetization versus
time relation is recorded. This is easily achieved, if one uses a sol-
enoid and records the current.

The measuring procedure is as follows: the temperature is chosen
and stabilized in a few minutes; the drift of the integrator is minimized;
the field is quickly turned on to the maximum values and to zero again
a few times to check for remanence effects (within 0.2% of the total
magnetization no remanence could be detected at any temperature);
starting from zero field a small field was turned on, subsequently the
voltage of the integrator was read; and so forth until in about 20 steps
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the highest field was reached; then the field was decreased in the
same way.

The demagnetizing factor was determined by modelling a piece of
Armco iron into the shape of the sample and measuring the magnet-
ization as a function of the field. The slope gives the total demagnet-
izing factor.

3 The magnetization data

The measurements were made in three sets, the first of which in
apparatus a, the other ones in b. The first covers the temperatures
between 0.101 and 1.04K in 14 steps with two additional isotherms
at T=1.22 and 1.27K. The second covers the range between 0.992 and
1.802 K in 34 steps, while the third covers the interval between 1.759
and 3.4K in 27 steps. This last set contains one isotherm at 1.050 K.
The field of the Nb-wound superconducting coil was calibrated by
comparing the last mentioned isotherm at 1.050K with one measured
in the known homogeneous field of a large copper coil placed around
the cryostat. The maximum applied field during the experiment was
1000 Oe.

As to the accuracy of the temperature determination we may estimate
the total temperature change during the measurement of one isotherm
to be of the order of 0.1 millidegree near T .. The error in the cali-
bration is supposed to be a few millidegrees at T . Besides, the error
in the determination of T_ on the absolute scale may be about one
centigrade, due to uncertainties in some systematic corrections.

The magnetization is proportional to the measured voltage of the
integrator read on a digital voltmeter. To obtain the real magnetization
two systematical errors have to be eliminated viz. a) the drift, dis-
cussed in section 2, and b) the induction proportional to the field,
arising from unbalanced coils C , and C_, or arising from inhomogeneity
of the applied field. The correction a) amounts to 1% of the saturation
magnetization at zero temperature, while the correction b) was less
than 5% of M(O) at 1000 Oe. A more serious consequence of the small
inhomogeneity of the field consists of rounding the sharply curved
part of the M vs. H curves. This effect is largest at the lowest temper-
ature because the applied field is largest (300 Oe), and the curvature
is most pronounced. The inhomogeneity of the field at the position of
the sample, amounting to at most 1% will round the M vs. H curves
over an interval of about 3 Oe.

The field H for a homogeneously magnetized sample can be calcu-
lated according to the relation H=Hext—NM, where Hext denotes the
applied field, N the demagnetizing factor, and 47 M the measured in-
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duction. In an imperfectly shaped sample, NM is not constant. This
causes a spread in H as a function of position. The rounding of the
M vs. H curves arising from this cause, will amount to a few Oe at the
lowest temperatures.

A few of the isotherms are given in fig. 3. Section a shows two
isotherms chosen at both ends of the interval (0,1) for T/TC. For the
open symbols, the horizontal axis represents the applied field, for the
half closed symbols, the horizontal axis represents the field after
correction for the demagnetizing effect. One may observe in the first
place that the initial slopes of the curves drawn through the half
closed symbols are not infinite. This result is definitely outside the
experimental error. In order to check this result the measurements were
repeated for two other samples, one being an ellipsoid with axes of
about 14, 8, 8 mm, and oriented in such a way that the angle between
the longest axis and the ¢ axis was 55°, the other being an approx-
imate ellipsoid with axes of 25, 4, 4 mm, while the angle between the

1.407
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Fig. 3. Section a shows the magnitude of the correction of the
external field due to the demagnetizing field for two temper-
atures, which are far apart. For the open circles and triangles,
H* denotes the external field. For the half filled symbols, H*
denotes the external field corrected for the demagnetizing field.
Section b shows part of the total number of measured isotherms.
The relative magnetization m=M(T)/M(0) is plotted versus H,
which denotes the external field corrected for the demagnetizing
field and the (slightly temperature dependent) anisotropy field.
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longest axis and the c-direction was 70°. The two sets of measure-
ments show the same behaviour. The fields required to obtain complete
saturation at T/T _=0.05 were about 80 and 500e respectively, and
will henceforth be called anisotropy field. In the second place one may
note that the anisotropy field is a function of the temperature, which
varies slightly, but does not vanish at Tc. In section 4 an attempt
is made to interpret these data in terms of anisotropy energy. In view
of this interpretation and in order to be able to compare the resulting
spontaneous magnetization with various theories, the magnetization
data are plotted as a function of the field, H, that denotes the applied
field, corrected for the demagnetizing field and for the temperature
dependent anisotropy field. This procedure, however, does not alter
the values of the spontaneous magnetization, derived when using the
isotherms given by the half closed symbols of fig. 3, section a, by
more than 2%. Therefore this method has no practical consequence for
the discussion in section 6.

Inspection of the isotherms (fig.3b) shows that saturation at the
lowest temperature is readily attained. The saturation value diminishes
only slightly for temperatures up to 0.6 K. Above this temperature the
saturation value at the available field of 700 0e decreases rapidly.
The forms of the curves near T _ change markedly until at about 2.05K

the magnetization at the lower field is almost linearly dependent on
the field.

4 The anisotropy energy

The initial slopes of the M vs. H curves at various temperatures
(two of which are shown in fig. 3 section b) and for three different
directions with respect to the c axis, were always smaller than 1/N,
where 1/N denotes the demagnetizing factor. We suggest that aniso-
tropy energy may account for the discrepancy between the initial
susceptibility and the expected maximum value per cc viz. 1/N.

From recent electron-spin-resonance measurements Suzuki and
Watanabe 23! deduced an (extrapolated) anisotropy field of 200 Qe for
a direction in the aa plane with respect to the easy axis (c axis). These
authors calculated the anisotropy of the dipolar interaction at zero
temperature and obtained a value of about 10e. As their experimental
results may be described by assuming a small anisotropy term in the
exchange interaction within the formalism of the molecular field theory,
Suzuki and Watanabe attributed the anisotropy field to anisotropy of
the exchange coupling.

The effect of the anisotropy energy on the static susceptibility in
a direction perpendicular to the easy axis of magnetization and along
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a principal axis of the demagnetizing tensor (being an axis of the
ellipsoid in our case) is given by the expression.

1
~ SEAPTIEL ST - 1
X "N+ 2K/M? (1)

In this formula N is the demagnetizing factor in the direction of Fl, and
K is the anisotropy energy. This formula is derived by minimizing the
free energy with respect to &, the angle between_‘the domain magnet-
ization, M, and the easy uxis. The magnitude of M is assumed to re-
main constant and therefore we have omitted exchange enerqy terms
from the derivation. The change in free energy arising from a slight
rotation of M is given by

dF = — (H —NM,)dM, +d (K sin?6). (2)
Substituting Mj; =M cos 6, we obtain
F(6) — F(O) = — HM sin 6 +%NM?%.sin? 6 +K sin?6 (3)
after integration. The extreme value of F determined by

%%=—HMCOS.9+NMzsinf’cosﬁ+2Ksin9c059=0 (4)
is a minimum, since the second derivative of F with respect to @ is
positive at this point. Inserting sin 6 from eq. (4) in the expression

=M sin (J (5)
H

eq. (1) is derived. Introducing the internal field by H =H —NM and the
anisotropy field by HA=2 K/M we obtain
Mg H
2.t (6)
M H,

from eq. (1), so that the rotation of the spontaneous mcqnetizati.on of
a domain is determined by the ratio of the internal field along H and
the anisotropy field along the easy axis. For the more general case
that the angle which H makes with the easy axis lies between 0O
(x=1/N) and 7/2 (x=1/(N +2K/M %), y assumes an intermediate value.

Relation (1), however, cannot account for the experimental result.
On increasing the temperature from T/Tc=0.l to 1, the experiment
shows that the anisotropy field is reduced to only 80%, whereas K is
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predicted“) to vary as the third power of M. Therefore, 1/x is ex-
pected to approach the value N in this model, if T tends to T _.

Three plausible mechanisms causing an anisotropy field will be
discussed. The first mechanism is anisotropy of the dipolar interaction.
At zero temperature we have calculated the dipolar fields in the direc-
tions of the ¢ axis and an a axis. The evaluation has been performed
for an ion at the centre of a sphere with a radius of 150 R, containing
52830 ions. In both cases the field is less than 1 Qe. Therefore, the
anisotropy field originating from this mechanism may be neglected
entirely.

The second mechanism is the anisotropic hyperfine-structure-coupl-
ing (h.f.s.). For the copper salt investigated, no h.f.s. coupling con-
stants are known. However, one may take the largest value known for
several copper salts. If the anisotropic part of the h.f.s. coupling is
expressed in the form of an anisotropy field at saturation magnet-
ization, it is smaller than 0.8/T (Oersted /Kelvin). This field will be
negligible at temperatures above 0.3K.

A third source of anisotropy energy might be formed by anisotropic
exchange interaction, for instance the pseudo-dipolar anisotropy
according to Van Vleck 2%), This anisotropy energy is given by (K/AE)ZJf,
where A is the spin-orbit coupling parameter, AE the energy splitting
of the lowest lying orbital levels and f a constant, depending on the
orbitals participating in the interaction. The values of f differ con-
siderably for various types of bonds, but they are roughly of the order
unity28). For the Cu-ion A/AE=0.05. If we take J/KT_=0.35") and
f=2, the above-cited formula yields an anisotropy field, Hau of about
45 Oe, which is of the right order of magnitude.

As mentioned above, if one accounts for the effects of anisotropic
exchange by means of the expression (1) and the molecular field con-
cept, one encounters the problem, that the anisotropy energy tends
rapidly to zero, if T approaches Tc. However, in the molecular field
approximation, at T=TC not only the anisotropy energy, but also the
exchange energy vanishes. A clue may be found in the observation
that short-range ordering energy and spin-spin correlations are present,
even for temperatures well above T . It follows from the experimental
result obtained from several isomorphous salts (see ch. IV) that 55%
of the total energy involved in the phase transition is removed above
the critical temperature. Theoretically, for the Heisenberg s=% model
and b.c.c. lattice, the critical, parameter (Em—Ec)/RTC denoting the
energy removal on a reduced scale, is predicted?7) to take the value
0.41, while the next-nearest-neighbour coupling constant J2 has the
value O.25Jl (see section 6). Experimentally” this parameter was




found to be 0.392.

A qualitative interpretation of the experimental data may be found,
if for T=T _ we consider the crystal as consisting of coupled pairs of
neighbouring Cu-ions. The coupling will be ferromagnetic (s=1 lowest)
for the majority of pairs, due to short-range spin-spin correlation, and
will furthermore be anisotropic. A Hamiltonian for anisotropic exchange
between a pair of Cu-spins may be given by:

x+sYsY)], (7)

H=—2[J//sfsjz+J_L(s;‘s’ i 5]

where J// and J) denote exchange constants, and i and j denote a pair
of nearest-neighbour ions. The z axis is not necessarily identical to
a crystalline axis, but may coincide e.g. with the line joining the
ions i and j. The ground state for a pair of ions with s=% is threefold
degenerate, in the case J//=J_1_> 0. For slightly anisotropic exchange
(J// >JJ_) the degeneracy is removed, and a splitting (J//—.I_L) results
between the sZ=*1 ground state and a s*=0 singlet, in analogy with a
crystalline field splitting D(s?)? for ions having s*=1.

For the purpose of discussion, we introduce two assumptions.
a) The influence of the surrounding ions is approximated by a mole-
cular field proportional to the mean magnetization. This procedure is
comparable to the constant-coupling approximation of Kasteleijn and
Van Krcnendonkze), which at T=T _ gives a value of 0.60 for the cor-
relation between a pair of neighbouring spins. b) The crystal consists
of domains, in each of which all pairs have identical z axes, i.e.
identical axes of preferred alignment, and hence coincide with the
direction of the domain magnetization.

On the basis of assumption a), one may deal with the anisotropy
energy, (J//—JJ_) (s*)? for pairs (with s*=1), classically, using eqa.(3).
Let N{(T) denote the number of pairs per cc. in the s=1 state. Using
the assumption b), the anisotropy energy K for a domain magnetized
in the z direction has been calculated 29 as:

K =N{T)Ds (s-'%). (8)
Fq.(8) may also be written as:
K=%N(T) J, - I (9)
Eq.(l) now becomes:

Lx= N + %N (T)Dsin? 6, (10)
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If N is known, an estimate of the anisotropy energy per pair of ions,
K/'/zn , can be derived from (9) by using J/k=0.35T ) and assuming
an anisotropy of the exchange interaction of 2 per cent. In the con-
stant-coupling (c.c.) approximctionze)the spin-spin-correlationat T _ is
found to be 0.60.

A preciser evaluation of the spin-pair correlation at T _ may be
obtained from the series development method above T in the Heisen-
berg model. It may be inferred from a comparison of the fractions of
the total energy involved in the phase transition, (E,—E )/(E, c)),
removed above T (this frcxcnon is related to the spin- pcnr correlatlon)
for the c.c. cpproxxmatlon 8) gnd the senes—development ) calculation.
The former yields 43%, the latter 61%. From this consideration we
estimate the spin-pair correlation to be about 0.7, which also represents
the fraction of pairs in the s=1 state, Nf/l/z N. If we express the aniso-
tropy energy by an anisotropy field at saturation magnetization; HA=
=2K/M, we obtain an anisotropy field of 1200e. This is roughly the
value required for explaining the initial susceptibility in fig. 3a. More
significantly, the temperature dependence of the anisotropy-field on
the basis of this interpretation agrees with that observed experiment-
ally.

However, the z axes for various domains and pairs will very prob-
ably be different, since e.qg. there are two kinds of Cu-ions, differing
in the directions of their respective axes of large g-value. Conse-
quently, when evaluating the macroscopic %, a directional averaging
procedure has to be applied. Therefore, the direction of maximal y will
not necessarily be related to the crystalline axes. In other words,
deviations from x=1/N may be found for all directions in the crystal,
and these deviations‘'may persistat T=T _.

5 The determination of the spontaneous magnetization and critical
temperature

The reduced spontaneous magnetization M(T)/M(O) for T <T, is
theoretically well defined in zero field. The macroscopic reduced
magnetization, however, has a notably lower value because of domain
structure. To overcome this effect a field must be applied and the
spontaneous magnetization has to be deduced from the measurements
of the magnetization versus field.

The molecular field theory gives a simple relation from which
M(T)/M(D) can be deduced for 0 < T/Tc <] viz.:

€ tanh™ !} (M(T)/M(0))
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where H is the internal field and WM(0) the Weiss field at zero temper-
ature. To obtain the spontaneous magnetization as a function of T one
chooses a fixed value of M(T) between 0 and M(0) and uses (11) in the
form T=a+bH. If the experimental points show this linear relation
between H and T at constant M, the linear portion may be extrapolated
to H=0, so that one obtains the temperature intercept T, belonging to
the magnetization chosen, which by definition equals the spontaneous
magnetization. Fig. 4 shows that the relation (11) is approximately
satisfied for T lower than 1.72K. For H<200e(=H"), eq.(11) is not
satisfied. This is not surprising since the turning of the domains in
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Fig. 4. The internal field as defined in fig. 3 section b is
plotted versus the temperature for several values of the relative
magne tization, m. The arrows indicate the temperature region, in
which the extrapolation procedure as described by eq. (11) may
be used to obtain the spontaneocus magnetization as a function of
the temperature.

the presence of anisotropy energy has not been taken into account in
the derivation of eq. (11). The experimental points of Ni(Tc=627.2 K)
deviate from relation (11) for H* <8K0e3°), The value of H'/Tc for
both substances are of the same order of magnitude.

For temperatures above 1.72K, T and H are not related linearly,
so that the value of the spontaneous magnetization cannot be deduced
with this extrapolation procedure. Below 1.47 K the isotherms flatten
markedly, so that only a few isotherms may be used to construct each
of the curves (H,T)M, which quickly introduces an error into the
extrapolation.

Following a suggestion of Weiss and Forrer, a second method of
extrapolation was used. Particularly below 1K where the curves are
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rather flat, the spontaneous magnetization MS(T) may be found from
the isothermal relation3!);

M(T) = Mg(T) (1 —a/H —b/H?% . ..) +p(H), (12)

where M(T) is the measured magnetization on applying the field H, a
and b are constants determining the approach to saturation, the term
a/H accounting for the displacements of the domain walls and the
term b/H? accounting for turning the domains, while the term p(H)
relates the polarization of the individual moments to the applied field
strength. In a good approximation p(H) X H, where X, =constant. For
H > 100 Oe the terms a/H and b/H? are very small compared to unity,
so that a simple linear extrapolation to H=0 of the isotherms provides
us with the value of MS(T).

On decreasing the temperature, the results obtained by the two
methods approach each other asymptoticallyso). Therefore we have
taken the average of both results for the temperature region between
1.0 and 1.45K. The saturation value at T=0K has been obtained from
the data by extrapolation according to the Bloch formula:

M(T) = M(0) (1 —a (KD)¥2], (13)

which is valid for small spin deviations in a Heisenberg ferromagnet.

Since the molecular field theory neglects correlation, it is not
correct near Tc, so that we are left with the problem how to locate
(1 precisely. The Heisenberg model, which has been shown (see ch.IV)
applicable to this salt, takes account of the interactions between
nearest-neighbours. The susceptibility y in this model is predictedsz)
to behave asymptotically as

Xt~ (T-T), (14)
with 7 =1.43. The experimental value of ¥ is 1.40 for this salt33),
The deviation of )(;l from relation (14) in the temperature range
T=T_<0. 05T, is less than 5% (see ch 1 section 3.5.2). In order to
deduce T, let us define the function T" according to

T* (T)=1/(d/dT)n (1 = (T =T /7. (15)

Experimentally T" can be found from a plot of X:l vs. T according to
the identity
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1/(d/dT) In (x5 1) = xZ1/(d(x ;1 )/dT). (16)

Linear extrapolation of the plot of T" vs. T to T =0 yields Toge

The susceptibility, X°=(BM/3H)H=0 cannot be accurately deter-
mined from a plot of M vs. H, since such a graph is strongly curved
for temperatures near the Curie temperature (see fig. 3b). The graphs
of the data are far less curved, if they are plotted as m? vs. H/m,
where m stands for the relative magnetization (fig. Sa). This technique
has been proposed by several authors 24:3%) gnd it has been applied
to several experiments“'”). Extrapolation of the linear part of the
graphs to m2=0 provides us with the values of Ax;l. The numerical
constant A, however, cancels from the expression for T', as may be
seen from eq. (16).

A theoretical basis for the m* vs. H/m technique is furnished by
considering a system of independent spins that interact with a mean
field. Assume that the magnetization produces a mean field Hmi'

2

H, =H_m, (17)

mf

where m denotes the relative magnetization and Ho an experimental
constant having the dimension of a field. The field He“, acting on an
ion, is now given by

Hog=H+mH_. (18)
Using Boltzmann statistics one obtains
m = tanh (a) (19)
for a system of independent spins (s=!4). In eq.(19) a=pHe”/kT and
r=gpps. If a << 1, the right-hand side of eq.(19) may be expanded in
powers of a. Retaining terms up to the third order in a,

m=a-1/3a%. (20)

Substituting a into eq.(20) one may obtain

H= kT 2 2113 H 3
H_(XT _H )+1/3 (& H> (1 +—= (21)
m (u o! (kT) e mHo)

after some manipulation. If T-T _ and H~0, m-0 and the inverse sus-
ceptibility 1/x=H/mM(0) tends to zero, so that
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kT
M

€=H (22)

o
On substitution of H_ for kT /u in eq.(21) we obtain

H
m

-—EII

(T—-T_) +1/3H (L)Z(l +— )3 2, (23)
N mH

c

Assuming a) H/mH_<<1 so that

H ,3 H
1+ S s ).
e e mHo)

o

eq.(23) takes the form

°(T—-T_)+1/3H (—) m?

P . (20
% 1_(L>2 m 2
] i
2 Tc 2 g i
Ifb) m (T) <0.1, one may simplify eq.(24) to
H H c 2
E—T_(T 0 )+l/3H (—~) (25)
C
which for experimental purpose may be written as
H 2
E=A(T) +B{T)m*= (26)

A(T) may be determined from a graph of m? vs. H/m. Clearly (H/m)
-A(T) The assumption a) is consistent with eq.(25) because H/mH <<l
according to eq.(25), if assumption b) is fulfilled and (T T T, “« 1.

Fig. 5a shows us the plot of the quantity m? vs. H/m for a set of
isotherms with T near T.. The isotherms for T 2 1.7441K furnish us
with an unambiguous value of the quantity (H/m) (being proportional
to xo 1), This quantity has been plotted as a function of T in fig. Sb.
Usmq eq.(16), T" defined by relation (15) can now be calculated from
this plot. The result is also shown in fig. 5b. As one may see, T' is
linear in T, so that the intercept of the graph extrapolated to T =0
that gives the critical temperature, is found to be T .=1.735(20.002)K.
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Fig. 5. Section a shows the isotherms at temperatures between
1.7147 and 1.8020K, plotted as m2 vs. H/m. The intercepts of
these curves with the axis m2=0, (H/m)m o (being proportional
to )(o_l, are plotted in section b as a function of T. T‘:x; /
(d()(;l)/dT) (see the text) plotted vs. T in section b yields
Tc=1.73510.002 K.

The slope of the line given by T'=(T—Tc)/')' is 1/9. From our
data we find ¥=1.25(%0.1), which is somewhat lower than the value
found by means of a.c. susceptibility measurements, }'=l.4033). This
difference may be related with the temperature-dependent contribution
(arising from the anisotropy energy) to the susceptibility (eq. (1)). This
contribution depends on the direction of measurement with respect to
the crystalline axes.

A plot of H/M vs. M2 of the measurements on the ferromagnetic
substances Eu0 and GdN, with s=7/2, performed by Junod and Lévy37),
yields straight lines also. As the solution (19) to (18) for general s is
given by the Brillouin function, which is spin-dependent, the values of
A and B for s #% are different from those given in eq.(26).

The data of the relative spontaneous magnetization, m, vs. the
relative temperature, t, have been collected in table I.

6 Discussion of the results

In fig. 6 the experimental values of the reduced magnetization vs.
the reduced temperature, collected in table I have been plotted.
For comparison we hagve also plotted the recently published results
on the calculation of the spontaneous magnetization of the Heisenberg
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TABLE I

The reduced spontaneous magnetization, m=M(T)/M(0), is presented as a function
of the reduced temperature t=T/T .T =1.735(4+0.002)K according to figure 5b.
The symbols a and b denote measufeménts in different apparatus as described in
section 2.

a b

t m t m t m t m
0.058 0.998 0.324 0.954 0.664 0.822 0.899 0.55
0.0608 0.992 0.368 0.943 0.701 0.795 0.926 0.5
0.136 0.984 0.417 0.933 0.732 0,775 0.944 0.44
0.160 0.986 0.448 0.820 0.777 0.731 0.957 0.40
0.200 0.982 0.493 0.904 0.806 0.700 0.972 0.32
0.231 0.974 0,546 0.887 0.845 0.65 0.989 0.24
0.274 0.970 0.597 0.859 0.879 0.60 0.997 0.16

s=Y% ferromagnet (s.c. and f.c.c. structures) by Cooke and Gersch!?),
Liu and Sianols), and Loly“). Cooke and Gersch obtained their results
by means of Green's functions technique in second order. This theory
covers the whole temperature region, whereas the spin-wave theory
may only be applied in a limited temperature region. The dashed curve
represents the calculations for the f.c.c. structure, the dash-dotted
curve those for the s.c. structure. Taking account of the fact that
the theoretical values for the b.c.c. lattice will lie between those for
the s.c. and f.c.c. lattices, we find a striking agreement between this
theoretical result and the experimental curve.

In the low temperature region a more sensitive criterion for testing
the theory is furnished by comparing the specific heat results with the
theory. As on the low temperature side the Green'’s functions method
yields exactly the same result as the spin wave theory, this comparison
has essentially been made in chapter IV.

Liu and Siano have also used a Green’s functions technique, but
only in first order. The decoupling scheme used by these authors has
been introduced by Tyablikovae), and is different from the method used
by Cooke and Gersch. Some results for the f.c.c. lattice, denoted by
a + symbol have been plotted in fig. 6. The calculated curve for the
s.c. lattice has not been plotted, as this curve would also lie appreci-
ably below the curveobtained by Cooke and Gersch for the same crystal
structure. One may notice that even the f.c.c. curve calculated by
Liu and Siano lies appreciably lower than the experimental curve.
This disagreement may be due to the incorrectness of the decoupling
scheme used, or to the fact that the calculations are made to first
order only.

Recently I_.olyl D has applied the technique of the self-consistently
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Fig. 6. The reduced spontaneous magnetization m is shown
versus T/T¢ for the present measurement and several statistical
theories. O The present measurement.

- — —f.c.c.) Heis. model s=%, calculated by Cooke and Gerschl4)
— o BaCy with Green's functions technique in second order.

+++f.c.c. Liuand Sianols), Heis. s=%, Green'’s functions calcu-
lation with Tyablikov's decoupling procedure.

« b.c.c. Loly'’s resul(“) on the Heisenberg s=% ferromcqnet,
calculated with (renormalized) spin-wave theory The
second neighbour exchange coupling J 0.15J1. The
results at T/T¢=0.9 for Jg=0 and Jg= % 3 ]] are given
by the end points of the bar attached to the result at
T/Te=0.9 for J2=0.157J].

XXX Molecular field model for s=%.

renormalized spin wave approximation in a somewhat modified version,
combined with a non-zero second neighbour exchange constant to the
calculation of the relative magnetization of the b.c.c. Heisenberg
=}, ferromagnet, up to T/T_=0.9. Various theoretical predictions
have recently been derived on the influence of n.n.n. exchange on the
value of critical parameters such as energy and entropy removed above
T by the short-range ordering process27 39,40) By applying these
esults to the experimentally obtained values®: 7) Dalton and Wood4??
deduced J2/Jl—0.2510.1 for the ratio between necrestand next-nearest-
neighbours exchange coupling (for more details see ch.IV). Loly has
calculated the spontaneous magnetization for the b.c.c. s=2 Heisen-
berg model with J /Jl-O 15 and J,/J, =0.25. The results are repre-
sented by the dotted curve. The dlf{erencp between curves for a=0.15
and a=0.25 (and consequently for a=0) is hardly noticeable in fig. 6.
The largest difference, which is found at the highest temperature, is
shown in the figure as a small bar at T/T _=0.9.
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It may be noted that the recent calculations of Loly agree quite
well with the results of Cooke and Gersch up to T/Tc=0.55, but at
higher temperatures they are systematically higher than both the latter
theory and this experiment. Furthermore, one may note the striking
difference between the Heisenberg s=% curve and the molecular field
results for T <0.7 TC. This difference is expected to decrease for
increasing spin values, which has actually been calculated by Callen
and Callen for the spin=7/2 ferromagnet of f.c.c. structure. In the
temperature region between 0. 75T, and O. 90T the molecular field
theory for s=Y% seems to be a good opprox1mat10n, which is confirmed
by the applicability of the extrapolation procedure for finding M (T)
based on this theory.

In fig. 7 the reduced spontaneous magnetization has been plotted
as a function of €=1-T/T_. The value of T. viz. 1.735 (£0.002) K
has been derived from fig. Sb. The length of the bars attached to

1.00 T )= T \ R v v | T £l o S |
0.80} i 1

0.60 I

0.40 -

0.20} / .

0.10 1 == ah 1 1 T VO 1 1
1- T e10'8107 2 4 6 810" 2 4 681

Te
—

-
9
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Fig. 7. The relative spontaneous magnetization, m, is plotted
vs. (1-T/Tg) on a logarithmic scale. T¢=1.735%0,002K (see
fig. 5b). The bars indicate the ambiguity in position, due to the
uncertainty in T .. The straight line represents the fit:
m=B(1—T/Tc)8, with 8 = 0,3840.04, and B=1.3310.15.

several points indicate the uncertainty in €. This uncertainty in €
is caused firstly by the inaccuracy in the determination of T (see
fig. 5b), and secondly the uncertainty in the determination of T, whlch
is obtained by means of the extrapolated curve m(H,T)y_., = constant
(fig.4). For 1072 < € <0.2 the best fit to the experimental values is
found to be a straight line, corresponding to the relation

=Bl ~T/T )5, (27)
with £=0.38 (£0.04), and B=1.33 (%0.15). The uncertainties indicated

include errors in 1 = T/T & and in m.
The values for 8 and B in this salt are higher than the values found
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in most experiments, as one may notice from a recent review on the
subject by Heller*!), The values for two ferromagnetic substances
are close to ours. For CrBr., Senturia and Benedek 42) have found
B=1.32 (£0.07) and B=0.365(%0.015) while 7. 19~%¢ ] -T/T_<5. 102,
For Ni, Howard et al. 43) fit their measurements with B=1. 5 (+O 1) and
B=0.37 (£0.03) in the temperature region:10™ 83¢€e<10~L Up to now
for the Heisenberg model no firm theoretical results have been derived
for €< 10™1, not even for s=%.

However, using certain statistical assumptions, several relations
between critical exponents have been derived. (For recent reviews
see refs. 44 and 45). The exponents we will consider, i.e. &, ¥', §
and B are defined by the relations

d In Cy

a'=lim (T .—T)—— (28)
T T— dT
[ o
where Cy denotes the molar specific heat in zero field,

Y =lim (T —T)tXe (29)

= lim - /

PRYE dT

Hemdat T=T,, (30)

B is defined by relation (27). T~T_ denotes the approach of T | from
the low-temperature side. In general the primed quantities refer to the
temperature region below T .

The following two relations will be considered, viz.

a'+ B(8+1) 2 2 (see ref. 46), (31)
and

a +2B+7y" Z 2 (see ref. 47). (32)

Experimentally @ is found to be 0.00 +0.037) and B=0.38 £0.04. The
value of & can be derived from a plot of the critical isotherm on a
logarithmic scale. The critical isotherm might be obtained from a
straightforward interpolation of the graphs of the isotherms on both
sides of T as plotted in fig. 5a. However, we have preferred to plot
the three 1sotherms nearest to T, so that the small differences in the
slope may be estimated (fig. 8). For a better display the horizontal
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Fig. 8. The isotherms at T=1.7441, 1.7342 and 1.7248K are
plotted in the form H vs. m3 on a logarithmic scale. The dashed
line being tangent to the isotherm T=1.7342K, which represents
the critical isotherm (T=1.735K) to garaphical accuracy, corres-
ponds to the relation Hem? with § = 3,9+0.2.

scale has been extended a factor 3 by plotting m3 vs. H. The slope
of the dashed line, tangent to the isotherm at T=1.7342K (being very
close to the critical temperature, T =1.735 K), corresponds to & =3.9(%0.2).
The value of ' is difficult to obtain experimentally, since the initial
susceptibility of a ferromagnet is infinite for T < T.- For the Heisen-
berg model 7' is not known. For the simple quadratic and triangular
lattices in the Ising model ¥'=7(=1.75)48) while numerical evidence
for the three-dimensional cubic lattices ®) suggests ¥/ #y(y'=1.31 _3‘0634,
¥=1.25 £0.01).

In the first four columns of table II we list the experimental values
of the four exponents known for this salt and for Ni. The f{ifth column
contains the values of o +f(1+ 8). Assuming y'=7, the value of o+
+2B+7y" is found (column 6). Assuming the equality signs in eqs. (31)
and (32) to obtain, & can be eliminated between (31) and (32), so that
¥' may be calculated (column 7).

If we assume & =0 for both salts, a set of values (f,8) may be
found that satisfies the equality contained in eq. (31), and lies within
the error bounds given in table II. This set of values (f,8) is listed
in table III. The value of 7 for each pair (B, 8) may be calculated, if
it is assumed that the equality sign in eq. (32) holds too (third row of
table III). The fourth row lists the values of v — ' for each (8, 8). We
notice that '#7, which indicates that full symmetry between the ex-
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TABLE II

The experimental values (with error bounds) of the exponents &, ,[5, 6 and Y
defined by the egs. (27) to (30), are given for this salt and Ni., The left-hand
sides of relations (31) and (32) are evaluated in columns 5 and 6 respectively.

1 |1f (31) and
Y=)':/(32) holda
equalities:
a B ) v aty |ar42f
Bas+dy| +y* |[y'=L8-1)
Cu(NH,,),Br,. 0.007) 0.38 3.9 .40 186 | 2.16| 1.10
e 0.0040.03 [ 0.384+0.04 | 3.940.2 | 1.404+0.02| 2.17 | 2.29| 1.30
2 0.00—0.03| 0.38—0.04 | 3.9-0.2 |1.40-0.02| 1.57 | 2.03| 0.85
0.00 0.3840.01 | 4.320.1|1.33+0.02| 2.01| 2.00| 1.25
Ni
Ref. 50) 43,51,52) | 36,52) | 36,52)
TABLE HI

The sets of extreme values of (,[5, o) satisfying the equalities in relations (31) and
(32). The third and fourth rows list Y/ and (Y—7)') respectively.

Cu(NH4)28r4.2H20 : Ni(refs. are given in table II):
condition
central
exponent ﬁmax Smax values Bmin Smcx
B 0.42 0.39 0.38 0.39 0.37
o 3.8 4.1 4.3 4.2 4.4
yi=B(85-1) 1.16 1.21 1.25 1.25 1.26
Y-y 0.24 0.19 0.08 0.08 0.07

ponents below and above the critical temperature does not obtain. In
the case of the three-dimensional lattices in the Ising model ¥' # 7,
while for the two substances cited ' < 7.

Another way of interpreting the experimental results starts with the
assumption 7¥'=7. In this case the inequality sign in relation (32) ob-
tains for any experimentally allowed set of values (f,8) while the
equality sign of relation (31) holds for an ample set of values (B, 8),
although not for all.

Summing up the results we may state that the measurement of the
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spontaneous magnetization confirms the evidence of ref. 7 and ch. IV
that the salt Cu(NH4)zBr.4.2H20 is a simple s=% b.c.c. Heisenberg
ferromagnet having little anisotropy. The properties measured are

shown to be consistently described by statistical theories. A com-

parison of the critical exponents &, B, ¥, and 8§ with two rigorous

inequalities between the exponents suggests that either 7’ <y
(y—7'~0.20), or that a’+28+y' > 2 with ' =¥. Accurate determination
of the spontaneous magnetization very close to TC(TC—T< 0.01 TC),

which we have been unable to deduce from our measurements in an

external field, would be welcome to set closer bounds on the value

of the exponent .
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Chapter VI

THE SPECIFIC HEAT OF TWO DIPOLAR ANTIFERROMAGNETS
AND ONE FERROMAGNET BELOW 1 KELVIN

1 Introduction

Heat capacity measurements are of interest for the study of mag-
netic interactions in ionic compounds, since the interaction strength
may often be derived from the position of the heat capacity singularity
and from the corresponding energy yield.

In Gd compounds considerable contributions to the heat capacity
arise from crystalline field interactions Early adiabatic demagnet-
ization experimentsl'z':"“on GdZ(SO4)3.8H20 were analyzed in terms
of cubic Stark splittings and showed the absence of strong magnetic
interactions. The Stark levels have recently been determined®’ by
electron paramagnetic resonance (E.P.R.) measurements and it was
found that the crystalline electric field is predominantly axial, although
some deviation from axial symmetry is found in the sulphate. In terms of
the spin-hamiltonian:

2

b
H=qgfBH.s + bg{sZ—%-s(s +1)} +T2(SE_83) +

+bg [ sd—{Fs(s + 1) =y )s2—fys(s + 1) + i s(s + 1)?]

(where s-%—, g=2, while higher terms are omitted) it is found that
b‘;/b‘2’<01 and b§<b° in most Gd salts so far investigated. For
ud2(804)3 8H O one has approximately b°/b°——0 02 and 3-b2 lb° at
low tempemtures

The Stark levels for Gd sulphate as determined by interpolation of
E.P.R. results on Gd®* in Nd, Sm cmd Y-sulphate are E/k=0K, 0.320K,
0.710K and 1.257K, assuming s 2— levels lowest, j.e. b positive.
An analysis of Bogle and Toutenhoofds) of heat capacity data of Van
Dijk e.a. 3:4) hgs shown that b° cannot be negative in the sulphate.

It has been shown by Ivemnovc e.a.”) that the crystal structure of
the sulphate octohydrate is equivalent to that of the other isomorphous
rare earth compounds from Pr to Y, in which series monotonic increas-
ing lattice constants have been measured. The structure is monoclinic®
(space group C6 ) with a tetramolecular unit cell having dimensions
a_=18.303K, b_ 26,748 ‘ahd co=13.539R, and B=102°. 'rms leads to
a umt cell volume of 1633 +9 &3 and a density of 2.99 g/cm , corres-
ponding to 4.87 x 102! jons per cm?. The positions (a,b,c) of the metal
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ions vary probably appreciably over the rare earth series as can be
seen from the differences between the (a,b,c) values in the Nd and Sm
salt. Following Zachariasen®) and taking the Sm compound as a model
for the Gd salt, one has a=0.106a_, b=0.025b° and c¢=-0.231c_. This
leads to Gd-Gd distances among the positions *(a,b,c), i(%——a,b,é——c),
t(a+ L,y —bic) and #(q,b+g,c+yz) of 5.08%, 5.51K, 6.13R, 6.48%, 2
times 6.74 R etc. The E.P.R. results of Bogle e.a.®) on Gd ions in the
isomorphous rare earth sulphates are referred to an (x,y,z) coordinate
system, in which the z axis makes an angle of 55° with the twofold
b axis. They find two distinct kinds of ions, differing in a rotation of
the z axis about the twofold b axis. It should be noticed that, whereas
Bogle takes B=118°, the results of Iveranova show that S=102°.

The crystal structure of GdCla.GHZO has been investigated more
precisely than that of the sulphate, while on the other hand no precise
E.P.R. data are available. Marezio e.a.?) have shown the crystal
structure to be monoclinic (space group C;h) with a bimolecular unit
cell of dimensions a_=9.651&, b_=6.525R, ¢_=7.923R and £=93.65°
(see also fig.8).

The unit cell volume is 498.4 8% and the calculated density is
2.478 g/cm?®, the number of ions per cem? is 4.02x 102!, The Gd ions
have positions *(a,b,c), i(a+é-, —b,c+é-). The Gd ions form aprimitive
translational lattice and nearest neighbours are found in pairsat 6.521%,
6.55R and 6.56R. The two members of a pair are not diametrically
opposed except for the nearest pair along the ¢ axis; although the unit
cell is nearly orthorhombic, there are no nearly right angles between
the lines connecting a Gd ion with its nearest neighbours. For a de-
scription of the magnetic ions, it may be useful to consider the Gd ions
arranged in linear chains along the b axis, intersecting the ac plane in
a nearly simple square lattice of 6.1R spacing. The Gd ions of adja-
cent chains are shifted by 1.98& along the b axis, so that planes
through the Gd ions parallel to the ac plane are spaced alternately
by 1.98 R and 4.54R. The Gd ions are surrounded by 6 water molecules
and two chlorine ions, forming two complexes [ClzGd(OH 2)6] per unit
cell and leaving one Cl ion per mole isolated. Each complex has an
axis of twofold symmetry and since the predominant partof the crystal-
line field is due to the anions of the complex, it may be assumed for
practical purpose that one axis of the crystalline field coincides with
the twofold b axis.

The ground state of dysprosium ethylsulphate is formed by a doublet
having highly anisotropic g-values (g,=~ 10.8, g ~ 0)19), The next
doublet is found to lie at AE/k=22.5K“), which can therefore be
neglected at temperatures near 1K.
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Susceptibilitylz'lo) and relaxation measurements performed in the

temperature region between 20 and 1K have been successfully inter-
preted in terms of dipolar interactions. The experimental value of &
measured in the direction of the highest g-value (// ¢ axis) was found
to be 9//— +0.12K, which agrees closely with the value 9/ =+0.126 K,
calculated from the formulae given by Daniels??), Demagnetization-
and susceptibility measurements by Cooke et al.'%) also show that
dysprosium ethylsulphate becomes ferromagneticnear 0,13K (Tc= +0.127
$0.005). The adiabatic magnetization curves at temperatures above
and below the transition point were interpreted by a model using Ising
interactions between ions lying in chains parallel to the c axis!4),

c-Oxis

c.7.04%

<-a-l39lx->

®nnto @

Fig. 1. The relative positions are shown of nearest-neighbour-
(n.n.) and next-nearest-neighbour-(n.n.n.) chains of Dy ions with
respect to a central chain of Dy ions.

The crystal structure has been determined by Ketelaar!®), The
elementary cell having the space group symmetry Cgh contains two
equivalent dysprosium ions of trigonal-dipyramidal symmetry (C3h).
Fig. 1 shows the relative positions of nearest- and next-nearest neigh-
bour chains to a central chain of dysprosium ions. The length of the
a axis of the elementary cell is 13.906 .&, while that of the ¢ axis is
only 7.04 K. Each Dy ion has 2 nearest neighbours at 7.04 R along the
¢ axis, 6 neighbours at 8.75&, arranged in two triangles lying above
and below this central ion respectively, and 6 neighbours at 13.91 R
arranged hexagonally around this ion in a plane perpendicular to the
¢ axis.
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2 Experimental method and determination of the critical temperature

The experimental arrangement has already been described in ch.Il.
As to the consistence of the samples, measurements on the gadolinium
sulphate were performed on powdered crystals, while those on gado-
linium trichloride hexahydrate and dysprosium ethylsulphate were
performed on single crystals. In view of the arquments given in ch.l,
section 3.6.1, the difference in consistence is unimportant as far as
the specific heat is concerned that is measured with temperature differ-
ences larger than 10_3TN.

The transition temperatures were derived from the measurements
of the specific heat. In a first approximation they are identified with
the temperature at which the specific heat attains its maximum. For
the hydrated sulphate this maximum is chosen as Ty (see ch.l, section
3.6.3), since the singularity is almost symmetric with respect to IT—TNI.

In the chloride, however, the observed singularity is asymmetrical,
so that we expect TN to lie somewhat higher than the temperature of
maximum specific heat. Since the high temperature side of the curve
drops steeply, the interval at which specific heat points of reason-
able accuracy could be taken (AT = 10—3TN) was still too small to
determine this maximum precisely. Therefore we may identify the
temperature at which the maximum in the specific heat is observed
with T .

In dysprosium ethylsulphate, the temperature versus time recordings
were rather irrugular when the critical point was approached. This
effect may be due to a long relaxation time in conjunction with ferro-
magnetic domain formation. This caused a spread in the results so
that the critical point could be determined only to about 1 part in a
hundred (TC=O.115 K).

The lattice does not make a noticeable contribution to the specific
heat in either salt in the temperature region studied. Throughout this
chapter the specific heat originating from the magnetic dipole coupling
between the Gd2*-ions and the coupling with the crystalline field will
be called magnetic specific heat and will be denoted as c_, referring
to one gram ion Gd or Dy.

3 Specific heat
3.1 Gadolinium sulphate octohydrate, GdZ(SO4)3.8H20

The heat capacity of gadolinium sulphate octohydrate is plotted in
fig. 2 on a logarithmic scale. From the data a critical temperature of

TN=O.182 +0.001 K can be derived (see sections 2 and 3.4).
The entropy, Sm—SC, involved in short range ordering amounts to
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1.49 R/gram ion, which may be compared to a total measured entropy
Se=2.08R=RIn (2s +1). Since S, —SC =2.13RIn2=RIn4, one sees
that at the critical point practically only the lowest Stark doublet
remains populated. Correspondingly, the energy yield between high T
and the critical temperature TN is found to be 6.66 J/gram ion, which
amounts to about 90% of the total gain of 7.37 J/gram ion. From the
energy levels, due to Stark splitting, one derives a crystalline field
energy yield of 4.75J/gram ion if s_= i%— is lowest or 5.72 J/gram ion
if s, = i; is lowest.

In fig. 2 also the Schottky heat capacity based on the energy level
scheme mentioned in section 1 (sz=ilz lowest) is indicated for com-
parison with the experimental data. If the level scheme were reversed
g% i;- lowest) the Schottky specific heat alone would considerably
exceed the experimental values in the temperature region between 0.3

—— A,LQ
04 06 08 10 2
Fig. 2. Heat capacity cm/R of Gdz(SO4)3.8H20 as a function
of temperature on a logarithmic scale, The singularity occurs at
TN=0.18210.001K. The dashed line represents the Schottky

specific heat for s,= t% lowest, and the dot-dashed line gives

the sum of Schottky and dipolar heat capacities. The triangles

are points taken from refs. 3 and 4.
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and 2K. Hence we agree with the conclusion of Bogle and Touten-
hoofd®) that the ground state is sz=i%-. Bogle and Symmonss) have
noted that the crystalline field energy levels E/k=-0.572K, —-0.252K,
+0.138K and +0.685K can reasonably well be represented by:

b;{s:— é—s(s+ l)}+%—b§(si —~ 53) -

with b/k=0.1K and 3b2/k=0.02K. One sees that the crystalline field
is predominantly axial, not cubic as was formerly supposed. Hence the
four twofold degenerate levels may be denoted as s_= 12- ig., 2-cmd

2— levels respectively, to a good approximation. We shall apply this
approximation for calculating the dipolar interaction, modified by the
above crystalline fields. Such calculations are based on the formulae
of Van Vleck!®) and have been carried out earlier for cubic fields by
Hebb and Purcell?),

In the notation of Van Vleck, for zero external magnetic field,

dipolur d ( 2:;) 4—2_ { 2d ((T )/T )}
3=y I gmm,) Pexp (~W(m )/kT)}2,

where N is the number of ions per cma, Q-N"z‘_Zr_ﬁ, and where
,uq(m m) is the (diagonal) matrix element of the magnetic moment
operator in the s, representation. The sums 22 and 2 5 have not been
explicitly written since they are slightly more cornphccted They con-
tain nondiagonal matrix elements, giving the contributions of 1 and
/. when adopting the s, representation, and are incorporated in the
calculation. We have summed these expressions with the aid of a
360/50 IBM-computer, and some results are given in table I. From the
crystal structure we further estimate Q=18.3 £0.5.

The values of Caip for s_= té— lowest, when added to the Schottky
specific heat C result in a theoretical curve, indicated in fig. 2 by a
dashdotted line. It is seen that agreement with experiment is satis-
factory in the high temperature region, as noted before by Bogle e.a. 6)
and by Van Dijk e.a.34%), Neither our caloric data, nor those of Van
D1Jk3), extend to sufficiently high T in order to make an accurate
derivation of the asymptotic value of Co T2/R possible. This may be
connected to deviations from ¢ _«T™ * whxch are apparent in the Schottky
specific heat between for 1nstcmce 1 and 3K (cf. c_ in table I). For
the entropy determination we have therefore adopted the calculated
value cmTZ/R=0.33K2. Higher values of cmTz/R were reported e.g.
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TABLE I
The results of calculations of the Schottky term and dipolar term in the specific
heat are presented. The summed contributions are plotted in figs. 2 and 3 respect-
ively as a dash-dotted curve
a Gdz(SO4)3.8H20 GdCls.SHZO
[fd c_s cdip Cs+cd1p c_s cdip Cs+cd1p
R R R R R R

0.4 {0.522 0.632 1.154 0.505 0.781 1.286

0.6 |0.349 0.326 0.675 0.317 0.286 0.603

0.8 |0.238 0.186 0.424 0.208 0.130 0.347

1.0 |0.167 0.117 0.284 0.144 0.0808 0.225

1.4 |0.095 0.0573 0.152 0.0800 0.0369 0.117

2.0 |0.049 0.0271 0.076 0.0413 0.0167 0.0580

3.0 |0.0225 0.0118 0.0343 0.0190 0.00713 0.0261

4.0 |0.0131 0.0066 0.0197 0.0109 0.00393 0.0148

10.0 [0.00219 2 0.00109 2 0.00328 2 0.0017&12 0.00061 2 0.023292

T |0.2196/T“|0.109/T 0.328/T 0.179/T 0.0608/T 0.240/T

by Broer and Gorter!”) and De Vries!'®) from paramagnetic relaxation
experiments. The former obtained b/C=3.9 kOe? at 77 K, which gives
cmTz/R=0.36K2 and the latter obtained b/C=3.8k0e? at 20 K, giving
cmTz/R=0.3SK2. The small discrepancy with our calculated value of
¢, might be explained by assuming a small exchange interaction. In
this case, however, the calculated value of ¢ above 2K would be
about 8% higher than the experimental value, which is outside the
experimental error. In any case the entropy determination is practically
not affected by choosing the higher value of (o

One may note that the experimental data fall considerably below
the theoretical curve for T/Ty <5. As an illustration, the value of
(cm —cs)Tz/R decreases by a factor 4 when going from 2.5K to 0.25K.
Since the interpolation procedure of Bogle e.a.” for estimating the
Stark splittings in the gadolinium salt does not allow much variation
(< 1%) in the Schottky specific heat, the discrepancy has to a large
extent to be attributed to overestimation of the contribution of dipolar
interactions. This may be due to: a) neglecting higher terms (T~3,T—%)
in the partition function of the dipolar interactions,and b) to the circum-
stance that averaging over the angular variable in (1 — 3cos? 9“)2 in
the dipolar sum, while allowed in the T—2 approximation for isotropic
ions (g//=q_l_), is inadmissible whencrystalline field levels are partially
depopulated. In this case the statistical weighting factors for the
highest levels decrease. For these levels the effective g-value has the
property gj"_ff=0 and then the averaging procedure for (1 — 3Cosz9“)2 is
no longer correct. Taking the angular variables for neighbouring ions
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into account, however, would require an elaborate computational pro-
cedure, i.e. essentially a combination of the techniques of Van Vleck!®)
and of Daniels!?®).

We suggest that the series expansion of c. in powers of 1/T has
at least one significant term with the negative sign which is to be
contrasted to the series expansions of ¢ in case of exchange inter-
actions!?). As a consequence the transition point is comparatively low
and deviations from ¢ « 1/ T2 behaviour occur at a relatively high T/Ty-
Van Vleck calculated negative coefficients of T=3 and T—? terms in
Caq for cubic lattices, but their magnitude remained uncertain.

e conclude that exchange interactions are negligible and that
Stark splittings and dipolar interactions explain the data at high T,
but that the high temperature approximation Cd.lp/R =é-QTZ/'I‘2, where

7=Ng?B2s(s + 1)/k =0.191K,

is only valid for 7/T < é—

Considerable deviation of the heat capacity from theoretical esti-
mates at relatively high T was also reported by several authors®2) in
cerium magnesium nitrate. In this salt one also has g >> g//and pre-
dominance of dipolar coupling.

3.2 Gadolinium trichloride hexahydrate , GdCl3.6H,0

In fig. 3 the heat capacity of gadolinium chloride hexahydrate is
given as a function of temperature. The sinqularity at Ty =0.185%0.001K
is due to a magnetic ordering transition, while the broad anomaly under-
neath is almost certainly due the Stark splitting of the 887/2 ground
state. Experimental data on many ionic Gd compounds have shown
that the crystalline field splittings have the order of magnitude of
1 em~! and this agrees roughly with the position of the temperature
scale of the Schottky anomaly under the sharp singularity of the mag-
netic interactions.

The change in entropy when cooling the crystal to T amounts to
1.480R which is slightly more then R In4. At T=0.10K the entropy
change is 2.009R which is 3% less than the expected total entropy
RIn(2s+1)at T=0K. The unusually high entropy above Ty corroborates
the assumption that the crystalline field splittings contribute to the
heat capacity. The energy yield above T is R 6.25J)/mole,
while below Ty the energy change amounts to 0.534 J/mole, hence
Etot=6.78 J/mole and —Ec/Et°t=0.92.

The heat capacity for T > 1K is over a rather limited temperature
region represented approximately by cmTz/R=O.240 K. Hellwege e.a.2
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Fig. 3. Heat capacity cm/R of GdCla.GHZO as a function of
temperature T on a logarithmic scale, A singularity is found at
TN=O.18510.001K. The dashed line indicates the estimated
Schottky specific heat. The dash-dotted line corresponds to the
sum of Schottky specific heat and dipolar specific heat.

have measured the heat capacity in the region 1.1 < T < 260K. Their
values for c, at T > 1.5K are slightly higher than ours, but our data
agree with theirs within the accuracy of the measurements between
1.1 and 1.5K. According to the high temperature expansion:

¢/R~TrH/K2T 2= Jes(s +1)(25+3)(2s — 1) {(b3) 2+ 1(b2) 2} /k 272

Levy2!) derived b‘;/k —0.085K and lbz/k 0.03K from our prelimi-
nary susceptibility data??) and Hellwege s heat capocny data. From

the eigenvalue equation in the parameters b;' and b,.Z one finds the
crystalline field energy levels W /k=-0.619K, W /k--O 169K, W /k
=+0.156K and W /k—+0 632K. A crystalline fxeld energy of 0. 6IQP'
=5.15)/mole would therefore contribute 76% to the total energy gain
E,o¢=6-78 J/mole.

The dipolar specific heat may be calculated following the methods
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of section 3.1 and taking the value Q=15.4, calculated by Levyzn for
the dipolar sum. When adding the Schottky and dipolar specific heat
and comparing the sum with the experimental data, it is found that a
better fit, particularly at high T, can be obtained by choosing bg/k=
=—0.07K and é-b%/k=0.03 K. The corresponding Stark energy levels
are then Wl/k=—0.530K, W,/k=-0.205K, W3/k=*0.ll’5K and W ,/k=

=+0.620K. The asymptotic values of ¢T2%/R for Schottky and dipolar
specific heat become 0.180K? and 0.060K 2 respectively, the latter
being independent of the Stark splitting. The sum of the two contri-
butions shown in fig. 3 and table I fits to the experimental result for
cmTZ/R at high T, and agrees reasonably well with the data over an
appreciable temperature region. However, like in the sulphate, devi-
ations occur above Ty which cannot reasonably be attributed to a
poor choice of Stark splittings. Recent E.P.R. measurements23) on
Gd-doped YC13.6H20 have yielded the energy splittings 0.257, 0.236
and 0.372 cm—!, the latter splitting lying highest. These results agree
fairly well with ours (0.255, 0.220 and 0.350 em™! respectively). The
E.P.R. measurements confirm the result that b‘z’ is negative so that the
g i;- level lies lowest.

It may be remarked that the ¢, versus T curve for the sulphate is
strikingly similar to that of the chloride. We emphasize a peculiar aspect
of these curves namely a relatively flat region above Ty preceded by
a steep descent very close to thecritical point. This may be character-
istic of dipolar interactions, which apparently lead to a comparatively
low critical point, reflected in a high value of (Etot_ESturk)/RTN=
=Ed1p/RTN compared to what is found for exchange interactions.

As in the sulphate octohydrate there is no indication that exchange
interactions play a significant role in the chloride. It may be mentioned
that in the anhydrous chloride two Gd® *ions are separated by only one
chlorine ion at a distance of 2.86& and 3.05& for the two Gd ions
respectively. In GdCl3.6H20 the linkage between, for instance, two
Gd ions in the ac plane will be formed by one water molecule at 2.42R
and one chlorine ion (at 2.77 &). These belong to two different [GdCl2
(OHZ)S] complexes, the chlorine and water molecule being atadistance
of 3% with respect to each other. In GAdCl, the value of the exchange
constant for nearest neighbour exchange?4) —-2]s,.s, amounts to
J/k=-0.08 K, while in our case the exchange constant is at least 10
times smaller.

At T=0.05K a few points in the heat capacity data (not shown in
fig.3) having an upward trend with decreasing T, may indicate the
presence of hyperfine contributions to the heat capacity. E.P.R. data2%)
show that magnetic h.f.s. contributions in most salts e.g. Gd®* in
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LaC13.7HZO are small and probably do not appreciably affect the heat
capacity above 0.05K. Little is known about the electric hyperfine
structure coupling which may not be negligible for the odd-odd iso-
topes 155Gd and 1%7G4 (Q=1.4 barn).

3.3 Dysprosium ethylsulphate, Dy(CZHSSO4)3.9HZO

[he specific heat of dysprosium ethylsulphate is shown in fig. 4 on
a logarithmic scale. From the data the critical temperature may be
located at TC=O.115 K. The most remarkable feature of the specific
heat curve lies in the large tail above the critical temperature.

L
005 T 02 05 k10

Fig, 4. The heat capacity of dysprosium ethylsulphate as a
function of T plotted on a logarithmic scale. Te=0.115K.

Before analysing the energy and entropy involved in the phase
transition, the specific heat originating from hyperfine interactions
of the l‘SIDy and 163Dy isotopes must be subtracted from the data.
From paramagnetic resonance results obtained by Parkzs), a hyperfine
contribution to the specific heat, chfst/R=0.00095 was calculated
by Cooke et al. mfc)Applying this correction to the data we obtain
AE/RTC=O.92 for the energy released above T.+ and AS/R=0.47 for
the entropy change above Tc. These values are still higher than, for
instance, those calculated for a two-dimensional (quadratic) Ising
lattice with isotropic J values: AE/RTC=0.623, and AS/R=0.387.

Because of poor heat contact between the single crystal and the
specimenholder, it was difficult to obtain precise results below about
0.09K. Therefore, these results have not been plotted in fig. 4. For
this reason the evaluation of the entropy and energy change below T
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remains somewhat imprecise. Using the dashed line in fig. 4 as an
extrapolation, we obtain (E_-E_)/RT_=0.18 and (SC—SO)/R=0.22
+0.03 for the energy and entropy change below T _, respectively. The
total entropy involved in the phase transition equals 0.69R per gramion
which agrees with the expected value of RIn2=0.693R.

The high temperature magnetic specific heat (0.3K < T < 1K) is
accurately described by the relation ¢ nT"’/R=0.015510.0004 K. An
upper bound to the error may be obtaineg from the consideration that
the total entropy involved in the phase transition is given by Rln2. The
error involved in the determination of the entropy change below Tc is
estimated as 0.03R. An upper bound to the error in cT2%/R arising
from this incccuracy amounts to 7% so that cT2/R=0.015540.0011K.
By using the g-values and hyperfine interaction constants, as referred
to in section 1, the hyperfine and dipolar contributions amount to
(Chgs*Casp)T 2/R=0.0131K.

Other experimentalists have obtained the values CtomlT 2/R =

=0.0134K!'!) (for T >1K), and ¢, , , T?/R=0.0136+20/T'° for 1K <
<T<1.6 K. The former result agrees fairly well with the theoretical
one, while the latter gives a mean value of ctomsz/R=0.0150 K,
which lies appreciably higher than the theoretical one but is still
lower than our value ¢, , ,T?/R=0.0165+0.0011 K. The slight upward
curvature on decreasing the temperature, as found by Cooke et al. 19
and expressed by the T3 term in the specific heat, disagrees strongly
with our results, which indicate that the coefficient of the T3 term
is much smaller and of negative sign (=0.0001/T3). For this reason
the experimental value of the coefficient of the T~2 term must be
chosen much higher viz. 0.0148.

From the experimental results we may conclude that the interactions
in dysprosium ethylsulphate are predominantly of the dipolar kind. The
small discrepancy between the observed and calculated values of
cT?%/R may be due either to an erroneously small value of g or to the
presence of a small exchange interaction.

The fractions of the total energy and entropy removed above T _
are found to be as high as 84% and 69% respectively. For the quadratic
Ising net these values are 70.6% and 55.7%. In the ordering of a linear
chain these values are 100%, as the transition point lies at zero temper-
ature. The experimental result may therefore be interpreted by a model
in which the predominant interaction occurs between ions in a one-
dimensional arrangement. The ordering between the chains will occur
at a fairly low temperature determined by the interaction between the
chains as compared to the interaction in a chain.

A glance at the crystal structure (fig. 1) shows that the dipolar
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interactions strongly favour alignment of the spins parallel to the c
axis since c¢/a=0.506. At zero temperature, the relative strength of
the dipolar fields originating from the ions in a chain parallel to the
c axis (H compared to that originating from the three nearest-
neighbour cﬁams (H:“p), can be calculated easily. By considering
7 ions upward and downward along the ¢ axis in each chain, we obtain

clip/H =1.06/6.84=0.155. It can be estimated that the dipolar field
onglnctmg from the n.n.n. chains is smaller than H:“ and in a first
approximation these interactions may be neglected.

Since g, >>q, dysprosium ethylsulphate behaves like an Ising
s=é- system (albeit with long range interactions) characterized by
strong interactions in one direction and by weaker interactions in a
plane perpendicular to it. Phenomenblogically the total interaction
leads to an amount of short range ordering which is found for a system
lying between a linear Ising chain and an isotropic quadratic Ising
system (w1th n.n. interactions). Theoretically, for the quadratic lattice,
Onsager 2 7 has given an exact relation between the critical temper-
ature ch J and J! viz.

(sinh 2J/kT ) (sinh 2 J/KT ) =1, (1)

where J is the coupling in one direction, and J’ that in a direction
perpendicular to it. By keeping J fixed, kT may be evaluated as a
function of J'/J £1. By comparing the spec1f1c heat curve of dys-
prosium ethylsulphate with the specific heat curve for J'/J=0.01,
plotted in fig. 7 of Onsager’s article as a function of 2/(J/kT +J%/kT),
the transition temperature of the salt may be located at

2 kT /(J+3") = 1.75. (2)

From eqs. (1) and (2) we obtain J'/J=0.14. This result agrees well
with the value H‘ /H =0.16 derived from the relative strength of
the inter- and mtrc cham couplmg. The small value of J'/] indicates
that dysprosium ethylsulphate may in first approximation be described
by a linear chain model.

As a conclusion we may state that the magnetic interactions are
predominantly of the dipolar kind, and the crystal structure strongly
favours coupling in chains. The coupling between the chains may be
estimated as about one seventh of that deduced for the coupling within
the chains. The resulting effective coupling is found to resemble
closely a linear chain interaction.
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3.4 Singularities of the two gadolinium salts

The results of the specific heat measurements of the two gadolinium
salts are presented in tables II and IIl. In fig. 5 the logarithm of the

TABLE 11
Specific heat, Crnt of Gdz(SO4)3.8HZO as a function of (T—TN)/TN near the tran-
sition temperature; TN= 0.1822K is used as a reference point (see section 2). The
two runs are made on the same day
(T=T\)/T (T=T,;)/T. (T=T\)V/T, (T=T,)/T,

L P R R B e R N H Lewm

x 100 x 100 x 100 = x 100 i
run 1 1.237 2.905 —13.6 0.946 0.610 7.28
—35.85 0.305 1.78 2.26 -10.78 1.164 0.871 5.56
-31.03 0.385 2.33 1.60 — 8.41 L1381 1.24 4.96
—26.10 0.494 3.12 1.518 — 6.43 1.68 1.66 2.50
-21.77 0.658 4,38 1.513 - 5.08 1.89 2.16 1.57
—17.88 0.828 6.49 1.358 - 3.79 2.40 2.77 1.56
—14.33 0.917 9.44 1.302 - 2.70 2.99 3.29 1.61
-11.39 1.01 13.86 1.249 - 2.05 3.24 3.92 1.49
- 8.50 1.36 22.0 1.043 - 1.60 3.92 4,70 1.50
- 5.74 1.84 29.5 1.104 — 1.26 4.49 6.06 1.337
- 3.27 2.63 38.7 1.077 - 0.959 5.08 8.32 1.323
— 1.52 4,06 50.1 1.022 — 0.689 6.20 11.63 1.233
— 0.433 6.77 run 2 — 0.447 7.28 15.87 1.185
+ 0.084 8.00 —27.45 0.463 — 0,233 8.03 20.84 1.134
0.340 7.82 —24.23 0.523 — 0.012 |10.13 25.9 1.112
0.581 6.97 —20.98 0.647 + 0.17 8.74 32.2 1.098
0.885 4.77 -17.02 0.801 0.36 8.78 39.9 1.056

TABLE 111

The specific heat cm/R of GdC13.6H2O as a function of T near the transition point
TN= 0.185K is tabulated. The results of several days and runs are presented,

TK cm/R TK cm/R TK cm/R TK cm/H
4-4-'66 0.19547 1.43 6-4-'66 0.17635 2.64

0.17957 | 3.20 0.19657 1.43 run | 0.17793 2.85
0.18204 | 4.53 1-4-'66 0.16106 1.29 run 2
0.18332 | 4.33 0.1816 3.45 | 0.16194 1.36 0.14961 0.90
0.18357 | 4.52 0.1821 4.03 | 0.16278 1.48 0.15153 0.89
0.18393 | 5.71 0.1825 4.6 0.16344 1.59 0.15326 0.97
0.18418 | 6.18 0.1831 6.2 0.16423 1.47 0.15668 1.07
0.18449 | 6.84 0.1837 4.8 0.16515 1.70 0.15817 1,13
0.18482 | 7.16 0.1844 5.8 0.16613 1.64 0.15993 1,157
0.18511 | 10.1 0.1849 8.9 0.16719 1.88 0.16184 1.363
0.18540 | 9.13 0.1857 3.9 0.16822 1.94 0.16355 1,342
0.18605 | 2.64 0.1872 2.23 | 0.16988 1.95 0.16904 2.109
0.18737 | 2.04 0.1891 1.65 | 0.17062 2.14 0.17366 2.39
0.18899 | 1.70 0.1911 1.48 | 0.17151 2.36 0.17768 3.17
0.19020 | 1.60 0.1930 1.54 | 0.17240 1.97 0.18136 4.89
0.19117 | 1.47 0.1948 1.53 | 0.17338 1.987
0.19236 | 1.30 0.1969 1.34 | 0.17438 2.40
0.19396 | 1.34 0.1993 1.36 | 0.17538 2.58
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specific heat is displayed versus the relative temperature T/TN. The
squares denote the measurements on the sulphate and the triangles
those on the chloride. The dashed curves denote the results for the
s=é» Ising model of s.c. structure obtained by Baker?8), The width of
the peak of the sulphate is fairly large compared to the temperature

1.2

1
T[Ty ©.96 0.98 1.00 1.02 1.04
— N

Fig. 5. The logarithm of the magnetic specific heat c,/R is
shown versus T/Ty for gadolinium sulphate (TNn=0.1822K), and
gadolinium trichloride hexahydrate (Tp=0.1851 K). The squares
pertain to the sulphate, the triangles to the chloride, The dashed
curves represent the Ising s=Y% s.c. result calculated by Baker28),

resolution so that a plot of the specific heat versus II—T/TN[ is
feasible. The result is shown in fig. 6, which has logarithmic scales.
The filled symbols denote the measurements below Ty« the open ones
those above Ty~ For 10—2 < 1—T/TN <10~! the data may be described
by the relation

c/R=B(1-T/Ty) "7,

with B=0.32 and ' =0.60. Above Ty the curve levels off for T >1.02 Ty
so that an analysis cannot be made with confidence.

As to the overall behaviour of the singularities we may notice from
fig. S the following points. a) The maxima of the peaks are almost
equally high and rank among the highest values observed in magnetic
systems. This result is established most unambiguously in the sulphate
which has a relatively broad peak. b) For 0.98 <T/Ty <1 the curves
show a striking resemblance, whereas for 1< T/Ty <1.02 the curve
of the chloride lies appreciably lower than that of the sulphate.
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Fig. 6. Heat capacity of Gdz(SO BHZO near the transition
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As the entropy yield above T nearly equals R In 4 for both salts,
and the lowest doublets are separated by AE/k=0.32K, only the lowest "
doublet will be apprecxubly populated near T, =0.18K. This doublet
is characterized by s 'i2' for the sulphate, and by s, "17 for the
chloride. Near Ty the chloride may therefore be choracterlzed by an
effective spin é— and strongly anisotropic g-values (q//>> gy), which
is reminiscent of the Ising s=é— model. As we may notice from fig.5
the curve of the chloride is strongly asymmetric and shows a steep
descent above T,, which agrees qualitatively with the Ising model
prediction.

Near T, for the lowest doublet, the sulphate has strongly aniso-
tropic effective g-values (g_|_>> g//) so that the dipolar interactions
may be expressed by

s — dip
H 5 2J“ (s 1xs,x+sws”)

1<j

in a good approximation. In this formula Jf“p contains angular variables |
and the interaction has a long range. In the case J‘ =] for nearest |
neighbours only, the interaction may be called s=é—-plancr-Heisenberq
interaction. The model using this interaction is also called XY model.
Recently, for the XY model, Betts and Lee??) have derived the high-
temperature specific-heat series of the f.c.c. lattice up to the ninth
power in J/kT. Using a ratio-plot, the value of a defined by the asymp-
totic relation
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¢/R ~ A-B(1-T_/T)"*

was found to be —0.20%0.20. If @ is negative, the specific heat has
a cusp near T _ and attains a finite maximum. Clearly near T the
theoretical curve for the XY model is less steep than that for the Ising
model, which has a=+0.125. Similarly the experimental specific heat
curve of the sulphate is less steep than that of the chloride.

4 Susceptibility
4.1 Gadolinium sulphate

The powder susceptibility of gadolinium sulphate was measured as
a function of temperature in zero external field and at a frequency of
220Hz. The results in terms of ¥'/C and ¥/C, where C is the Curie
constant for a powdered sample, are given in fig. 7. We conclude that
the susceptibility strongly suggests the onset of antiferromagnetic
ordering. The maximum of the susceptibility occurs at T=0.1830K,

T ) A
S e rowao F

Gd, (50,); 8H0 _{
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ax" Ve 220 Hz
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O 01830 Qs T 10 15 20

'
Fig. 7. A.c. susceptibility, ¥ , of powdered GdZ(SO4)3.8H2O.
L
The a.c. losses Y are indicated on a tenfold enlarged scale.

Both ¥ ! and x* are divided by the Curie constant,
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which is 0.4% higher than Ty A further study of magnetic phenomena
was not attempted in view of the scant knowledge about the crystal
structure.

4.2 Gadolinium trichloride

In this section we summarize the results of susceptibility measure-
ments on the chloride, which were performed by Lubbers et al.3?) in
the temperature region between 0.1 and 4K a few years ago.

The saniple was shaped in the form of a sphere. The original single
crystals showed two large faces, the edges of which will be designed
as a and ¢ axes, the a axis being larger than the ¢ axis. Presumably
this identification of crystal axes is in accordance with Marezio e.a.g),
but differs from the notation of Dieke and Leopold®!), It was shown
that the principal axes of the magnetic susceptibility in the ordered
state, called x’, y/, z’, are as given in fig. 8. The y’ axis coincides
with the b axis, which is perpendicular to the ac plane; the accuracy
of the determination of the direction x’ or z’ is about 5°.

The zero-field susceptibility (¥=260Hz), ¥, was measured in the
x', y', and z' directions as a function of temperature. The susceptibil-
ity data at 20K and from 4K to 1.5K were fitted to a Curie-Weiss
relation ¥=C/(T-8), in which Elx,=+0.201'0.15K, 6y,=—0.lOiO.IOK
and 92,=—O.5010.2O K, the errors are not due to spread in the data but
to estimates of possible systematic errors. The Curie constant was
the same for the three directions within the accuracy of the measure-
ments (5%).
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Fig. 8. Principal axes of susceptibility (x’,y’,z’) of GdCl3.6H20
with respect to the crystalline axes a,b and ¢ of the monoclinic
unit cell. The y axis coincides with the b axis, which is perpen-
dicular to the ac plane. The black and white circles denote the
two crystallographically distinct Gd ions. The nearest Gd neigh-

bours of one Gd ion are shown at right.
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Lower temperatures were reached by adiabatic demagnetization of
the sample from a fixed initial temperature (0.9K) and from various
field strengths. These measurements gave X, s+ Xyse X, GS functions
of the temperature. The latter are shown in fiq. t§ Particularly from
the behaviour of X ¢ it may be seen that GdCla.SHZO becomes anti-
ferromagnetic, while the temperature of the susceptibility maximum
does not differ significantly from TN as defined by the heat capacity
singularity.

Lo N |
T e
Llr' B
O lrh ! " A
T 05 %

Fig. 9. Susceptibility of a GdCls.GHZO single crystal, ground
into spherical shape. Susceptibility in the three principal direc-
tions as a function of temperature. 1/T"ig defined as y¥'/C, where

C is the Curie constant (v=260 Hz).

It was found that at T=20K the a.c. susceptibility was independent
of the d.c. fieldstrength, whereas a linear relation of 1/)(vs.H2 was
found at T=0.9K and T=3.8K. Hence we assume that at the two lower
temperatures the adiabatic susceptibility Xqq Was observed. Xaqq I8
related to the zero d.c. field- orisothermal susceptibility according to
xad/xis=b/(b+CH2), where C is the Curie constant and b is related
to the specific heat according to cm=b/T2. We find from the data at
0.9K and 3.8K that ¥b/C=15700e and 1600 Oe respectively, hence
b/R=0.242+0.005 K2, which is close to the value mentioned in section
sl

From the comparison of the zero field susceptibilities in x', y' and
z' directions, we conclude that the x' axis is the preferred direction
of the crystalline field, hence also of antiferromagnetic alignment.
This would also follow from the positive value of Hx, which presum-
ably originates mainly from the crystalline electric field contribution,
5x,=—4b;/k= +0.35K, but which may have in addition negative (anti-
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ferromagnetic) contributions from dipolar interactions and possibly
also exchange. Since the experimental data on € are not very accurate,
the analysis of Levyzn, which starts from our measured &valueszg),
may lead to quantitatively inaccurate conclusions, but we agree on the
point that the crystalline field parameter b‘; should refer to the x’ axis
and have a negative sign. The statement that the x’ axis is the pre-
ferred axis at low temperature is supported by the data on transverse
and longitudinal susceptibility, which show that a magnetic field in
the y’ or z’ axis has a smaller effect on y than when the field is along
the x’ axis. This would be evident when a Stark level with predomi-
nantly sz=i'27- were lowest and if the z axis would coincide with the
x' axis. It may be remarked that the point symmetry of the Gd complex
makes the two Gd ions equivalent except for a reflection with respect
to the ac plane and that the two ions therefore have identical axes of
the crystalline field at room temperature. However, deformations at
low temperatures may give lower symmetry. It is plausible that the
x', y!, z' coordinate system coincides, at least approximately with the
X, Yy, z coordinates of the spin-hamiltonian.

Furthermore, it is known that long-range magnetic interactions in
conjunction with strong crystalline fields may lead to helical magnetic
structures (e.g. in the rare earth metals) which differ from the simple
axial spin alignment envisaged in the foregoing discussion.

5 Summary and conclusions

l. The gadolinium chloride hexahydrate and sulphate octohydrate
become antiferromagnetic at respectively T, =0.185 and T, =0.182%
+0.001 K. Dysprosium ethylsulphate becomes ferromagnetic at Y =0.115%
+0.002 K.

2. The heat capacity of the gadolinium salts is largely determined
by Stark splittings. The behaviour of the dysprosium salt may be de-
scribed largely by dipolar interactions between ions lying in a chain
parallel to the ¢ axis. The singularities of the three salts correspond
to the onset of long-range order due to magnetic dipole coupling. A
characteristic feature of these dipolar salts is the narrow specific
heat peak, which on decreasing the temperature suddenly emerges from
a region of weak temperature dependence.

3. Our data on Gd sulphate support the suggestion of Bogle e.a.?) that
the s_= i%— state is lowest, while the data on Gd chloride suggest that
8= i%— is lowest in the latter compound, which has been corroborated
by the E.P.R. measurements of Meierling and Uhlmann 23,

4. The heat capacity of gadolinium sulphate above T, for instance
in the region 2T < T < STN, is not correctly predicted by the sum of
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calculated 1/T?%dependence of dipolar contributions and of a Schottky
specific heat, even when the modification of the dipolar coupling by
the Stark splitting is taken into account. The experimental results
indicate that the series expansion of ¢, in powers of 1/T has some
negative terms in case of dipolar interactions, in contrast to the case
of exchange interactions.

5. At low T the heat capacity as a function of temperature rises very
steeply in both salts. Since for Ty <T <1.1Ty the heat capacity de-
creases sharply, the small width is the most characteristic aspect of
the singularity, which is of dipolar origin.

6. The susceptibility of the chloride corresponds to the occurrence of
a preferred direction of the magnetic moments along the x’ axis, which

is supposed to originate mainly from the crystalline field.
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Samenvatting

Dit proefschrift beschrijft een onderzoek aan magnetische fase-
overgangen in ionische kristallen. Gezien van theoretisch standpunt
behoren ionische kristallen tot de relatief eenvoudige materialen
a) daar de wisselwerking plaatsvindt tussen gelokaliseerde spins, in
tegenstelling tot die tussen elektronen in een metaal of tot die tussen
molekulen in een overgang tussen de vloeibare en gasvormige fase,
en b) daar in die kristallen, waarin de wisselwerking voornamelijk van
het "exchange’’ type is, deze in hoofdzaak plaatsvindt tussen naaste-
buren, waardoor de berekeningen aanzienlijk vereenvoudigd worden.

Gezien vanuit experimenteel standpunt zijn ionische kristallen
aantrekkelijk voor het bestuderen van fase-overgangen, daar een groot
aantal magnetische materialen kan worden gemaakt. Afhankelijk van
de kristalstruktuur kan de wisselwerking plaatsvinden of voornamelijk
in ketens (refs. I en 2; hoofdstuk VI dysprosium ethylsulfaat), in een
twee-dimensionale struktuur (hoofdstuk III, 5.2, CoCs,Brg; ref. 3), of
in een drie-dimensionale struktuur (talrijke voorbeelden, zie b.v. refs.
4 en 5; CoCs3Cl5 in hoofdstuk III en b.v. CuK2C14.2H20 in hoofdstuk
V).

De experimenten zijn verricht in het temperatuurgebied rond 1 Kelvin.
De thermische expansie effekten in dit temperatuurgebied zijn zeer
klein vergeleken met de magnetische wisselwerking, zodat de magne-
tische fase-overgang in het algemeen niet gepaard gaat met een latente
warmte. Een tweede voordeel is, dat de soortelijke warmte van het
rooster zeer klein is ten opzichte van de soortelijke warmte van mag-
netische oorsprong, zodat slechts een kleine korrektie op de gemeten
totale soortelijke warmte behoeft te worden aangebracht. De experi-
mentele opstelling wordt beschreven in hoofdstuk II.

In de laatste jaren zijn aanzienlijke vorderingen gemaakt in de
theorie van fase-overgangen®:7), Voor een aantal thermodynamische
eigenschappen van het Ising model met spin % zijn nauwkeurige nume-
rieke resultaten verkregen zowel boven als beneden de kritische tem-
peratuur (zie ook hoofdstuk I, 3.5). Voor het Heisenberq model zijn
tot nu toe relatief weinig numerieke resultaten bereikt, daar de bere-
keningen moeilijker zijn. Voor de dipool-wisselwerking, die een lange
dracht heeft, zijn zowel de theoretische als de experimentele resulta-
ten schaars, zodat het veld van onderzoek nog open is.

In hoofdstuk I wordt een overzicht gegeven van fenomenologische
en microscopische theorién over fase-overgangen. In het bijzonder
wordt de methode van analyse van eindige reeksen onder de loep ge-
nomen, die zijn afgeleid voor de susceptibiliteit en de soortelijke
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warmte. Met een rekenprogramma gebaseerd op de analyse van deze
reeksen met behulp van de ''ratio’’ methode, zijn nieuwe resultaten
in gesloten vorm verkregen, die de temperatuurafhankelijkheid van de
beschouwde grootheid beschrijven in het hele temperatuurgebied bo-
ven het kritische punt. Hiermee kunnen de experimentele resultaten
op eenvoudige wijze worden vergeleken. Hoofdstuk I besluit met en-
kele beschouwingen over de afronding van de soortelijke-warmte kurve,
die in veel kristallen is waargenomen. Berekeningen gebaseerd op een
eenvoudig model, waarin een Gaussische verdeling van overgangstem-
peraturen rond het kritische punt wordt aangenomen, tonen aan, dat de
temperatuur waarbij de soortelijke~warmte kurve het maximum bereikt,
niet samenvalt met het kritische punt indien de soortelijke-warmte
kurve asymmetrisch is.

In hoofdstuk III worden de metingen geanalyseerd van de thermische
eigenschappen van de kristallen CoCs3C1s (Ty=0,527K), and CoCs 4Brg
(TN=0.282‘K). Uit paramagnetische resonantiemetingen en kalorische
gegevens kan worden afgeleid dat CoCs3Cl5 bij zeer lage temperatu-
ren een goed voorbeeld is van een kubisch s=!% Ising systeem. De
piek in de soortelijke warmte wordt goed beschreven door een kubisch
Ising model indien de kritische temperatuur gekozen wordt volgens de
suggesties van hoofdstuk I. De eigenschappen van CoC5313rs worden
goed beschreven door een twee-dimensionaal Ising model. Karakteri-
stieke trekken zijn de grote soortelijke warmte boven T, welke sa-
menhangt met een aanzienlijke ordening op korte afstand, en een soor-
telijke warmte, die een logaritmische temperatuurafhankelijkheid ver-
toont bij het kritisch punt.

In hoofdstuk IV worden de soortelijke-warmte metingen beschreven
van een tweetal isomorfe koperzouten, die een positieve '"exchange’’
wisselwerking hebben, nl. CuK2C14.2H20(TC=0,88K) en Cu(NH4)2
Br4.2H20 s 1,74K). Vroegere metingen aan het eerste zout hebben
aangetoond dat het drie-dimensionale Heisenberg model met spin %
van toepassing was. In dit hoofdstuk wordt aangetoond dat de kalo-
rische metingen aan Cu(NH4)ZBr4.2H 2O goed beschreven worden door
de-spingolftheorie in het temperatuurgebied tot 0,5T . Dit bevestigt
de toepasbaarheid van het Heisenberg model met ruimtelijk gecen-
treerd kubisch rooster. Na het verschijnen van berekeningen voor de
mate waarin de voorspellingen gemaakt voor een rooster met louter
naaste-buur wisselwerking worden gewijzigd indien ook wisselwerking
tussen tweede buren in aanmerking wordt genomen, werden de metin-
gen opnieuw geanalyseerd. Voor een ruimtelijk gecentreerd kubisch
rooster bedraagt de verhouding tussen tweede buur- en eerste buur-
koppeling J2/11=*0,2510,1, zodat de wisselwerking met de tweede




133

buren niet verwaarloosd mag worden. Van het zout CuK 2Cl.,‘.2H 2O kon
de piek in de soortelijke warmte worden gemeten tot [1 - T/Tc | =]10-3 Te.
De temperatuurafhankelijkheid aan beide zijden van de piek is loga-
ritmisch en van gelijke amplitude.

In hoofdstuk V wordt de meting van de spontane magnetisatie be-
sproken van de Heisenberg s=% ferromagneet Cu(NH4)25r4.2H20. Re-
sultaten zijn verkregen in het temperatuurgebied tussen 0,05 TC en
0,997 T Een kleine anisotropie energie werd gevonden, welke boven
de kritische temperatuur nog niet tot nul is gereduceerd. Gezien de
sterke spin-spin korrelatie wordt deze toegeschreven aan een kleine
anisotropie term in de ''exchange’’ koppeling tussen paren koperionen.
De experimentele resultaten worden in het temperatuurgebied tot 0,7 Tc
goed beschreven met de spingolftheorie. Recente berekeningen met de
Green's-funktie methode stemmen met de meetresultaten overeen tot
0,98 T_. Dicht bij de kritische temperatuur, 3.1073<1-T/T_< 107!,
wordt de spontane magnetisatie beschreven door de relatie M(T)/M(0) =
1,33(1 —T/Tc)o'ae. De kritische isotherm wordt beschreven door
H~M?®, waarbij 8 de lage waarde 3,9 heeft.

Tenslotte worden in hoofdstuk VI de soortelijke-warmte- en sus-
ceptibiliteitsmetingen besproken van drie zouten, waarbij de wis-
selwerking van dipolaire aard is. Gadoliniumsulfaat octohydraat
GdZ(SO4)3.8H20, en gadoliniumtrichloride hexahydraat GdCl3.6HZO
worden antiferromagnetisch bij T\;=0,182 en 0,185K respectievelijk.
Dysprosium ethylsulfaat Dy(CZHSSO4)3.9H20 wordt ferromagnetisch
bij Tc=O,115K. De vrij grote soortelijke warmte van de gadolinium-
zouten houdt verband met de bezettingstoename van de Kramers dou-
bletten, die dicht bij elkaar liggen. Dysprosium ethylsulfaat gedraagt
zich als een systeem van zwak gekoppelde lineaire ketens. In alle
drie zouten zet de lange afstandsordening abrupt in, wat het best
geillustreerd wordt door de gadoliniumzouten. Opmerkelijk is verder
het optreden van een rug in de soortelijke warmte kurve juist boven
de kritische temperatuur, welke beschreven kan worden door negatieve
termen (in T3 of in hogere: orde van de inverse temperatuur) in de
reeksontwikkeling van de soortelijke warmte bij hoge temperatuur.

Samenvattend kan de conclusie getrokken worden, dat de uitbrei-
ding van de bekende technieken van kalorimetrie en magnetisatieme-
ting naar temperaturen beneden 1 Kelvin, experimentele resultaten
heeft opgeleverd, die direct kunnen worden vergeleken met numerieke
resultaten van recent theoretisch onderzoek. Een dergelijke vergelij-
king is zinvol indien de magnetische materialen zorgvuldig gekozen
worden met betrekking tot de toepasbaarheid van theoretische model-
len voor de magnetische wisselwerking.
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