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STELLINGEN

1. Het kriterium, waarmee Friedberg de z.g. kritische temperatuur
van een m agnetische faseovergang bepaalt uit een afgeronde asym­
m etrische piek in de soortelijke-warm te kurve, is aanvechtbaar.

S . A .  F r i e d b e r g ,  P h y s . R e v . 1  64(1  967 )70 5 .

2. De bewering van Sykes, Martin en Hunter, dat bij het vlak-gecen-
treerde rooster in het Ising model met spin 54 de theoretische soor-
telijke-wörmte kurve boven het overgangspunt, in het temperatuur-
gebied dat experimenteel toegankelijk is (T> 1,0001 T ), reeds
voldoende nauwkeurig wordt beschreven door de eerste  paar ter­
men van de reeks in stijgende machten van J /k T , waarbij J de
exchange constante voorstelt, is  onjuist.

M.F  . S y k e s ,  J . L . M a r t i n ,  e n  D . L . H u n t e r ,  P r o c . P h y s . S o c . 9 1  (1 967)
673* D i t  p r o e f s c h r i f t ,  h o o f d s t u k  I.

3. De suggestie van Heller, dat de soortelijke warmte en de spontane
m agnetisatie van een magnetisch systeem in eenzelfde tempera-
tuurgebied beneden het overgangspunt (1—T /T  < e , met b.v.c
e <0,1) zou kunnen worden beschreven door een functie van de
vorm P(T) = A(1—T /T c)a +B, heeft geen algemene geldigheid.

P . H e l l e r ,  R e p t s  . P r o g r . P h y s .  30 d l .  11 (1967 ) 791 .
D i t  p r o e f s c h r i f t ,  h o o f d s t u k  I.

4. Het verdient aanbeveling theoretische resultaten voor modellen
die een faseovergang beschrijven, te presenteren in een zodanige
numerieke of gesloten vorm, dat zij getoetst kunnen worden aan
experimentele resu ltaten  over een ruim temperatuurgebied.

5. Het is  van belang de soortelijke warmte van de dipolaire ferro-
resp. antiferromagneet dysprosium ethylsulfaat en gadolinium tri­
chloride hexahydraat n iet alleen te meten a ls functie van de tem­
peratuur, maar ook a ls  functie van het m agnetisch veld.

P . M . L e v y ,  P h y s . R e v .  1 7 OH 96 8 )5 9 5 .
D . T . T e a n e y ,  B . J . C .  v a n  d e r  H o e v e n  J r ,  en  J . L . M o r u z z i ,  P h y s .
R e v . L e t t e r s  2 0 ( 1 9 6 8 4 7 2 2 .
B . E . K e e n ,  D . P .  L a n d a u ,  B . S c h n e i d e r  e n  W. P .  Wolf ,  J  . A p p l .  P h y s .
3 7 ( 1 9 6 6 ) 1 1 2 0 .

6. Het ontwerp van een rotatiesym m etrische spoel, die bewikkeld
wordt over een dikte die n iet verwaarloosbaar is  t.o .v . de straal,
en die over een bepaalde afstand langs de as een homogeen veld
levert, bevat minstens 4 param eters. Zelfs indien slech ts één
spoel wordt berekend is het efficiënter een tabel te ontwerpen,
waarin slech ts  2 parameters worden gevarieerd, en vervolgens de
berekening uit te voeren in een klein, door inspectie  gevonden,
4-parameter gebied, dan het probleem met brute-force op te lossen .



7. De geringe graad van circulaire po larisatie  van gamma-straling
uitgezonden na vangst van gepolariseerde neutronen in 60Co, zo­
a ls deze is gemeten door Kopecky, Kajfosz en Chalupa, is  ver­
moedelijk te wijten aan depolarisatie-verschijnselen  in het tref-
p laatje .

J . K o p e c k J ,  J . K a j f o s z  e n  B . C h a l u p a ,  N u c l e a r  P h y s i c s  68(1  965)
44 9 .

8. Bij de berekening van de pompwerking van de supergeleidende
dynamo door van Houwelingen en Volger is  geen rekening gehou­
den met de wederkerige-inductie term.

D .  v a n  H o u w e l i n g e n  e n  J . V o l g e r ,  P h i l i p s  R e s . R e p t s .  2 3 ( 1 9 6 8 )
2 4 9 .

9. Het is  in teressan t de proeven over energ ie-d issipatie  bij de stro­
ming van superfluïde helium, zoals deze zijn verricht door van
Alphen e .a . u it te breiden met verdere metingen aan een adiaba-
tisch  kanaal, bij welke metingen naast de geproduceerde hoeveel­
heid warmte ook de temperatuurgradient wordt gemeten in de rich­
ting van het kanaal.

W.M.v an  A l p h e n ,  J . F . O l i J h o e k ,  R . d e  B r u y n  O u b o t e r  en  K.W.
T a c o n i s ,  P h y s i c a  3 2 ( 1 9 6 6 ) 1 9 0 1  ; R . d e  B ru y n  O u b o t e r ,  K.W.
T a c o n i s  e n  W. M. van  A l p h e n ,  " P r o g r e s s  in  L o w  T e m p e r a t u r e
P h y s i c s " ,  d l .  5 p . 7 6 ,  r e d . C  . J  . G o r t e r ,  u i t g .  ' N o r t h - H o l l a n d
P u b l . C y . ' .

10. De bewering van Williams en Davies, dat de fout in de dynamische
bepaling van de astronom ische lengte-eenheid, zoals deze bepa­
ling in 1950 door Rabe is gepubliceerd, onverklaard is gebleven,
is onjuist.

E .  R a b e ,  A s t r o n .  J . 55(1  9 5 0 )  11 2 ; E . R a b e ,  A s t r o n .  J .72 (1 96 7 ) 8 5 2 .
D . W i l l i a m s  e n  R . D . D a v i e s ,  M o n t h ly  N o t i c e s  o f  t h e  R o y . A s t r o n .
S o c .  1 4 0 ( 1 9 6 8 ) 5 3 7 .

11. Bij het uitvaardigen van een wet waarbij een recht wordt verleend,
rust de verplichting op de wetgever middelen te verschaffen, die
uitoefening van dit recht mogelijk maken.

Ma r t in  L u t h e r  K i n g ,  " C h a o s  o r  C o m m u n i t y "  p . 3 5 ,  H o d d e r  a n d
S t a u g h t o n ,  L o n d o n  1 9 6 8 .

12. Vele moderne woonwijken zijn eerder ontworpen om naar te kijken,
dan om in te wonen.

G o d f r i e d  B o m a n s ,  " P i e t e r  B a s " ,  P r i s m a - r e e k s  2 0 e d ru k  (1967 ) ,
p .  1 73 .
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Introduction and summary

The subject of th is thesis  is  the investigation of magnetic phase
transitions in ionic crysta ls . From a theoretical point of view, ionic
crysta ls belong to a relatively simple c la ss  of substances, a) because
the in teractions occur between localized  sp ins, in contrast to the
interactions between electrons in a metal or to the interactions be­
tween molecules in a liquid-gas transition, and b) because in those
crystals in which exchange in teractions predominate, the interaction
is mainly confined to nearest-neighbours, which fac ilita tes  the calcu­
lations considerably.

From an experimental point of view, ionic crysta ls are attractive
for the study of phase transitions, as  a large number of magnetic sub­
stances can be prepared. Depending on the crystal structure, the
interactions may occur in a predominantly one-dimensional structure
(refs. 1 and 2; chapter VI dysprosium ethylsulphate), a two-dimensi­
onal structure (chapter III section 5.2, CoCs3Br5; ref. 3), or a three-
dimensional structure (numerous examples, see e.g. refs. 4 and 5;
CoCs3C l5 in chapter III, and e.g. CuK2C14.2H20  in chapter IV).

The temperatures at which the experiments were performed lie  in
the region of 1 Kelvin. Thermal expansion effects in this temperature
region are very small compared to the magnetic interactions, so that
usually the magnetic phase transition is  not accompanied by a latent
heat production. Another advantage of performing experiments at very
low temperatures is  the small value of the la ttice  contribution to the
specific heat, which can be easily  estim ated. The experimental equip­
ment is  described in chapter II.

In recent years considerable progress has been made in the theory
of la ttice  s ta t is t ic s 6' . Accurate numerical predictions for a number
of thermodynamic quantities have been obtained for the Ising s = Vi
model, both below and above the critical temperature (see a lso  chapter
I section 3.5). The calculations for the Heisenberg model are far more
difficult to perform, so that up to now relatively  few predictions have
been made for this model. For the long-range dipolar interaction, both
theoretical and experimental resu lts  are scarce, so that much work
remains to be done.

In chapter I a survey is  given of phenomenological and microscopic
theories on phase transitions. In particular we have considered the
methods of analysis of finite series, derived e.g. for the susceptib ility
and specific heat. By means of a computer program based on the
analysis of series by the ratio-method, we have obtained new closed-
form expressions describing the temperature dependence of the quantity
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considered in the whole temperature region above the critical point.
With the help of these closed-form expressions, the experimental
results can be compared with the theory in any desired temperature
region. Chapter I ends with some considerations on the rounding of
the specific heat curve observed in many crystals. Calculations based
on a simple model using a Gaussian distribution of transition points
indicate that the temperature at which the maximum of the specific
heat curve occurs, does not coincide with the transition temperature
in the case the specific heat curve is asymmetric.

In chapter III the measurements of the thermal properties of the
crystals CoCs 3C15(Tn = 0.527 K), and CoCs3Br5(TN = 0.282 K) are
analysed. From paramagnetic resonance and caloric data it is con­
cluded that at very low temperatures CoCsgClj is a fair representative
of the cubic s='/a Ising system. The specific heat singularity is ex­
cellently described by the theoretical predictions for the cubic Ising
model, if the transition temperature is chosen in conformity with the
suggestions given in chapter I. The properties of CoCs3Br5 are well
described by a two-dimensional Ising model. Characteristic features
are the large specific heat above TN, which corresponds to an appreci­
able short-range ordering, and a logarithmic temperature dependence
for the specific heat near the transition point.

In chapter IV specific heat measurements are reported for two iso-
morphous copper salts having a positive exchange interaction, viz.
CuK2C14.2H2O(Tc=0.88K) and Cu(NH4)2Br4.2H20  (TC=1.74K).
Earlier evidence on the first salt indicated that the three-dimensional
s = ‘/2  Heisenberg model was applicable8 .̂ In this chapter it is shown
that the caloric measurements on Cu(NH4)2Br4.2H20 are well described
by spin-wave theory for temperatures up to 0.5 T , which confirms the
applicability of the b.c.c. Heisenberg model. In the light of recent
calculations on the extent to which the next-nearest neighbour (n.n.n.)
interaction modifies the predictions made for nearest-neighbour (n.n.)
coupling only, the data were reanalysed. For a b.c.c. structure we
derive J2/J +0.25±0.1 for the ratio of the n.n.n. to n.n. exchange
coupling, indicating that small n.n.n. interactions are present. The
specific heat singularity was measured for CuK2C14.2H20  as close to
T as 11—T/T I = 10 3T . A logarithmic temperature dependence wasc 1 c 1 c
found of equal amplitude for temperatures above and below Tc.

Measurements on the spontaneous magnetization of the Heisenberg
s = Ya b.c.c. ferromagnet Cu(NH4)2Br4.2H20, performed in the temper­
ature region 0.05 < T /T c < 0.997 are reported in chapter V. A small
anisotropy energy persisting even above T is observed. In view of
the strong spin-spin correlation it is interpreted in terms of slightly
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anisotropic exchange coupling between pairs of copper ions. The ex­
perimental data up to T /T  =0.7 are well described by spin-wave
theory. Recent G reen's functions calcu lations fit the data up to T /T c  =
= 0.98. Close to the critica l temperature, 3.10“ 3 < 1 — T /T c < 10“ *,
the spontaneous magnetization is  described by the relation M(T)/M(0) =
1.33(1 — T /T c)°"38. The behaviour of the critical isotherm is  de­
scribed by H~M , where S  has the fairly low value: 3 .9 .

Finally, in chapter VI specific heat and susceptib ility  m easure­
ments are reported of three dipolar sa lts . Gadolinium sulphate octo-
hydrate Gd2(S04)3.8H20 , and gadolinium trichloride hexahydrate
GdCl3.6H20  become antiferromagnetic at TN = 0.182 and 0.185K,
respectively . Dysprosium ethylsulphate, Dy(C2H5S 0 4)3.9H20 , becomes
ferromagnetic a t T c = 0.115K. The relatively high specific  heat of the
first two sa lts  is related to the population of the low-lying crystalline
field doublets. The behaviour of dysprosium ethylsulphate may be
described approximately by a linear-chain  interaction. In the three
sa lts  the onset of long-range order is  very abrupt, which is  illustrated
best by the gadolinium sa lts . Another remarkable feature of the ex­
perimental resu lt is  the hunch closely above the critica l temperature,
which may be described by negative terms (in T ~ 3 or in higher order
of the inverse temperature) in the series development of the high-
temperature specific heat.

Summarizing, it may be concluded that the extension of the well-
known technigues of calorimetry and magnetization measurements to
temperatures lower than 1 Kelvin has yielded experimental data, which
can be compared directly to numerical resu lts  of recent theoretical
work. Such a comparison is  fruitful if the magnetic compounds are
carefully chosen with respect to the applicability  of theoretical models
of magnetic interactions.

References

1. H A S E D A .T . and  M IED EM A .A .R .,  P h y s i c a  27(1961)1102 .
2. W IT T E K O E K .S .,  T h e s i s ,  L e id e n ,  1967.
3. B R E E D ,D .J . ,  P h y s i c a  37(1967)35 .
4. K A D A N O F F .L .P . ,  G Ö T Z E .W .,  H A M B L E N ,D .,  H E C H T ,R . ,  L E W IS ,E .A .S . ,

P A L C IA U S K A S .V .V .,  R A Y L ,M .,  S W IF T ,J . ,  A S P N E S .D . ,  and  K A N E ,J . ,
R e v .  Mod. P h y s . ,  39 (1967)395 .

5. H E L L E R ,P . ,  R ep .  P ro g r .  P h y s .  30, p t .  11(1967)790.
6. D OM B,C.,  'M ag n e t ism '  v o l .  IIA c h .  I, e d s .  R A D O ,G .T .  an d  S U H L ,H .,  A c .

P r e s s  New-Xork and  L on d o n  1965.
7. F IS H E R ,M .E . ,  'T h e  theo ry  o f  e q u i l ib r iu m  c r i t i c a l  p h e n o m e n a ' ,  R e p .P ro g r .

P h y s .  30, p t .  11(1967)615.
8. M IED EM A,A .R .,  VAN K E M P E N ,H ., and  HUISKAM P,W .J.,  P h y s i c a  29(1963)

1266; Commun. of th e  K am erl ingh  O n n e s  L a b . ,  No. 336a.



^



11

Chapter I

THEORIES ON PHASE TRANSITIONS AND SOME APPLICATIONS

1 Introduction and c lassifica tion
An in teresting subject of experimental and theoretical physics is

formed by the phenomena of phase transitions. If the temperature or
another su itab le thermodynamic parameter is  varied, the difference
between the phases often vanishes at a certain critical point, beyond
which only one equilibrium phase e x is ts . The following examples may
be mentioned: 1) the point that term inates the coexistence curve of a
liquid and its  vapour characterized by a critical pressure, density and
temperature, p , pc and T c; 2) the critica l temperature of a binary
m etallic alloy, above which the components mix homogeneously in
any proportion; 3) the Curie-point of a ferromagnetic crysta l above
which the spontaneous magnetization vanishes; 4) the lambda point
of liquid 4He, below which part of the fluid shows superfluidity;
5) the critical point in a superconductor, below which the e lec trica l
resistqnce vanishes.

If the phases on both sides of a transition point are thermodynamic­
ally stab le , the corresponding phase transition c a r formally be c la s s ­
ified by means of the Gibbs free energy func* on. If e.g . the first
derivative of this function with respect to one of the usual thermo­
dynamic variables changes discontinuously at the critica l point, the
transition is called tirst-order. The phenomena of boiling and melting
e.g . are first-order transitions.

A discontinuity in the specific  heat, cv , of 4He at the critical
point, called lambda-point, was observed by Keesom and Keesom 1 .̂
In view of th is experimental resu lt E hrenfest2  ̂ introduced the c lass
of second-order transitions, defined by the ex istence of a discontinü-
ous change of a second derivative  of the Gibbs free energy function
at the critica l point.

However, more precise measurements, closer to T , performed by
Buckingham and Fairbank3* and K ellers4', indicate that the specific
heat of liquid 4He close to T diverges to infinity logarithm ically on
both sides, so that one should not speak of a discontinuity in the
Specific heat. In view of the temperature resolution experimentally
obtainable, the only transitions that can be c lass ified  as a second
order transition are those of a superconductor from the superconducting
or superconducting-mixed sta te  to the normal sta te .

However, transitions characterized by logarithmic or power-law
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singularities in the behaviour of some thermodynamic variable as a
function of another suitable variable can be c la ss if ie d  in the scheme
of Ehrenfest. This has recently been done by Gorter5' for a c la ss  of
transitions involving logarithmic singularities. The scheme proposed
by Gorter may be extended so that it includes power-law singularities
as well.

In a phase-transition a very large number of particles cooperate.
M acroscopically observable guantities such as pressure and magnet­
ization as a function of the temperature must therefore be derived by
means of s ta tis tic a l m echanics. Since the particles interact, the system
is essen tia lly  a many-body system . An exact solution for such a system
is notoriously difficult, even if the sim plest interaction is assumed
and the positions are fixed on a la ttice .

Two methods of tackling this problem will be briefly described.
The first method assuming that on each particle a mean field is  acting
will be used in various theories, called mean-field theories. In the
second approach a Hamiltonian for the interaction is assumed and the
macroscopic observables are calculated exactly or approximately in
the framework of s ta tis tic a l thermodynamics. Several exact results
have been derived (see section 3.4). These resu lts  can furthermore
be used as a check on approximation techniques used for problems
defying an exact solution. R esults obtained with the second method
show that the mean-field theories become the more rea lis tic , the
larger the range of interaction *

2 Mean field theories
In this section we shall summarily describe the molecular field

theory and L andau 's phenomenological theory of second order phase
transitions. By grouping both theories together we emphasize their
common assum ption of the existence of a mean-field acting on the
constituent parts of the system. The theory of Landau in the form
sketched below, however, can be extended by introducing a term de­
scribing the fluctuations. We omit the description of the Van der Waals
the'ory of condensation because this theory involves the same essen tia l
approximation as the molecular field theory.

2.1 The Weiss molecular field
A coherent qualitatively  correct description of the magnetic pro­

perties of a ferromagnetic substance is  furnished by the molecular
field model. The essen tia l features are shown in the derivation of
the expression of the magnetization as a function of the temperature,
the internal field and the interaction between the spins.
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Let us consider a system of spins for this purpose, each spin i
having two orientations, denoted by ytzt = + 1 or —1 respectively , and
an interaction energy -v ^  n l fi with spin j. If H denotes the applied
field, expressed in units of energy and Hi the field acting on spin i,
we may write

Hi = f wu + H ' (!)

The average magnetization is  given by

<» > .  l i f t  ” P Hl> , ,2)
Tr exp (^/Xj Hj)

The molecular field approximation consists  in assuming that the field
acting on each ion is  the same. Formula (2) is  accordingly simplified
to

„ ^ Tr exp <H,>)<a > ----------1--------------- 1------ *-----  (3 )
Tr exp n l CHj»)

which takes the simple form

exp (y0 <H.>) -  exp ( -  yS <H.>)<u, > =---------— — 1------------------------------ *—  (4 )
exp {fi <Hj>) + exp ( -  J3 <Hj>)

for /z1 = +1 or —1.
With the help of eg .(l)  the molecular field may be denoted by

<Hi> *= v (0) </z > + H.

Using this notation eq.(4) is  given by

</zi > * tanh tyS(v(0) </jlt > + H) ] .  (5)

For H = 0, a solution </z4> = 0 is found for every value of v(0). A non­
trivial solution is  only found, if yS v(0) > 1. In this case  a solution is
also formed by — </z1>. If yS v(0) > 1 the only solution is  <yui > = 0.
The temperature defined by the relation 1/yS (= kT) = v(0) may there­
fore be called the critica l temperature.

Other properties such as entropy and specific heat according to
this simple model of ferromagnetism may also  be easily  derived.
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2.2 The Landau theory
An elegant formalism describing the essen tia l features of a second-

function, G, containing a ll macroscopic information is  used as a s tart­
ing point. The central assumption of the theory is , that below the
critical point an order parameter may be defined that is  non-zero, but
vanishes a t the critical point. Secondly it is  assumed that the Gibbs
function near T c may be developed into a double Taylor se ries  of the
order parameter and AT = T — T . If furthermore fluctuations are ne­
glected, we may write the Gibbs free energy in the form

Since l / y  -  0, if T - T c and M = 0, the coefficient c q from eq.(7) equals
zero. Substituting e(T) from eq.(8) into eq.(10) and neglecting terms

order phase transition is  given by Landau®\ The Gibbs free energy

G (T,M) = G(Tc,0) + c(T)M2 + e(T)M4 + ... , (6)

where

c(T) = c o + C j A T  + c 2 (AT)2 + ... , (7)

and

e(T) = e Q + ejA T + e 2(AT)2 + ... . ( 8 )

By symmetry odd powers in M vanish. Noting that

. and 3M t

we obtain

H -  2 c(T)M + 4 e(T)M3 + ... , (9)

and

i - «  2 c(T) + 12 e(T)M2 + ... . ( 10)

of higher order than AT and M2 we derive

1 ^
X

1/2 c } (ID
T - T  + 6(e /c ,)M2

C  O  1

According to relation (9), M = 0 in zero field, so that (11) reduces to
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the Curie-Weiss law in this case . Below T and in zero field, eq.(9)
has two thermodynamically stable solutions, namely

Mo “ y - ( T c “  T)- (12)
co

B esides, we see from (9) that the critica l isotherm has the simple form

H -  4e M3 .
O

It is a lso  an easy  matter to calcu late  the discontinuity in the specific
heat at T c in this model.

3 M icroscopic th eo ries

In the first part of the preceding section s ta tis tic a l m echanical
methods have been explicitly  used for the calculation of macroscopic
quantities. At the very beginning, however, a drastic  sim plification
has been made, namely the assumption that fluctuations are absent,
the consequence of which cannot be a sse ssed  beforehand. A more
rigorous treatment of the interactions would reveal the nature of the
sim plifications involved in the mean-field theory. Up to th is time an
exact s ta tis tic a l m echanical derivation of the m acroscopic quantities
has only been obtained for a few types of interaction ham iltonians.
As an example we mention the exact solution for the two-dimensional
Ising model in zero field, obtained by Onsager. The specific  heat in
this model tends to infinity, if the temperature approaches the critica l
temperature. This resu lt is in violent disagreem ent with the molecular-
field prediction of a finite specific heat below and a zero-specific
heat above the critica l temperature.

In the following subsections we shall briefly describe some methods
to obtain approximate predictions of macroscopic quantities. The
approximations will consist in the calculation (and asymptotic ana­
lysis) of only a finite number of terms in a se ries  development for the
quantity investigated.

3.1 The H am iltonian

The s ta tic  dipolar interaction between two spins — although best
known theoretically  — cannot account for the magnitude of most mag­
netic interactions. Since the range of interaction is infinite and the
directional dependence is quite complicated, this Hamiltonian has
thus far not been considered as a basis for theories on phase tran­
sitions. Recently, however, calculations of the magnetic susceptib il-
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ity at high temperatures have been performed with the use of the
spherical model 10\  In this model the interaction energy between the
site s  i and j varies in proportion to l / r d + £̂ where r denotes the dis­
tance between the s ite s  i and j, d the dimension of the la ttice  and cr
a positive constant. In th is model the exponent, y ,  of the singularity
in the susceptib ility  near and above T , defined by the relation

~  (1 y (14)
C T

takes the molecular-field) value 1 for 0 < cr < 3 /2 , and the values
a ( 3 — cr) for 3 /2  < o  < 2, and 2 for cr > 2.

The Hamiltonian that has proved to be most succesfu l in describing
phenomena related to magnetic ordering, especially  in insulators, is

H * — 2 J 2  t /  s . — g MrH ^  s <, • (15)
i ,J 1 '  “  i  12

i < J

where J is a constant, s t and are spin operators. The summation is
taken over a ll pairs of nearest-neighbours. This spin-dependent inter­
action is called exchange interaction, since h istorically , this ex­
pression originates from the direct exchange of two electrons
J being the exchange integral. The expression (15) is commonly
called the Heisenberg Hamiltonian.
The observation of the occurrence of exchange interaction between
magnetic ions surrounded by a group of diamagnetic ions led Kramers1
to the idea of superexchange. Slater **', however, pointed out that
generally the derivation of (15) was not valid in so lid s. For the case
that the electron orbitals are only slightly non-orthogonal, Herring17'
has recently derived (15). Another recent development in the field was
the presentation by A nderson18  ̂ of a new theory of superexchange.
This theory could explain why most exchange in teractions were of the
antiferromagnetic type (J < 0).

In view of the theoretical justification of (15) for real so lids, a
thorough s ta tis tic a l mechanical derivation of its  properties is very
attractive. However, since the spin operators do not commute, the
calculations are rather difficult. If only one component of the spins
in (15) is supposed to interact with that of another spin, a substantial
sim plification of the calculations will result, since in this case  the
spin operators commute. This Hamiltonian has the form

H * — 2 J  X Sj s . — g /^b H X s iz , (16a)
i ,J 1
i < j
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and is called after Is in g 19*. An alternative form of th is Hamiltonian,
yielding the same maximum internal energy and m agnetization, inde­
pendent of s, for a given value of J ' and g /rBH, is

H  = 2 s
i,J

i <  J
i z S Jz (16b)

From the definitions (16a) and (16b) it follows that J '  = 2 J s 2. For a
s=l/i system , therefore, J ' =1/6J. The Ising interaction might be regarded
as rea lis tic  for those cases  in which axial spin orientation is  strongly
preferred. This phenomenon may occur in a solid , if for example, the
lowest level is  twofold degenerate with very anisotropic g values
that favour orientation along an ax is (g »  g^).

By using the Heisenberg and Ising Ham iltonians, a wealth of resu lts
has been obtained in the la s t few decades, notably by the London
group2 °*.

An in teresting practical extension of (15) is  formed by the model
taking account of next-nearest-neighbour in teraction. Some resu lts  for
three-dimensional la ttices  have been obtained21*, which agree very
well with the experiment21*. Another model of practical in terest is
found by a type of interaction intermediate to (15) and (16) which
might be called  the anisotropic Heisenberg model. A few resu lts  have
recently been obtained22* viz. the variation of the critica l temperature,
as a function of the anisotropy parameter and the value of 7  as a
function of this parameter.

The properties of the models using the Hamiltonians (15) and
especially  (16) have furthermore been calculated  as a function of the
variation of the parameters spin quantum number23*, dim ensionality24*
and coordination number23*. If the dimension or the coordination
number increases, the resu lts  approach those of the molecular field
model, as might have been anticipated.

We conclude this section on Hamiltonians and models (which is not
exhaustive) by mentioning the Heisenberg model in the limit of infinite
spin, called the classica l Heisenberg model. In the lim it of infinite
spin, the spin may be considered as a c la ss ic a l vector of length
[ s(s + 1)] , so that the calculations are sim plified  considerably.

Various properties have been derived25,26*, some of which will be
more fully analysed in section 3.5.

3.2 Series developments

In th is section we shall give an example of the way in which the
partition function, Zj^, for a canonical ensemble may be expressed in
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the form of a series development in a parameter, which depends on the
temperature region considered. We specialize to the sim plest case ,
e.g . the Ising model with spin Vi, the method being quite general. We
shall firstly consider the low-temperature region, in which the devi­
ations from the fully ordered sta te  are small. Secondly we consider
the high-tem perature region, in which the exchange energy is small
compared to the thermal energy.
a) Low-temperature expansions

For the Ising model with s = XA in zero field, the partition function
may be written in the form

ZN = 22 g (N , N ++, N__ , N +_) exp [K(N++ + N__ -  N +_ )] ,

(17)

where N is  the total number of spins considered, N ++, N__ , N +_ , the
number of pairs of spins having spins up, spins down, and spins
antiparallel respectively, K stands for lA J /k T , and g is  the combi­
natorial factor counting the numbers N ++, N +_ , N__ that can be
formed in a la ttice  of N s ite s  and q nearest-neighbours for each site
(the la ttice  must be closed in itse lf  for this situation to occur). One
easily  verifies that the relation

N ++ + N +_  + N__ =)4qN (18)

holds. Expression (17) may now be written in the form

ZN = 2 2 „ ,N  =o g(N,N+J  e xp t KW qN -  2N+J ]  ,

= 2 texp(i4qNK)] 2 ^ *  =o g(N,N +J  [exp(—2K)] +~ , (19)

which may be compactly written as

ZN = 2 [exp(^qNK)] 2 * * ”  a n(q) zn. (20)

The coefficients a n(q) contain the information of the la ttice  and can
be evaluated in principle by counting procedures. The first two non­
zero coefficients in the expansion (20) may be easily  evaluated as
1 and N respectively . Each successive term in the calculation is
exact. The approximation made, when using the development, only
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consists in the evaluation of the asymptotic behaviour of the coeffi­
cients.
b) High-temperature expansions

The partition function for an ensemble of N particles with a Hamil­
tonian H may be compactly written in the form

ZN (^) = <exp(-/SH)> # (21)

where < > denotes the trace taken with respect to a set of (2s + 1)N
orthonormal states, spanning the space of H, and y6 denoting 1/kT. In
the high-temperature limit ZN (y6) can be developed in powers of /3
according to

Zn (/3) = 1 -  fi<H> +-@1<H2> + ... ... , (22)
2! r!

where the coefficient of ySr will be a polynomial of order r in N. In
order to evaluate <HI>, basically two calculations have to be per­
formed. The first, a combinatorial problem, involves the grouping of
the various contributions according to the type of graph, and counting
the number of independent graphs of each type for the lattice con­
sidered. The second consists in the calculation of the mean value of
the spin operators for the particular type of graph.

In this section we take the Ising model with spin in zero field as
an example. Denoting the spin variables by cr1, a ,̂ which take the
values ±1, and denoting A f t J by K, the partition function for N part­
icles takes the form

ZN ( f t )  = = ± i e x p ( K < J > ° i  aj> * (23)

where <ij> denotes a summation over nearest-neighbours i and j.
Since the spin variables commute, we may write the summation as a
product

Z N ( f t )  = = i i ^ e x p  (K c r ^ ) .  (24)

Noting that the a^cr satisfy the relation

(ai° j)2 =(a I crj)4 = = 1. and (OjO-p = ( c ^ ) 3 = ( a ^ ) 5 = .. ,

the exponential may be written in the form
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exp (K'Oj 'Oj) = 1 +Kcr1crJ +-K_(<r1<rj)2 + ...

= cosh K + <ri CTj sinh K

= (cosh K) (1 ♦ o ĉTj tanh K), (25)

so that eq.(24) becomes

a  , ±1 n (cosh K)(l ♦ O’, cr tanh K). (26)
N i‘ ) 1 < i  j > 1 1

The product may be expanded27', so that eq.(26) takes the form

Z N (yS) = (cosh K )*qN ^  CT =±1 [ l  +(tanh K) 1  c r a  ♦
”  i * j  1 < i j >  J

+ (tanh K)2 2  2  o  cr a  <r. + .. .  , (27)
< i j  > ^ < k  1 > 1 J K 1

where 54qN is  the total number of nearest-neighbour pairs, and where
the summations are taken over non-identical neighbouring pairs. Equ­
ation (27) may be written compactly in. the form

Z n 03) = [2(cosh K )*q] N 1  b (tanh K)r , (28)
w r so

where the coefficients br, which denote the combinatorial factors
defined by eq.(27), contain the information of the la ttice  structure.

3.3 The analysis of finite series
The series  derived by the methods indicated in the previous sec­

tions are necessarily  truncated, as the labour involved in deriving
each successive  term roughly increases exponentially fast.

Within the radius or convergence an (infinite) power series

F(z) = 2  anzn ,
n«o

where z denotes a complex variable, is bounded. The power series
diverges for certain z on the radius of convergence, called singular
points. The singular point lying c lo sest to the origin is  called dominant
singular point, z . In general the physical domain of z is  the positive
real ax is. The series  may now be devided into two c la sse s:
1) that in which z lies  on the positive real axis. This case  will

occur, if all a°‘ s are positive. This c la ss  of functions can be
simply analysed by the ratio-method (see below).
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2) that in which zo can be written as zq ■ ro e x p (i# o), with r real
and positive, and 6q real and unequal to zero. A series  belonging
to this c la ss  cannot be analysed by the ratio method, since the
magnitudes and signs of the coefficients are quite irregular. The
Padé-approximant method, to be d iscussed  in section 3.3.2, how­
ever, is su ited  for this c la ss  of se rie s . Moreover, weaker singular­
ities  (lying farther from the origin) on the positive real axis can
also be analysed. The only drawback of this method is  that rigorous
knowledge of the convergence of the Padé-approximants to the
function F (z )is  not com plete28*.

3.3.1 The ratio-method

This method of determining the critica l point and singular behav­
iour near the critical point stems from the following considerations.
Let F(z) be a function of the form

F(z) -  A(z)(l -  fiz )~  <1 + 9> , (29)

where A(z) is  a smoothly varying function of z for z near z — = 1 /u ,
and g > — 1. The order, A., of the singularity of F(z) for zC- z  , de­
fined by

\ = l i m  f l n F (2) 1
z - z c_ In (1 -  n z ) J (30)

has the value A. = — (1+g). If A(z) is  a function that diverges logarith­
mically to some power a  /  0, for z - z  = 1 / / i ,  according to

A(z) = [in  (1 -  /uz)] , (31)

the order of the singularity of F(z) has s till  the value -  (1+g) accord­
ing to the definition (30).

For |z |< |z c | the function F(z)/A (z) may be developed around z
according to the binomial expansion

1 +U +<J) MZ ♦,q>.ft2z 2 +-Ü. + g)(2 *9X3 +g) a 3 z 3 + . . ,
Alzl 2! 3!

(32)
which may equivalently be noted as

a n z
nF(z) ,  f

A(z) n = o (33)
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From eqs.(32) and (33) it  is  easy to see that the ratio of successive
coefficients, to be denoted as yun, is given by

n — l

If the plot of /zn as a function of 1/n is linear for large n, we can
obtain u = 1/z from the intersection of th is line with the axis 1/n =0,

C
while the slope yields us the value of g. This procedure is commonly
called the ratio-method.

In the limit n -®  a factor A(z) of the form shown in eg .(31) does
not alter the convergence. Even for n in the order of 10, however,
such a factor may alter the behaviour of the P n's  significantly , espe­
cially , if (1 +g) —0. In th is case  even a slowly varying function of
the temperature, like A(z) = z , influences the P n's  appreciably.
Most of the se ries  of section 3.5.2, however, have 1 + g » 0 ,  so that
the convergence may be determined from the available number of terms,
even if slowly varying functions of temperature, A(z), are considered.

3.3.2 The Padé-approximant method
Expansions having a dominant singularity off the real axis can be

r  HA Al t

analytically  continued by means of Padé-approximants ' ' beyond
the circle  of convergence up to the physical singularity on the real
ax is . Therefore, this method can also be used for the analysis of
finite series  in those cases , where the ratio-method fails.

We are in terested  in the series of the form

F (x) =1 +ajX +a2 x 2 + • • • + a nxn + • * * , (35)

of which only the first n coefficients are known. L et us consider the
ratio of polynomials P(x)/Q(x)

• PM , l+a!* ♦•••• ♦VN (36)
Q(x) 1 +y8jX + . . . . +  /3d x d

For N + D = k £ n ,  the coefficients a^ , . . . . ,  a N and . . . . ,  are
uniquely determined by the requirement that the se ries  expansion of
(36) shall coincide with (35) for the first k coefficien ts. Relation (36)
is called [D,N] Padé-approximant to the function F(x). For N +D £ n
the coefficients a 1# . . . . .  a N, /31, . . . .  are determined by equating
like powers of x in the following equations:
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F(x).Q(x) -  P(x) = 0 (x N +D + 1). (37)

The Padé-approximant is particularly suitable for the represent­
ation of functions, whose only singularities are simple poles. These
can be located as the D zeros of Q(x). If we expect the singularity of
F(x) to be of the type

F(x) ~  A/(x -  xc)p , (38)

where ~  stands for: asym ptotically proportional to, and p and x are
positive constan ts, the logarithmic derivative of F(x),

(d/dx)ln F(x) ~  - p / ( x - x c) , (39)

will have a simple pole a t xc with residue — p. By the following pro­
cedure the value of A may be determined. If p is  known, the Padé-
approximants to

[F (x )]1/p ~  A 1/p/(x  —xc) , (40)

having a simple pole at xc, will yield us both xc and A.
Summarizing, the Padé-approximant method co n sis ts  of inspecting

the convergence of the tabulated values of the critica l quantities
found by means of the successive approximants [D,N] (with D +N <n)
to the function F(x) = 1 ♦ \  a x 1.

1*1

3.4 Check of the finite series analysis
The resu lts  obtained by applying the methods given in sections

3.3.1 and 3.3.2 to the high-temperature series found by (3.2) may be
checked in several ways. Many numerical resu lts show that the resu lts
obtained by both procedures are consisten t28' 31*. In this section we
shall restric t ourselves to two special examples.
a) A comparison with some exact resu lts. In the Ising model Kramers
and Wannier32' derived the exact value of the transition temperature
for a quadratic lattice , namely

vc = tanh (J'/k T e) * / 2  -  1 -  0.4142135 ... .

A second exact resu lt for this la ttice , viz. y  = 7 /4  may be obtained
by applying an exact argument28* to Onsagers re su lt9*. By forming
the [7,7] Padé-approximant to the susceptib ility  series  for the qua-
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dratic la ttic e 33*, Baker31* obtained the values vc = 0.4142106 and
y  = 1.7496, respectively .

For the triangular lattice  the transition temperature in the Ising
model has been derived by Houtappel34* and has the value

l / v c = 3.73205 .. .  .

On using the ratio-method, Domb and Sykes33' obtained the value
3.731 ± 0.002. This agrees remarkably well with the exact value.
b) A comparison o i critical temperatures derived from series for two

physical quantities
An internal check of the procedures used can be found in certain

c a se s . We mention the determination of J /k T c for the spin-‘/4 Ising
model in three dim ensions. Baker30* has applied the Padé-approx-
imant technique to the suscep tib ility  s e r ie s 33* and the se ries  for the
spontaneous m agnetization33,30* for the three cubic la ttice s . Ex­
pressing the c ritica l temperature by the parameter uc = exp(—4J^kTc),
the resu lts  for both se rie s , u* and u“ , as  given by the highest approx-
imants available, are:

f.c .c . : u* = 0.664658, u“  = 0.6637;
b .c .c . : u* = 0.53266 , u“  = 0.5316;
s .c . : u^f = 0.41194 , u™ = 0.4109.

One may notice that the resu lts  agree within a few parts of 10 . It
may further be mentioned that the most precise resu lts , viz. those
obtained for u*, agree within the quoted error with the resu lts  found
by Domb and Sykes33* using the ratio-method.

3.5 Some numerical results on the specific heat, the susceptibility
and the spontaneous magnetization

In the sections 3.5.1 and 3.5.2 we shall present some new resu lts
obtained from finite se ries  given in the literature, by a method related
to the ratio-method. The id ea 35* is  the following. Let us assume that
the series

F(x) = 2  a .x 1 + a n+1xn+1 + . . . , (41)
1=0

of which only the first n coefficients are known, has an asymptotic
behaviour described by

F(x) ~  A ( l - / x x ) - a , (42)
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where a  is a positive constant. If a  and /i s  l / x c are known, the
function (1 — /xx)~a can be expanded (see eq.(32)) in powers of x
according to

(1-/Lix) “ = 2  /8 x1. (43)
1=0

The constant A from eq.(42) can easily  be obtained approximately by
forming the ra tio 's  A l = a . / f i l for the la s t few known terms of the
series (41). The function F(x) can now be represented over the whole
interval 0 < x < 1/ /lx by the following closed expression:

F(x) « A(1 - f j . x ) ~ a * 1  (a. —Ay8,)xi , (44a)
1*0

or equivalently by

F(f-) - A ( l - ! - ) —  ♦ 2 (ct - A d 1K j-)*i (44b)

where c A s a ^ x , .) 1 and dt ■ yS1(x<;)i. (44c)

It is  convenient to introduce the notation
n
2  ( C j - A d ^ s C , , .  (44d)

I s O

A plot of F (x /x c) versus ( l - x / x c) on a logarithmic sca le  yields the
value a  only, if CQ is small compared to the first right-hand term of
(44b), for the temperature region (region of x) considered.

In the case  of the specific heat of the three-dimensional Ising
model with s =Vi, the expression (44b) is given by

c /R  =1.1(1  - ^ ) “ 1 / 8 -  1.2, (45)

for x ~  \ / f x . One may notice that the second right-hand term is not
small compared to the first one. This will be the case  for the specific
heat, calculated according to any model, because the terms a Q and a t
are zero, whereas ySQ and /3j are non-zero (see the first two terms on
the right-hand side of (32). It is clear that in this case  the asymptotic
behaviour cannot be deduced from the usually made logarithmic plot
of c /R  vs. ( 1 - T C/T ), where 1 - T c/T > 1 0 ~ 4.

The asymptotic behaviour (42) of the susceptib ility  however, may
be easily  observed experimentally, since in relation (44b) the second
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right-hand term is small compared to the first right-hand term. One may
see this from the following considerations: a) that the susceptib ility
series  is calculated  in the form of a correction to the Curie law, so
that a Q and a t do not vanish, and b) that the exponent a  is large (> 1),
so that the contribution of the first right-hand term of eq. (44b) is  large,
even for 1 —T /T c = 0.01!

3.5.1 Specific heat
a) the Ising model -s  = lA- i.c .c . and s .c . la ttices. For the f.c .c . la ttice
la ttice  we have calculated the values of c /R , given by the expression35'

c /R  = 1.091 (1 - t ) _ 1 /8  -  1 - l / 8 t  -  0.0142t2 -  0.0032t3

-  0.0001t4 + 0 .0005t5 + 0.0002t6, (46)

where t = T /T ,  for the temperature region 10~4 < 1 — t <0.6 .

0.01

F i g .  1. T h e  c u r v e s  r e p r e s e n t  s p e c i t i c  h e a t  v a l u e s ,  c / R ,  fo r  t h e
s . c .  a n d  f . c . c .  I s i n g  s=V6 l a t t i c e ,  p l o t t e d  v e r s u s  (1 —T c / T )  o n  a
l o g a r i t h m i c  s c a l e .  T h e  uppe 'r  l y in g  d ra w n  c u r v e  g i v e s  t h e  r e s u l t
fo r  t h e  s . c .  l a t t i c e ,  c a l c u l a t e d  from e q .  (47 ) .  T h e  l o w e r  l y in g
d ra w n  c u r v e ,  r e p r e s e n t i n g  th e  r e s u l t  fo r  t h e  f . c . c .  l a t t i c e ,  i s
c a l c u l a t e d  from e q .  (4 6 ) .  T h e  o t h e r  c u r v e s  r e p r e s e n t  s e v e r a l
a p p r o x i m a t i o n s  to  (46 ) ,  s e e  t h e  t e x t .

The resu lts  are shown by the lowest of the two drawn curves in
fig. 1. The dashed line  represents the asymptotic behaviour of the first
term of the right-hand side of eq.(46) only. The dotted curve is ob­
tained by inserting t = 1 in a ll but the first right-hand terms of (46).
The dash-dotted curve is calculated by the use of the finite series (41)
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for n = 12. From inspection of the curves we may notice a) that the
asymptotic behaviour is not even approximately reached in the temper­
ature region that can be covered experimentally, b) that the specific
heat curve experimentally observable (1 — t < 10- 4 ), can only be
described accurately by the 12 term series  (41) for the fairly high
temperature region 1 ^  t >0-2, and c) that the dotted curve describes
the full temperature dependence (46) quite well for 0 < 1 —1<0.05.

The highest of the two drawn curves, representing the specific
heat of the s .c . la ttice , has been calculated  by means of the express-
ion36)

c /R  = 1.2337(1 - t 2)“ 1/8 -  1.2337 -  0 .006812 -  0 .007014 + 0 .002916

+ 0.000118 -  0 .0001110. (47)

The asymptotic behaviour for the s .c . la ttice  is sim ilar to that of the
f.c .c . lattice.
b) planar c lassica l spin model, f.c .c . la ttice . The specific  heat series
of a model of c la ss ic a l spins constrained to lie in a plane (planar
model), containing 7 non-zero term s37*, have been analysed by two
methods. The first method was described in 3.5, and resu lts  in the
asymptotic expression

c /R  = 11.64(1 - t ) - ° ' 03 -  12.06 . (48)

It is clear that the asymptotic behaviour (48) cannot be found from a
logarithmic plot of c /R  vs. (1 — t) for (1 — t) > 10—4.

However, we may note, that the asymptotic temperature dependence
of eq.(48) is nearly logarithmic. Therefore we extended the method
described in section 3.5 by considering the coefficients obtained from
the expansion of l o g ( l — /jl x) in powers of x, analogous to the expansion
(43). The values of A, Cj/dj, and CQ(see eq.(44))for the planar c la s s ­
ical spin model are given in table I. The entries c ^ d ,  for the las t
few terms are nearly constant so that the method appears to be correct.
In fig. 2 the specific  heat, calculated  from the data of table I for the
whole temperature, region above T c , is plotted versus (1 — T /T )  on a
semilogarithmic sca le  as a drawn curve. The dashed line represents
the asymptotic behaviour of the se rie s , described by

c/R  = -0 .380  In (1 -  T c/T )  -  0.469 . (49)
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T A B L E  I

S p e c i f i c  h e a t .  c / R , o f  t h e  f . c . c .  p l a n a r  " c l a s s i c a l * *  s p i n  m o d e l ,  d e r i v e d
from t he  s e r i e s  o f r e f .  37 .  T h e  s y m b o l s  a r e  d e f i n e d  in  s e c t i o n s  3 .5  a n d
3 .5 .1 .

x =  J ' / k T  ; x c = 0 .1 0 3 6 7  ; s i n g u l a r i t y lo g .

i a i A a/4 A c i “ A d i

1 0 9 .6 4 6 0 0  E  + 0 0 -  0 .3 8 0 0 0
2 12 4 .6 5 2 2 6  E  + 1 0 . 2 5 7 9 4 -  0 .0 6 1 0 3
3 96 2 .9 9 1 7 1  E  + 2 0 .3 2 0 8 9 -  0 .0 1 9 7 0
4 7 7 4 2 .1 6 4 3 5  E  + 3 0 .3 5 7 6 1 -  0 .0 0 5 6 0
5 6 2 4 0 1 .6 7 0 1 8  E  + 4 0 .3 7 3 6 1 -  0 .0 0 1 2 8
6 5 0 6 0 0 1 .3 4 2 5 4  E  + 5 0 .3 7 6 8 9 -  0 .0 0 0 5 2
7 4 1 8 9 9 2 1 .1 1 0 0 4  E  + 6 0 .3 7 7 4 6 -  0 .0 0 0 3 6
8 3 5 4 3 5 0 0 9 .3 6 8 8 3  E  + 6 0 .3 7 8 2 2 T -  0 .0 0 0 2 2
9 3 0 4 4 6 8 1 3 8 .0 3 3 0 3  E  + 7 0 .3 7 9 0 2 0 .3 8 0 -  0 .0 0 0 1 1

<2=—0 .4 6 8 8

4  6  IO '1 2

F i g .  2. T h e  s p e c i f i c  h e a t ,  c / R ,  o f  t h e  f . c . c .  p l a n a r - ,  c l a s s i c a l -
s p i n  m o d e l  i s  p l o t t e d  v e r s u s  (1 —T c / T )  on  a  s e m i l o g a r i t h m i c
s c a l e .  T h e  d ra w n  c u r v e  r e p r e s e n t s  t h e  c l o s e d  form r e s u l t  g i v e n
by e q .  (4 4 b )  ( s e e  t h e  t e x t ) ,  d e r i v e d  from t h e  s e r i e s  (42)  o f  r e f .  37.
T h e  d a s h e d  l i n e  r e p r e s e n t s  t h e  a p p r o x im a t i o n  (49) .

We notice that the asymptotic logarithmic behaviour can be easily
reached experimentally. This result favours the asymptotic represent­
ation (49) to that given by eg.(48).
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3.5.2 Susceptibility
The susceptib ility  se ries  for the three-dimensional cubic la ttices

published in the literature have been analysed by the method described
in section 3.5. The models dealt with are: The Heisenberg  s = lA,
Ising  s = lA, classica l-sp in  and planar classical-spin  models. The
symbols used in the tables are defined in section 3.5. The temper­
ature T is given in units T c. The values for the param eters x and a.
were taken from the cited publications.

The resu lts  of the analysis have been presented in the tables II to
V. We may notice the following two points:

a) The convergence of the ra tio 's  a^ y Bl for large i is  very good
(a few parts in a thousand) for nearly a ll Hamiltonians and la ttices
considered. For the s .c . la ttice  in the Heisenberg model however, the
convergence is  somewhat erratic (see table II) but the amplitude may
nevertheless be estim ated with an error of only about lA%.

The only amplitudes, A, calculated  in the literature viz. those for
the Ising s = lA and Heisenberg s = A Hamiltonians, are shown in the
tables II and III for comparison. In table II the values for A, given in
the second row, have been taken from ref. 38. Agreement with our

T A B L E  II

R e d u c e d  s u s c e p t i b i l i t y ,  y T / ( C u r i e - c o n s t . ) ,  o f  t h e  c u b i c  H e i s e n b e r g  s  = 14
f e r r o m a g n e t s ,  d e r i v e d  from th e  s e r i e s  o f  r e f .  38.  T h e  s y m b o l s  a r e  d e f i n e d
in  s e c t i o n  3 .5 ;  x = J / k T ,  <1=1.43.

s . c . b . c . c . f . c . c .

Xc 0 . 5 9 6 2 0 .3 9 7 3 0 .2 4 9 2

a/A ° i - Adi a/A c i ~ A d i V A c l “ A d i

1 1 .2 5 0 7 7 0 .0 7 2 6 0 1 .1 1 1 3 3 0 .0 3 3 6 0 1 .0 4 5 6 0 - 0 . 0 3 6 3 3
2 1 .2 2 7 5 0 0 .0 4 7 7 9 1 .0 9 0 2 0 0 .0 0 3 8 2 1 .0 7 2 2 7 0 .0 0 2 2 1
3 1 .1 7 3 5 0 - 0 . 0 5 2 6 4 1 .0 9 4 4 2 0 .0 1 2 7 5 1 .0 7 5 0 7 0 .0 0 8 0 9
4 1 .1 8 4 4 9 - 0 . 0 3 4 1 1 1 .0 8 5 3 3 - 0 . 0 0 5 8 7 1 .0 7 1 4 8 0 .0 0 1 0 5
5 1 .2 3 0 3 9 0 .0 7 2 6 2 1 .08 8 4 1 0 .0 0 0 9 9 1 .0 6 9 3 6 - 0 . 0 0 3 9 0
6 1 .2 0 7 0 1 0 .0 1 7 9 7 1 .08 7 5 6 - 0 . 0 0 1 1 4 1 .0 6 9 3 3 - 0 . 0 0 4 2 8
7 1 .1 7 6 6 5 - 0 . 0 6 3 4 6 1 .0 8 8 5 2 0 .0 0 1 4 2 1 .0 7 0 0 3 - 0 . 0 0 2 6 5
8 1 .2 0 4 9 5 0 .0 1 4 1 8 1 .0 8 6 4 8 - 0 . 0 0 4 3 5 1 .0 7 0 5 4 - 0 . 0 0 1 3 0
9 1 .2 2 8 1 2 0 .0 8 4 3 7 1 .0 8 7 9 1 - 0 . 0 0 0 2 8 1 .0 7 0 7 4 - 0 . 0 0 0 7 9

10 1 .1 9 3 6 3 - 0 . 0 1 9 9 3 1 .0 8 7 6 5 - 0 . 0 0 1 0 9

1 .20 th e  p r e s e n t 1 .088 th e  p r e s e n t 1 .071 t h e  p r e s e n t
c a l c u l a t i o n c a l c u l a t i o n c a l c u l a t i o n

A 1.10 r e f .  38 1 .04 r e f .  38 1 .07 r e f .  38
1 .2 0 4 r e f ,  38 , 1 .092 r e f .  38, 1 .075 r e f .  38,

c o r r e c t e d c o r r e c t e d r e c a l c u l a t e d

C o - 0 . 0 6 0 6 - 0 . 0 4 8 4 - 0 . 1 0 8 9
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values (first row) is  only found for the f.c.c . la ttice . By inspecting
the calculation of A in ref. 38, the error can be easily  located. The
amplitude is  calcu lated  from the formula for the reduced susceptib ility

J L L ~  ( R ) a
C xc - x

A
( 1 - T c/T ) a '

(50)

where the residue R at x = xc to the function (x T /C )1/,a, a  and xc
are given. In ref. 38, the amplitude for the f.c .c . la ttice  has indeed
been calculated  according to (50). For the s .c . and b .c .c . la ttices,
however, the values 1 /a . have been used, instead of a . Using (50),
the values for the amplitudes (presented in the third row for A in
table II) agree remarkably well with our resu lts  for a ll three la ttices.

The two entries for A in table III, cited from ref. 39, have been
calculated by the ratio-method, the other ones by the Padé-approximant
method. As one may notice the agreement in table III between our
resu lts  and those cited from the literature is excellen t. The amplitudes,
however, as listed  in ref. 40 seem to be erroneously quoted from refs.
30 and 31.

T A B L E  III

R e d u c e d  s u s c e p t i b i l i t y ,  y  T / G u r i e - c o n s t . ) ,  of the  c u b ic  Is ing s  = i4 ferro-
m a g n e t s ,  d e r iv e d  from the s e r i e s  of r e f s .  33 and 39. T he  s ym bols  a re
d e f in e d  in  s e c t i o n  3 .5 ; x = t a n h  J ' /k T ;  CL = 1.250.

s . c . b . c . c . f . c .c .

X c 0 21815 0 .15617 0 .10175

* V A c i “ Adi V A c^—Ad, a/A ° i - Adi

1 1 .04712 0 .03640 0.99949 0 .03186 0 .97680 0.01013
2 1 .01524 -0 .0 0 3 8 8 0 .97123 - 0 . 0 0 3 9 0 0.97181 0 .00437
3 1 .02219 0 .00639 0.98006 0 .0 09 24 0 .97084 0.00325
4 1.01579 - 0 .0 0 3 5 8 0 .97309 - 0 . 0 0 1 4 7 0 .97024 0 .00250
5 1.02033 0 .00396 0 .97639 0 .00406 0.96971 0.00171
6 1.01727 - 0 .0 0 1 2 9 0 .97316 - 0 . 0 0 1 4 9 0 .96925 0 .00098
7 1.01932 0.00241 0.97491 0 .00168 0 .96890 0 .00038
8 1.01765 - 0 .0 0 0 6 6 0 .97319 - 0 . 0 0 1 5 4 0 .96863 - 0 .0 0 0 1 3
9 1.01887 0 .00169 0 .97430 0 .00059

10 1 .01787 - 0 .0 0 0 2 7
11 1.01868 0 .00139

1.018 the  p r e s e n t
c a lc u la t i o n 0.974 th e  p r e s e n t

c a lc u la t i o n 0.9687 the  p re s e n t
c a lc u la t i o n

1.018 ref .  39 0 .9 7 3 ± 0 .0 0  1 re f .  39
1.018 ref .  30 0.973 re f .  30 0.9688 re f .  30

co 0.0246 0 .0650 0.0545
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The close agreement between our values of A and those published
in the literature up to now, combined with the smooth convergence of
the ratios for large i in all series considered, suggest that the
values of A for the classical- and planar classical-Heisenberg models
(tables IV and V) are also correct to a few parts in thousand.

T A B L E  IV

R ed
berg
d efl

u c e d  s u s c e p t i b i l i t y ,  ) ( T / ( C u r i e - c o n s t . ) ,  of th e  c u b ic  c l a s s i c a l  H e i s e n -
fe r ro m a g n e ts ,  d e r iv e d  from th e  s e r i e s  o f  r e f .  25. T h e  sy m b o ls  a re

n e d  in  s e c t io n  3 .5 ; x = J ^ k T .

Xc

s . c . b . c . c . f . c . c .

0 .3475 0 .2435 0.1577
a 1.42 1.38 1.38

i a/ A c i “ A d i a/ 4 c i ~ Adi V 4 c i “ Adi
1
2
3
4
5
6
7
8
9

0.97887
0 .9 37 07
0 .9 29 29
0 .91825
0 .91691
0 .91289
0 .91239
0 .91089
0.91121

0 .09638
0 .04480
0 .03583
0 .01570
0 .01387
0 .0 04 75
0 .00370

- 0 .0 0 0 3 0
0 .00062

0 .94106
0 .89862
0 .89523
0 .88460
0 .88354
0 .87945
0 .87926
0 .87752
0 .87773

0 .0 87 03
0 .0 33 87
0 .03189
0 .01338
0 .0 12 07
0 .0 03 37
0 .00308

- 0 . 0 0 1 2 3
- 0 . 0 0 0 7 3

0 .91420
0 .8 8844
0 .87727
0 .87167
0 .86869
0 .86722
0 .86669
0 .8 66 79

0 .0 6514
0 .03521
0 .01900
0 .00095
0 .00369
0 ,00052

- 0 . 0 0 0 7 5
- 0 . 0 0 0 5 5

A 0.911 0.878 0.867
c o 0 .3044 0 .3047 0.2647

T A B L E  V

R e d u c e d  s u s c e p t i b i l i t y ,  ) ( T / ( C u r i e - c o n s t . ) ,  o f  the  c u b ic  p la n a r  c l a s s i c a l
H e is e n b e r g  fe r ro m a g n e ts ,  d e r iv ed  from re f .  37. T h e  sy m b o ls  a re  d e f in e d  in
s e c t io n  3.5; x = J ' / k T ,  a.= 1.32.

s . c . b . c . c . f . c . c .
X c 0 .2265 0 .1603 0 .10367

V 4 Ci “ A di V A ° i - Adi “/ A Ci ~ Adi
1 1 .03582 0 .02863 0 .97579 0 .0 50 90 0 .94820 0.032412 1.01477 0 .01162 0 .94558 0 .0 1 30 2 0 .93538 0 .0 18 023 1 .02014 0 .01029 0 .94968 0 .0 21 22 0 .93026 0 .011324 1.01485 0 .00154 0.94181 0 .00867 0 .9 2764 0 .007485 1.01809 0 .00784 0 .94306 0 .0 11 63 0 .9 26 02 0 .004846 1.01544 0 .00291 0 .93951 0 .00506 0 .92494 0 .002907 1 .01604 0 .00430 0 .93993 0 .00618 0 .92418 0 .001448 1.01404 0 .00009 0 .93787 0 .0 01 90 0 .92362 0 .00027
A 1.014 0 .937 0 .9235
c o 0.0427 0.1816 0.1552
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b) The correction series  (i.e. the second right-hand term of eq.(44b))
evaluated a t Tc , denoted by CQ, is  small compared to A, especially
for the Ising and Heisenberg models (see table II and III). Since further­
more a. is  large, the simple asymptotic relation (42) describes the
temperature dependence in the large Temperature region: 1 — Tc/T  < 0.3
quite well. In other words, the critical behaviour for these models
may be observed at temperatures as high as 1.3 T , and it can be
measured accurately in the temperature region 10—2 < 1 — t < 10— l .
Since the values of A may be considered reliable, the values of Cj — Adj
and CQ can be calculated  equally reliably. Above T c the temperature
dependence of the reduced susceptib ility  can now be easily  calculated
by means of eq.(44b). In the temperature region T c < T < 1.3 T , which
is  of in te rest for critica l behaviour, the plot of the precise values of
xT /C  vs. 1 — Tc/T  hardly departs from the plot of the asymptotic
expression (42). For this reason we have preferred to present some
of the calculated values in the form of a table (table VI). We only
tabulate the resu lts  for the three most important models: the classical-
and spin lA - Heisenberg models and the Ising s=!4 model. The values
for temperatures between T and 1.01 T are omitted as they can be
easily  calculated from eq. (44b) by substituting CQ (given in the
tables II to V) for the second term on the right-hand side.

In conclusion, we may remark that the method described in section
3.5 to analyse series  expected to diverge according to a simple power
law is  simple. It has the advantage over the Padé-approximant method
that it  is  easy  to estim ate the temperature region in which the behav­
iour is  described by the asymptotic temperature dependence with a
specified accuracy.

3.5.3 The spontaneous magnetization
Using the Ising s = 14 model, an exact expression for the temper­

ature dependence of the spontaneous magnetization has been deduced
for several two-dimensional la ttic e s41' 42'. On approaching Tc the
reduced spontaneous magnetization for the square la ttice  (s.q.) may
be represented asym ptotically by the expression

m (t) ~  B (1 — t)^  , (51)

where t stands for T /T c , the amplitude B = 1.242 and y8 = 1/8. In the
three-dimensional case  one must take recourse to series expansions.
By means of Padé-approximant analysis of long series  for the three
cubic la ttice s , Essam and F ish er43' concluded that eq.(51) describes
the asymptotic behaviour of m(t) quite well. The value of fi is  5/16



T A B L E  VI

V a lu es  of
the  c o n s t a

the re d u c e d  s u s c e p t i b i l i t y ,  v T / C ,
n ts  from t a b l e s  II to  IV; t = 1 ^ / T .

a s  a  fun c t io n  of 1—t for th r e e  m o d e ls ,  c a l c u l a t e d  by eq .  (44b) and

XT / C

H e is e n 3erg s = % I s in g  s = VS c l a s s i c a l  H e i s e n b e r g

i - t s . c . b . c . c . f . c . c . S.C. b . c . c . f . c .c . s . c . b .c .c . f. c .  c .
0 .0099 881.7 799 .4 786.9 333.1 318 .7 313.1 639 .5 512.5 506.10.0157 454.0 411.7 405 .2 187.7 178.3 175.3 331.0 270.3 266.90.0215 290 .4 263.3 2 5 9 . i 127.4 120.6 118.6 212.5 175.7 173.40.0291 188.4 170.8 168.1 87.45 82.66 81 .25 138.4 115.8 114.40.0403  ' 118.4 10713 105.6 58.33 55.06 5 4 .14 87.36 74.09 73.130.0521 81.90 74.28 73.06 42.31 39.92 39.26 60.71 52.03 51.350.0610 65.35 59.28 58.30 34.75 32 .78 32 .24 48.58 41.91 41.360.0826 42.38 38.46 37.81 23.81 22.47 22.11 31.72 27.71 27 .340.103 30.80 27.97 27.48 18.02 17.02 16.75 23.19 20.45 20 .170.123 23.97 21 .78 21.39 14.48 13.69 13.47 18.15 16.12 15.900.149 18.16 16.51 16.21 11.36 10.76 10.59 13.85 12.41 12.230.200 11.86 10.81 10.60 7>84 7.45 7.33 9.18 8.33 8.210.248 8.67 7.93 7.76 5.98 5.69 5.61 6 .80 6 .24 6.150.301 6 .55 6.01 5.88 4.69 4.48 4 .42 5.22 4.83 4.76
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for all la ttices, and the amplitudes are 1.570 and 1.488 for the s .c .
and f.c .c . la ttices  respectively.

In order to investigate in which temperature region the behaviour
of the magnetization in the above-mentioned model may be described
by the asymptotic relation (51b) (viz. to an accuracy of say 1%), we
have explicitly calculated the temperature dependence for t < 0.999.
The resu lts  for the s .g ., s .c . and f.c .c . la ttices are shown in fig. 3.
The drawn curve for the s.q . la ttice  has been calculated  with the
formula given in ref. 51. The values of m(t) for the cubic la ttices
have been calculated  from the Padé-approximants listed  in ref. 53.
The dashed lines represent the asymptotic behaviour given by eq.(51).
We may notice, that the deviation of the asymptotic expression (51)
from the calculated values of the full expression is  le ss  than 1%, if
1 — t < 10—2 for the s.q . la ttice , and for the cubic la ttic e s ,if  1—1>3.10“ 2.
This resu lt ind icates that the critical behaviour of this model can be
reached under experimental conditions.

I ■ I

ls  s .1 ,5 0  l t c , l i . | a l

lO"3 2 4  6 8 10~a 2 4  6 8lO"' 2 4  6 8 1

F ig .  3. T h e  r e d u c e d  s p o n ta n e o u s  m a g n e t iz a t io n ,  m (t) , o f  th e
I s in g  s  =  % ,  s . q . ,  s . c .  a n d  f . c . c .  l a t t i c e s  a s  a  fu n c tio n  o f  1—T / T c .
T h e  d ra w n  c u rv e  fo r th e  s . q .  l a t t i c e  i s  c a l c u l a t e d  from  th e  fo rm u la
g iv e n  in  r e f .  4 1 , t h o s e  fo r t h e  c u b ic  l a t t i c e s  h a v e  b e e n  e v a lu a t e d
w ith  th e  h e lp  o f  th e  P a d é - a p p r o x im a n ts  l i s t e d  in  r e f .  43 . T h e
d a s h e d  l i n e s  a r e  r e p r e s e n t e d  by  m (t) = B( 1—t)/3, w ith  B = 1 .2 4 2  a n d
P -  1 /8  fo r th e  s . q .  l a t t i c e .  F o r  th e  s . c .  a n d  f . c . c .  l a t t i c e s  B =  5 /1 6 ,
w ith  B =  1 .5 7 0  a n d  1 .4 8 8 , r e s p e c t iv e l y .



35

3.6 Some considerations on the rounding of specific  heat curves of
magnetic system s

3.6.1 Imperfections
Specific heat measurements on magnetic system s, performed with

high temperature resolution (AT ~  0.0002 T ) often reveal a rounding
of the specific heat curve over a temperature interval ranging between
0.001 Tc and 0.01 Tc (see refs. 44, 45 and Ch. III). This effect is
commonly attributed to imperfections of physical or chemical origin.
Large regions of imperfections may devide the sample into effectively
many independent structures. This effect may be considered as a s ize
effect. Another possib le  cause of the rounding of the specific  heat
peak might be formed by a region of s tre ss  in the neighbourhood of an
imperfection. A calculation of the variation of the transition point
with s tre ss  has been performed in the simple case  of the influence of
uniaxial anisotropy on the transition point for a ferromagnet. These
two effects arising from imperfections will be considered quantitatively.
a) F inite s iz e  effect.  The imperfection may consist in cracks deviding
the sample into small parts containing a relatively small number of
interacting spins. From s ta tis tic a l mechanics it  follows that in a
finite system the thermodynamic variables do not exhibit discont­
inuities. In particular the specific heat of such a system has a finite
maximum. For the two dimensional rectangular Ising s = lA model
O nsager9  ̂ has derived the expression

c /R  = —0.4945 In M (52)

for the specific  heat maximum at T of an infinitely long strip  of width
M spins. For the infinite s.q . la ttice  the expression has the asymptotic
form

c/R  = -0 .4 9 4 5  In | l  —T /T c | (53)

for T near T c . From the relations (52) and (53) it  follows that size
effects will occur if

M < - r - L - r  , (54)
| l - t |

where t = T /T  .% C
Let us consider the specific example that the crackfree regions

are 0.1 mm in diameter and that the spacing of the spins is  7 X. We
then obtain M = 1.5 10 , so the temperature interval in which size
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effects determine the specific  heat is  given by | l  —1 |< 1 0 ~ 5. How­
ever, ■ measurements performed on the optically and chemically very
pure sample CoC12.6H20  of Skalyo et a l .44), which is  considered to
represent a s .q . Ising antiferromagnet, show a rounded specific  heat
peak for 11 — 11 as large as 2 .10~3.

In the three dimensional Ising s = lA model no exact resu lts  have
been obtained. Domb46\  however, has obtained the following estim ate
for the specific  heat maximum

c/R  “ 'a ' [(bM)a — l ] . (55)

D specifies the dimension, a  the power by which the specific  heat in
D dimensions diverges, and b is a constant of order unity. Taking
M = 105, and a  = 1 /8 35  ̂ for T > T in three dim ensions, we obtain
c /R  = 75 from eq.(55). This value is about 30 times as high as the
maximum observed for the sa lt  CoCs3C l5, which we consider a fair
representation of the cubic Ising model (Ch. III).

From these resu lts  we infer that this size-effect is no plausible
interpretation for the experimentally found rounding of the specific
heat peak.
b) The influence of the domain structure. By the use of a variational
technique, it has recently been pointed out47' that in a ferromagnet
having uniaxial anisotropy the transition point for spins in a domain,
T , , d iffers from that for spins in a wall, T c wall- The proposed
expression has the form

T c . d . . . i / To ..« ll ■ 1 156)

where K denotes the uniaxial anisotropy constant and J the exchange
parameter. Let us consider the case  that 2K /J = 0.01. Even if the
domains are supposed to be very small (0.2 mm length), the ratio of
the numbers of spins present in a wall and in the domains, respectively,
is  only 0.05. The resulting spread in T c predicted by eq.(56) is only
0.0005 T . This spread is about a factor 10 higher than observed, so
that it a lso  fails to account for the experimentally found broadening.

3.6 .2  E ffect of the  volum e-dependence of the exchange in teraction

As the exchange integral J is strongly dependent on the lattice
parameter, and the energy gain in a phase-transition depends on the
value of the exchange parameter, one may suppose that the thermal
expansion is anomalous in the temperature region close to the phase



37

transition. This phenomenon has been observed by several experimental­
i s t s 48' 49 .̂ Theoretically , for the Heisenberg model below T c, P y tte 50^
has derived an expression for this anomalous expansion, which is a
linear function of the specific  heat of the spin system . Using the
molecular field approximation Bean and Rodbell51* have derived the
specific heat of a spin system having a volume-dependent exchange
interaction. They derived that the specific  heat near T c rise s  steeply,
if the parameter yS, describing the volume-dependence J(v) =J(v )x
[ l  + A v0— v)/v  )] , is  increased. If yS is  larger than a c ritica l value

f ic , the transition changes into a first order transition . The latter
resu lt has also  been obtained by R ice52', who has used general thermo­
dynamic arguments.

On the basis of the Ising model, Domb53' has elegantly derived the
expression

= (— )
dv solid

^ o r d e r  / 3 2J(v)  \ . t  / 3 J ( v) / 3 v)\ 2
J  JT Cv 1 J  * * (56)

which may be used to estim ate the value of c v required to change the
transition from second order into first order ((B P/B v)T = 0).Tn eq.(56),
v (B P /3 v )solld denotes the reciprocal com pressibility for the solid in
the absence of volume-dependent exchange, J(v); the left-hand side
multiplied by v denotes the same quantity for the complete system ,
and c„  is  the specific  heat a t constant volume. As both E , , the* o r d e r
energy gained at T by the ordering process, and the third right-hand
term evaluated at T c are proportional to T , the third term outweighs
the second term, independently of T c, if c y is sufficiently  large. Let
us consider the specific  case  of an ionic crysta l a t very low temper­
atures, with a molar weight of 500 gr. and a molar volume of 250 cc.
Let us assum e J(v) to be strongly dependent on volume, J(v) =J(v )x
(vo /v)4; T = T c ~ 1K; E =NkTc, c y =10Nk, k denoting the Boltz­
mann constant; and v (d P /d v ) solid = -1 0 * 1 [cm"2 dyne ] ,  which is
of the order of magnitude observed in the sa lt KMnF,54). After insertion
of the numerical values in eq.(56) the second right-hand term appears
to be negligible with respect to the third right-hand term. The ex­
pression (56) may now be simplified to

,v 2El
,B p , V"Bv solld 16cy T
'st’t — ;--------* ■

( 57)

Substituting the numerical values we obtain
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(-|P) .  _  4 .108 + 2.5 105 [e rg /c c 2] .
ov

We conclude that the system would be unstable if c /R  was of the
order 104. This value is  not nearly reached under experimental con­
ditions ( IT —Tc |>  10“ 4). This resu lt indicates that near 1 Kelvin
the volume-dependence of the exchange energy has a negligible influence
on the stab ility  of the la ttice , and consequently on the sharpening of
the specific  heat peak.

3.6.3 Calculation of the rounding of the specific heat peak in the
s .c . Ising s = 54 model

In sp ite  of the absence of a p lausible mechanism to interpret the
rounding of the specific  heat peak, it is worthwhile to consider a
simple mathematical model that givès a finite maximum for any sin­
gularly divergent function. In the model it is assumed a) that the
specimen contains regions, R(i), that have slightly different transition
points, T c(i), centered round T e, and b) that the regions, R(i), have
an abundance, given by a distribution function, d. The specific  heat
curve, c(T), in this model may be found from

c(T) = £ d(i) c (T,T (i)). (58)i c

Hitherto, the only three-dimensional model for which c(T) close to
T c has been published, is  the Ising s = 54 model. In order to perform
the calculation we have chosen the s .c . la ttice , since the temperature-
dependence of the specific heat for T close to T c (0.9 < T / T C< 1) can
be evaluated from ref. 55. We have obtained the simple expression

c(T ,T c)/R  = -0 .556  In (1 - T / T c) + 0.03. (59)

The asymptotic form of c(T,T ) for T > T , (0.9 < T /T  < 1), has been
C  C A  C  C  C

provided by Sykes '  as

c(T ,T c)/R  = 1.2337 (1 - ( T c/T ) 2)“ 1/8 -  1.2445. (60)

Eq.(59) obtains for T < Tc(i), while eq.(60) obtains for T > Tc(i). We
have chosen a Gaussian distribution function for d, viz.

exp -  (i x s teB)2
_________ F_____________
1=120 .
2  exp -  (l x st-eP)2
1= — 12 0 F

d(i) = ( 61 )
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where the integer i runs from —120 to 120, F is  the half-width in units
T and step  s  0.05 F denotes the partition. The critical temperature
Tc(i) is  given by

T c(i) = Tc exp(i x step) . (62)

By using eqs.(59),(60),(61) and (62), the specific  heat, given by eq.(58)
may be evaluated as a function of the temperature.

0.96 0.98

F ig .  4. T h e  s p e c i f i c  h e a t ,  c / R ,  a s  a  f u n c tio n  o f  T / T c  fo r th e
I s in g  s  = V£ m o d e l .  T h e  d ra w n  l i n e s  r e p r e s e n t  th e  t h e o r e t i c a l
v a lu e s  ( s e e  th e  t e x t ) .  S p e c i f i c  h e a t  c u r v e s  o f  s y s te m s  h a v in g  a
G a u s s ia n  d i s t r ib u t io n  o f  t r a n s i t i o n  p o in ts  o f  h a l f  w id th  0 .0 0 1  T c ,
0 .0 0 3  T c , 0 .0 1  T c  a n d  0 .0 2  T c# r e s p e c t iv e l y ,  a r e  r e p r e s e n t e d  by
(from  to p  to  b o tto m ) th e  d o t te d ,  d a s h e d ,  c h a in -  a n d  d o t te d  c u r v e s .

Fig. 4 shows the s .c . Ising s = curves ((59), and (60)), and the
curves (58) calculated with F = 0.001 Tc , 0.003 Tc, 0.01 Tc , and 0.02 Tc ,
respectively. We may notice firstly that the broadened curves fit
smoothly to the theoretical curves, if | t  — t | > F ,  and are rounded
for |T _ T | < F .  Secondly fig. 4 shows that the maximum of c(T) does
not occur a t T , but a t a temperature T = 1 — F for a ll the curves with
F > 0 . 0 1 T  . This resu lt is not surprising, as the s .c . Ising s = lA
specific heat curve is strongly asymmetric (see the plot of (59) and
(60)). Therefore, the temperature at which the maximum of the broadened
peak occurs, will be shifted by an amount F in the direction of the
region in which c(T) is largest for a fixed value of |T c —T| .  It is
clear that the maximum of the broadened peak will only occur at T
if the specific  heat curve is symmetric with respect to Tc .
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Chapter II

EXPERIMENTAL APPARATUS AND METHODS

1 Introduction
Temperatures below 1 Kelvin can easily  be obtained by the method

of adiabatic  dem agnetization. In the Kamerlingh Onnes Laboratory,
this method has been investigated and applied by several workers 1.2>3, 4,5)_
The experimental apparatus, consisting of a 4He system , a large
electrom agnet, a Hartshorn mutual inductance bridge and a simple
detection circuit has been described extensively by the above-mention­
ed authors. Since the measurements of the singularity in the specific
heat, and those of the magnetization as a function of the temperature
and field, n e c ess ita te  a high temperature resolution, the detection and
recording had to be improved d rastically . In the following sections
we shall describe the sample-holder, and the new experimental devices
and methods used.

2 The calorimeter
The apparatus, used for measurements between 0.05 and 2'K, is

shown in fig. 1. The sample, S, is  in c lose  thermal contact with the
magnetic thermometer, T, and the eddy current heater, H. The sample-
heater-thermometer system may be cooled via a superconducting thermal
switch, H.S., which forms a link with the chromium-alum cooling salt.
The guard-salt, G, which is demagnetized because it  is  in the strong
stray-field of the magnet, serves to reduce the heat input to the inner
g lass tube.

The sample may consist of one or two slabs (1 to 2 cms large) of
single crysta l or of fine powder. Good thermal contact with the heater-
thermometer is realized by Apiezon-N grease. The single crysta ls are
tied by thin cotton threads to brass-p la tes. Powdered sam ples were
mixed with grease. Thermal contact with the calorimeter is  estab lish ­
ed by a brush of about 100 enamelled copper wires of 0.3 mm diameter.
As in most c a ses  the coefficients of thermal expansion of the brass
p lates and crysta ls are different, fairly hard crysta ls are apt to crack
on cooling. In this case , the thermal conduction below 0.25 K may
become very poor and heat capacity measurements become difficult.
Therefore, below this temperature, most experiments have been per­
formed on powdered c rysta ls. Typical guantities used were: half a
gram of powder for T < Vi Tc , 10 grams of single crysta l or powder for
0 .8 < T /T  <1.4 , and about 4 grams of single crysta l for T > 1 . 4 T  .

C
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F ig .  1. A p p a r a tu s  fo r  m e a s u r in g
2 K.

h e a t c a p a c i t y  b e tw e e n  0 .0 3

C ch rom ium  a lu m  c o o l in g  s a l t T m a g n e t ic  th e rm o m e te r
S s a m p le H .S . h e a t  s w i t c h
H h e a t e r ,  c o p p e r  r in g a g u a rd  s a l t  (C r-a lu m )

T .S . th e rm a l  s h i e ld

At temperatures above 0.8 K the heat capacity  of the grease becomes
disturbingly large (325 T 3 ergs K2/ g r .6*),so that single c rysta ls  are
to be preferred. However, the bounds indicated depend somewhat on
the value of T .

C
The heater is made of a copper ring of 12 mm diameter, in which

eddy currents are generated by a coil wound on the outer g lass  tube.
The inhomogeneity of the field is less  than 0.2% for a d istance of
1 cm along the axis of the coil. The heat generated by the coil per
sec and per unit current depends on the frequency used. The advantage



of this heater over a resis to r clearly lies  a) in the absence of leads
that would introduce an additional heat leak, and would increase the
heat capacity  of the empty calorimeter, and b) the sim plicity of con­
struction. A disadvantage is the necessity  for calibration, which is
d iscussed  in section 5.

The thermal switch is formed by a few lead or tin wires of 0.1 mm
diameter and 1 cm length. Tin was chosen for the measurements in the
lowest temperature region. Since the critica l field for tin (H =300 0e)
is lower than that for lead (Hc »800 0 e), the stray field at the sample
position, caused by the magnet used for operating the switch, is lower
for tin than for lead. The external field is  formed either by a Nb-coil
in the 4He bath or by an electrom agnet outside the cryostat.

The cooling s a l t5  ̂ co n sis ts  of about 10 d isks of single crystal of
chromium-potassium-alum with a diameter of 20 mm and a th ickness of
5 mm. The c rysta ls  are glued to brass p lates, which are tightly screwed
to a copper rod of 3 mm diam eter. After demagnetization only 10 minutes
were needed for precooling most specim ens. If no switch is used a
run of measurements can la s t three hours. Since at temperatures above
0.15°K the time needed to take one specific  heat point does not exceed
5 minutes, at least 30 points can be taken. The observed rounding
(see Ch. Ill fig. 4, Ch. VI fig. 5) of the peak in the specific  heat facil­
ita tes  the measurement, so that the character of the singularity can
be determined in one run.

3 Temperature measurements and regulation
a) The magnetic thermometer. The specific  heat data have been

obtained by magnetic thermometers. At temperatures much higher than
the transition temperature « 1, so that y o, forthwith denoted
as x , may be se t equal to x '.  In this temperature region the temper­
ature-dependence of the susceptib ility  of a normal paramagnetic sub­
stance obeys the Curie-Weiss law

X = C / T \ (1)

T* = T - 6  . (2)

In these formulae, C and T denote the Curie-constant and the Curie-
Weiss temperature respectively. Since for cerium magnesium nitrate
(Ce2Mg3(N 03)12.24H20,CMN) 9  is  smaller than 2mK9\  and as the
specific heat above about 0.1 K is  very small, th is sa lt has been
used as a thermometer for nearly a ll experiments. The difference
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between T and T may be neglected for temperatures above 0.15 K.
Doping of the CMN with a few per cent of Cu2 + ions reduces the spin-
lattice relaxation time of the Ce-spins to about one fourth 10*. Such

9  +Cu -doped crystals have been used for nearly all the experiments.
A thermometer that is about ten times as sensitive as CMN is cobalt-

cesium-tutton-salt (CoCs2(S04)2.6H20, called CoCs-sulphate). The
g value in the K3 direction4* of this salt is about 5.510*. Since 6 in
the Kg direction is only 0.03 K1®*, the CoCs-salt may be useful as a
thermometer. We have used it for the determination of the character of
most singularities. For the CoCs-tutton-salt we have determined the
magnetic contribution to the heat capacity per gram to be about 1000
times as high as that of CMN, so that CoCs-sulphate cannot generally
be used as a thermometer. The large thermal relaxation time found
below about 0.3 K puts another limit to the applicability of this thermo­
meter.

b) The bridge circuit. The real and imaginary parts, x ' and x ''i  of
the dynamic susceptibility v = x ' —ix “ # have been determined by
means of a Hartshorn11* mutual inductance bridge that has been mod­
ified by several workers12' 1*. A set-up, showing the essential parts,
and including recent improvements in the detection and recording
system, is drawn in fig. 2. The sample, S, is placed in one of the two

pr. M p s

osc. scope

pr. Mf s.

lock — in recorder
2 2 0  Hz

t.4  s ta b iliz e r  »

F ig .  2.
s y s te m .
Mi

M2
S
R .  r 1(r 2

S c h e m a tic  d ia g ra m  o f  th e  H a r ts h o r n  b r id g e  a n d  d e te c t io n

m u tu a l  in d u c t a n g e  fo rm ed  b y  th e  c o i l  s y s te m
v a r ia b le  m u tu a l  in d u c t io n
s a m p le
n e tw o rk  fo r c o m p e n s a t io n  o f  a . c .  l o s s e s  in  M j.
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(oppositely wound) secondary coils forming a mutual inductance, Mj,
with the primary coil. The voltage of the secondary of Mj can be re­
solved into two components, one of which is  in-phase with the voltage
of the secondary of the variable mutual inductance, M2, the other
differing t t / 2 radians from that of the former. The first component can
therefore be compensated by setting  M2 =M,, the second by tapping a
suitable voltage from a res is tiv e  network ( r , ,r 2,R) carrying the primary
current. The two components can be visualized independently by phase-
sensitive  detection and displaying the two components on an oscillo ­
graph.

If M denotes the value of in the absence of a specimen, and if
R {f stands for r j r j / t r j  +r2 + R), then the dynamic susceptib ility , y o,
is found from: X' = (M2 —MQ)/q  (3), and (4), where M2
denotes the value of Mj in units of 3.100 ( i0.003)/xH. Mq and q can
be derived from a plot of M2 vs. 1 /T . The frequency used was 220 Hz,
which enabled us to maintain a fast response (= ls e c ) ,  while using a
high Q-factor (=300), without undue heating the calorim eter by eddy
currents. If the Hartshorn bridge is replaced by an a .c . Wheatstone
bridge, a res is tiv e  thermometer can be used. R esistive  thermometry
has been used in the magnetization experiment on Cu(NH4)2Br4.2H20
(Ch. V).

c) The stabilizer. In chapter V measurements will be reported on
the magnetic isotherm s of the sa lt Cu(NH4)2B r4.2H20 . E specially  near
the c ritica l point (T C= 1.74K ), the temperature had to be kept con­
stan t within a few tenths of a millidegree. A stab ilizer was b u ilt13^
for this purpose. Using this equipment, a short-term (=5 min) temper­
ature stab ility  of 10~5 K was achieved at 1.75 K.

2XASZ182 x AC 128
-0 - 2 9  V

to  power
supply

F i g .  3. D ia g r a m  o f  t h e  u n i t  u s e d  for t h e  t e m p e r a t u r e  s t a b i l i z a t i o n .
T h e  i n p u t  d . c .  v o l t a g e  v a r y i n g  b e t w e e n  + 0 .5  t o  —0 .5  V i s  d e r i v e d
from t h e  d e t e c t o r .  T h e  m ax im u m  o u t p u t  c u r r e n t  i s  200  mA, th e
v o l t a g e  b e in g  6V .



47

The principle of operation is  straightforward. In a heater resistor
(near the specimen) heat is produced by a current that is  proportional
to the off-balance d.c. voltage (of the proper sign), derived from the
detector. Fig. 3 shows the diagram. The signal, V , B varies between
—0.5 V and +0.5 V. The commutator, C, chooses the proper sign. The
first stage (2x BC211) serves to transform the impedance. The second
stage (2x AC 128) amplifies the signal to about 6 V. The final two
stages (2x AC128, and 2x ASZ18) amplify the current, availab le for
heating, to 200 mA, the maximum voltage s till being 6 V. If V , B > 0,
a current runs through the heater; if VAB < 0, no current p asses  the
heater.

A variable a .c . current proportional to the available d .c . current
may in some cases  be welcome for temperature regulation, because
no leads are needed in the former method. Such an a .c . current can be
easily  obtained, if the varying d.c. current is used to light an electric
bulb. The light of this bulb may very the resis tance  of a photosensit­
ive resisto r. If this resis to r is  placed in a circuit containing the heat­
ing coil and an oscilla tor, a .c . heating can be used for temperature
stab ilization . This device can be used for any isotherm al measurement
performed in a apparatus that makes use of adiabatic  demagnetization,
e.g. for susceptib ility  measurements near a critica l point below 1 K.

4 The heating circuit
Fig. 4 shows the heating circuit. The current through the heating

coil, H.C., also runs through a standard resis to r of 10.00 Ohms, which

+ 12 V ^

OSC.1
2 9 0  Hz

■—QÖ}OSC 2
3 5 0  Hz

m arker

kloek

AC —*-DC
co n v e rto r

s tan d a rd
res is to r

F i g .  4. T h e  d i a g r a m  o f  t h e  h e a t i n g  c i r c u i t  a n d  b l o c k - d i a g r a m  o f
t h e  m e a s u r i n g  s y s t e m .  H .C .  d e n o t e s  t h e  h e a t i n g  c o i l .
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is doubly wound in order to reduce the self-inductance. The a .c . volt­
age across this resis to r is  converted to a d .c . voltage by means of a
Solartron a .c .-d .c  converter (LM 1219). This d .c . voltage is  displayed
on a Solartron digital voltmeter (4 digits, type LM 1520). The primary
oscilla tor, denoted as osc. 1, operating at 290 Hz, only produces a
current through H.C., if the switch is  in position B. The relay switch,
activated by the manual sw itch, c lo ses the heating circuit of osc. 1
and s ta rts  the m echanical clock (Jaquet, type 309d) nearly sim ultane­
ously (error about 1 msec). The reading accuracy is  a hundredth of a
second. The over-all inaccuracy is about 0.02 sec, which has been
checked by means of a 100 kHz oscillator and an electronic counter.
If the variable resis to r of 15 Ohms m atches the impedance of the heat­
ing coil plus standard resisto r, and if the switch is in position A, the
current can be adjusted before the heating period is started .

The secondary oscilla to r, osc. 2, operating at 350 Hz, maintains
a constant current through H.C., which serves to compensate the heat
leak through the sw itch. If we use this procedure, the temperature range
of operation of the thermal switch is  considerably extended.

5 Errors and calibration
The main source of random errors lie s  in the inaccuracy of the

temperature determination. The noise level of the amplifier is  10 V
across an input impedance of 100 kOhms, corresponding in our coil
system to 0.2% of the signal of 1 gr. of cerium magnesium nitrate at
1 K. The noise level of the whole bridge circuit, however, is  much
larger in most ca se s . This level depends e.g . on vibrations of the
thermometer with respect to the coil, sudden temperature changes
caused by gas leak, and noise originating from fluctuations in the
mains power supply. The maximum Quantity of crystal that can be
mounted is  about 12 grams. Itmay consist of three slabs of 0.5xl.5x2.5cm3.
In the case  of a low noise level such a quantity of material gives a
temperature resolution, which can be described as fractional and
amounts to 5.10“ 4 for cerium magnesium nitrate and 5.10“ 5 for cobalt
cesium sulphate. For a cobalt cesium thermometer this corresponds
e.g. to an error of 5% in the specific heat for points taken over an
interval of 0.5.10- 3  K at 0.5 K. Fortunately, the h ighest accuracy
obtainable was sufficient to determine the character of the singular­
ities  in the specific heat of CoCs3C l5 (TN =0.527 K, see Ch. Ill), and
of CuK2C14.2H20  (T c =0.88 K, see Ch. IV). For temperatures below
0.3 K, a thermometer -with a higher temperature resolution might provide
us with a better analysis of the specific heat singularities namely
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for GdCl3.6H20  with TN =0.185 K. Outside the peak region, however,
a smaller amount of thermometer crysta l has to be used, as in this
case the heat capacity  of the thermometer becomes important. General­
ly a t temperatures below 0.1 K for cerium magnesium n itra te , and
below 0.5 K for cobalt cesium sulphate, the magnetic contribution
becomes large. At temperatures above 0.8 K the contribution of the
lattice  to the specific  heat becomes important. Therefore we have to
deduce the s ize  and type of thermometer from a preliminary experiment.

A second source of errors is the inaccuracy of the extrapolations
of the temperature curves before and after the heating, which strongly
depend on the thermal relaxation time of the specim en, and on the
heat leak. At temperatures below 0.15 K and above 0.6 K these errors
may become the most important ones. Random errors, arising from
inaccuracies of the clock and the measurement of the current, are
negligible as they amount to le ss  than 0.5%.

Finally , a system atic error may be introduced by the calibration
of the eddy current heater. As a calibration, the heat capacity  of 100 mg
of Tb metal was measured in the temperature region between 0.1 and
0.4 K, where the heat capacity  of the empty calorim eter is  sm allest.
This measurement was compared with the measurement of Van Kempen
et a l. , the accuracy of the latter being a few percent. The entropy
change per gramion calculated  from the measurements of the magnetic
specific heat of e.g . the sa lts  gadolinium sulphate octohydrate and
gadoliniumtrichloride hexahydrate (see Ch. VI) amounted to 98,5% and
103% of Rln(2s+1), respectively . The deviation of the experimental
values from the theoretical value is  compatible with the quoted accur­
acy of the calibration of the heater. A recent measurement of the
specific heat of Tb metal by Anderson e .a .1 , differs a few percent
from those reported by Van Kempen, the points a t 0.05 K lying a few
percent higher and the points above 0.15 K lying somewhat lower.
On the average, in the region between 0.1 and 0.3 K, the curve of
Van Kempen lie s  2 to 3 percent higher than that of Anderson. However
the agreement within the error of calibration of the entropy yield in
the above-mentioned sa lts  with the theoretically  expected values
indicates that the calibration was correct. Since we have used Tb
metal from the same lump as Van Kempen, the small discrepancy be­
tween the resu lts  of Van Kempen and Anderson might be attributed to
different heat capacities of the sam ples, due to differences in purity.
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Chapter III

SPECIFIC HEAT SINGULARITIES OF THE ISING
ANTIFERROMAGNETS CoCs3Cl5 AND CoCsgBrg

1 Introduction

CoCs3C l5 and CoCSgBrg are attractive for studying thermodynamic
and m agnetic1' properties for the following reasons:
1. the crystallographic structure is  known2' 31 to be relatively  simple

and shows that a ll Co ions are eguivalent. When the tetragonal
structure is  simplified in one detail concerning Cs ions, one may
view the Co ions as being arranged in a simple Bravais lattice ,
which is  a slightly elongated cube.

2. electron paramagnetic resonance data4' 5,61 show in both sa lts  that
the Co ion has, as far as its  lowest doublet is  concerned, a very
anisotropic g-value and consequently these sa lts  are probably fair
examples for the Ising model. In th is case  one has effective spin
Vi and a uniaxial g-tensor.

3. these compounds are chemically stable and single c rysta ls can be
grown relatively  easily .

When it was reported by Van S tapele^1 that these compounds obey
C urie's law at temperatures as low as a few Kelvin we in itia ted  an
investigation on the properties of these sa lts  below I K 81. In view of
the in terest in the properties of the three-dimensional Ising model91,
we studied in particular the critical behaviour of these sa lts  in the
vicinity of the transition point. Since the Ising model provides a relat­
ively large amount of numerically accurate p red ic tions101 on thermo­
dynamic quantities, like the short-range ordering entropy and energy,
it is  interesting to apply th is model to various substances. In this
chapter we will be mainly concerned with the heat capacity , energy
and entropy of CoCsgClg and CoCsgBr5. Experimental resu lts  on the
magnetic properties of these crysta ls  have been described by Mess et
a l .1 , which will be used extensively throughout this chapter.

2 Crystal structure and electron paramagnetic resonance data
The crystal structure of CoCsgCl5 has been determined by Powell

et a l .2 and in more detail by Figgis et a l .31. The dimensions of the
tetragonal unit cell are at room temperature 9.219 ±0.005 A in the a
and b directions and 14.554 ±0.007 A along the c axis; the unit cell
contains four molecules of CoCsgClg and this corresponds to a density
of 3.411 at room temperature.
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•  Cs+

F ig .  1. C r y s t a l  s t r u c tu r e  u n i t  c e l l  o f  C o C s g C l^
T h e  c h lo r in e  t e t r a h e d r a  a t  p o s i t io n  A a n d  B a r e  r o t a t e d  a ro u n d
th e  c a x i s  w i th  r e s p e c t  to  e a c h  o th e r .  P l a n e  II d i f f e r s  from  p la n e
IV b y  a  m ir ro r  r e f l e c t i o n .  T h e  p a r a l l e l e p i p e d  i n d ic a te d  by  th ic k
l i n e s  i s  th e  s im p le  C o - B r a v a i s  l a t t i c e  m e n t io n e d  in  th e  t e x t .

!4c = 7 .2 7 7  A a  = 9 .2 1 9  X ! 4 a / 2 = 6 .5 2  K

One may divide the unit ce ll into two halves (fig.1) by a plane
parallel to the ab axes (III in fig.1). The halves are equal except for
a rotation of the CoCl4 group and mirror reflection of C lC s4 groups.
Since the Cs ions will probably not participate significantly in the
exchange interaction between Co ions we will henceforth consider the
parallelepiped, indicated in fig .1 , as the simple Bravais la ttice  for
the Co ions. The positions of a ll Co ions can be obtained from trans­
lational operations of this Bravais la ttice  which has the dimensions
Z,a\/2 = 6.519 A and c /2  = 7.277 A and contains one CoCSgClj molecule.
This Bravais parallelepiped, therefore, is not very different from a
cube and for our d iscussion  we will regard the Co ion as having six
nearest Co neighbours in a simple cubic (s.c .)  environment. It may be
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noted that the immediate surroundings of the Co ion consists  of a tetra­
hedron of chlorine ions, having predominantly cubic symmetry. The
structure of the C oC s3Br5 is isomorphous to that of the chloride, while
the unit cell dimensions are a =9.619 i0 .003X  and c =15.163 ±0.003 A,
which gives %cr/2 =6.801 A and c /2  =7.582 A at room temperature and
a specific density of 4.06.

E .P .R . m easurem ents5  ̂ on both C oC s3C l5 and CoC s3Br5 were ob­
tained at 77 K and, using pulsed fields, also a t 4K®\  Temperature
variation did not yield any significant change in the resu lts  of measure­
ments on the constants in the spin-hamiltonian, which implies the
absence of a phase transition to a lower symmetry when cooling the
crysta ls. The spin-hamiltonian for the Co ion (S' =|-) is  given by the
expression:

H =D {(S^)2 -  g i g / * 1)} ♦ g^ySH.S; ♦ a| 0(H Sj; +HyS'y) ♦

AS^IZ ♦ B(S;ix -S'yIy). (1)

From the resu lts  it  can be deduced that the fourfold degeneracy of
the 4A2 ground s t a t e o f  the Co ion in a cubic field is removed by a
tetragonal distortion due to a small elongation of the chlorine tetra­
hedron along the c ax is . Further, it is found that the Sx = ± 2- doublet
is lowest, where z coincides with the crysta lline  c axis for a ll ions,
both in the chloride and in the bromide.

The experimental values for the constants of the spin-hamiltonian
are given in table I®*12'. From the values of D(for instance 2D/k =
—12.4 K in the chloride) we conclude that a t temperatures of about 1 K

TABLE I

D [cm g/ / «L

781o<

B [ l 0  4cm- 1 ]

C oCs3C15
C o C s g B r^ .

-4 .3 0  ±1%
-5 .3 4  ±2%

2.40±1%
2.42

2.30± 1%
2.32

23 .6± 0 .41Z)
32.0±0.6

10.0±0.4
21.7± 1.8

one deals practically  exclusively  with the Sx = ± |-doublet; henceforth
we will assign  an effective spin S =54, g/ / =7.29 and gj_ = 0 to this
doublet.

The fact that the ground doublet is  fairly accurately described by
S ; = ± |  wave functions (implying gj_=0) is also corroborated by ob­
servations on S'x = =— Vi transitions. Such transitions were ob­
served if the^external field made a small angle with the c axis, but
vanished for H //c .
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The occurrence of gj_=0 in combination with uniaxial symmetry for
all (equivalent) Co ions makes these salts very interesting for low
temperature investigations. Anticipating that exchange interactions
are small compared to the energy difference, A = 2D, between the two
doublets, we may consider the exchange to be confined to the z-com-
ponents of the spin. Denoting the maximum and minimum energies for a
pair of interacting spins by +J' and - J '  1 , the Hamiltonian for this
system takes the form

If the exchange interaction energy were much larger than A, we would
consider a Heisenberg hamiltonian e.g.

This gives the relation J = g-J*.

3 Experiment
The experimental arrangement is described in Chapter II, section 2.

The crystals used for the preliminary measurements were drawn from
the melt. Those used for the more precise measurements have been
obtained from an aqueous solution of CoCl2 and CoBr2 respectively,
with an excess of moles CsCl.

A single crystal of C oC s,C l5 mounted between brass plates is
liable to fracture on cooling, which deteriorates the thermal contact.
Therefore, we have preferred to measure the specific heat singularity
on a powdered sample. The s izes  of the crystals are estimated to be
of the order of 0.1 mm.

4 R esults
The specific heat, Cmaqn of purely magnetic origin, is plotted for

CoCs3C l5 in fig. 2a and for CoCs3Br5 in fig.3. It is  seen that sharp
lambda type anomalies occur at TN = 0.52 K for the chloride and at
Tn = 0.28K for the bromide. While the maxima in the two curves are
approximately equal, the forms of the curves differ appreciably. In
order to obtain Cma n and to deduce values for the entropy, S, and
energy, E, a few corrections and approximations have to be applied.

H = - 4 S  S*S? (S = l/4).
Sz i . i  1 J

i < J

( 2)

H = — i  2JS..S, for
u  1 ji .J

K J

(3)
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F i g .  2a .  H e a t  c a p a c i t y  C n  o f  C o C s ^ C l g  in  j o u l e s / m o l e K
v e r s u s  t e m p e r a t u r e  T .  m a g n
F i g .  2b. C u rv e  o f  f ig .  2 a  p l o t t e d  on  a  l i n e a r  C - s c a l e  a n d  i n c l u d ­
in g  t h e  S c h o t tk y  a n o m a l y  ( d o t t e d )  d u e  t o  d o u b l e t  2 D / k = —1 2 .4  K.
T h e  T 3 - c o n t r i b u t i o n  o f  t h e  l a t t i c e  i s  g i v e n  b y  th e  d i f f e r e n c e  o f
th e  d a s h e d  a n d  t h e  d o t t e d  c u r v e s .

a. At temperatures above 1 K, particularly for the chloride, contri­
butions to the specific  heat of the next higher doublet (at 12.4K) and
also of the la ttice  have to be subtracted. These contributions were
determined in a calorim etric experim ent131 between 1.5 K and 7 K, and
were found to amount to 5% at IK  and are insignificant for our data
below 1 K (fig.2b).

The resu lts  in the chloride at about 1 K must be considered to be
relatively im precise, due partly to inaccuracy in our measurements and
also  to the applied corrections. It is therefore appropriate to compare
these resu lts with the b /T 2 heat capacity  at temperatures between
1.3 and 4K determined by means of adiabatic suscep tib ility  measure­
ments a t high freguencies (as mentioned in ref.1. A value of b =0.163
joule K/mole is found for the chloride and we will use this value for
extrapolation of C starting at T =1.1 K. This portion of C _ „ _m a g n  m a g n
contributes only 1 Yi% to the total entropy.

b. A possib le contribution to the heat capacity may arise from
hyperfine structure (h .f.s.) interaction at low tem peratures. This con­
tribution, Ch{s/m ole, can be calculated in the magnetically ordered
sta te  according to

C h f s / R •$-i(r+i) 9A2
4k2T 2

(4)
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■moqrv

F ig .  3 . H e a t  c a p a c i t y  C ___ o f  C o C s .B r ,  in  j o u l e s / m o le  K. _ m m a g n  o ov e r s u s  t e m p e ra tu r e  I •

where A/k is 0.0034 K in the chloride. This leads to Chfs/m ole = 1.13T*2
mJ/K and may therefore be neglected except at the very lowest temper­
atures where, however, nuclear sp in-lattice  relaxation times may be­
come very long.

c. Evidence for lack of temperature equilibrium between la ttice  and
electron spin system is  found at the far end of the low temperature side
of the peak in both sa lts , particularly in the bromide. Thus the lowest
two isolated points in the curve of fig. 2a have to be considered
as relatively inaccurate. Hence we have extrapolated the curve for
the chloride downwards starting at T = 0.23K  with the aid of a mole­
cular field approximation for the specific heat. For this purpose we
find that the specific  heat at T = 0.23K  would require a molecular
field, H , at th is temperature of about 2500 Oe. On the basis  of this
value of H we calcu late  for the entropy yield below T =0.24K am
value of 0i018 R.

Using the above extrapolations we find for the total entropy yield
in the chloride AS =0.698 R, compared to R In 2 =0.693 R. A similar
procedure may be applied to the bromide. Here the T — -dependence at
the high temperature side of the peak is  much more clearly estab lish ­
ed. Further, at the low temperature side the specific heat has been
measured to low values, so that contributions from the extrapolated
portions of the curve are small. We find for AS in the bromide 0.678 R,
which is  2% le ss  than R In 2, and th is has probably to be attributed to
the mentioned lack of spin-lattice equilibrium.
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4.1 The determination of Tjj

From the calcu lations for rounding the specific  heat curve in a
model which assum es a G aussian distribution of transition points, as
given in Ch. I section 3.6.3, it follows that the maximum of a rounded
curve may only be identified with the transition point, if the curve
near Tc is  symmetric with respect to T —T .

For the bromide this condition is almost fulfilled so that we may
identify the transition point, TN, with the temperature at which the
specific heat curve a tta ins a maximum.

oo o

0.94 0.96 1.04

F i g .  4. T h e  lo g a r i t h m  o f  t h e  s p e c i f i c  h e a t # C m a g n /R #  for
C 0 C S 3C I 5 i s  p l o t t e d  a s  a  f u n c t i o n  o f  T / T n » T n  = 0 . 5 2 7 K  a c c o r d ­
in g  to  t h e  a r g u m e n t s  g i v e n  in  t h e  t e x t .  C u r v e  I r e p r e s e n t s  t h e
t h e o r e t i c a l  r e s u l t  fo r  t h e  s . c .  I s i n g  s = %  l a t t i c e  ( r e f .  2 0 ) for
T  <  Tjvj. C u r v e  II :  i d e m  fo r  T  >  ( re f .  2 1 ) .  C u r v e  II I :  t h e  t h e ­
o r e t i c a l  c u r v e  fo r  T  < T n  c a l c u l a t e d  for a  G a u s s i a n  d i s t r i b u t i o n
o f  t r a n s i t i o n  p o i n t s ,  w i th  h a l f w i d t h  F = 0 . 0 1 4 T n  ( s e e  C h .  I s e c ­
t io n  3 .6 .3 .  C u r v e  IV: i d e m  for  T  >  T n .

For the chloride the specific heat curve is strongly asymmetric
(fig.4), so that the maximum is  shifted towards a lower temperature.
The critical temperature may nevertheless be located fairly precisely
by the following considerations. As far as the ground doublet is  con­
cerned, this sa lt may be expected 'o behave according to the Ising
model (g // »  gj). If in first approximation TN is chosen as the temper­
ature a t which the specific  heat a tta ins a maximum (T X=0.523K),
an evaluation of the critical parameters (as defined in table II) indicates
that the ordering is  three-dimensional. As mentioned in Ch. I section



58

TA BLE II

Thermodynamic CoCs^Cl(. CoCs^Br,. Ising Ising Ising Ising
quantity exp exp s .c . b .c .c . s .square triang.

(s®-sc)/R 0.106 0.357 0.133 0.107 0.387 0.363

(Sc - S o )/R 0.593 0.321 0.56Ö 0.586 0.306 0.330
(S®—Sc ) /R ln 2 0.153 0.515 0.192 0.155 0.557 0.526

- V RTN 0.173 0.51 0.218 0.169 0.623 0.549

<E c “ E o ï / R T N 0.459 0.27 0.447 0.460 0.275 0.258

Etot/RTN 0.632 0.78 0.665 0.629 0.881 0.874

- V E tot 0.272 0.65 0.328 0.269 0.706 0.666

Thermodynamic quan tities (entropy S and energy E re la ted  to short-ranqe order
above th e  c r itic a l point Tjsj# and to long-range order below T ^ . The theoretical
p red ic tions have been taken from ref. ] 0 .

3.6.3, the simple cubic la ttice  is  the only lattice  for which explicit
formulae describing the critical behaviour of the specific  heat are
available. As the critica l behaviour does not depend sensitively  on
the specific  structure in a given dim ension14', a calculation of the
rounding for the s .c . la ttice  may be supposed to represent the essen tia l
features of the ordering in three-dimensional Ising s = !4 system s. By
using the formulae and the method of computation given in Ch. I sec­
tion 3.6.3, we obtain the resu lt that is  presented for T < T N by the
drawn curve III in fig. 4, and above TN by curve IV. We have used a
G aussian distribution of transition temperatures with a half-width of
0.014 Tn , giving the same maximum as the experimental curve. As one
may notice from fig. 4, the overall temperature dependence is  fairly
well described by the assumed model.

It is  clear that the maxima of the curves do not coincide with the
critical temperature, but are shifted about 0.7 to 1% towards the low-
temperature side. However, the calculated curve is slightly broader
than the experimental curve, hence TN is  not yet fixed accurately.
Therefore, in a second approximation we have determined TN more
precisely (at 0.527 ±0.001 K), by assuming that the high-temperature
side of the experimental curve coincides with the prediction for
the b .c .c . curve for T > 1.04 Tj^. The use of the b.c .c . model is  ju s ti­
fied since the values of the critica l parameters, (given in table II),
obtained with TN =0.527 K, strongly suggest that the properties of
C oC s-C lj may be described by a s ta tis tic a l model of 8 effective
nearest neighbours in three dimensions.
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4.2 The critical behaviour
The experimental points may now be represented as a function of

T /T n . In fig. 4 the logarithm of the magnetic specific  heat Cma /R
is plotted versus T /T N. The dashed curves I and II represent the
theoretical predictions for the s .c . Ising s - 1/»  model mentioned in the
preceeding section. The drawn curves III and IV represent the rounded
theoretical curves for T below and above TN, respectively . In f ig s .5
and 6 the temperature is displayed in the form 1—(T /T N)“, where
s =+1 for T < Tn , and s =—1 for T > TN. In f ig .5 w.e have plotted the
resu lts on a logarithmic sca le . The curves I to IV have already been
introduced in fig .4.

c moqn
R

TTT n A

F i g .  5. H e a t  c a p a c i t y ,  C mg g n / R ,  o f  C 0 C S 3 C I 5 p l o t t e d  o n  a
l o g a r i t h m i c  s c a l e  v s .  1—( T /T jg ) ® # w i th  s =  + l fo r  T  <  Tjvj, a n d
s  = — 1 for T  >  Tjsj. C u r v e s  I to  IV a r e  d e f i n e d  in  t h e  c a p t i o n  o f
f ig .  4. T h e  d o t t e d  l i n e  V r e p r e s e n t s  t h e  a s y m p t o t i c  b e h a v i o u r
a c c o r d i n g  to  f o r m u la  (5) fo r  T  <  Tjsj# w i th  B = 0 . 9 5 ± 0 . 0 5  a n d  CL1-
= 0 .1 9  ± 0 .0 4 .  T h e  d o t t e d  l i n e  VI r e p r e s e n t s  t h e  p o w e r - l a w  b e h a v ­
i o u r  for  T  >  T n  w i th  B =  0 . 0 7 0 ± 0 .0 5  a n d  <X= 0 . 5 0 ± 0 .0 5 .

We notice that the theoretical curves III and IV agree fairly well
with the experimental resu lts  over the whole temperature region above
and below T N. On the low-temperature side, in the limited region
10~2 < 1—T /T n < 10 — 1, a power law dependence of the form

= B ( 1 (5)m a g n  T  '  '

with B =0.95 ±0.05 and a.'= 0.19 ±0.04 describes the experimental
resu lts reasonably well. This is  shown by the dotted line V in fig .5.
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On the high-temperature side the experimental behaviour in the region
3 .10—3 < 1—T n /T  < 10~1 may be expressed by a power law (5), with
the constants B =0.070 ± 0.05, and a  =0.50 ± 0.05. This is shown by
the dotted line VI in fig. 5.

As to the values of the constants B and a. for the high-temperature
side, we mention that they are different from those published in prev­
ious analyses of the d a ta 13'* 7 :̂ B =0.042 and a  =0.75. This difference
arises mainly from the choice of TN as 0.527 K instead of T N =0.523 K
in refs. 16 and 17 (see section 4.1). A difference of minor importance
is formed by the choice of the temperature ax is: 1 — T N/T  in conform­
ity with formula (5) given in theoretical publications, whereas in refs.
16 and 17 11 — T /T N | was used.

maqn

6 8 1 0 6 8 IO'

F i g .  6. H e a t  c a p a c i t y  C mq g n / ^  o f  C 0 C S 3 C I 5 p l o t t e d  o n  a  s e m i -
l o g a r i t h m i c  s c a l e  v s .  1—( T / T n ) s , w i th  s =  + 1 fo r  T  <  Tjsj# a n d
s = —l for T  >  T n « C u r v e s  I to  IV a r e  d e f i n e d  i n  t h e  c a p t i o n  o f
f ig .  4 .  L i n e  V r e p r e s e n t s  t h e  a s y m p t o t i c  b e h a v i o u r  fo r  T  <  T n
a c c o r d i n g  to  f o r m u la  (6 ) w i t h  A = 0 . 3 5 ± 0 . 0 3  a n d  B =  0 . 6 4 ± 0 . 0 5 .

In fig.6 the resu lts  are plotted on a semilogarithmic scale . The
temperature dependence on the low temperature side, in the region
10- 2  < 1 — T /T n < 10 1, is  equally well described by a logarithmic
function. This is  shown by the relation

l l - T /V l .B .  (6)

with A =0.35 ±0.03, and B =0.64 ±0.05.
Similarly for the bromide in the region 10—2 < 1—T /T N < 10“ *,

(T < T n ), we observe a behaviour described by the logarithmic function
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F i g ,  7. H e a t  c a p a c i t y  o f  C o C s 3 B r 5  p lo t t e d  o n  d o u b le  lo g a r i th m ic
s c a l e s  ( r ig h t - h a n d  s i d e )  a n d  o n  a  s e m ilo g a r i th m ic  s c a l e  ( le f t
h a n d  s i d e ) .  A T < T « ,  O T > T j ^ .  T h e  s t r a ig h t  l i n e s  c o r re s p o n d  to

(T  >  T n ) C m ag n / R  = - 0 .5 5 1 n  | l - T / T N | - 0 . 8 3

a n d

(T  <  T N ) C m ag n / R  = - 0 . 4  4 In  11 - T / T N | + 0 .1 9 3

(6) with A = 0.44±0.02, and B = —0 .19i0 .01. In the region 10~2<
1—T N/T < 10~ * , we obtain A = 0.55±0.02, and B = — 0.8±0.1.

5 D iscussion
5.1 CoCs^CIe

5.1.1 Features of the magnetic ordering
From the data (in table II) on entropy and energy it may be seen that

the experimental resu lts  agree fairly well with the Ising s =!4 model
predictions for a body-centered-cubic structure with coordination
number z =8. However, in view  of the crysta l structure which closely
resem bles a simple cubic la ttice  (z =6), this resu lt is  not likely to
have much significance. Therefore, we adopt z = 6 and regard the
tendency of the experimental resu lts  towards a higher coordination
number (z =8) as originating from dipolar interactions and possibly
also next-nearest neighbour (n.n.n.) exchange, both of which increase
the effective value of z.

Concerning the Heisenberg model, theoretical values for the thermo­
dynamic quantities of table II are available only to a limited ex ten t5 * * * * * * * * 14\
but the entropy and energy involved in short range ordering are appreci­
ably larger and do not correspond to our experimental resu lts . The
sharp descent of the specific heat curve at the high temperature side
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of the peak is  one of the most remarkable features of the experimental
resu lt. Further, the low value of the critica l temperature both in the
chloride and in the bromide suggests that the exchange energy is
small compared to the doublet splitting A =2D. Hence at low temper­
atures the exchange is  very anisotropic and this ju stifies  the use of
the Ising model, including equation (2).

R esults on susceptib ility  measurements below 1K, described in
ref. 1, show that C oC s3C l5 becomes antiferromagnetic, which is  further
also found from measurem ents on the existence of a phase boundary
between the paramagnetic and the ordered region below T « . From z = 6
and T n =0.52 K a Curie-Weiss constant is  to be expected, for instance
on basis of a m olecular field calculation, of at lea s t a few Kelvin.
The experimental resu lt (given in ref. 1) however, is  9 =^0.24 ±0.02K .
Such a low value of 9 can be explained by assuming that 2 of the 6
nearest neighbours have an exchange coupling of the ferromagnetic
sign. In view of the crysta l symmetry, these two ions have to be found
in the direction of the c axis. The most simple model in which the
above arguments are incorporated, consists  of two- interpenetrating
square sub la ttices in the ab plane with an tiparallel nearest neighbours
and ferromagnetically coupled linear chains along the c axis.

5.1.2 Exchange
The total energy gain in the magnetic ordering process (cf. table II)

equals 0.333 R K, from which one derives with the aid of E /R  =lA z J '/k
and assuming coordination number z =6 for the number of nearest neigh­
bours in the la ttice , that the effective exchange constant J ' ff/k  =0.111K.
In order to obtain the pure exchange constant, defined in eq. (2) the
above result has to be corrected for dipolar coupling. The dipolar
interaction in the fully ordered sta te  can easily  be calculated since
gĵ  = 0. The latter circum stance means that only the z component of the
dipolar field is  relevant, which is  given by

H» = *  (1 —3 co s2 9.) (7)
d ip  i= 2  r f  1

where 9 is the angle subtended by the z axis and the line connecting
ion i with the o r ig in ( i= l) . A computer calculation for the nearest
1654 neighbours extending to a radius of 50A, resulted in a dipolar
field of 520 Oe, assuming 4 antiparallel n.n. in the ab plane and 2
parallel n.n. along the c axis. This number fluctuates less  than 10%
when the number of neighbours is reduced by decreasing the radius
of the surrounding sphere down to 10A in steps of 5 A. The arrange-
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ment of the 6 nearest neighbours mentioned above provides an ex-
ceptionnally large contribution of these neighbours to the dipolar
field, namely 870 Oe. As to the ordered s ta te , this dipolar field does
not detract much from the Ising model in our case : because of g. = 0 the
dipolar interaction has not only the same formal hamiltonian as the
exchange interaction

H  = 2  J d l p ^ ' j )  p Z p z

u  s2 S‘SJ
i> j

= iIJriJ3g/ / /iBSf SJZ( 1 - 3  cos 2 eit) (S = ‘/2),
1 > i

( 8)

but also  is mainly confined to n.n. interaction and does not obtain any
significant contributions from d istan t ions r > 10 X).

The value of J ' eff corresponds at T=0 to a molecular field of 2780 Oe.
Subtracting the dipolar .field gives an exchange field of 2260 Oe, which
corresponds to an average exchange constant of

| j ' / k |=  0.0905 or | j / k |  = 0.0201 K.

Recent resu lts  of Van Stapele, Henning, Hardeman and Bongers^®^ on
electron-param agnetic-resonance o f exchange coupled Co2+ pairs in
CsgZnClg show that the exchange interaction between n.n. in the ab plane
has the antiferromagnetic sign (J /k  = -0 .0204 K) and the exchange inter­
action between n.n. along the c axis has the ferromagnetic sign (J /k  =
=+0.0154 K). These exchange constants, averaged over 6 n.n. give
|J av/k | = 0.0187K, which is  only 7% below our value. The difference

may be due to next-nearest-neighbour-exchange(ri.n.n.), dipolar inter­
actions and, to a small extent, to the difference in la ttice  constants
between the cobalt- and zinc compounds. It seem s safe  to conclude
that n.n. in teractions predominate in the chloride and that we may
neglect n.n.n. interaction except for (n.n.n.) dipolar in teraction. The
dipolar field from all but n.n. amounts to -350  Oe at T =0 and decreases
in importance at higher tem peratures, e.g . it contributes only about 1%
to the heat capacity at high T.

5.1.3 Singularity

For the critica l behaviour of the specific heat it is  important in
our case  that theoretically the Ising model does not discrim inate be­
tween antiferromagnetic and ferromagnetic coupling. Further, in
C °C s3C l5 the magnitude of exchange and dipolar in teractions com­
bined happen to be approximately equal for n.n. in the ab plane
and for n.n. along the c axis: taking E .P .R . data in Z nC s-C l. mention­
ed in section 5.1.2, one calcu lates
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J'c = ƒc = + 0.120k K, (9)e x  d ip

and
yab = yab + j-ab = —0.122 k K. (10)

e x  d ip

where J*ox is the exchange constant in (J '/S  ) StS. and J'dip is the
coupling constant in eg. (8). Hence | j <t|= |j 'lb | and CoCSjCl^ may be
considered a fair representation of a simple cubic (i.e. coordination
number 6) Ising system in the study of the specific  heat singularity.

For temperatures below the critical temperature, the prediction of
the behaviour of C as a function of T is  imprecisely known be-

ID Q Q n  — -
cause of the slow convergence of the low-temperature specific-heat
series. The power a' in the divergence of the specific  heat (seeform ula
(5)) is  estim ated191 as a ' =0.07 Such a low power law may look
deceptively like a logarithm (see formula (6)), especially  in the temper­
ature region, where the constant term B is  not negligible with respect
to the first right-hand term of (6). This may be illustrated  by the com­
parison of the two different asymptotic relations (curve V in fig. 5,
and curve V in fig. 6) which describe the experimental behaviour
egually well in the same temperature, region. This resu lt ju stifies  the
use of the logarithmic temperature dependence201 for the calculation
of the specific  heat near TN. Outside the temperature region in which
the specific heat curve is  rounded (T /T N <0.98), the theoretical result
(curve I in figs. 4, 5 and 6) gives a good description of the experiment­
ally observed temperature dependence of the specific heat.

Above Tn the theoretical predictions for the cubic Ising s -Vi
la t t ic e s 21' 151 are very p rec ise. By using resu lts  of the form given in
Ch. I section 3.5.1, we have explicitly calculated the Cma(jn/R  vs. T
predictions for the temperature region studied (curve II in figs. 4, 5
and 6 for the s .c . la ttice). It may be noticed that agreement between
theory and experiment is very good up to the region in which the round­
ing occurs (1 < T /T N < 1.02). The tendency towards a coordination
number 8 viz. a lower specific heat above T N than for z =6, is evident
from table II and from the figs. 5 and 6.

One may observe from fig. 5 that the Ising model prediction for a
s .c . system in which a spread in transition points is assumed (irre­
spective of the physical origin, see e.g. Ch. I section 3.6) may be
described by a power law with a  as large as 0.50 for a large temper­
ature region (0.006 < 1 -  T N/T  < 0.02). Secondly we may remark that
the critica l exponent, a. =i-, involved in the singular part of the formula
describing the temperature dependence of the cubic Ising models, will
only be observed in a plot on a logarithmic scale  if 1 — TN/T  is  of the
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order of 10 . Clearly, however( th is region lies  outside the experiment­
ally accessib le  range.

We conclude that it is  experimentally found that a three dimensional
Ising system has an extremely sharp peak in the specific  heat for
T > T n and that at the low temperature side probably a logarithmic
dependence predominates. It may be of in terest to study further critical
properties in this sa lt, notably the sublattice  m agnetization.

5.1.4 Specific heat below Tjq
Baker20  ̂ has calculated  the specific heat curve for tem peratures

near T N and also appreciably lower than TN in case of a simple cubic
Ising spin system. From his curve we calcu late, taking J ' / k  =0.12 K
from the previous section, a theoretical curve, which is  shown in fig.8.

m o l e  °K

F ig .  8 . H e a t  c a p a c i t y  o f  C 0 C S 3 C I5  b e lo w  T n  p lo t t e d  v e r s u s
T / T ( j .  T h e  c i r c l e s  d e n o te  e x p e r im e n ta l  r e s u l t s .  T h e  d o t te d
c u rv e  r e p r e s e n t s  m o le c u la r  f i e ld  t h e o r y ,  th e  d ra w n  c u rv e  g iv e s
th e  r e s u l t  o f  B a k e r 's  c a l c u l a t i o n  o n  a  s im p le  c u b ic  I s in g  m o d e l.

When the experimental data are plotted on a reduced temperature scale,
T /T n , there is reasonable agreement, at lea s t when contrasted to
molecular field theory. (The use of molecular field theory for extra­
polating to T =0 in section 4 remains a good approximation, since
there the dotted curve was fitted to the experimental points at relative­
ly high T by choosing an appropriate value of the molecular field at
T =0). The experimental resu lt ind icates that the heat capacity in this
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three-dimensional Ising system goes to zero even more rapidly than
according to molecular field theory.

The choice of the exchange constant J '/k = 0 .1 2 K  implies the
position of TN in the Ising model; in a simple cubic la ttice  kTN/ z J '  =
= 0.752 is predicted, which may be compared to the experimental ratio
0,527/0.720 =0.731. In this comparison only n.n. dipolar interaction
is accounted for, in virtue of the d iscussion of section 5.1.3. Going
to the other extreme of including all dipolar coupling by taking J ^ ff =
= 0.111 kK, one would obtain kTN/z J 'ef{ =0.795. Since dipolar inter­
actions of d istan t neighbours become relatively  unimportant at high T,
it is  not unreasonable that an exchange constant intermediate between
J '/k = 0 .1 2 K  and J^ff/k  =0.111 K has to be taken in order to arrive at
the experimental TN =0.527 K with the aid of the theoretical s .c . Ising
model ratio kT N/ z J '  =0.752.

5.2 CoCsgBrj
5.2.1 Magnetic structure

From a comparison in table II of the experimental resu lts  on energy
and entropy with the Ising-model predictions for various geometrical
structures, one may note that two-dimensional la ttices give much
better agreement than three-dimensional la ttic e s . Further it is seen
that the planar triangular la ttice  (coordination number 6) predictions
fit the data somewhat better than the planar simple square lattice .
Since the crysta l structure does not permit triangular spin arrays, the

M '  1________ I------------ 1---------------- U O ------- ■■
0. 2 T/ Tc 1 2  5 l O

F ig . .  9. H e a t  c a p a c i t y  o f  C o C s 3 B r 5  ( c i r c l e s  a r e  e x p e r i m e n t a l
p o i n t s )  c o m p a r e d  to  t h e  t h e o r e t i c a l  c u r v e  o f  O n s a g e i  fo r  a  tw o -
d i m e n s i o n a l  s i m p l e  s g u a r e  I s i n g  ( a n t i )  f e r r o m a g n e t .



67

outcome of the above comparison is  suggestive of mainly two-dimen­
sional ordering in a simple square structure, however, with an additional
tendency of the Co-spins to have a somewhat higher coordination
number than z =4.

From phase boundary and susceptib ility  measurements, described
in ref. 1, one finds that C oC s3Br5 becomes antiferromagnetic and
that the Curie-Weiss constant is even much smaller than in the chloride;
further, CoC s3B r5 is found1* to show properties, which agree with
theoretical predictions for a two-dimensional Ising model. Therefore
we plotted our heat capacity resu lts on a reduced temperature scale
T /T N, and compared them with the exactly calculated  curve of O nsager22*
for a simple square (anti-)ferromagnetic Ising model, as shown in fig .9.
Although there is some disagreem ent at T > TN, one may note a striking
sim ilarity between the experimental resu lts  and O nsager's curve.

Assuming 4 antiparallel n.n. in the ah plane, one finds that the
dipolar interactions favour a ferromagnetic coupling between the ab
planes (the magnitude of the coupling between adjacent planes amount­
ing to about 90 Oe at T =0). Therefore is quite possib le that the same
magnetic structure a t T =0 occurs.

5.2.2 Exchange

From E /R  =0.220 K we find J^ jj/k  =0.0732 K if z =6, or J^ ff/k  =
= 0.110K if z =4; both solutions correspond to a molecular field of
1820 Oe at T =0. We have to subtract the dipolar field in order to find
the pure exchange field and exchange coupling constant J ' .  For the
calculation of the dipolar field we take into account:
1. that the g-value of Co2+ in the bromide is  1% larger than in the

chloride
2. that the la ttice  constants a and c are both 4.2% larger than in the

chloride
3. that a t T =0 there are 4 antiparallel n.n. in the ab plane and two

parallel n.n. along the c axis.
This y ields Hd = 460 Oe, so that after subtraction of Hdi the resi­

dual exchange field is 1360 Oe, corresponding to an exchange constant

J '/ k  = -0 .082  K (J /k  = -0 .0 1 8  K),

if the coordination number is- assumed to be four. Consequently, the
bromide is , in view of the sm allness of the ratio J '/D , perfectly aniso­
tropic in conformity with the requirement of the Ising model. Neglecting
for a while dipolar interactions and taking the parameter lAzJ'eff/ k  = E /R
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as representing the to tal exchange interaction for a comparison with
T n , we find

kT N/ z J ^ f{ = 0.640.

This ratio is  higher than predicted by the simple quadratic or trian­
gular Ising la ttices  (0.567 and 0.607 respectively), but much lower
than the predicted ratios for three-dimensional cubic la ttices. In con­
junction with the broad high temperature curve in C and the

m  Q Q n

values of Sro — Sc and E,,, —Ec =—E c, it may be concluded that it is
relatively difficult to estab lish  long-range order in this three-dimensional
(almost cubic) spin arrangement. On the other hand, assuming mainly
two-dimensional ordering to s tart with, the relatively strong dipolar
in teractions tend to promote long range order, giving higher T N than
would otherwise have been obtained for coordination number 4 or even
6 in a planar spin arrangement.

By means of electron-param agnetic-resonance experiments on ex­
change-coupled pairs of Co ions in a Co2+-doped ZnC s3Br5 c ry s ta l1 ,
a relatively  large ferromagnetic exchange coupling was deduced be­
tween a pair of n.n. ions along the c-axis, viz. J , , /k  =0.0106 K which
is equivalent to JV ,/k =0.048 K, whereas a smaller exchange coupling
was found between a n.n. pair of io n s in th e  ab plane, viz. JA  = —0.0049K
or J '/ k  =0.022 K. The Curie-Weiss constant, 6, derived from these
exchange constants has the value +0.007 K, which compares favour­
ably with the experimental value 6 = —0.01 ±0.02 K . However, the
agreement may be fortuitous as our value of J ^ x/k  is  much larger,
which suggests the presence of next-nearest-neighbour exchange.
Such an explanation would signify that the available interaction energy,
E is  shared among more than z= 4  neighbours and this in turn will
reduce the heat capacity at relatively high temperature. On the other
hand, taking z = 4  and consequently J '  as high as possib le in view
of E /R , we find a t high T and S=54,

C /R  « b /T 2 =*/4z(J'/kT)2 = 0 .024 /T 2,

or b =0.20 J K/mole, to be compared to b =0.33-J K/mole in fig .3. Due
to deviation from a 1 /T 2 dependence at T«=2TC in the Onsager curve,
the theoretical value should be increased to b =0.25 for a proper com­
parison with the experimental resu lt.

As to the caloric and m agnetic1  ̂ resu lts , the observed behaviour
closely resem bles that predicted for an isotropic two-dimensional
antiferromagnetic Ising net. This result is suggestive of a fairly strong
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coupling in ab planes and a sm aller coupling between the succesive
planes. In order to comply with the experimentally found ^  small value
of 6, one has to adopt some n.n.n. interaction.

Another interpretation of the resu lts  may be found by introducing a
model that has a fairly strong coupling of a pair of ions along the
c axis and a smaller coupling of a pair of ions in the ab plane ( | j  ., |>
> |Jj_|). This model incorporates the E .P .R . resu lts  of Henning et
al. \  It lie s  intermediate between a three dimensional Ising system
( | Jj_| * 1) and a linear Ising chain ( |jj_ |/ | J //1  =0). If the ratio of
the two interaction constants is  such that the short-range ordering
equals that found for a square Ising model, it might be supposed that
these two system s will also resem ble each other as  to other thermo­
dynamic properties, such as the singularity of the specific  heat curve
and the boundary between the antiferromagnetic and paramagnetic
p h a ses1 .̂

5.2.3 Singularity
The predominantly two-dimensional kind of the magnetic ordering

suggested by various p ieces of experimental evidence may also  have
a decisive influence on the character of the heat capacity  singularity.
We will compare the experimental resu lts , which in fig .7 are seen to
fit a logarithmic dependence of Gma on |T — TN| appreciably better
than a |T — TN |—a relation, to the exact theoretical calculation of
O nsager22'n ea r T N. Onsager gives (eq.8.1 loc.c it.) an explicit In |T - T n |
dependence of the heat capacity at T «= TN in the form of an asymptotic
formula:

C /R  « fj(T ) In |T  —Tn | + f2(T), (11)

where f j and f ,  are slowly varying compared tb T — TN (but not when
compared to In |T  — T N|). When evaluated numerically, e q .( l l )  is  found
to deviate by more than 35% a t |1 —T /T N|=0.1 from pure logarithmic
behaviour, both for T < T N and T > T N, as may a lso  be seen in f ig .10.

The exact Onsager solution, on the other hand, agrees numerically
at | l  —T /T n |= 0.1 to within 4% (fig .10) with

C/R  = -0 .4 9  In | l  — T /T n |- 0 .2 9 .  (12)

We notice that it may be more effective to put theoretical resu lts  in the
form of numerical computations versus T /T N than to rely too heavily
on asymptotic expressions when experimental data are to be compared
to theory.
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F i g .  10. O n s a g e r 's  t h e o r e t i c a l  c a l c u l a t i o n s  o n  th e  h e a t  c a p a c i ty
of a  tw o - d im e n s io n a l  s im p le  s q u a r e  I s in g  ( a n ti ) - f e r ro m a g n e t  p l o t t ­
e d  v e r s u s  th e  lo g a r i th m  o f  | l —T / T c | # T c  b e in g  th e  c r i t i c a l
te m p e ra tu r e .  T h e  u p p e r  (T  <  T  ) a n d  lo w e r  (T  >  T  ) c u rv e  r e f e r  to
a n  a s y m p to t i c  a p p ro x im a t io n  c o n ta in in g  a n  e x p l i c i t  In 11—T / T  |
te rm ; th e  c u r v e s  in  th e  m id d le  a r e  O n s a g e r 's  e x a c t  c a l c u l a t i o n s
fo r T  <  T c  ( lo w e r  m id d le )  a n d  T  >  T c  (u p p e r  m id d le )  c o m p a re d  to
a  s t r a ig h t  l in e  ( c e n t r a l )

C / R  = - 0 . 4 9  In 11 — Z| - 0 . 2 9 .
T c

As to our resu lts  on C oC s3Br5 one may note that the two coeffi­
cients A in the regions T < T N and T > T Nare —0.44 and —0.55 respect­
ively, so that the th e o re tic a l  coefficient lies between the two exper­
imental coefficients. Similarly for A, we obtain the values +0.2 for
T < T N and —0.8 for T > T N, compared to —0.29 of O nsager's solution.

Like in the energy and entropy consideration (5.2.2) one may ascribe
the difference between the experimental coefficients and O nsager's
theoretical one to deviations from two-dimensionality and coordination
number four, probably due to long range dipolar forces.

Apart from these shortcomings it may be concluded that C oC s3Br5
behaves, grosso modo, as a two-dimensional Ising antiferromagnet.
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Chapter IV

EXPERIMENTAL STUDY OF THE BODY-CENTERED-CUBIC
HEISENBERG FERROMAGNET

1 Introduction

Several years ago measurements on heat capacity and magnetic
properties of CuK2C14.2H20  and Cu(NH4)2.2H20  have been performed
by Miedema e t a l . 1*. The zero-field susceptib ility  in the c axis was
reported to reach the values N_ 1 (N “demagnetizing factor) per cm3,
from which it was concluded that the crysta ls are ferromagnetic below
the critica l temperature.

The heat capacity  curves of the two sa lts  were shown te be very
similar and values were reported for — Sc, the part of the entropy
removed above T c, and for (Effl — E c)/R T c, where E is  the m agnetic
energy. Using CuRb2C l4.2H20  and Cu(NH4)2Br4.2H20  the investig­
ations on th is group of ferromagnetic sa lts  were continued for several
reasons. If more heat capacity  curves are available which can be
brought to coincidence using a reduced temperature scale , the values
of S ^ - S  a n d E ^ - E  will have more weight as  representing the pro­
perties o f  the body-centered-cubic (b .c.c .) Heisenberg ferromagnet. All
kinds of deviations from the ideal model such as a small anisotropy,
the difference between the tetragonal crystal structure and the b.c .c .
structure and the presence of next nearest magnetic neighbours inter­
actions may be expected to be different for different sa lts . Hence, if
the specific  heat curves would coincide, one might conclude that these
deviations are not of practical importance.

Also some information can be obtained as to the dependence of the
magnetic super-exchange on the copper-copper d istance and the type
of intervening atoms.

Special attention will be paid to the temperature dependence in the
immediate neighbourhood of Tc. The data in ref. 1 were not sufficiently
detailed to perform an analysis and therefore new experiments were
started with a different apparatus.

A detailed  comparison as to the prediction of the spin wave theory will
be made for Cu(NH4)2Br4.2H20 , chosen partly because of i ts  relative­
ly high transition temperature and also because the hyperfine structure
contribution to the heat capacity is  smaller than in the other sa lts .
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2 Crystal structure

The sa lts  of the general formula Cu(M+)2X4.2H20 , where M+ stands
for K +,NH4 or R b + and X is C l~  or Br~, crysta llize  in the tetragonal

r t \  “

system . There are two molecules in the unit cell with the copper

7.98 X

3.16 &

2.49

9  C u J+ Q  H20  0  Br ”

F i g .  1. T h e  u n i t - c e l l  o f  C u (N H 4 >2 B r 4 . 2 H 2 O . T h e  e  a x i s  i s
a b o u t  5% lo n g e r  th a n  th e  a  a x i s .

ions at the equivalent positions (0 ,0 ,0 ,)  and (54, J4,54). Ech copper ion
is surrounded by an approximate octahedron of four chlorine ions and
two water molecules (see figure 1 and table I for the M+ and H20
positions). The line connecting the water m olecules is parallel to the
crystallographic c axis; the chlorine ions lie in the aa plane in a
rhombohedron, the longest diagonal of which points to the [ l lO]
direction for one of the copper ions and to the [ l lO]  direction for the
other.

The cell dimensions are somewhat different for the four sa lts , as
may be seen in table I. One may notice that the structure is only
slightly different from body-centered-cubic. Each copper ion has 8
nearest neighbours and 6 next-nearest-neighbours which are about 15
percent further away. For nearest magnetic ions the super-exchange
interaction may be transferred by means of a chlorine ion and a water
molecule.

For CuK2C14.2H20  it has been found that the g-values of the copper
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T A B L E  I

T he u n it c e l l  o f four co p p er s a l t s ,  w ith  th e  g en era l form ula C uM g+ X ^^H gO . T h e
p a ram ete rs  u , v an d  w a re  ap p ro x im ate ly  e q u a l to  0 .22 , 0 ,22  and  0 .25 , re sp e c t iv e ly

s a l t CuK 2C14.2 H 20 Cu(NH4)2C14.2H 20 C uR b2C l4.2 H 20 C u(N H 4)2B r4.2H 20

a o  (X) 7.45 7.58 7.81 7.98

c o (A) 7.88 7.96 8 .00  „ 8.41

p o s it io n s  M +

p o s i t io n s  HgO

p o s it io n s  Xj

p o s i t io n s  X jj

(0, 54, '/*); (54. 0, 54); (0,54, 54); (54, 0, 54)
±(0, 0, w);±(54 , 54, w+54)
±(u, u, 0); (u+54, 54 —u, 54)
±(v, v, 54); ±(v+14, 54 —v, 0)

ions have axial symmetry around the longest diagonal in the chlorine
rhomhedron (g/ / =2.38, gjL=2.06), so that the g-value along the c axis
is  2.06 and the g-value in the aa plane is 2.22. This anisotropy has no
direct consequence for the exchange interaction, since it is  nearly
completely due to the orbital moments.

For the other three sa lts  no detailed information is  available on the
magnetic axes but large differences are unlikely.

3 Experimental method
For deta ils  concerning the apparatus and methods used we refer to

chapter II. The specific heat singularity of CuK2C14.2H20  was studied
by means of a cobalt-cesium -tutton-salt thermometer. For the other
measurements cerium-magnesium-nitrate has been used as magnetic
thermometer.

4 Heat capacity  resu lts
The heat capacity of the 4 sa lts  is shown in figure 2, the temper­

atures being plotted in units Tc . The data on Cu(NH4)2C14.2H20  and
CuK2C14.2H20 , already reported in ref.1, were obtained for single
crysta ls of about 0.5 gram, the data on CuRb2C l4.2H20  and

-Cu(NH4)2Br4.2H20  were obtained on powdered samples (grain size «
« o.l mm). We a lso  investigated the heat capacity of a powdered sample
of Cu(NH4)2C14.2D 20 . There was no difference with the hydrated salt,
i.e . the transition temperature was the same within the measuring
accuracy of a few m illidegrees. _ 2

On the low temperature side a small h .f.s . term (« T ) has been
subtracted, which becomes only important near T =0.1 Tc; even at
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o t/tc aa

F ig .  2. H e a t  c a p a c i t i e s  o f  fo u r i s o m o rp h o u s  c o p p e r  s a l t s  p lo t t e d
a s  f u n c t io n s  o f  T / T c .

O  C uK 2 C14 .2 H 20 T  •c 0 .8 8  K
A  C u(N H 4 ) 2 C14.2 H 20 ; T  =c 0 .7 0  K

□  C u R b 2C l 4 .2 H 20 ; T  =c 1 .0 2  K

V  C u (N H 4) 2 B r 4 .2 H 20 ; T  =c 1 .7 4  K

T » 2T the contribution of the lattice specific heat is  negligibly
C

small.
It may be seen that one single curve may represent the results for

the 4 salts; the values tabulated (table II) are read from this curve.
The entropy corresponding to the curve of figure 2 equals exactly
R In 2, the energy is  0.725 RTC per mole (E /T c =6.03 J/mole K).

T A B L E  II

S p ec ific  h e a t  o f  four fe rro m ag n etic  co p p er s a l t s .  At tem p e ra tu res  ab o v e
1.5 T  th e  sp e c if ic  h e a t  i s  d e sc r ib e d  by ( T /T c )^ = 0 .3 4 R

T /T cmag T /T cmag T /T cmag
c (J /m o le ) (J./m ole) (J /m o le )

0 .05 0.024 0.93 8.00 1.02 6 .10
0.10 0.071 0.95 8.56 1.03 5.40
0.15 0.141 0.97 9 .52 1.05 4.60
0.20 0.240 0.98 10.15 1.07 4.10
0.30 0.54 0.985 10.75 1.10 •3.40
0.40 1.00 0.990 11.50 1.15 2.92
0.50 1.62 0 .995 12.50 1.20 2.50
0.60 2.51 0 .998 14.15 1.30 2.00
0.70 3.72 1.002 10.00 1.50 1.35
0.80 5.20 1.005 8.40 1.90 0.77
0.85 6.08 1.010 7.20
0.90 7.40 1.015 6.55
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4.1 The singularity in CUK2CI4.2H2O
As the specific  heat curve is not rounded for IT—T c |> 10“ 3T C, we

may identify the critical temperature with the temperature at which the
maximum in the specific heat occurs. A plot of Cmag versus log | l - T / T c |
is shown in fig .3. A good fit to the data is obtained by two parallel

CuKg CI4 . 2 HaO

o T< Te
A T> Te

F ig . 3. H ea t c a p a c i ty  of C u K g C l^ ^ H g O  b e tw een  0 .9  T c  and
1.1 T  , p lo t te d  on a  se m ilo g a rith m ic  s c a l e .  T h e  l in e s  a re  re­
p re s e n te d  by th e  form ula Cm / R = —A In 11—T / T c | + B .

lines, which are represented by

c /R  = -A  In | l —T /T  J ♦ B, 0)m a g  c

with A =0.203 and B =0.43 for T < Tc and with A =0.203 and B = -0 .05
for T > T  . The formula describes our data for 10“ 3 v |(T —T c) /T c |<
< 10“ l .

In order to see whether the logarithmic formula (1) gives abetter
fit to the experimental data than a formula of the form

C = B ll — T /T  |“ a . (2)m ag  • c l

we plotted both Cma and | l - T / T c |on  a logarithmic scale  in figure 4.
The data can be described by formula (2) in a small region viz. 10“  <
< | l - T / T  |< 1 0 “ 2, whereas formula (1) represents the data over two
decades. CThe lines in fig .4 correspond to a  = 0.2 for T > T C and to
a=0.1 for T < T c.
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m olt °K

A T < T  , O T > Tc  * e
F ig . 4. H ea t c a p a c i ty  of C u K g C l.^ H -O  b e tw e e n  0 .9  T c  an d
1.1 T  . B o th  T —T  l /T  an d  C a re  p lo tte d  on a  lo g a r ith m icc 1 c  I c  m ag
s c a le .  T h e  s t r a ig h t  l i n e s  c o rre sp o n d  to  a  fo rm ula  of th e  form
C =B  | l  - T / T  | “ a.m ag I cl

4.2 The exchange constant
One of the resu lts , which can be obtained from the data, is the

magnitude of the exchange constant J compared to the critica l temper­
ature T . Assuming that the magnetic interaction occurs only among
nearest magnetic neighbours the J /k T c ratio can be obtained from 4
different experimental quantities:
a) 6, the Curie-Weiss constant, which is found at relatively  high temper­

atures,
b) the constant C T 2, which describes the specific  heat at high# m ag

temperatures.
c) the energy gained by the magnetic ordering,
d) the experimental value of C ^ g T - 3 ^  which describes Cmaq versus

T in the very low temperature region (spin waves, Bloch-term).
The following formulae are used:

6 -  2zS(S + l)J/3k (3)

E /R  -  zS2 | Jl/k (4)

C m a , T 2/ R * 2zS2(S ♦ l)2 J2/3k2 (5)

Bo -  Cmag(T/Tc)“ T = 5.68 x 10“ 2(J/kTcr 4 .  (6)
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Data on 8 and C T 2/R  ( T » T  ) are only available for CuK„Cl..
id a  Q c  2 4

2H20  and Cu(NH )2C14.2H20 . Averaging the resu lts  we get J /k T c =
= 0.340 (from 8 /TC1 and J /k T c =0.334 (from Cmag(T /T c)2 ). Of the foCur
quantities, the to tal energy is  obtained with the highest accuracy. The
result quoted in equation (4): E /T  =6.03 J/m ole K corresponds to
J /k T c =0.364. The value of the coefficient of the Bloch T 3//2 term, as
obtained in the next section, corresponds to J /k T  =0.368. This value
is somewhat higher than that derived in ref.1 from the heat capacities
of CuK 2C14.2H20  and Cu(NH4)2C14.2H20  in the spin wave region.
The difference is due to the fact that in ref.1 the exchange constant
was obtained by fitting the Dyson series  up to the T 4 term to the ex­
perimental curve. This was done in the temperature region where the
Dyson series  gives somewhat too small values, so that a too low value
for J was obtained. One may say that the value of J /k T c, derivèd from
four experimental quantities agree rather well to J /k T c =0.35 ±0.015.

Recently, by analysis of the high-temperature se ries  for the Heisen­
berg s = 14 model, Baker et a l .3  ̂ have derived the critica l parameter
J /k T  for the cubic la ttices. The resu lts are 0.5962, 0.3973, and
0.2492 for the s .c .,  b .c .c ., and f.c.c . la ttices  respectively . As one
may notice, our value is  c lose  to the theoretical value for the b.c .c .
la ttice .

4.3 Com parison w ith spinw ave theory
The data obtained on Cu(NH4)2Br4-2H20  are especially  useful for

comparison with spin wave theory, due to the high value of Tc and
the rather low h .f .s . specific  heat. The magnetic and nuclear contri­
butions to the specific  heat are approximately equal at T = 0 .0 3 T c.

For an ideal ferromagnet (identical spins, isotropic Heisenberg
exchange in teractions among nearest neighbours only) Dyson4 calcu­
lated that the heat capacity  in the spin wave temperature region can
be described by:

C /R  = b (k T /J )3' 2 + b . f tT / J ) 3'2 + b2(k T /J )7/z + b ,(k T /J )4 + ...(7)m a g  o '  * * 0

The T 3̂ 2 term is  the original Bloch resu lt and the terms proportional
to T 5̂  and T 7//2 are due to the d iscre teness of the la ttice . The first
term arising from interactions is proportional to T .

For the b .c .c . la ttice  with spin Vi the Dyson prediction is:

b = 5.68 x 10 2
O

b, = 1.56 x 1 0 " 2

b 2 =6.45 x 10“ 3
b 3 = 1.85 x 10~3
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One may try to determine the first coefficient in the Dyson series
by confining the comparison with experiment to the lowest temperatures.
This is shown in figure 5, where the magnetic specific heat is  multi­
plied by (T/T )—3'*2. The T3̂ 2 term is found by extrapolating the ex-

C  c / n
perimental curve to T =0; the term is found from the derivative at
T = 0.

m ole °K

O T /T c 0 .2

F ig . 5. T h e  s p e c i f i c  h e a t  o f  Cu(NH  . ) 9 B r - .2 H 00  in  the sp in  w a v e ̂ z  4 z _2 /2
tem p erature r e g io n . T h e  s p e c i f i c  h e a t  i s  p lo t te d  a s  C ( T / T  )
s o  that th e  v a lu e  at T / T c = 0  g iv e s  th e  c o e f f i c ie n t  o f  th e  f ir s t
term o f  th e  D y so n  s e r ie s ;  th e  ta n g en t a t T = 0  g iv e s  th e  c o e f f i c ie n t
o f  th e  s e c o n d ,  T ^  term . T h e  h y p er fin e  stru c tu re  c o n tr ib u tio n

_o  ,
(oe T ) h a s  b e e n  su b tr a c te d .

The results are B* = 0.250, Bj=0.21, defining Bq and Bj by:

C m a g / R  “ B J T /T J * '2 + B 1(T /T<=)5''2 , (8)

while the asterisk denotes the experimental values. The relation be­
tween Bo,Bj and bQ(bj are bQ/B o =(J/kTc)^ 2 and b j/B j =(J/kTc) ^ .
Using J/kTc = 0.35 we obtain b* = 0.052 and bj=0.015, which may be
compared with Dyson's (Bloch) values given above.

An alternative method of determining the first two coefficients in
the Dyson series consists of fitting the polynomial (8) to the exper­
imental points in the temperature region below T/T =0.2, using a
least squares method. This gives

C m a g / R  = (0-242 ± 0.005)(T/TC)3/2 + (0.32 ± 0.02)(T/TC)V2.

If the least squares fit is restricted to the more limited temperature
region T/T <0.1 (i.e. 11 experimental points) one finds for
Cu(NH4) 2Br4.2H20:

C / F t  = 0.247(T/T )V2 + 0.30(T/T )v2.m a g  c  ' c
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Comparing the resu lts  of the two procedures (graphical and least
squares fitting) one may see that the accuracy of b j is not better than
25 percent.

For the evaluation of the higher order terms in the Dyson series,
o / o  . 5/9

only data obtained at T > 0 .2 T C can be used since the T 1* and T
terms together account for more than 90 percent of the heat capacity
at lower tem peratures. As a consequence it is  not possib le to disting­
uish between a T 7̂  and a T 4 term. Furthermore, as stated by McCollum
and C allaw ay5) for EuS, if the temperature is  high enough for the T 7
and higher order terms to be important, it is likely that the Dyson
series is  no longer applicable.

The comparison between the experimental data and linear spin wave
theory may be pursued to higher temperatures if the series  expansion
in odd-halve powers is replaced by an integral. This requires the
summation over the Brillouin zone of:

„ W . / k T  W . / k T  ,
C /R  = S (W ./k T )2e k (e k - l ) " 2 , (9)m a g  k

where

Wk = 4 JS [{ 1  -  cos Vkr(kx + k y ♦ kz)} + { 1 - c o s  54a(kx - k y + k2)>

+ { 1 - c o s  l/4a(kx + ky - k 2)} ♦ { 1 - c o s  )4a(-kx + k y + k z)>] , (10)

and a is  the la ttice  constant.
The influence of spin wave in teractions may be taken into account

by a procedure described by Bloch6) and applied succesfully  to MnF2
and EuS, and which is  called renormalization of the spin wave spec­
trum. The renormalization consists  of multiplying Wk with a temper­
ature dependent factor:

Wk(T) = { 1 —A(T)}Wk(T = 0), (ID
where

A(T)= 1 - ----- — 2 2 W k2zJNS2 k
A /kT -  l ) - l . ( 12)

This correction amounts to 2% at T /T c = 0.35, whereas it  would have
been 1.5% according to the T 4 term in the Dyson series; a t T /T c = 0.6
the correction in Cma„ is about 13%.

The resu lts  are shown in figure 6. The series expansion deviates
from the integral for T /T c >0.25 , the difference being about 20percent
at T /T  =0.5. It may be seen that the agreement between integral and

C
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F ig . 6 . C o m p ariso n  w ith  sp in  w ave  th e o ry . T h e  e x p e r im e n ta l
p o in ts  a re  a v e ra g e s  for th e  fou r c o p p e r s a l t s  ( ta b le  I).

D y so n  s e r i e s ,  formulai 7 l c a lc u la te d  w lth  J / k T  = 0 .3 5
In te g ra li  fo rm u lae  9—12 J c

experiment is  very good for temperatures up to T /T c = 0.5 but one must
keep in mind that the choice of J /k T c is  rather important. We used
the average value J /k T c =0.35, as obtained in the foregoing section.
At higher temperatures the experimental curve rises  much faster than
the calculated one; th is is not surprising in view of the fact that the
interaction between the spin waves becomes increasingly more import­
ant near the critica l temperature.

It is  concluded that
1) spin wave theory describes the experimental data quite well up to

T =0.5 T c ,
2) the integral approaches the experimental data more c losely  than

does the series  expansion .

5 D iscussion
We conclude that the 4 copper sa lts , which were investigated are to a

good approximation representative for the b .c .c . Heisenberg ferro-
magnet with mainly nearest neighbour in teractions from the following:
(1) the thermal properties of the four sa lts  are identical, apart from a

constant factor in the temperature;
(2) the susceptib ility  in the ordered region shows only slight anisotropy.
(3) the values of J , derived from different experimental resu lts  and

using formulae which contain J and z in a different way, agree;
(4) the low temperature heat capacity agrees with spin wave theory.

It may be èxpected that the anisotropy energy and sligh t deviations
from the b .c .c . structure will not be equal for the four sa lts  investi­
gated. From the coincidence of the specific heat curves for these

m t
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sa lts  we may conclude that these differences are not of practical im­
portance.

As to the influence of next-nearest-neighbour interaction (n.n.n.)
on the c ritica l param eters, several theoretical resu lts  have been derived
recen tly7' 8' 9' 10 '.  In order to obtain the value of the exchange coupling
between nearest-neighbours (n.n.), J j, and the ratio between the n.n.n.
and n.n. exchange param eters, J 2/ J j ,  we use the formulas (3) to (5)
and the expressions

J i  9 / T *

kT c 4 + 3J 2/ J  j '

J l _ 0.241 E
kT c 4 + 3J 2/ J  j *

_ 0.1605 Cmng(T /T c )2
kT c 4 + 3 (J2/ J  j)2

taken from ref.9. These formulae are derived for the b .c .c . structure.
The quantities E and Cmag(T /T c)2 are given in Joules per mole. By
substituting the experimental values, # / T c =1.36, E =6.03 J /m o le  and
C (T /T  )2= 2.83 J/m ole K into the formulae, we obtain J , / J  , =0.25 ±0.1,m a g  c  * *
and J 1/k T c = 0.31 ±0.02. The resu lt J 2/ J  j=0.25±0.1 is supported by
comparing the observed and predicted values of the magnetic energy
yield, (E00- E c)/R T C, and entropy change, (S00- S c)/R , in the short-
range ordering process (see table III).

From these resu lts  it may be concluded that ferromagnetic next-
nearest-neighbour interactions are present. Their influence on the
specific heat as predicted by spin-wave theory is  not large as has

TABLE III

Experim ental and theore tica l va lues for the c ritic a l param eters (E ^  -
and (Sgj — S )/R , for the b .c .c . la t tic e . J g / J j  denotes the ratio  of the
n.n. exchange coupling.

e c) / r t c
n .n .n . to

T h is  experim ent T heo ry ^

J 2/ J 1
0 0:2 0.3 0.4

< E co -E c )/R T c 0.392 0.460 0.419 0.404 0.393

(So, - S c )/R 0.218 0.235 0.229 0.225 0.223

(13)

(14)

(15)
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been shown by Wood and Dalton9*. This would not be surprising for
the following reason. If e.g . in formula (14) E is fixed and J 2/ J  j ^ 0»
J will be reduced, which leads to a lower specific  heat, whereas the
n.n.n. interaction of positive sign ( J g / J ^ O )  increases the specific
heat.

As to the theoretical prediction for the specific  heat singularity
of the s = '/£ Heisenberg model, Baker et a l .3* have recently derived
some tentative resu lts  for the temperature region above Te - For the
b .c .c . la ttice  the relation

C /R  = (T /T ) 2 [0.971—0.668(1—T _/T )°*20] (16)mag c c

was deduced in the range 0 .7 5 < T fi/T  <0.95. If the range of validity
of this relation may be extended up to T e, viz. 0.95 < Tc/T  < 1, the
singularity has the form of a cusp with a top value of 0.97, and an
infinite slope near T . This result, however, might be modified when
further computations near T c become available.

The highest observed value for Cmaq/R  i s *̂5« which is obtained
at 1 -T /T  =10“ 3, whereas the theoretical value at T = 1 .001T C is
only 0 .83 .°At T = 1 .01T C the experimental value is  0.88, while the
theoretical one is  0.71.° At T = 1 .04T C the values are equal, but at
s till higher temperatures the experimental values lie  about 10% lower
than the theoretical ones. The latter resu lt is not surprising, since
the theoretical value for the entropy yield above T c , (Sg,—Sc)/R , also
lies about 10% higher than the observed value. However, formula (16)
does not give a proper description of the observed behaviour in the
temperature range 0.95 < T C/T  < 1.

By comparing the values of T c of the four copper salts, some inform-
otion can be obtained on the mechanism of superexchange• There
seems to be no simple relation to atomic d istance, since CuRb2C l4.
.2H„0 has a higher Curie temperature than CuK2C14.2H20, while the
axes are 5 percent longer. Replacing C l“  by Br“  increases the ex­
change interaction, again in sp ite  of a larger copper-copper d istance.

Looking to the crysta l structure, both a chlorine ion and a water
molecule seem to be e ssen tia l for transferring the exchange interaction.
The importance of the H 20  molecule can be derived from the fact that
replacement of H20  by NH^ in Cu(NH4)2C l4.2NHg reduces the order­
ing temperature by approximately a factor 10, while the copper-copper
distance hardly changes. Only the oxygen of the H20  is found to be
important, because the deuterated copper ammonium chloride has the
same transition temperature as the normal sa lt.
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Chapter V

THE SPONTANEOUS MAGNETIZATION OF THE B.C.C.
HEISENBERG FERROMAGNET Cu(NH4)2Br.4.2H20 .

1 Introduction
The discovery of a number of ferromagnetic insulators in recent

years viz. CrBr3 (s = 5/2, Tsubokawara1 >), EuO (s = 7 /2 , Matthias e t a l .2)),
EuS (Moruzzi and Teaney35), EuBr3 (Gossard e t a l .4 ), G dC lg(s-7 /2 ,
Wolf et a l .5), CuK2C14.2H20 and Cu(NH4)2Br4.2H20  (s=!4, see ch.IV
and refs. 6 and 7), has provided an opportunity for comparing exper­
imental resu lts  with s ta tis tic a l theories assuming an interaction be­
tween localized spins, such as the Heisenberg model.

Confining the d iscussion  to temperatures below the critica l point,
the majority of the experimental resu lts  has been interpreted on the
basis of the spin-wave theory, which applies in general to the lower
values of T /T  . This has been done for example by Me Collum and
C allaw ay*\ Gossard et al.*  # Low^*, Miedema et al. # , Wood and
D alton10) and L o ly115. With the aid of a c luster theory (K asteleijn
and Van Kranendonk125 and Green's functions techniques (Callen and
C allen13), Cooke and G ersch14), Liu and Siano15) theoretical resu lts
up to T = T have been obtained and compared with experimental evid­
ence (Callen and C allen165, Heller and Benedek1 5, E ibschütz e ta l .

S tatistical theories can best be tested for spin Vi, since the differ­
ence in theoretical predictions is  most pronounced for the low est value.
Therefore, the above mentioned copper sa lts  are favourable for com­
paring theories with the experiment. Previous experiments on these
s a lts 6,7) have shown that a) the interactions between the ions are
nearly isotropic, b) the deviation from the actual b .c .c . structure is
small and of practically  no importance for the magnetic properties,
and c) the second-neighbour interaction is small and positive for the
specially investiga ted105 potassium and ammoniumchlorides. Similarly,
in section 6, a small second-neighbour interaction of positive sign is
deduced for the sa lt Cu(NH4)2Br4.2H20 , which influences the theoretical
result obtained for nearest-neighbour interaction to a small degree
only. As T for this sa lt is  1.74 K, a temperature stab ility  of IQ K
can easily  be achieved, if an ordinary 4He bath is  used. For these
reasons we have preferred to perform the m agnetization measurements
on this sa lt. f

It will be shown that the experimental resu lt agrees with the Greenes
functions calculation in second order, as given by Cooke and Gersch
over the whole temperature region (0.05 < T /T c <0.99) studied.
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2 Experimental method
The measurement of the magnetization consists  of measuring the

flux change in a coil system , when varying an external field. The
magnetization can be measured accurately, as  has been shown by
Argyle and P ugh19\  The difference between their method and ours is ,
that in the former the temperature is changed at constant field, while
in our method the field is varied at constant temperature. The accuracy
of the measurement is mainly determined by the stab ility  of the e lec­
tronic integrator. Since no detailed investigation near zero temper­
ature was aimed at, we contented ourselves with an accuracy of a
few tenths of a percent.

Fig. l a  shows the apparatus used for temperatures between 0.101
and 1.05 K, to be called  se ries  a. The measurements are performed in
high vacuum, in a slightly modified apparatus for adiabatic  demag­
netization experim ents, as described by Mess et a l2 . The sample
consisted  of two c ry sta ls , forming an approximate ellipsoid  with axes
of 11.2, 7.9 and 7.9 mm length. The longest axis of each crystal lies
in the aa plane, this being the plane of h ighest g-value. The pick-up
coil is made up of two sections wound in opposite directions, each
coil having 5160 turns of 0.07 mm Cu wire. The field is generated by
a Nb coil, which is p laces in the 4He bath. The field is homogeneous
within 0.5% over a length of 3 cm along the axis of the coil. The temper­
ature is measured by a Speer resisto r of 220 Ohms, lA Watt (see ref.
21), which has been calibrated versus the susceptib ility  reading of a
cerium-magnesium-nitrate crystal. The resis to r is in good thermal
contact with the rod. The resis tance  is measured by a bridge, which
is operated at 220 Hz. The off-balance voltage of the lock-in amplifier
was recorded. This voltage, which is  proportional to the difference
between the temperature of the bath and that corresponding to the
setting  of the bridge, is converted to a current through the heater
resistance . This variable heat input serves to stab ilize  the temper­
ature. The heater in case  a consists  of a manganin wire of about
1800 Ohms. The heat sink is formed by a Cr-alum cooling sa lt (see
e.g. ref. 21). A superconducting coil operates a lead heat-sw itch into
a thermally conducting sta te  at temperatures below about 0.3 K and
into a superconducting s ta te  a t higher tem peratures.

In fig. 2b the construction, used for measurements in the temper­
ature region above 0.95 to 3.40 K is shown. The sample, coil system,
and field coil are the same as those used below 1 K. The temperature
is measured by calibrating an enamelled Allen and Bradley resistor
of 0.1 Watt, nominally 32 Ohms, versus the vapour pressure of the He
bath. At T = 1.75K a change in resis tance  of 0.01 Ohm could be detected
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to  high vacuum pump

........C +

..........copper rod
........outer tube

inner tube

Heater

Pb heat switch

to cooling salt

field
coil

o b

F i g .  1. a A p p a r a tu s  fo r th e  m e a s u re m e n t  o f  m a g n e t iz a t i o n ,  u s e d
fo r t e m p e r a tu r e s  b e tw e e n  0 .1 0  a n d  1 .0 5  K .

b A p p a r a tu s  in  u s e  fo r te m p e r a tu r e s  a b o v e  0 .9 5  K .
S : s a m p le .
T h  : th e rm o m e te r .
H : h e a t e r  r e s i s t o r  fo r s t a b i l i z a t i o n  o f  th e  te m p e ra tu r e .
Su : g l a s s  tu b e  s u p p o r t .
C . : s e a r c h  c o i l .
C _  : c o m p e n s a t in g  c o i l ,  c o n s i s t i n g  o f a  n u m b e r  o f  tu r n s

e q u a l  to  t h a t  o f  C +, b u t  w o u n d  in  th e  r e v e r s e  d i r e c ­
t io n .

T h e  d im e n s io n s  a r e  o n  s c a l e .
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(the resis tance  at 1.75K being 2600 Ohm), which corresponds to a
temperature change of 2.10“ °K .

The stab ilization  in case  a is an order of magnitude lower than in
case b because firstly , the thermal contact between the sample and
the rod is  inferior to that between the sample and the bath, secondly,
the heat capacity of the rod is far less  than that of the bath, and
thirdly, the Speer resisto r is  not nearly as sensitive  as  the Allen and
Bradley, resis to r in the temperature range used. N evertheless, the
temperature stab ility  is very good (see fig. 3  and fig. 5a).

A block-diagram of the experimental set-up is shown in fig. 2. The
magnetization is strictly  proportional to the integrated current induced
in the sample co ils by changing the field. The integrator has a relax­
ation time of about 10 d ay s2 , so that a precise reading can easily
be obtained. A more serious source of error is the fact that the inte­
grator senses d irect current, so a slow drift of the indicated voltage

I TIME

i n tagrator

bridge

stab ilizer

lock-in
am plifier

therm om eter

hea te r

TEMPERATURE
^ -------- ► T I M E

s ta b i lis e d  current
supply

MAGNETIZATION

d ig ita l
voltm eter

F I E L D + - + T \  ME

recorder

F ig .  2 . T h e  b lo c k  d ia g ra m  o f  th e  e x p e r im e n ta l  s e t - u p .  T h e  q u a n ­
t i t i e s  m e a s u r e d  a r e  p r in te d  in  c a p i t a l s .

arising from the temperature variations in the wires cannot be elimi­
nated during the time needed for completion of a se t of measurements.
Assuming the drift to be linear, which was correct in most ca ses , one
can eliminate this effect, if the field respectively magnetization versus
time relation is recorded. This is easily  achieved, if one uses a sol­
enoid and records the current.

The measuring procedure is as follows: the temperature is chosen
and stab ilized  in a few minutes; the drift of the integrator is minimized;
the field is quickly turned on to the maximum values and to zero again
a few times to check for remanence effects (within 0.2% of the total
magnetization no remanence could be detected a t any temperature);
starting from zero field a small field was turned on, subsequently the
voltage of the integrator was read; and so forth until in about 20 steps
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the highest field was reached; then the field was decreased in the
same way.

The demagnetizing factor was determined by modelling a piece of
Armco iron into the shape of the sample and measuring the magnet­
ization as a function of the field. The slope gives the to tal demagnet­
izing factor.

3 The magnetization data
The measurements were made in three se ts , the first of which in

apparatus a, the other ones in b. The first covers the temperatures
between 0.101 and 1.04 K in 14 steps with two additional isotherms
at T = 1.22 and 1.27 K. The second covers the range between 0.992 and
1.802 K in 34 steps, while the third covers the interval between 1.759
and 3.4 K in 27 step s. This la s t se t contains one isotherm at 1.050 K.
The field of the Nb-wound superconducting co il was calibrated  by
comparing the las t mentioned isotherm at 1.050 K with one measured
in the known homogeneous field of a large copper coil placed around
the cryostat. The maximum applied field during the experiment was
1000 Oe.

As to the accuracy of the temperature determination we may estim ate
the total temperature change during the measurement of one isotherm
to be of the order of 0.1 millidegree near T . The error in the ca li­
bration is supposed to be a few m illidegrees a t T c. B esides, the error
in the determination of T c on the absolute sca le  may be about one
centigrade, due to uncertain ties in some system atic corrections.

The m agnetization is proportional to the measured voltage of the
integrator read on a digital voltmeter. To obtain the real m agnetization
two system atical errors have to be eliminated viz. a) the drift, d is­
cussed in section 2, and b) the induction proportional to the field,
arising from unbalanced co ils C + and C _, or arising from inhomogeneity
of the applied field. The correction a) amounts to 1% of the saturation
magnetization at zero temperature, while the correction b) was less
than 5% of M(O) at 1000 Oe. A more serious consequence of the small
inhomogeneity of the field consists of rounding the sharply curved
part of the M vs. H curves. This effect is largest a t the lowest temper­
ature because the applied field is largest (300 Oe), and the curvature
is most pronounced. The inhomogeneity of the field a t the position of
the sample, amounting to a t most 1% will round the M vs. H curves
over an interval of about 3 Oe.

The field H for a homogeneously magnetized sample can be calcu­
lated according to the relation H=Hext — NM, where Hext denotes the
applied field, N the demagnetizing factor, and 4 7tM the measured in-
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duction. In an imperfectly shaped sample, NM is not constant. This
causes a spread in H as a function of position. The rounding of the
M vs. H curves arising from this cause, will amount to a few Oe at the
lowest tem peratures.

A few of the isotherms are given in fig. 3. Section a shows two
isotherms chosen at both ends of the interval (0,1) for T /T  . For the
open symbols, the horizontal axis represents the applied field, for the
half closed symbols, the horizontal axis represents the field after
correction for the demagnetizing effect. One may observe in the first
place that the in itia l slopes of the curves drawn through the half
closed symbols are not infinite. This resu lt is  definitely outside the
experimental error. In order to check this resu lt the measurements were
repeated for two other sam ples, one being an ellipsoid with axes of
about 14, 8, 8 mm, and oriented in such a way that the angle between
the longest axis and the c axis was 55°, the other being an approx­
imate ellipsoid with axes of 25, 4, 4 mm, while the angle between the

j ___
0.278

-A 0.363
■VV 0.780

O H 200 400 600 [0«] 800

F ig .  3.. S e c tio n  a  s h o w s  th e  m a g n itu d e  o f  th e  c o r r e c t io n  o f  th e
e x te r n a l  f i e ld  d u e  to  th e  d e m a g n e t iz in g  f i e ld  for tw o  te m p e r -
a tu r e s ,  w h ic h  a re  fa r  a p a r t .  F o r  th e  o p e n  c i r c l e s  a n d  t r i a n g l e s ,
H* d e n o te s  th e  e x te r n a l  f i e ld .  F o r  th e  h a lf  f i l l e d  s y m b o ls ,  H*
d e n o te s  th e  e x te r n a l  f i e ld  c o r r e c te d  fo r th e  d e m a g n e t iz in g  f i e ld .
S e c t io n  b s h o w s  p a r t  o f  th e  t o t a l  n u m b e r  o f  m e a s u re d  i s o th e r m s .
T h e  r e l a t i v e  m a g n e t iz a t io n  m = M (T )/M (0) i s  p lo t t e d  v e r s u s  H ,
w h ic h  d e n o te s  th e  e x te r n a l  f i e ld  c o r r e c te d  fo r th e  d e m a g n e t iz in g
f ie ld  a n d  th e  ( s l i g h t l y  te m p e ra tu r e  d e p e n d e n t)  a n is o t r o p y  f i e ld .
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longest axis and the c-direction was 70°. The two se ts  of measure­
ments show the same behaviour. The fields required to obtain complete
saturation at T /T  =0.05 were about 80 and 5 0 Oe respectively, and
will henceforth be called anisotropy field. In the second place one may
note that the anisotropy field is  a function of the temperature, which
varies slightly, but does not vanish at Tc. In section 4 an attempt
is made to interpret these data in terms of anisotropy energy. In view
of this interpretation and in order to be able to compare the resulting
spontaneous magnetization with various theories, the magnetization
data are plotted as a function of the field, H, that denotes the applied
field, corrected for the demagnetizing field and for the temperature
dependent anisotropy field. This procedure, however, does not alter
the values of the spontaneous magnetization, derived when using the
isotherm s given by the half closed symbols of fig. 3, section a, by
more than 2%. Therefore th is method has no p ractical consequence for
the d iscussion in section 6.

Inspection of the isotherms (fig. 3b) shows that saturation at the
lowest temperature is readily attained. The saturation value diminishes
only slightly for temperatures up to 0.6 K. Above th is temperature the
saturation value at the available field of 700 Oe decreases rapidly.
The forms of the curves near T change markedly until at about 2.05 K
the magnetization at the lower field is almost linearly dependent on
the field.

4 The anisotropy energy
The in itia l slopes of the M vs. H curves a t various temperatures

(two of which are shown in fig. 3 section b) and for three different
directions with respect to the c axis, were always smaller than 1/N,
where 1/N denotes the demagnetizing factor. We suggest that aniso­
tropy energy may account for the discrepancy between the in itia l
susceptib ility  and the expected maximum value per cc viz. 1/N.

From recent electron-spin-resonance measurements Suzuki and
Watanabe22  ̂ deduced an (extrapolated) anisotropy field of 200 Oe for
a direction in the aa plane with respect to the easy  axis (c axis). These
authors calculated the anisotropy of the dipolar interaction at zero
temperature and obtained a value of about 1 Oe. As their experimental
results may be described by assuming a small anisotropy term in the
exchange interaction within the formalism of the molecular field theory,
Suzuki and Watanabe attributed the anisotropy field to anisotropy of
the exchange coupling.

The effect of the anisotropy energy on the s ta tic  susceptib ility  in
a direction perpendicular to the easy axis of m agnetization and along
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a principal axis of the demagnetizing tensor (being an axis of the
ellipso id  in our case) is  given by the expression.

x =----I-----,  . (1)
* N + 2K /M 2

In this formula N is  the demagnetizing factor in the direction of H, and
K is the anisotropy energy. This formula is derived by minimizing the
free energy with respect to 9 , the angle between_the domain magnet­
ization, M, and the easy  ax is . The magnitude of M is assumed to rer
main constant and therefore we have omitted exchange energy terms
from the derivation. The change in free energy arising from a slight
rotation of M is given by

dF = -(H -N M jJdM ^+ dtK  s in 2 0). (2)

Substituting Mj_= M cos 9 , we obtain

F ( 6 )  -  F (0) = -  HM sin 6 + )4NM2.sin2 9 + K s in 2 0 (3)

after integration. The extreme value of F determined by

J*E = _  HM cos 9 + NM2 sin 9 cos 9 + 2 K sin 9 cos 0 = 0 (4)

is a minimum, since the second derivative of F with respect to 9 is
positive at this point. Inserting sin 9 from eq. (4) in the expression

.  M s in .g. (5)
* H

eq. (1) is  derived. Introducing the internal field by Hi =H -N M  and the
anisotropy field by HA = 2 K/M we obtain

( 6)
M H a

from eq. (1), so that the rotation of the spontaneous magnetization of
a domain is  determined by the ratio of the internal field along H and
the anisotropy field along the easy ax is. For the more general case
that the angle which H makes with the easy axis lies  between 0
(X=l/N) and tt/2  ( x= 1/(N +2K/M2), x assum es an intermediate value.

Relation (1), however, cannot account for the experimental result.
On increasing the temperature from T /T c = 0.1 to 1, the experiment
shows that the anisotropy field is  reduced to only 80%, whereas K is
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predicted245 to vary as the third power of M. Therefore, 1 /x  is ex­
pected to approach the value N in this model, if T tends to T c.

Three p lausible mechanisms causing an anisotropy field will be
d iscussed . The first mechanism is anisotropy of the dipolar interaction.
At zero temperature we have calculated  the dipolar fields in the direc-
tionstof the c axis and an a ax is. The evaluation has been performed
for an ion at the centre of a sphere with a radius of 150 A, containing
52830 ions. In both c a ses  the field is le ss  than 1 Oe. Therefore, the
anisotropy field originating from this mechanism may be neglected
entirely.

The second mechanism is the anisotropic hyperline-structure-coupl-
ing (h .f.s .). For the copper sa lt investigated, no h .f .s . coupling con­
stan ts  are known. However, one may take the largest value known for
several copper sa lts . If the anisotropic part of the h .f.s . coupling is
expressed in the form of an anisotropy field a t saturation magnet­
ization, it is sm aller than 0 .8 /T  (O ersted/K elvin). This field will be
negligible at temperatures above 0.3 K.

A third source of anisotropy energy might be formed by anisotropic
exchange interaction, for instance the pseudo-dipolar anisotropy
according to Van V leck255. This anisotropy energy is given by ( \ /A E ) 2Jf,
where A. is  the spin-orbit coupling parameter, AE the energy splitting
of the lowest lying orbital levels and f a constant, depending on the
orbitals participating in the interaction. The values of f differ con­
siderably for various types of bonds, but they are roughly of the order
unity265. For the Cu-ion \/A E = 0 .0 5 . If we take J /k T c =0.3575 and
f=2, the above-cited formula y ields an anisotropy field, HA, of about
45 Oe, which is  of the right order of magnitude.

As mentioned above, if one accounts for the effects of anisotropic
exchange by means of the expression (1) and the molecular field con­
cept, one encounters the problem, that the anisotropy energy tends
rapidly to zero, if T approaches T c. However, in the molecular field
approximation, at T = T C not only the anisotropy energy, but also  the
exchange energy vanishes. A clue may be found in the observation
that short-range ordering energy and spin-spin correlations are present,
even for temperatures well above T e. It follows from the experimental
resu lt obtained from several isomorphous sa lts  (see ch. IV) that 55%
of the to tal energy involved in the phase transition is  removed above
the critica l temperature. Theoretically, for the Heisenberg s = ‘4  model
and b .c .c . la ttice , the critical, parameter (Eg,—E c)/R T c denoting the
energy removal on a reduced scale , is predicted^?) to take the value
0.41, while the next-nearest-neighbour coupling constant Jg has the
value 0.25 J j  (see section 6). Experim entally75 th is parameter was
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found to be 0.392.
A qualitative interpretation of the experimental data may be found,

if for T = T we consider the crystal as consisting of coupled pairs of
C

neighbouring Cu-ions. The coupling will be ferromagnetic (s = 1 lowest)
for the majority of pairs, due to short-range spin-spin correlation, and
will furthermore be anisotropic. A Hamiltonian for anisotropic exchange
between a pair of Cu-spins may be given by:

H = - 2  [ J ^ s z s z +Jjl(sz sz + s[ s * ) ] , (7)

where J ^  and Jj_ denote exchange constan ts, and i and j denote a pair
of nearest-neighbour ions. The z axis is not necessarily  identical to
a crysta lline  axis, but may coincide e.g . with the line joining the
ions i and j. The ground sta te  for a pair of ions with s=/4 is threefold
degenerate, in the ca se  J «  = J|_>0. For slightly anisotropic exchange
(J»>Jj_) the degeneracy is removed, and a splitting  — Jj_) resu lts
between the s z = ± l  ground s ta te  and a s z = 0 singlet, in analogy with a
crysta lline  field splitting  D (sz)2 for ions having s z =l .

For the purpose of d iscussion , we introduce two assum ptions,
a) The influence of the surrounding ions is  approximated by a mole­
cular field proportional to the mean m agnetization. This procedure is
comparable to the constant-coupling approximation of K asteleijn  and
Van Kranendonk28), which at T = TC gives a value of 0.60 for the cor­
relation between a pair of neighbouring spins, b) The crysta l consists
of domains, in each of which all pairs have identical z axes, i.e .
identical axes of preferred alignment, and hence coincide with the
direction of the domain m agnetization.

On the basis  of assumption a), one may deal with the anisotropy
energy, ( s z )2 for pairs (with s z =l) ,  c la ss ica lly , using eq.(3).
Let N{(T) denote the number of pairs per cc. in the s = l  s ta te . Using
the assumption b), the anisotropy energy K for a domain magnetized
in the z direction has been ca lcu la ted29  ̂as:

K = N ^TjD s (s-54). (8)

Eq.(8) may a lso  be written as:

K = Nf(T) ( J /  — Jj_)* (9)

E q .(l) now becomes:

-L= N + ^ N f(T)D s in 2 9.
X 1

( 10)
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If N { is  known, an estim ate of the anisotropy energy per pair of ions,
K/54N, can be derived from (9) by using J /k  = 0 .3 5 T c 7* and assuming
an anisotropy of the exchange interaction of 2 per cent. In the con­
stant-coupling (c.c.) approximation28* the spin-spin-correlation a t T c is
found to be 0.60.

A preciser evaluation of the spin-pair correlation at T c may be
obtained from the series  development method above T c in the H eisen­
berg model. It may be inferred from a comparison of the fractions of
the total energy involved in the phase transition, ( E „ - E C) /(E C0—E q),
removed above T c (this fraction is related to the spin-pair correlation)
for the c .c . approximation28* and the series-developm ent27*calculation.
The former yields 43%, the latter 61%. From this consideration we
estim ate the spin-pair correlation to be about 0.7, which also  represents
the fraction of pairs in the s = l sta te , Nf/% N . If we express the aniso­
tropy energy by an anisotropy field at saturation magnetization; HA =
= 2K/M, we obtain an anisotropy field of 120 Oe. This is  roughly the
value reguired for explaining the in itia l suscep tib ility  in fig. 3a. More
significantly, the temperature dependence of the anisotropy-field on
the basis of th is interpretation agrees with that observed experiment­
ally.

However, the z axes for various domains and pairs will very prob­
ably be different, since e.g. there are two kinds of Cu-ions, differing
in the directions of their respective axes of large g-value. Conse-
guently, when evaluating the macroscopic y, a d irectional averaging
procedure has to be applied. Therefore, the direction of maximal y will
not necéssarily  be related to the crysta lline  axes. In other words,
deviations from y ? 1/N may be found for a ll directions in the crysta l,
and these deviations‘may p ers is t a t T = T C.

5 The determination of the spontaneous m agnetization and critical
temperature
The reduced spontaneous magnetization M(T)/M(0) for T < T c is

theoretically well defined in zero field. The m acroscopic reduced
magnetization, however, has a notably lower value because of domain
structure. To overcome this effect a field must be applied and the
spontaneous magnetization has to be deduced from the measurements
of the magnetization versus field.

The molecular field theory gives a simple relation from which
M(T)/M(0) can be deduced for 0 < T / T C< 1 viz.:

T /T  _ M(T)/M(0) + H/WM(0)
c tanh“ 1(M(T)/M(0)) '

(ID
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where H is the internal field and WM(O) the Weiss field a t zero temper­
ature. To obtain the spontaneous m agnetization as a function of T one
chooses a fixed value of M(T) between 0 and M(0) and uses (11) in the
form T = a + bH. If the experimental points show this linear relation
between H and T a t constant M, the linear portion may be extrapolated
to H=0, so that one obtains the temperature intercept T, belonging to
the m agnetization chosen, which by definition equals the spontaneous
m agnetization. Pig. 4 shows that the relation ( l l )^ is  approximately
sa tisfied  for T lower than 1.72 K. For H<20 0e(= H  ), e q .( l l )  is  not
sa tisfied . This is not surprising since the turning of the domains in
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F i g .  4 . T h e  i n t e r n a l  f i e ld  a s  d e f in e d  in  f ig .  3 s e c t i o n  b i s
p lo t t e d  v e r s u s  th e  t e m p e ra tu r e  fo r s e v e r a l  v a lu e s  o f  th e  r e l a t i v e
m a g n e t iz a t io n ,  m . T h e  a r ro w s  i n d ic a te  th e  t e m p e ra tu r e  r e g io n ,  in
w h ic h  th e  e x t r a p o la t io n  p r o c e d u r e  a s  d e s c r ib e d  b y  e q .  (1 1 ) m ay
b e  u s e d  to  o b ta in  th e  s p o n ta n e o u s  m a g n e t iz a t io n  a s  a  f u n c tio n  o f
th e  t e m p e r a tu r e .

the presence of anisotropy energy has not been taken into account in
the derivation of eq. (11). The experimental points of Ni(Tc = 627.2 K)
deviate from relation (11) for H * < 8 K O e 30). The value of H / T e for
both substances are of the same order of magnitude.

For tem peratures above 1.72 K, T and H are not related linearly,
so that the value of the spontaneous magnetization cannot be deduced
with th is extrapolation procedure. Below 1.47 K the isotherm s flatten
markedly, so that only a few isotherms may be used to construct each
of the curves (H, T)M, which quickly introduces an error into the
extrapolation.

Following a suggestion of Weiss and Forrer, a second method of
extrapolation was used. Particularly  below 1 K where the curves are
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rather fla t, the spontaneous magnetization Mg(T ) may be found from
the isotherm al re la tio n 31':

M(T) = MS(T) (1 — a /H  — b /H 2 . . . )  +p(H), (12)

where M(T) is  the measured magnetization on applying the fie ld  H, a
and b are constants determ ining the approach to saturation, the term
a/H  accounting for the displacements o f the domain w a lls  and the
term b /H 2 accounting for turning the domains, while  the term p(H)
re lates the po la riza tion  o f the in d iv id u a l moments to the applied fie ld
strength. In a good approximation p (H )= x 0^< where x Q=constant. For
H > 100 Oe the terms a /H  and b /H 2 are very sm all compared to un ity ,
so that a sim ple linear extrapolation to H=0 of the isotherms provides
us w ith  the value o f Mg(T).

On decreasing the temperature, the resu lts obtained by the two
methods approach each other asym p to tica lly30'. Therefore we have
taken the average o f both resu lts  for the temperature region between
1.0 and 1.45 K. The saturation value at T = 0K  has been obtained from
the data by extrapolation according to the B loch formula:

M(T) = M ( 0 ) [ l - a Ö y 2 ] ,  (13)

which is  va lid  for sm all spin devia tions in  a Heisenberg ferromagnet.
Since the molecular fie ld  theory neglects corre la tion , i t  is  not

correct near T , so that we are le f t  w ith  the problem how to locate
T c prec ise ly . The Heisenberg model, which has been shown (see ch.IV )
applicable to th is  sa lt, takes account o f the in te ractions between
nearest-neighbours. The su sce p tib ility  x 1° th is  model is  p red icted321
to behave asym pto tica lly  as

X p 1^ ( T - T c) y , (14)

with y  = 1.43. The experimental value o f y  is  1.40 for th is  s a lt331.
The devia tion  of x ^ 1 r̂ora re la tion  (14) in the temperature range
T — T < 0 . 0 5 T „  is  less than 5% (see ch. 1 section 3.5.2). In order to

C C £
deduce T c le t us define the function T according to

T * ( T ) .  l / (d /d T ) ln  ( x " 1) = ( T - T c) / y .  (15)

Experim entally T *  can be found from a p lo t o f x T 1 vs. T according to
the iden tity
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l/(d/dT)ln(x ; 1)= x r V W x j V d T ) .  (16)

Linear extrapolation of the plot of T vs. T to T =0 yields T c.
The suscep tib ility , X o = O M /3H )h= 0  cannot be accurately deter­

mined from a plot of M vs. H, since such a graph is strongly curved
for temperatures near the Curie temperature (see fig. 3b). The graphs
of the data are far less  curved, if they are plotted as m vs. H/m,
where m stands for the relative magnetization (fig. 5a). This technique
has been proposed by several authors34' 33  ̂ and it has been applied
to several experim ents36' 37). Extrapolation of the linear part of the
graphs to m2 = 0 provides us with the values of Ax “  • The numerical
constant A, however, cancels from the expression for T , as may be
seen from eq. (16).

A theoretical basis for the m2 vs. H/m technique is  furnished by
considering a system  of independent spins that in teract with a mean
field. Assume that the magnetization produces a mean field Hmf,

(17)

where m denotes the relative magnetization and Hq an experimental
constant having the dimension of a field. The field He ff, acting on an
ion, is now given by

H e f f  = H + m H o- ( 18)

Using Boltzmann s ta t is t ic s  one obtains

m = tanh (a) (19)

for a system of independent spins (s = )4). In eq.(19) a = /xHe{f/k T  and
= If a «  1, the right-hand side of eq.(19) may be expanded in

powers of a . Retaining terms up to the third order in a,

m = a — 1/3 a3 . (20)

Substituting a into eq.(20) one may obtain

Ü  = ( £ £ - H  ) + 1/3 ( - ^ ) 2m2H3 (l + —— )3 (21)
m f t  ° kT ° mHo

after some manipulation. If T -.T C and H -0 , m -0  and the inverse su s­
ceptibility  l / X=H/mM(0) tends to zero, so that
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On substitution of Hq for kT J / jl in eq.(21) we obtain

( 22 )

H H T
m ^ ( T - T c) M / 3 H o ( - ^ ) 2 ( i a ) 3 m2 . (23)

Assuming a) H/mH «  1 so that

(1 + H )3 ~  (1 + 3 H ),
mH mH

O  O

eq.(23) takes the form

H

H Tc
° (T  — T ) ♦ 1/3 H (—- ) 2 m2

1 _ ( _ £ ) 2  m 2
T

T
If b) m2 ( -^ ) 2 <0.1, one may simplify eq.(24) to

_H H
m j-LL = —  ( T - T J  + 1 /3 H J - 5 ) 2 m2 ,

T. Ho

(24)

(25)

which for experimental purpose may be written as

— =A( T) + B(T) m2 . (26)

A(T) may be determined from a graph of m2 vs. H/m. Clearly (H/m)
= A(T). The assum ption a) is consisten t with e q .(25) because H/mH <<1°
according to eq.(25), if assumption b) is  fulfilled and ( T - T  )/T  ° «  1.

Fig. 5a shows us the plot of the quantity m2 vs. H/m for a se t of
isotherms with T near Tc . The isotherms for T > 1.7441 K furnish us
with an unambiguous value of the quantity (H/m)m_<o (being proportional
to X0 )• This quantity has been plotted as a function of T in fig. 5b.
Using eq.(16), T defined by relation (15) can now be calculated  from
this plot. The resu lt is a lso  shown in fig. 5b. As one may see, T* is
linear in T, so that the intercept of the graph extrapolated to T*=0
that gives the critica l temperature, is found to be T c = 1.735 (±0.002)K.
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F i g ,  5. S e c t i o n  a  s h o w s  t h e  i s o t h e r m s  a t  t e m p e r a t u r e s  b e t w e e n
21 .7 1 4 7  a n d  1 .8 0 2 0  K , p l o t t e d  a s  m v s .  H / m .  T h e  i n t e r c e p t s  o f

9
t h e s e  c u r v e s  w i th  t h e  a x i s  m = 0 .  ( H /m )  ( b e in g  p r o p o r t i o n a lm - o  _i
to  v  A# a r e  p l o t t e d  i n  s e c t i o n  b  a s  a  f u n c t i o n  o f  T .  T *  = v  /
( d ( v —l ) / d T )  ( s e e  t h e  t e x t )  p l o t t e d  v s .  T  in  s e c t i o n  b y i e l d s

T  s  1 .7 3 5 ± 0 .0 0 2  K.c

The slope of the line given by T* = ( T - T c) /y  is  1 /y . From our
data we find y -  1.25 (±0.1), which is  somewhat lower than the value
found by means of a .c . susceptib ility  measurements, y  = 1.4022 . This
difference may be related  with the temperature-dependent contribution
(arising from the anisotropy energy) to the susceptib ility  (eq. (1)). This
contribution depends on the direction of measurement with respect to
the crysta lline  axes.

A plot of H/M vs. M2 of the measurements on the ferromagnetic
substances EuO and GdN, with s = 7 /2 , performed by Junod and Levy ,
yields straight lines also . As the solution (19) to (18) for general s is
given by the Brillouip function, which is  spin-dependent, the values of
A and B for s / lA are different from those given in eq.(26).

The data of the relative spontaneous m agnetization, m, vs. the
relative temperature, t, have been collected in table I.

6 D iscussion of the resu lts
In fig. 6 the experimental values of the reduced magnetization vs.

the reduced temperature, collected in table I have been plotted.
For comparison we hgve also plotted the recently published resu lts
on the calculation of the spontaneous magnetization of the Heisenberg
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TABLE I

The reduced spontaneous m agnetization, m=M (T)/M (0), i s  p resen ted  a s  a  function
of the reduced tem perature t= T /T  ,T c = 1.735(± 0.002) K according to  figure 5b.
The sym bols a  and b denote m easurem ents in  different apparatus a s  described  in
sec tio n  2.

a b

t m t m t m t m

0.058 0.998 0.324 0.954 0.664 0.822 0.899 0.55
0.0608 0.992 0.368 0.943 0.701 0.795 0.926 0.5
0.136 0.984 0.417 0.933 0.732 0.775 0.944 0.44
0.160 0.986 0.448 0.920 0.777 0.731 0.957 0.40
0.200 0.982 0.493 0.904 0.806 0.700 0.972 0.32
0.231 0.974 0.546 0.887 0.845 0.65 0.989 0.24
0.274 Ó.970 0.597 0.859 0.879 0.60 0.997 0.16

s=14 ferromagnet (s.c . and f.c .c . structures) by Cooke and G ersch14*,
Liu and Siano15*, and L o ly11*. Cooke and Gersch obtained their resu lts
by means of G reen's functions technique in second order. This theory
covers the whole temperature region, whereas the spin-wave theory
may only be applied in a limited temperature region. The dashed curve
represents the calcu lations for the f.c .c . structure, the dash-dotted
curve those for the s .c . structure. Taking account of the fact that
the theoretical values for the b .c .c . la ttice  will lie  between those for
the s .c . and f.c .c . la ttic e s , we find a striking agreement between this
theoretical resu lt and the experimental curve.

In the low temperature region a more sensitive  criterion for testing
the theory is  furnished by comparing the specific  heat resu lts  with the
theory. As on the low temperature side the G reen's functions method
yields exactly the same resu lt as  the spin wave theory, th is comparison
has essen tia lly  been made in chapter IV.

Liu and Siano have a lso  used a G reen's functions technique, but
only in first order. The decoupling scheme used by these authors has
been introduced by Tyablikov38*, and is  different from the method used
by Cooke and Gérsch. Some resu lts  for the f.c .c . la ttice , denoted by
a + symbol have been plotted in fig. 6. The calculated  curve for the
s .c . la ttice  has not been plotted, as th is curve would also  lie appreci­
ably below the curve obtained by Cooke and Gersch for the same crystal
structure. One may notice that even the f.c .c . curve calculated  by
Liu and Siano lie s  appreciably lower than the experimental curve.
This disagreem ent may be due to the incorrectness of the decoupling
scheme used, or to the fact that the calculations are made to first
order only.

Recently L o ly11* has applied the technique of the se lf-consisten tly
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F i g .  6. T h e  r e d u c e d  s p o n t a n e o u s  m a g n e t i z a t i o n  m i s  s h o w n
v e r s u s  T / T c  fo r  t h e  p r e s e n t  m e a s u r e m e n t  a n d  s e v e r a l  s t a t i s t i c a l
t h e o r i e s .  □ T h e  p r e s e n t  m e a s u r e m e n t .

--------f . c . c . t  H e i s .  m o d e l  s  = !4, c a l c u l a t e d  b y  C o o k e  a n d  G e r s c h * 4 ^
— • — s . c .  ƒ  w i t h  G r e e n ' s  f u n c t i o n s  t e c h n i q u e  in  s e c o n d  o r d e r .
+ + + f . c . c .  L i u  a n d  S i a n o ^ 3 ,̂ H e i s .  s  = '/4, G r e e n ' s  f u n c t i o n s  c a l c u ­

l a t i o n  w i t h  T y a b l i k o v ' s  d e c o u p l i n g  p r o c e d u r e .
. . .  b . c . c .  L o l y ' s  r e s u l t o n  t h e  H e i s e n b e r g  s  = !4 f e r r o m a g n e t ,

c a l c u l a t e d  w i t h  ( r e n o r m a l i z e d )  s p i n - w a v e  t h e o r y .  T h e
s e c o n d  n e i g h b o u r  e x c h a n g e  c o u p l i n g  Jo  = 0 .1 5  J j .  T h e
r e s u l t s  a t  T / T c = 0 .9  for J 2 = 0 a n d  J 2 = 0 .3  J l  a r e  g i v e n
by  t h e  e n d  p o i n t s  o f  t h e  b a r  a t t a c h e d  to  t h e  r e s u l t  a t
T / T c = 0 .9  fo r  J 2 = 0 .1 5  J i .

x x x  M o l e c u l a r  f i e l d  m o d e l  for s  = /4.

renormalized spin wave approximation in a somewhat modified version,
combined with a non-zero second neighbour exchange constant to the
calculation of the relative magnetization of the b .c .c . Heisenberg
s = 5̂  ferromagnet, up to T /T c = 0.9. Various theoretical predictions
have recently been derived on the influence of n.n.n. exchange on the
value of critica l parameters such as energy and entropy removed above
T by the short-range ordering p ro cess27' 39' 4 0 . By applying these
resu lts  to the experimentally obtained v a lu es6' 7\  Dalton and Wood40^
deduced J „ /J  j = 0.25±0.1 for the ratio between nearest and next-nearest-
neighbours exchange coupling (for more details see ch.IV). Loly has
calculated the spontaneous magnetization for the b .c .c . s = lA Heisen­
berg model with J g / J ^ O .  15 and J 2/ J 1=0.25. The resu lts  are repre­
sented by the dotted curve. The difference between curves for a  =0.15
and a=  0.25 (and consequently for a  = 0) is  hardly noticeable in fig. 6.
The largest difference, which is  found at the h ighest temperature, is
shown in the figure as a small bar at T /T c = 0.9.
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It may be noted that the recent calculations of Loly agree quite
well with the resu lts  of Cooke and Gersch up to T /T c =0.55, but at
higher temperatures they are system atically  higher than both the latter
theory and this experiment. Furthermore, one may note the striking
difference between the Heisenberg s = !4 curve and the molecular field
results for T < 0.7 T c. This difference is expected to decrease for
increasing spin values, which has actually been calcu lated  by Callen
and Callen for the spin = 7 /2  ferromagnet of f.c .c . structure. In the
temperature region between 0.75 Tc and 0.90 T the molecular field
theory for s = Vi seem s to be a good approximation, which is confirmed
by the applicability  of the extrapolation procedure for finding Mg(T)
based on this theory.

In fig. 7 the reduced spontaneous m agnetization has been plotted
as a function of e = l — T /T c . The value of Tc viz. 1.735 (±0.002) K
has been derived from fig. 5b. The length of the bars attached to
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F i g .  7. T h e  r e l a t i v e  s p o n t a n e o u s  m a g n e t i z a t i o n ,  m, i s  p l o t t e d
v s .  (1—T / T c ) on  a  l o g a r i t h m i c  s c a l e .  T c = 1 . 7 3 5 ± 0 . 0 0 2  K ( s e e
f ig .  5b).  T h e  b a r s  i n d i c a t e  t h e  a m b i g u i t y  i n  p o s i t i o n ,  d u e  to  t h e
u n c e r t a i n t y  in  T c , T h e  s t r a i g h t  l i n e  r e p r e s e n t s  t h e  f i t :
m = B (1 —T / T c p ' ,  w i t h / 3  = 0 . 3 8 ± 0 . 0 4 ,  a n d  B =  1 .33  ± 0 . 1 5 .

several points indicate the uncertainty in e . This uncertainty in e
is caused firstly  by the inaccuracy in the determination of T (see
fig. 5b), and secondly the uncertainty in the determination of T, which
is obtained by means of the extrapolated curve m(H,T)H_ 0 = constant
(fig.4). For 10—2 < e <0.2 the best fit to the experimental values is
found to be a straight line, corresponding to the relation

m = B (1 —T /T c)^ , (27)

with /5 = 0.38 (±0.04), and 3 = 1.33 (±0.15). The uncertain ties indicated
include errors in 1 — T /T  and in m.

C

The values for p  and B in this sa lt are higher than the values found
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in most experiments, as one may notice from a recent review on the
subject by H eller41'. The values for two ferromagnetic substances
are close to ours. For CrBr3 Senturia and B enedek421 have found
B= 1.32 (±0.07) and £=0.365 (±0.015) while 7 .10- 3  < 1 -  T /T c < 5.10- 2 .
For Ni, Howard et a l .43* fit their measurements with B=1.5 (±0.1) and
£=0.37 (±0.03) in the temperature region : 10~3 < e<  10“ 1. Up to now
for the Heisenberg model no firm theoretical resu lts  have been derived
for e < 10“  , not even for s = 5̂ .

However, using certain s ta tis tic a l assum ptions, several relations
between c ritica l exponents have been derived. (For recent reviews
see refs. 44 and 45). The exponents we will consider, i.e . of, y ' , 8
and £  are defined by the relations

d In cu  ,
a ' = lim (T — T)-------- 2» 28)

T ; T- c dT
"  C

where c H denotes the molar specific heat in zero field,

d In y
y '  = lim (T — T )-------i * ,  (29)

T - . T -  dT
C

H « m 8 a t T  = T c, (30)

£  is defined by relation (27). T -T ~  denotes the approach of T c from
the low-temperature side. In general the primed quantities refer to the
temperature region below T .

The following two relations will be considered, viz.

a ' + £ ( 8 + 1) — 2 (see ref. 46), (31)

a! +2 £ + 7 ' — 2 (see ref. 47). (32)

Experimentally of is found to be 0.00 ±0.0371 and £  = 0.38 ±0.04. The
value of 8 can be derived from a plot of the critica l isotherm on a
logarithmic scale . The critical isotherm might be obtained from a
straightforward interpolation of the graphs of the isotherms on both
sides of T as plotted in fig. 5a. However, we have preferred to plot
the three isotherm s nearest to T , so that the small differences in the
slope may be estim ated (fig. 8). For a better display the horizontal
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6 8  10"1

F ig . 8. T he  is o th e rm s  a t  T =  1 .7441 , 1 .7342 and  1 .7248  K a re
p lo tte d  in  th e  form H v s .  m3 on a  lo g a r ith m ic  s c a l e .  T h e  d a s h e d
lin e  b e in g  ta n g e n t to  th e  is o th e rm  T =  1 .7342  K, w h ich  r e p r e s e n ts
th e  c r i t i c a l  iso th e rm  (T =  1.735 K) to  a ra o h ic a l a c c u ra c y , c o r r e s ­
ponds to  th e  r e la t io n  Hoc m $ w ith  8 = 3 .9  ± 0 .2 .

scale  has been extended a factor 3 by plotting m3 vs. H. The slope
of the dashed line, tangent to the isotherm at T = 1.7342 K (being very
close to the critical temperature, T = 1.735 K), corresponds to 8 = 3.9( ±0.2).
The value of y ‘ is  difficult to obtain experimentally, since the in itial
susceptib ility  of a ferromagnet is infinite for T < T  . For the H eisen ­
berg model y '  is  not known. For the simple guadratic and triangular
la ttices  in the Ising model y ' = y{ = 1.75)4 , while numerical evidence
for the three-dimensional cubic la t t ic e s 49  ̂suggests y '¥ y [y '  =  1.31 t  0 5  «
7  = 1.25 ±0.01).

In the first four columns of table II we lis t the experimental values
of the four exponents known for this sa lt  and for Ni. The fifth column
contains the values of a? + y8( l + 8). Assuming 7 ' = 7 , the value of d  +
+ 2yS + 7 ' is  found (column 6 ). Assuming the eguality signs in eqs. (31)
and (32) to obtain, a! can be eliminated between (31) and (32), so that
y'  may be calculated (column 7).

If we assume af= 0 for both sa lts , a se t of values (y6, 8 ) may be
found that sa tis fie s  the equality contained in eq. (31), and lies within
the error bounds given in table II. This se t of values (y8, 8 ) is listed
in table III. The value of 7 ' for each pair (yö, 8) may be calculated, if
it is  assumed1 that the equality sign in eq. (32) holds too (third row of
table III). The fourth row lis ts  the values of y  — y '  for each (yS, 8). We
notice that 7 V 7 , which indicates that full symmetry between the ex-
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T A B L E  II

'H ie ex p e rim e n ta l v a lu e s  (w ith  error bounds) o f th e  e x p o n en ts  O!# p ,  8 and  y ,
d e fin ed  by th e  e q s .  (27) to  (30), a re  g iven  for th is  s a l t  and  N i. T h e  le ft-h an d
s id e s  o f r e la tio n s  (31) and  (32) a re  e v a lu a te d  in  co lum ns 5 and  6 r e sp e c t iv e ly .

If If (31) and

7=7': (32) h o ld  a s
e q u a l i t ie s :

(V 0 8 7 a» + a.‘f 2fi
j3(i +8) + r 7'=J5{ S -i)

C u(N H il) ,B r 4 . 0 .0 0 7) 0 .38 3.9 1.4033) 1.86 2.16 1.10

2 H „0 0.00 + 0.03 0.38 + 0 .04 3.9 + 0.2 1 .40+ 0 .02 2.17 2.29 1.30
0 .0 0 -0 .0 3 0 .3 8 -0 .0 4 3 .9 —0.2 1 .4 0 -0 .0 2 1.57 2.03 0.85

0.00 0 .38± 0 .01 4 .3 ± 0 .1 1 .33± 0 .02 2.01 2.09 1.25
N i

R ef. 50) 43 ,51,52) 36,52) 36,52)

T A B L E  III

T h e  s e t s  o f ex trem e  v a lu e s  o f (yS, 8) s a t is fy in g  th e  e q u a li t ie s  in  re la t io n s  (31) and
(32). T h e  th ird  and  fourth ro w s l i s t  y* and  (y—y') re sp e c tiv e ly .

ex p o n en t

Cu(NH4)2ï3r ..2 H 20 : N i(re fs . a re  g iv en  in  ta b le  I I ) :

c o n d itio n

J3'm a x ^m ax

c e n tra l
v a lu e s 8 ,m in 8m ax

ft 0.42 0.39 0.38 0.39 0.37

8 3.8 4.1 4.3 4.2 4.4

y'=/3(8-i) 1.16 1.21 1.25 1.25 1.26

7 - 7 ' 0 .24 0.19 0.08 0.08 0.07

ponents below and above the critical temperature does not obtain. In
the case of the three-dimensional lattices in the Ising model y' / y ,
while for the two substances cited y' < y.

Another way of interpreting the experimental results starts with the
assumption y' = y. In this case the inequality sign in relation (32) ob­
tains for any experimentally allowed set of values (fi, 8) while the
equality sign of relation (31) holds for an ample set of values (/3, 8),
although not for all.

Summing up the results we may state that the measurement of the
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spontaneous magnetization confirms the evidence of ref. 7 and ch. IV
that the salt Cu(NH4)2Br.4.2H20  is a simple s = Vi b.c.c. Heisenberg
ferromagnet having little anisotropy. The properties measured are
shown to be consistently described by statistical theories. A com­
parison of the critical exponents at, 76, y, and 8 with two rigorous
inequalities between the exponents suggests that either y '  <y
(7 -7 '~ 0 .2 0 ) ,  or that a! + 2fi + y '  > 2 with y '  =y. Accurate determination
of the spontaneous magnetization very close to TC(T - T < 0 . 0 1 T  ),
which we have been unable to deduce from our measurements in an
external field, would be welcome to set closer bounds on the value
of the exponent yS.
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Chapter VI

THE SPECIFIC HEAT OF TWO DIPOLAR ANTIFERROMAGNETS
AND ONE FERROMAGNET BELOW 1 KELVIN

1 Introduction
Heat capacity measurements are of in terest for the study of mag­

netic interactions in ionic compounds, since the interaction strength
may often be derived from the position of the heat capacity singularity
and from the corresponding energy yield.

In Gd compounds considerable contributions to the heat capacity
arise from crystalline  field interaction.» Early adiabatic  demagnet­
ization experim ents1,2' 3' 4'on  Gd2(S04)3.8H20  were analyzed in terms
of cubic Stark sp littings and showed the absence of strong magnetic
interactions. The Stark levels have recently been determ ined5  ̂ by
electron paramagnetic resonance (E .P .R .) measurements and it was
found that the crystalline e lectric  field is  predominantly axial, although
some deviation from axial symmetry is  found in the sulphate. In terms of
the spin-hamiltonian:

H = qfiH.s  + b ° { s 2 -  j s [ s  + 1)} +— -(s2 -  s y) *

+ b4 ^T2S1 ~  + 1 ) - TT*s z ~ r i r s(s + ^  + s V s2(s +

(where s = Z-, g = 2, while higher terms are omitted) it is found that
b4/ b |< 0 .1  and b 2 < b 2 in most Gd sa lts  so far investigated . For
Gd2(S04)3.8H20  one has approximately b ° /b 2*—0.02 and y b 2« j-b 2 at
low tem peratures.

The Stark levels for Gd sulphate as determined by interpolation of
E .P .R . resu lts  on Gd3 + in Nd,Sm and Y-sulphate are E /k  = 0 K, 0.320 K,
0.710K and 1.257K, assuming s z * ± i  levels lowest, i.e . b2 positive.
An analysis of Bogle and Toutenhoofd6  ̂ of heat capacity  data of Van
Dijk e .a .3' 4' has shown that b£ cannot be negative in the sulphate.

It has been shown by Iveranova e .a . that the crysta l structure of
the sulphate octohydrate is equivalent to that of the other isomorphous
rare earth compounds from Pr to Y, in which series monotonie increas­
ing la ttice  constants have been measured. The structure is m onoclinic8'
(space group C 2h) with a tetram olecular unit cell having dimensions
a o=18.303X, bQ = 6 .74^  and c 0 = 13.539X, and /3=102°. This leads to
a unit cell volume of 1633 ±9 A3 and a density of 2.99 g /cm 3, corres­
ponding to 4.87 x l O21 ions per cm3. The positions (a,b,c) of the metal
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ions vary probably appreciably over the rare earth series as can be
seen from the differences between the (a,b,c) values in the Nd and Sm
sa lt. Following Z achariasen8' and taking the Sm compound as a model
for the Gd sa lt, one has a = 0.106a , b = 0.025b and c = —0.231c . This

O  O i Oi
leads to Gd-Gd d istances among the positions ±(a,b,c), ±(i- — a,b, i- — c),
± (a + y .y  — b,c) and ± ( a , b * j , c * ^ )  of 5.08 A,  5 .5 lA , 6.13A, 6.48A, 2
times 6.74 A etc . The E .P .R . resu lts  of Bogle e .a .5  ̂ on Gd ions in the
isomorphous rare earth sulphates are referred to an (x,y, z) coordinate
system, in which the z axis makes an angle of 55° with the twofold
b ax is. They find two d istinct kinds of ions, differing in a rotation of
the z axis about the twofold b ax is. It should be noticed that, whereas
Bogle takes yS=118°, the resu lts  of Iveranova show that >3= 102°.

The crysta l structure of GdCl3.6H„0 has been investigated more
precisely than that of the sulphate, while on the other hand no precise
E .P .R . data are available. Marezio e .a . have shown the crystal
structure to be monoclinic (space group C ,h) with a bimolecular unit
cell of dimensions ao =9.65lA , i>o = 6.525A, c q = 7.923A and >6=93.65°
(see also  fig .8).

The unit cell volume is  498.4 A 3 and the calculated  density is
2 .478g/cm 3, the number of ions per cm3 is 4 .0 2 x l0 21. The Gd ions
have positions ±(a,b,c), ±(a + j- , - b ,c  + j-). The Gd ions form a primitive
translational la ttice  and nearest neighbours are found in pairs at 6.52 A ,
6.55A and 6 .56A. The two members of a pair are not diam etrically
opposed except for the nearest pair along the c axis; although the unit
cell is  nearly orthorhombic, there are no nearly right angles between
the lines connecting a Gd ion with its  nearest neighbours. For a de­
scription of the magnetic ions, it may be useful to consider the Gd ions
arranged in linear chains along the b axis, in tersecting the ac plane in
a nearly simple square la ttice  of 6.1 A spacing. The Gd ions of adja­
cent chains are shifted by 1.98 A along the b ax is, so that planes
through the Gd ions parallel to the ac plane are spaced alternately
by 1.98 A and 4.54 A .  The Gd ions are surrounded by 6 water molecules
and two chlorine ions, forming two complexes [C l2Gd(OH2)6J per unit
cell and leaving one Cl ion per mole isolated . Each complex has an
axis of twofold symmetry and since the predominant part of the crystal­
line field is  due to the anions of the complex, it may be assumed for
practical purpose that one axis of the crystalline field coincides with
the twofold b axis.

The ground sta te  of dysprosium ethylsulphate is  formed by a doublet
having highly anisotropic g-values (.Q#— 10.8, g ~  0}10\  The next
doublet is  found to lie  at A E/k = 22 .5K 11 \  which can therefore be
neglected a t temperatures near 1 K.
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S usceptib ility12,101 and relaxation measurements performed in the
temperature region between 20 and 1 K have been successfu lly  inter­
preted in terms of dipolar in teractions. The experimental value of 6
measured in the direction of the highest g-value ( / /  c axis) was found
to be $«= + 0.12K, which agrees closely with the value #^,= +0.126K,
calculated from the formulae given by D aniels131. Demagnetization-
and susceptib ility  measurements by Cooke et a l . 141 also show that
dysprosium ethylsulphate becomes ferromagnetic near 0.13 K (T = +0.127
±0.005). The adiabatic magnetization curves at temperatures above
and below the transition point were interpreted by a model using Ising
interactions between ions lying in chains parallel to the c a x is 141.

a  -  13.91 X

%  n.n. to  ^

F ig .  1. T h e  r e l a t i v e  p o s i t i o n s  a re  s h o w n  of n e a r e s t - n e ig h b o u r -
(n .n .)  a n d  n e x t - n e a r e s t - n e ig h b o u r - ( n .n .n .)  c h a i n s  o f  D y  io n s  w ith
r e s p e c t  to  a  c e n t r a l  c h a in  o f  D y io n s .

The crystal structure has been determined by K ete laar151. The
elementary cell having the space group symmetry C?h contains two
equivalent dysprosium ions of trigonal-dipyramidal symmetry (C 3h).
Fig. 1 shows the relative positions of nearest- and next-nearest neigh­
bour chains to a central chain of dysprosium ions. The length of the
a axis of the elementary cell is 13.906 A, while that of the c axis is
only 7 .04A. Each Dy ion has 2 nearest neighbours at 7.04 A along the
c axis, 6 neighbours at 8.75A, arranged in two triangles lying above
and below this central ion respectively, and 6 neighbours at 13.91 X
arranged hexagonally around this ion in a plane perpendicular to the
c axis.
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2 Experimental method and determination of the critical temperature
The experimental arrangement has already been described in ch.II.

As to the consistence of the sam ples, measurements on the gadolinium
sulphate were performed on powdered crysta ls , while those on gado­
linium trichloride hexahydrate and dysprosium ethylsulphate were
performed on single c ry sta ls . In view of the arguments given in ch.I,
section 3.6 . 1, the difference in consistence is unimportant as far as
the specific  heat is concerned that is measured with temperature differ­
ences larger than 10“ 3T N.

The transition temperatures were derived from the measurements
of the specific  heat. In a first approximation they are identified with
the temperature a t which the specific heat a tta ins its maximum. For
the hydrated sulphate th is maximum is chosen as TN (see ch.I, section
3.6.3), since the singularity is alm ost symmetric with respect to |T -T n |.

In the chloride, however, the observed singularity is  asymmetrical,
so that we expect TN to lie somewhat higher than the temperature of
maximum specific  heat. Since the high temperature side of the curve
drops steeply , the interval at which specific  heat points of reason ­
able accuracy could be taken (AT ~  10—3TN) was s till  too small to
determine th is maximum precisely . Therefore we may identify the
temperature at which the maximum in the specific heat is observed
with Tn .

In dysprosium ethylsulphate, the temperature versus time recordings
were rather irrugular when the critical point was approached. This
effect may be due to a long relaxation time in conjunction with ferro­
magnetic domain formation. This caused a spread in the resu lts  so
that the critica l point could be determined only to about 1 part in a
hundred (TC = 0.115K ).

The la ttice  does not make a noticeable contribution to the specific
heat in either sa lt in the temperature region studied. Throughout this
chapter the specific heat originating from the magnetic dipole coupling
between the Gd3+-ions and the coupling with the crystalline field will
be called  magnetic specific  heat and will be denoted as c m, referring
to one gram ion Gd or Dy.

3 Specific heat
3.1 Gadolinium sulphate octohydrate, Gd2(SO4)3.81120

The heat capacity of gadolinium sulphate octohydrate is plotted in
fig. 2 on a logarithmic sca le . From the data a critical temperature of
T n = 0.182 ±0.001 K can be derived (see sections 2 and 3.4).

The entropy, S ^ - S  , involved in short range ordering amounts to
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1.49R/gram ion, which may be compared to a total measured entropy
S0O = 2.08R<=Rln ( 2 s +1). Since — Sc = 2.13 R In 2<= R In 4, one sees
that at the critica l point practically only the lowest Stark doublet
remains populated. Correspondingly, the energy yield between high T
and the critica l temperature TN is found to be 6 .66J/gram  ion, which
amounts to about 90% of the total gain of 7 .37J/gram  ion. From the
energy levels, due to Stark splitting, one derives a crysta lline  field
energy yield of 4 .75J/gram  ion if s = ± i  is  low est or 5 .72J/gram  ion

n  Z Z •

if s = is  lowest.
In fig. 2 also the Schottky heat capacity based on the energy level

scheme mentioned in section 1 (s = ±y lowest) is  indicated for com­
parison with the experimental data. If the level scheme were reversed
s = ±1 lowest) the Schottky specific heat alone would considerably

2 2 _ r .
exceed the experimental values in the temperature region between 0.3

F ig .  2 . H e a t  c a p a c i t y  c m/ R  o f  G doC SO ^Jg.SH gO  a s  a  fu n c tio n
o f te m p e ra tu re  o n  a  lo g a r i th m ic  s c a l e .  T h e  s in g u la r i t y  o c c u r s  a t
T j^  = 0 .1 8 2  ± 0 .0 0 1  K. T h e  d a s h e d  l in e  r e p r e s e n t s  th e  S c h o t tk y
s p e c i f i c  h e a t  fo r  = ±54 lo w e s t ,  a n d  th e  d o t - d a s h e d  l in e  g iv e s
th e  su m  o f  S c h o t tk y  a n d  d ip o la r  h e a t  c a p a c i t i e s .  T h e  t r i a n g l e s
a re  p o in ts  ta k e n  from  r e f s .  3 a n d  4.
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and 2K. Hence we agree with the conclusion of Bogle and Touten-
hoofd®* that the ground s ta te  is s z =±j-. Bogle and Symmons5* have
noted that the crysta lline  field energy levels E /k  = —0.572 K, —0.252 K,
+ 0 .138K and +0.685K can reasonably well be represented by:

b ° { s 2 -4 s(s + l ) } + ^ ( s 2 - s 2) ,

with b2/k  = 0.1K and 3-b2/k  = 0.02K. One sees  that the crysta lline  field
is predominantly axial, not cubic as was formerly supposed. Hence the
four twofold degenerate levels may be denoted as s z = ± 2-, ±§-( ±|-and
±j- levels respectively , to a good approximation. We shall apply this
approximation for calculating the dipolar interaction, modified by the
above crystalline fie lds. Such calculations are based on the formulae
of Van V leck1®' and have been carried out earlier for cubic fields by
Hebb and P u rce ll2 .̂

In the notation of Van Vleck, for zero external magnetic field,

_ d ^ t 2 dot-̂ _ N3Q d
d ip o la r  ~ dT ' dT " 4k2 dT {kT2A ( ( S

dT 1 + S 2 + S3)/ t 2 )>

2 1 = 2 q=x,y,z{ 2 m1l/Xq(mi 'mi) P exp (-W(mt)A T ) }2,

where N is the number of ions per cm3, Q = N“ 2 2  2r]"j6, and where
/x (m jiUj) is the (diagonal) matrix element of the magnetic moment
operator in the s representation. The sums ^ 2 and ^3 have not been
explicitly written since they are slightly more complicated. They con­
tain nondiagonal matrix elem ents, giving the contributions of fj-x  and
/J. when adopting the s representation, and are incorporated in the
calculation. We have summed these expressions with the aid of a
360/50 IBM-computer, and some resu lts  are given in table I. From the
crystal structure we further estim ate Q=18.3 ±0.5.

The values of c di for s z = ± 2- lowest, when added to the Schottky
specific heat c , resu lt in a theoretical curve, indicated in fig. 2 by a
dashdotted line. It is seen that agreement with experiment is  sa tis-

e  \

factory in the high temperature region, as noted before by Bogle e .a .
and by Van Dijk e .a .3' 4 '. Neither our caloric data, nor those of Van
Dijk3\  extend to sufficiently high T in order to make an accurate
derivation of the asymptotic value of cmT 2/R  possib le. This may be
connected to deviations from c *T —2 which are apparent in the Schottkyin
specific heat between for instance 1 and 3K (cf. c g in table I). For
the entropy determination we have therefore adopted the calculated
value c T 2/R  = 0 .33K 2. Higher values of c T 2/R  were reported e.g .m rn
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TABLE I

H ie  re s u lts  of ca lcu la tions of the Schottky terra and dipolar term in the sp ec ific
heat are p resen ted . The summed contributions are  p lo tted  in  figs. 2 and 3 resp ec t-

ively  a s  a  dash-dotted  curve

T
Gcl2(S04>3-8H2 ° GdCl3.6H20

w Cdip Cs +Cdip c cdip Cs  + cdip
R R R R R R

0.4 0.522 0.632 1.154 0.505 0.781 1.286
0.6 0.349 0.326 0.675 0.317 0.286 0.603
0.8 0.238 0.186 0.424 0.208 0.130 0.347
1.0 0.167 0.117 0.284 0.144 0.0808 0.225
1.4 0.095 0.0573 0.152 0.0800 0.0369 0.117
2.0 0.049 0.0271 0.076 0.0413 0.0167 0.0580
3.0 0.0225 0.0118 0.0343 0.0190 0.00713 0.0261
4.0 0.0131 0.0066 0.0197 0.0109 0.00393 0.0148

10.0 0.00219 0 0 .00109 , 0 .0 0 3 2 8 , 0 .0 0 1 7 8 , 0.00061 , 0 .0 2 3 2 9 ,
T 0 .2196 /T ‘ 0 .109 /T Z 0 .328 /T ^ 0.17 9 /T Z o.oeos/T̂ 0 .240 /T ^

by Broer and Gorter17  ̂ and De V ries1S* from paramagnetic relaxation
experiments. The former obtained b/C=3.9^kO e2 at 77 K, which gives
c mT 2/R  = 0.36 K2 and the latter obtained b/C  = 3 .8kO e2 at 20K, giving
c mT /R = 0.35K  . The small discrepancy with our calcu lated  value of
c m mi<3ht be explained by assuming a small exchange interaction. In
this case , however, the calculated value of c above 2K would be
about 8% higher than the experimental value, which is outside the
experimental error. In any case the entropy determination is practically
not affected by choosing the higher value of c .

One may note that the experimental data fall considerably below
the theoretical curve for T /T N < 5. As an illustration , the value of
(Cm - CS)T2/R  decreases by a factor 4 when going from 2.5 K to 0 .2 5 K.
Since the interpolation procedure of Bogle e . a . f o r  estim ating the
Stark splittings in the gadolinium sa lt does not allow much variation
(< 1%) in the Schottky specific heat, the discrepancy has to a large
extent to be attributed to overestim ation of the contribution of dipolar
interactions. This may be due to: a) neglecting higher terms (T—2,T —4)
in the partition function of the dipolar interactions,and b) to the circum­
stance that averaging over the angular variable in ( 1 - 3 c o s2 # . ) 2 in
the dipolar sum, while allowed in the T- 2  approximation for isotropic
ions (g^ = g_i),is inadm issible when crystalline field levels are partially
depopulated. In this case the s ta tis tic a l weighting factors for the
highest levels decrease. For these levels the effective g-value has the
property g^ =0 and then the averaging procedure for (1 — S co s2#^)2 is
no longer correct. Taking the angular variables for neighbouring ions
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into account, however, would require an elaborate computational pro­
cedure, i.e . essen tia lly  a combination of the techniques of Van Vleck16'
and of D aniels13\

We suggest that the series expansion of c m in powers of 1/T has
at least one significant term with the negative sign which is to be
contrasted to the se ries  expansions of c m in case  of exchange inter­
ac tio n s19). As a consequence the transition point is  comparatively low
and deviations from c «  1 /T 2 behaviour occur a t a relatively h ig h T /T N.
Van Vleck calcu lated  negative coefficients of T —3 and T 4 terms in
c for cubic la ttice s , but their magnitude remained uncertain.

$ e  conclude that exchange interactions are negligible and that
Stark splittings and dipolar interactions explain the data a t high T,
but that the high temperature approximation c dlp/R  =^-Qr2/T  , where

r  = Ng2y82s(s + l) /k  = 0.191 K,

is  only valid for t/T  < j -»
Considerable deviation of the heat capacity from theoretical e s ti­

mates a t relatively high T was a lso  reported by several authors in
cerium magnesium nitrate . In th is sa lt one also has g j_»g^yand pre­
dominance of dipolar coupling.

3.2 Gadolinium trichloride hexahydrate , G dClj.B l^O
In fig. 3 the heat capacity of gadolinium chloride hexahydrate is

given as  a function of temperature. The singularity a t TN=0.185±0.001K
is due to a magnetic ordering transition, while the broad anomaly under­
neath is alm ost certainly due the Stark splitting of the ^ y / 2  9r°und
sta te . Experimental data on many ionic Gd compounds have shown
that the crysta lline  field splittings have the order of magnitude of
i cm-1  and th is agrees roughly with the position of the temperature
scale  of the Schottky anomaly under the sharp singularity of the mag­
netic in teractions.

The change in entropy when cooling the crystal to T N amounts to
1.480 R which is slightly more then Rl n4 .  At T = 0.10K the entropy
change is 2.009 R which is 3% less than the expected total entropy
R In (2s +1) a t T =0 K. The unusually high entropy above T N corroborates
the assumption that the crystalline field splittings contribute to the
heat capacity . The energy yield above T N is E 00- E c = 6.25 J/m ole,
while below TN the energy change amounts to 0.534 J/m ole, hence
E t =6.78 J/m ole and - E c/ E tot = 0.92.

The heat capacity for T > 1 K is  over a rather lim ited temperature
region represented approximately by c mT 2/R  = 0.240 K» H ellw egee.a.
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F ig .  3 . H e a t  c a p a c i t y  c m/ R  o f G d C lg .6 H 2 0  a s  a  fu n c t io n  o f
te m p e ra tu r e  T  o n  a  lo g a r i th m ic  s c a l e .  A s i n g u l a r i t y  i s  fo u n d  a t
T ^j = 0 .1 8 5 ± 0 .0 0 1  K. T h e  d a s h e d  l in e  i n d i c a t e s  th e  e s t im a te d
S c h o t tk y  s p e c i f i c  h e a t .  T h e  d a s h - d o t te d  l in e  c o r r e s p o n d s  to  th e
sum  o f S c h o t tk y  s p e c i f i c  h e a t  a n d  d ip o la r  s p e c i f i c  h e a t .

have measured the heat capacity  in the region 1.1 < T <  260K. Their
values for c m a t T > 1.5 K are slightly higher than ours, but our data
agree with theirs within the accuracy of the measurements between
1.1 and 1 .5K. According to the high temperature expansion:

c /R ~ T r H 2/ k 2T2 = ^ s ( s  + l ) (2s+ 3) (2s - l ) { (b ° )2+l.(b2)2}/k2T2

Levy2 ^  derived b2/k  = —0.085K and g-b |/k  = 0.03K from our prelimi­
nary susceptib ility  d a ta22  ̂ and H ellw ege's heat capacity  data. From
the eigenvalue equation in the parameters b° and b2 one finds the
crystalline field energy levels W1/k = -0 .6 1 9 K , W2/k  = -0 .1 6 9 K ( W ,/k =
= +0.156K and W4/ k = +0.632 K. A crystalline field energy of 0 .619R =
= 5 .15J/m ole would therefore contribute 76% to the to tal energy gain
Etot = 6.78 J/m ole.

The dipolar specific  heat may be calculated following the methods
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of section 3.1 and taking the value 0  = 15.4, calculated  by L evy21* for
the dipolar sum. When adding the Schottky and dipolar specific  heat
and comparing the sum with the experimental data, it is  found that a
better fit, particularly at high T, can be obtained by choosing b ° /k  =
= —0.07K and g-b2/k  = 0.03 K. The corresponding Stark energy levels
are then W /k « -0.530 K, Wz/k  = -0 .205K , W3/k= + 0 .11‘5K and W4/k  =
= +0.620K. The asymptotic values of c T 2/R  for Schottky and dipolar
specific heat become 0 .180K 2 and 0.060 K2 respectively , the latter
being independent of the Stark splitting . The sum of the two contri­
butions shown in fig. 3 and table I fits to the experimental resu lt for
c mT 2/R  at high T, and agrees reasonably well with the data over an
appreciable temperature region. However, like in the sulphate, devi­
ations occur above T N, which cannot reasonably be attributed to a
poor choice of Stark sp littings. Recent E .P .R . m easurem ents231 on
Gd-doped YC13.6H20  have yielded the energy sp littings 0.257, 0.236
and 0.372 cm- 1 , the latter splitting  lying highest. These resu lts  agree
fairly well with ours (0.255, 0.220 and 0.350 cm-1  respectively). The
E .P .R . measurements confirm the resu lt that b2 is negative so that the
s z = level lies  lowest.

It may be remarked that the c versus T curve for the sulphate is
strikingly similar to that of the chloride. We emphasize a peculiar aspect
of these curves namely a relatively flat region above TN, preceded by
a steep  descent very c lose  to the critical point. This may be character­
is tic  of dipolar interactions, which apparently lead to a comparatively
low critical point, reflected in a high value of (Etot — ^  s t a r k ^ N =
= E di /R T n compared to what is found for exchange interactions.

As in the sulphate octohydrate there is  no indication that exchange
interactions play a significant role in the ch lo ride.lt may be mentioned
that in the anhydrous chloride two Gd3+ions are separated by only one
chlorine ion at a d istance of 2.86 A and 3.05 A for the two Gd ions
respectively. In GdCl3.6H20  the linkage between, for instance, two
Gd ions in the ac plane will be formed by one water molecule at 2.42 A
and one chlorine ion (at 2.77 A). These belong to two different [GdCl2
( O H 2 ) 6 J complexes, the chlorine and water molecule being a ta d is ta n c e
of 3X with respect to each other. In GdCl3 the value of the exchange
constant for nearest neighbour exchange24* —2 J S j . s 2 amounts to
J /k  = — 0.08 K, while in our case the exchange constant is  a t lea s t 10
times smaller.

At T = 0.05K a few points in the heat capacity  data (not shown in
fig.3) having an upward trend with decreasing T, may indicate the
presence of hyperfine contributions to the heat capacity . E .P .R . d a ta25*
show that magnetic h .f.s. contributions in most sa lts  e.g. Gd3+ in
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LaClg.7H20  are small and probably do not appreciably affect the heat
capacity above 0.05 K. L ittle  is  known about the electric  hyperfine
structure coupling which may not be negligible for the odd-odd iso­
topes 155Gd and 157Gd (Q =1.4 bam).

3.3 Dysprosium ethylsulphate, Dy(C2H5S04)3.9H20
The specific heat of dysprosium ethylsulphate is shown in fig. 4 on

a logarithmic scale . From the data the critical temperature may be
located at Tc = 0.115K. The most remarkable feature of the specific
heat curve lies in the large ta il above the critica l temperature.

0 .5  °K  1.00 .0 5

F i g .  4. T h e  h e a t  c a p a c i t y  o f  d y s p r o s i u m  e t h y l s u l p h a t e  a s  a
f u n c t i o n  o f  T  p l o t t e d  o n  a  l o g a r i t h m i c  s c a l e .  T C = 0 . 1 1 5 K .

Before analysing the energy and entropy involved in the phase
transition, the specific  heat originating from hyperfine interactions
of the Dy and 63Dy isotopes must be subtracted from the data.
From paramagnetic resonance resu lts  obtained by P ark26), a hyperfine
contribution to the specific  heat, c hfsT 2/R  =0.00095 was calculated
by Cooke et al. .^Applying this correction to the data we obtain
A E /R T C = 0.92 for the energy released above T , and AS/R = 0.47 for
the entropy change above Tc< These values are s till  higher than, for
instance, those calculated for a two-dim ensional (quadratic) Ising
lattice  with isotropic J values: A E /R T c = 0.623, and AS/R =0.387.

Because of poor heat contact between the single crystal and the
specimenholder, it was difficult to obtain precise resu lts  below about
0.09 K. Therefore, these resu lts  have not been plotted in fig. 4. For
this reason the evaluation of the entropy and energy change below T c
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remains somewhat imprecise. Using the dashed line in fig. 4 as an
extrapolation, we obtain (Ec—E o)/R T C=0.18 and (Sc—So)/R = 0.22
±0.03 for the energy and entropy change below T , respectively. The
total entropy involved in the phase transition equals 0.69 R per gramion
which agrees with the expected value of R In 2 = 0.693 R.

The high temperature magnetic specific heat (0.3 K < T < 1K) is
accurately described by the relation c T 2/R  = 0.0155 ±0.0004 K. An

•  m a g n
upper bound to the error may be obtained from the consideration that
the total entropy involved in the phase transition is given by Rln2. The
error involved in the determination of the entropy change below T is

n  C

estimated as 0.03 R. An upper bound to the error in cT /R  arising
from this inaccuracy amounts to 7% so that cT 2/R  = 0.0155±0.0011 K.
By using the g-values and hyperfine interaction constants, as referred
to in section 1, the hyperfine and dipolar contributions amount to
(c hfs +cdiP>T2/R  = 0.0131K.

Other experimentalists have obtained the values c t taiT /R  *
= 0.0134 K115 (for T > 1 K), and c totalT 2/R  = 0 .0136+20/T 10) for 1K <
< T < 1.6 K. The former result agrees fairly well with the theoretical
one, while the latter gives a mean value of c t ta,T 2/R  = 0.0150 K,
which lies appreciably higher than the theoretical one but is still
lower than our value c. t ,T 2/R  =0.0165±0.0011 K. The slight upward

l O i Q l  i M
curvature on decreasing the temperature, as found by Cooke et al. '
and expressed by the T ~ 3 term in the specific heat, disagrees strongly

■ _ _  O

with our results, which indicate that the coefficient of the T term
is much smaller and of negative sign (—0.0001 /T 3). For this reason
the experimental value of the coefficient of the T ~ 2 term must be
chosen much higher viz. 0.0148.

From the experimental results we may conclude that the interactions
in dysprosium ethylsulphate are predominantly of the dipolar kind. The
small discrepancy between the observed and calculated values of
cT 2/R may be due either to an erroneously small value of g or to the
presence of a small exchange interaction.

The fractions of the total energy and entropy removed above Tc
are found to be as high as 84% and 69% respectively. For the quadratic
Ising net these values are 70.6% and 55.7%. In the ordering of a linear
chain these values are 100%, as the transition point lies at zero temper­
ature. The experimental result may therefore be interpreted by a model
in which the predominant interaction occurs between ions in a one­
dimensional arrangement. The ordering between the chains will occur
at a fairly low temperature determined by the interaction between the
chains as compared to the interaction in a chain.

A glance at the crystal structure (fig. 1) shows that the dipolar
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interactions strongly favour alignment of the spins parallel to the c
axis since c /a  = 0.506. At zero temperature, the relative strength of
the dipolar fields originating from the ions in a chain parallel to the
c axis (Hdl ), compared to that originating from the three nearest-
neighbour chains (Hdlp), can be calculated easily . By considering
7 ions upward and downward along the c axis in each chain, we obtain
Hdlp/H dlp= 1.06/6.84 = 0.155. It can be estim ated that the dipolar field
originating from the n.n.n. chains is sm aller than Hdi and in a first
approximation these in teractions may be neglected.

Since g^»g[j_ , dysprosium ethylsulphate behaves like an Ising
s= j- system (albeit with long range interactions) characterized by
stfong interactions in one direction and by weaker in teractions in a
plane perpendicular to it. Phenomen&logically the total interaction
leads to an amount of short range ordering which is found for a system
lying between a linear Ising chain and an isotropic quadratic Ising
system (with n.n. in teractions). Theoretically, for the quadratic la ttice ,
O nsager27  ̂ has given an exact relation between the critica l temper­
ature kT c, J  and J ' viz.

(sinh2  J /k T c)(s inh2  J /k T c) =1, (1)

where J is the coupling in one direction, and J ' that in a  direction
perpendicular to it. By keeping J fixed, kTc may be evaluated as a
function of J ' / J  < 1 . By comparing the specific  heat curve of dys­
prosium ethylsulphate with the specific  heat curve for J ' / J  = 0.01,
plotted in fig. 7 of O nsager's article  as  a function of 2 /(J /k T  + J '/k T ) ,
the transition temperature of the sa lt may be located at

2 kTc/ ( J  + J ')  = 1.75. (2)

From eqs. (1) and (2) we obtain J '/J * 0 .1 4 . This resu lt agrees well
with the value Hdlp/H dlp = 0.16 derived from the relative strength of
the inter- and intra-chain coupling. The small value of J ' / J  ind icates
that dysprosium ethylsulphate may in first approximation be described
by a linear chain model.

As a conclusion we may s ta te  that the magnetic in teractions are
predominantly of the dipolar kind, and the crystal structure strongly
favours coupling in chains. The coupling between the chains may be
estim ated as about one seventh of that deduced for the coupling within
the chains. The resulting effective coupling is  found to resemble
closely a linear chain interaction.



122

3.4 Singularities of the two gadolinium salts
The results of the specific heat measurements of the two gadolinium

salts are presented in tables II and III. In fig. 5 the logarithm of the
T A B L E  II

S p e c ific  h e a t ,  c m, of Gd2(SC>4)3.8 H 20  a s  a  fu n c tio n  o f ( T —T N ) /T N n e a r  th e  tran ­
s i t io n  tem p era tu re ; T N = 0 .1822 K i s  u se d  a s  a  re fe re n c e  p o in t ( s e e  s e c t io n  2). T h e

two ru n s  a r e  m ade on th e  sam e day

<T - T N>/ T N c  / R
(t - t n ) / t n

c  / R
(t - t n ) / t n

c  / R
(t - t n ) / t n

c  / R
x  100 x 100 x 100 x 100 m

run  1 1.237 2.905 - 1 3 .6 0.946 0.610 7.28
- 3 5 .8 5 0.305 1.78 2.26 - 1 0 .7 8 1.164 0.871 5.56
- 3 1 .0 3 0.385 2.33 1.60 -  8.41 1.381 1.24 4.96
- 2 6 .1 0 0 .494 3.12 1.618 -  6 .43 1.68 1.66 2.50
- 2 1 .7 7 0.658 4.38 1.513 -  5.08 1.89 2.16 1.57
- 1 7 .8 8 0.828 6.49 1.358 -  3 .79 2.40 2.77 1.56
- 1 4 .3 3 0.917 9.44 1.302 -  2.70 2.99 3.29 1.61
- 1 1 .3 9 1.01 13.86 1.249 -  2 .05 3.24 3.92 1.49
-  8 .50 1.36 22.0 1.043 -  1.60 3.92 4.70 1.50
-  5 .74 1.84 29.5 1.104 -  1.26 4.49 6.06 1.337
-  3 .27 2.63 38 .7 1.077 -  0 .959 5.08 8.32 1.323
— 1.52 4.06 50.1 1.022 -  0 .689 6.20 11.63 1.233
-  0 .433 6.77 run 2 -  0 .447 7.28 15.87 1.185
+ 0 .084 8.00 - 2 7 .4 5 0.463 -  0 .233 8.03 20.84 1.134

0.340 7.82 - 2 4 .2 3 0.523 -  0 .012 10.13 25.9 1.112
0.581 6 .97 - 2 0 .9 8 0.647 + 0.17 8.74 32.2 1.098
0 .885 4.77 - 1 7 .0 2 0.801 0.36 8.78 39.9 1.056

T A B L E  III

T h e  s p e c if ic  h e a t  c m/ R  o f  G dC L.B H gO  a s  a  fu n c tio n  o f T  n e a r  th e  tra n s it io n  p o in t
T n = 0 .1 8 5 K  i s  ta b u la te d . T h e  r e s u l ts  o f s e v e ra l  d a y s  and  ru n s  a re  p re se n te d .

T  K c  / Rm T  K c  / Rm T  K c  / Rm T  K c  / Rm
4-4-'66 0.19547 1.43 6-4-'66 0.17635 2 .64

0 .17957 3.20 0.19657 1.43 run i 0.17793 2.85
0 .1 8 2 0 4 4.53 l-4 r '6 6 0.16106 1.29 run 2
0 .18332 4.33 0.1816 3.45 0 .16194 1.36 0.14961 0.90
0 .18357 4.52 0.1821 4.03 0.16278 1.48 0.15153 0.89
0 .18393 5.71 0.1825 4.6 0.16344 1.59 0.15326 0 .97
0 .18418 6.18 0.1831 6.2 0.16423 1.47 0.15668 1.07
0 .18449 6 .84 0.1837 4.8 0 .16515 1.70 0.15817 1.13
0 .18482 7.16 0.1844 5.9 0 .16613 1.64 0 .15993 1.157
0.18511 10.1 0.1849 8.9 0.16719 1.88 0.16184 1.363
0 .18540 9.13 0.1857 3.9 0.16822 1.94 0 .16355 1.342
0 .18605 2.64 0.1872 2.23 0.16988 1.95 0 .16904 2.109
0 .18737 2 .04 0.1891 1.65 0.17062 2 .14 0.17366 2 .39
0 .18899 1.70 0.1911 1.48 0.17151 2.36 0.17768 3.17
0 .19020 1.60 0.1930 1.54 0.17240 1.97 0.18136 4.89
0.19117 1.47 0.1948 1.53 0.17338 1.987
0.19236 1.30 0.1969 1.34 0.17438 2.40
0.19396 1.34 0.1993 1.36 0 .17536 2.58
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specific heat is  displayed versus the relative temperature T /T N. The
squares denote the measurements on the sulphate and the triangles
those on the chloride. The dashed curves denote the resu lts  for the
s= j- Ising model of s .c . structure obtained by B aker28*. The width of
the peak of the sulphate is  fairly large compared to the temperature

0.98 1.00 1 .02

F ig .  5 . T h e  lo g a r i th m  o f th e  m a g n e t ic  s p e c i f i c  h e a t  c m/ R  i s
sh o w n  v e r s u s  T /T jg  fo r  g a d o lin iu m  s u lp h a te  (T j j = 0 . 1822 K ), a n d
g a d o lin iu m  t r ic h lo r id e  h e x a h y d r a te  (T n  = 0 . 1851 K ). T h e  s q u a r e s
p e r ta in  to  th e  s u l p h a t e ,  th e  t r i a n g l e s  to  th e  c h lo r id e .  T h e  d a s h e d
c u r v e s  r e p r e s e n t  th e  I s in g  s  = % s . c .  r e s u l t  c a l c u l a t e d  b y  B ak e r2 8 ) .

resolution so that a plot of the specific  heat versus 1 1 -T /T N | is
feasib le. The resu lt is  shown in fig. 6, which has logarithmic sca les .
The filled symbols denote the measurements below T N, the open ones
those above T N. For 10~2 < 1 - T /T N < 10-1  the data may be described
by the relation

c m/R  = B ( l - T /T N) - rf,

with B = 0.32 and & = 0.60. Above T N the curve levels off for T >1.02Tj^
so that an analysis cannot be made with confidence.

As to the overall behaviour of the singularities we may notice from
fig. 5 the following points, a) The maxima of the peaks are almost
equally high and rank among the highest values observed in magnetic
system s. This result is established most unambiguously in the sulphate
which has a relatively broad peak, b) For 0.98 < T /T N < 1 the curves
show a striking resem blance, whereas for 1 < T / T N <1.02 the curve
of the chloride lies appreciably lower than that of the sulphate.



124

F ig ,  6 , H ea t c a p a c i ty  of -GdgCSO^J^.SHgO n e a r  th e  t r a n s i t io n
p o in t, p lo t te d  on  a  lo g a r ith m ic  s c a l e .  T h e  s t r a ig h t  l in e  c o r r e s -
p o n d s  to  c m/ R  = 0 .32  (1 -  T / T N )- 0 ' 6 .

As the entropy yield above TN nearly equals R In 4 for both sa lts ,
and the lowest doublets are separated by £ E /k  = 0 .32 K, only the lowest
doublet will be appreciably populated near T N = 0.18K. This doublet
is  characterized by for the sulphate, and by s z =±j- for the
chloride. Near TN the chloride may therefore be characterized by an
effective spin y  and strongly anisotropic g-values (g^ » gjJ, which
is  rem iniscent of the Ising s = i- model. As we may notice from fig.5
the curve of the chloride is strongly asymmetric and shows a steep
descen t above TN, which agrees qualitatively with the Ising model
prediction.

Near TN, for the low est doublet, the sulphate has strongly aniso­
tropic effective g-values (g^>> g «) so that the dipolar interactions
may be expressed by

H • — 1 2J?.1P(S . s ,  + s, s , )
y  U J*  ty  J y '

K j

in a good approximation. In th is formula jfiip contains angular variables
and the interaction has a long range. In the case  J ±j = J for nearest
neighbours only, the interaction may be called  s = j--planar-H eisenberg
interaction. The model using this interaction is  also called XY model.
Recently, for the XY model, B etts and L ee29* have derived the high-
temperature specific -hea t series of the f.c.c . la ttice  up to the ninth
power in J /k T . Using a ratio-plot, the value of a  defined by the asymp­
totic relation
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c /R  ~  A - B ( l - T c/T ) “ a

was found to be -0 .2 0  ±0.20. If a  is  negative, the specific  heat has
a cusp near T c and a tta ins a finite maximum. Clearly near T the
theoretical curve for the XY model is le ss  steep than that for the Ising
model, which has <x=+0.125. Similarly the experimental specific heat
curve of the sulphate is  le ss  steep than that of the chloride.

4 Susceptibility
4.1 Gadolinium sulphate

The powder susceptib ility  of gadolinium sulphate was measured as
a function of temperature in zero external field and at a frequency of
220 Hz. The resu lts  in terms of y(/C and x*/C, where C is the Curie
constant for a powdered sample, are given in fig. 7. We conclude that
the susceptib ility  strongly suggests the onset of antiferromagnetic
ordering. The maximum of the susceptib ility  occurs a t T = 0.1830K,

V .  2 2 0  Hz

O  0.1830

t
F ig .  7 . A .c .  s u s c e p t i b i l i t y ,  y  , o f p o w d e re d  G d g C S O ^)^ .S H g O .

T h e  a . c .  l o s s e s  )( a r e  i n d ic a te d  o n  a  t e n f o ld  e n la r g e d  s c a l e .
B o th  \  1 a n d  ) ( "  a r e  d iv id e d  by th e  C u r ie  c o n s t a n t .



which is 0.4% higher than TN. A further study of magnetic phenomena
was not attempted in view of the scant knowledge about the crystal
structure.

4.2 Gadolinium trichloride
In this section we summarize the resu lts  of susceptib ility  m easure­

ments on the chloride, which were performed by Lubbers et a l .30* in
the temperature region between 0.1 and 4 K a few years ago.

The sample was shaped in the form of a sphere. The original single
crystals showed two large faces, the edges of which will be designed
as a and c axes, the a axis being larger than the c axis. Presumably
this identification of crysta l axes is in accordance with Marezio e .a .9*,
but differs from the notation of Dieke and Leopold31*. It was shown
that the principal axes of the magnetic susceptib ility  in the ordered
sta te , called  x ', y ', z ', are as given in fig. 8. The y' axis coincides
with the b ax is , which is perpendicular to the ac plane; the accuracy
of the determination of the direction x ‘ or z '  is  about 5°.

The zero-field suscep tib ility  (v  = 260 Hz), / ,  was measured in the
x ', y ', and z ' directions as  a function of temperature. The suscep tib il­
ity data at 20 K and from 4K to 1.5 K were fitted to a Curie-Weiss
relation -/ = C / (T —6), in which $x, = + 0.20±0.15K, 6  , = —0.10±0.10K
and 02, = —0.50±0.20K , the errors are not due to spread in the data but
to estim ates of possib le system atic errors. The Curie constant was
the same for the three directions within the accuracy of the measure­
ments (5%).
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F ig .  8 . P r i n c ip a l  a x e s  o f  s u s c e p t i b i l i t y  ( x ' , y ' , z ')  ° f  G d C lg .e H g O
w ith  r e s p e c t  to  th e  c r y s t a l l i n e  a x e s  a , b a n d  c o f  th e  m o n o c l in ic
u n it  c e l l .  T h e  y a x i s  c o in c i d e s  w ith  th e  b a x i s ,  w h ic h  i s  p e r p e n ­
d i c u l a r  to  th e  ac  p l a n e .  T h e  b la c k  a n d  w h i te  c i r c l e s  d e n o te  th e
tw o  c r y s t a l l o g r a p h i c a l ly  d i s t i n c t  G d i o n s .  T h e  n e a r e s t  G d n é ig h -
b o u r s  o f  o n e  G d io n  a r e  s h o w n  a t  r ig h t .
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Lower temperatures were reached by adiabatic dem agnetization of
the sample from a fixed in itia l temperature (0.9 K) and from various
field strengths. These measurements gave x «t X *. X , a s  functions
of the temperature. The latter are shown in fig. 9. Particularly  from
the behaviour of x z » it may be seen that GdClg.öHgO becomes anti­
ferromagnetic, while the temperature of the suscep tib ility  maximum
does not differ significantly  from TN as defined by the heat capacity
singularity.

0.5 °K

F ig .  9 . S u s c e p t ib i l i t y  o f  a  G d C lg .ö H g O  s in g le  c r y s ta l ,  ground
in to  s p h e r ic a l  s h a p e .  S u s c e p t ib i l i t y  in  the th r e e  p r in c ip a l  d ir e c ­
t io n s  a s  a  fu n c tio n  o f  tem p era tu re . 1 /T * i s  d e f in e d  a s  x ' / C ,  w h ere
C i s  th e  C u rie  c o n s ta n t  (v  = 2 6 0  H z).

It was found that a t T = 20K the a .c . suscep tib ility  was independent
of the d.c. fieldstrength, whereas a linear relation of 1 /x v s . H2 was
found at T=0.9K  and T -3 .8 K . Hence we assume that a t the two lower
temperatures the adiabatic susceptib ility  x ad was observed. x ad is
related to the zero d .c . field-or isotherm al susceptib ility  according to
X ad ^ X is^ A b  + CH2), where C is the Curie constant and b is related
to the specific  heat according to c m= b /T 2. We find from the data at
0.9 K and 3.8 K that VT5/C= 1570Oe and 1600 Oe respectively , hence
b/R =0.242 ±0.005 K2, which is close to the value mentioned in section
3.2.

From the comparison of the zero, field suscep tib ilities  in x ', y' and
z' directions, we conclude that the x' axis is the preferred direction
of the crystalline field, hence also of antiferrom agnetic alignment.
This would also  follow from the positive value of 6 , which presum­
ably originates mainly from the c rysta lline  e lectric  ffeld contribution,
8x, m—4b%/km +0.35K, but which may have in addition negative (anti-



ferromagnetic) contributions from dipolar in teractions and possibly
also  exchange. Since the experimental data on 6 are not very accurate,
the analysis of Levy21 ,̂ which sta rts  from our measured 0-values22\
may lead to guantitatively inaccurate conclusions, but we agree on the
point that the crystalline field parameter b°2 should refer to the x ' axis
and have a negative sign. The statem ent that the x ' ax is is  the pre­
ferred axis a t low temperature is  supported by the data on transverse
and longitudinal susceptib ility , which show that a magnetic field in
the y ‘ or z ' axis has a smaller effect on y than when the field is  along
the x ‘ axis. This would be evident when a Stark level with predomi­
nantly s z = ± y  were lowest and if the z axis would coincide with the
x ' axis. It may be remarked that the point symmetry of the Gd complex
makes the two Gd ions equivalent except for a reflection with respect
to the ac plane and that the two ions therefore have identical axes of
the crysta lline  field at room temperature. However, deformations at
low temperatures may give lower symmetry. It is plausible that the
x ', y ', z ' coordinate system coincides, a t lea s t approximately with the
x, y, z coordinates of the spin-hamiltonian.

Furthermore, it  is  known that long-range magnetic interactions in
conjunction with strong crystalline fields may lead to helical magnetic
structures (e.g. in the rare earth m etals) which differ from the simple
axial spin alignment envisaged in the foregoing d iscussion .

5 Summary and conclusions
1. The gadolinium chloride hexahydrate and sulphate octohydrate

become antiferromagnetic at respectively TN = 0.185 and T N = 0.182±
±0.001 K. Dysprosium ethylsulphate becomes ferromagnetic at T =0.115±
±0.002 K.
2. The heat capacity  of the gadolinium sa lts  is largely determined
by Stark sp littings. The behaviour of the dysprosium sa lt may be de­
scribed largely by dipolar interactions between ions lying in a chain
parallel to the c axis. The singularities of the three sa lts  correspond
to the onset of long-range order due to magnetic dipole coupling. A
characteristic  feature of these dipolar sa lts  is the narrow specific
heat peak, which on decreasing the temperature suddenly emerges from
a region of weak temperature dependence.
3. Our data on Gd sulphate support the suggestion of Bogle e .a . that
the s z =±j- s ta te  is lowest, while the data on Gd chloride suggest that
s z = ± £  is lowest in the latter compound, which has been corroborated
by the E .P .R . measurements of Meierling and Uhlmann23*.
4. The heat capacity  of gadolinium sulphate above T N, for instance
in the region 2TN < T < 5TN, is not correctly predicted by the sum of
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calculated l / T 2-dependence of dipolar contributions and of a Schottky
specific heat, even when the modification of the dipolar coupling by
the Stark splitting is taken into account. The experimental results
indicate that the series expansion of cm in powers of 1/T has some
negative terms in case of dipolar interactions, in contrast to the case
of exchange interactions.
5. At low T the heat capacity as a function of temperature rises very
steeply in both salts. Since for TN <T <1.1TN the heat capacity de­
creases sharply, the small width is the most characteristic aspect of
the singularity, which is of dipolar origin.
6. The susceptibility of the chloride corresponds to the occurrence of
a preferred direction of the magnetic moments along the x' axis, which
is supposed to originate mainly from the crystalline field.
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Samenvatting

Dit proefschrift beschrijft een onderzoek aan m agnetische fase­
overgangen in ionische k ristallen . Gezien van theoretisch standpunt
behoren ionische kristallen  tot de rela tief eenvoudige m aterialen
a) daar de wisselwerking plaatsvindt tussen  gelokaliseerde  spins, in
tegenstelling tot die tussen elektronen in een metaal of tot die tussen
molekulen in een overgang tussen de vloeibare en gasvormige fase,
en b) daar in die kristallen , waarin de w isselwerking voornamelijk van
het "exchange”  type is, deze in hoofdzaak p laatsv indt tussen  naaste-
buren, waardoor de berekeningen aanzienlijk vereenvoudigd worden.

Gezien vanuit experimenteel standpunt zijn ionische k ristallen
aantrekkelijk voor het bestuderen van fase-overgangen, daar een groot
aantal m agnetische m aterialen kan worden gemaakt. Afhankelijk van
de kristalstruktuur kan de w isselwerking plaatsvinden of voornamelijk
in ketens (refs. 1 en 2; hoofdstuk VI dysprosium ethylsulfaat), in een
twee-dimensionale struktuur (hoofdstukIII, 5.2, CoCsgBr-; ref. 3), of
in een drie-dimensionale struktuur (talrijke voorbeelden, z ie  b.v. refs.
4 en 5; CoCs„Clg in hoofdstuk III en b.v. C uK -C l..2H „0 in hoofdstuk
IV). 4 2

De experimenten zijn verricht in het temperatuurgebied rond 1 Kelvin.
De thermische expansie effekten in dit temperatuurgebied zijn zeer
klein vergeleken met de m agnetische wisselwerking, zodat de magne­
tische fase-overgang in het algemeen niet gepaard gaat met een latente
warmte. Een tweede voordeel is , dat de soortelijke warmte van het
rooster zeer klein is  ten opzichte van de soortelijke warmte van mag­
netische oorsprong, zodat s lech ts  een kleine koi;rektie op de gemeten
totale soortelijke warmte behoeft te worden aangebracht. De experi­
mentele opstelling wordt beschreven in hoofdstuk II.

In de laa ts te  jaren zijn aanzienlijke vorderingen gemaakt in de
theorie van fase-overgangen6,7). Voor een aantal thermodynamische
eigenschappen van het Ising model met spin V2 zijn nauwkeurige nume­
rieke resu ltaten  verkregen zowel boven a ls  beneden de k ritische tem­
peratuur (zie ook hoofdstuk I, 3.5). Voor het Heisenberg model zijn
tot nu toe re la tief weinig numerieke resultaten  bereikt, daar de bere­
keningen moeilijker zijn. Voor de dipool-wisselwerking, die een lange
dracht heeft, zijn zowel de theoretische als de experimentele resu lta ­
ten schaars, zodat het veld van onderzoek nog open is.

In hoofdstuk I wordt een overzicht gegeven van fenomenologische
en m icroscopische theoriën over fase-overgangen. In het bijzonder
wordt de methode van analyse van eindige reeksen onder de loep ge­
nomen, die zijn afgeleid voor de su scep tib ilite it en de soortelijke
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warmte. Met een rekenprogramma gebaseerd op de analyse van deze
reeksen met behulp van de " ra t io '' methode, zijn nieuwe resultaten
in gesloten vorm verkregen, die de temperatuurafhankelijkheid van de
beschouwde grootheid beschrijven in het hele temperatuurgebied bo­
ven het kritische punt. Hiermee kunnen de experimentele resultaten
op eenvoudige wijze worden vergeleken. Hoofdstuk I besluit met en­
kele beschouwingen over de afronding van de soortelijke-warmte kurve,
die in veel kristallen  is  waargenomen. Berekeningen gebaseerd op een
eenvoudig model, waarin een G aussische verdeling van overgangstem-
peraturen rond het kritische punt wordt aangenomen, tonen aan, dat de
temperatuur waarbij de soortelijke-warmte kurve het maximum bereikt,
niet sam envalt met het kritische punt indien de soortelijke-warm te
kurve asymmetrisch is .

In hoofdstuk III worden de metingen geanalyseerd van de thermische
eigenschappen van de kristallen  CoCs3C l5 (TN =0,527 K), and C oC s3B r5
(T n = 0,282K). Uit param agnetische resonantiemetingen en kalorische
gegevens kan worden afgeleid dat CoCs3C l5 bij zeer lage temperatu­
ren een goed voorbeeld is van een kubisch s = J4 Ising systeem . De
piek in de soortelijke warmte wordt goed beschreven door een kubisch
Ising model indien de kritische temperatuur gekozen wordt volgens de
suggesties van hoofdstuk I. De eigenschappen van CoCs3Br5 worden
goed beschreven door een twee-dimensionaal Ising model. Karakteri­
stieke trekken zijn de grote soortelijke warmte boven TN, welke sa­
menhangt met een aanzienlijke ordening op korte afstand, en een soor­
telijke warmte, die een logaritm ische temperatuurafhankelijkheid ver­
toont bij het kritisch punt.

In hoofdstuk IV worden de soortelijke-warmte metingen beschreven
van een tw eetal isomorfe koperzouten, die een positieve "exchange"
wisselwerking hebben, nl. CuK2C14.2H20  (Tc = 0,88 K) en Cu(NH4)2
Br4.2H 20  (T = 1,74 K). Vroegere metingen aan het eerste  zout hebben
aangetoond dat hgt drie-dim ensionale Heisenberg model met spin x/i
van toepassing was. In dit hoofdstuk wordt aangetoond dat de kalo­
rische metingen aan Cu(NH4)2Br4.2H20  goed beschreven worden door
de"spingolftheorie in het temperatuurgebied tot 0 ,5 T C. Dit bevestigt
de toepasbaarheid van het Heisenberg model met ruimtelijk gecen­
treerd kubisch rooster. Na het verschijnen van berekeningen voor de
mate waarin de voorspellingen gemaakt voor een rooster met louter
naaste-buur wisselwerking worden gewijzigd indien ook wisselwerking
tussen tweede buren in aanmerking wordt genomen, werden de metin­
gen opnieuw geanalyseerd. Voor een ruimtelijk gecentreerd kubisch
rooster bedraagt de verhouding tussen  tweede buur- en eerste  buur-
koppeling J 2/ J j  = +0,25±0,1, zodat de wisselwerking met de tweede
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buren niet verwaarloosd mag worden. Van het zout CuK2C1..2H20 kon
de piek in de soortelijke warmte worden gemeten tot |l — T /T c | = 10—3 T .
De temperatuurafhankelijkheid aan beide zijden van de piek is loga­
ritmisch en van gelijke amplitude.

In hoofdstuk V wordt de meting van de spontane magnetisatie be­
sproken van de Heisenberg s = ‘/2  ferromagneet Cu(NH4)2Br4.2H20 . Re­
sultaten zijn verkregen in het temperatuurgebied tussen 0,05 T en
0,997 T . Een kleine anisotropie energie werd gevonden, welke boven
de kritische temperatuur nog niet tot nul is  gereduceerd. Gezien de
sterke spin-spin korrelatie wordt deze toegeschreven aan een kleine
anisotropie term in de "exchange" koppeling tussen paren koperionen.
De experimentele resultaten worden in het temperatuurgebied tot 0,7 T
goed beschreven met de spingolftheorie. Recente berekeningen met de
Green's-funk tie methode stemmen met de meetresultaten overeen tot
0,98 Tc« Dicht bij de kritische temperatuur, 3.10“ '* < 1 — T /T c < 10“ *,
wordt de spontane magnetisatie beschreven door de relatie M(T)/M(0) =
1,33 (1 — T /T c)°‘38. De kritische isotherm wordt beschreven door
H~M°,  waarbij 8 de lage waarde 3,9 heeft.

Tenslotte worden in hoofdstuk VI de soortelijke-warmte- en sus-
ceptibiliteitsmetingen besproken van drie zouten, waarbij de wis­
selwerking van dipolaire aard is. Gadoliniumsulfaat octohydraat
Gd2(S04)3.8H20 , en gadoliniumtrichloride hexahydraat GdClg.6H20
worden antiferromagnetisch bij TN=0,182 en 0,185K respectievèlijk.
Dysprosium ethylsulfaat Dy(C2H5S 0 4)3.9H20  wordt ferromagnetisch
bij Tc = 0 ,115 K. De vrij grote soortelijke warmte van de gadolinium-
zouten houdt verband met de bezettingstoename van de Kramers dou­
bletten, die dicht bij elkaar liggen. Dysprosium ethylsulfaat gedraagt
zich als een systeem van zwak gekoppelde lineaire ketens. In alle
drie zouten zet de lange afstandsordening abrupt in, wat het best
geillustreerd wordt door de gadolinium zouten. Opmerkelij k is  verder
het optreden van een rug in de soortelijke warmte kurve juist boven
de kritische temperatuur, welke beschreven kan worden door negatieve
termen (in T —3 of in hogere orde van de inverse temperatuur) in de
reeksontwikkeling van de soortelijke warmte bij hoge temperatuur.

Samenvattend kan de conclusie getrokken worden, dat de uitbrei­
ding van de bekende technieken van kalorimetrie en magnetisatieme-
ting naar temperaturen béneden 1 Kelvin, experimentele resultaten
heeft opgeleverd, die direct kunnen worden vergeleken met numerieke
resultaten van recent theoretisch onderzoek. Een dergelijke vergelij­
king is zinvol indien de magnetische materialen zorgvuldig gekozen
worden met betrekking tot de toepasbaarheid van theoretische model­
len voor de magnetische wisselwerking.
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